Table 4.2 Studies of Indoor and Outdoor Exposures to SO₂ | Reference | Year &
Season
of Study | Location | Type of
Exposure | Number of Sites | Site Description | Number of
Measurements | Duration | Sampler
Used | |---|--|--|--|-----------------|---|--|--------------|---| | Biersteker, de
Graaf & Nass,
1965 | 1964,
January to
March | Rotterdam,
the Netherlands | Indoor and
Outdoor
(residential) | 60 | Homes representative of
bungalows, multistoried houses,
flats, and high rise apartments.
indoor samples taken in living
room, outdoor samples taken
outside same house | ~14 to 22/site; half indoors and half outdoors | 24 hours | Drechsel bottle
with hydrogen
peroxide
solution,
analyzed by
titration of total
acidity | | Spengler, Ferris
& Dockery, 1979 | (year not
reported)
one-year
period | 6 cities in USA: Kingston/ Harriman TN; Portage WI; Steubenville OH; St. Louis MO; Topeka KS; Watertown MS | Indoor and
Outdoor
(residential or
public facilities) | ~ 60 | Indoor samples taken in main activity room of home (living room, TV room, den) or in public building, outdoor sites are ambient sampling stations. | ~ 30-50/site; one taken
every 6th day for at least
one year | 24 hours | Bubblers,
analyzed using
West-Gaeke
method. | | Stock, Kotchmar
et al., 1985 | May to
October,
1981 | Sunnyside and
Clear Lake
neighbourhoods
of Houston, TX | Indoor and
Outdoor
(residential) | 12 | Houses representative of those of participants in an epidemiological study. | 2/site;
one indoors and one
outdoors, providing
~200 hours of data for
each site | 8-9 days | Pulsed
fluorescence
continuous gas
analyzer | | Méranger and
Brulé, 1987 | (year not
reported)
March and
April | Antigonish,
Nova Scotia | Indoor and
Outdoor
(residential) | 2 | 60 year old house at town centre, site outside town | (not reported, 8 weekly
averages per location, in
dining room and outside
house, outdoors only
outside town) | not reported | Flame
photometric
continuous gas
analyzer | | Yuhui, Xiaoming
et al., 1991 | 1987, June to
August
1987 - 1988,
December to
February | 4 cities in
Eastern China:
Chengde
Shenyang
Shanghai
Wuhan | Indoor
(residential) | 120 | 30 homes/city: 15 coal-burning;
15 gas-burning | 16 per site: 4 samples per day, 2 days in summer and 2 in winter, in the kitchen and bedroom at breathing level. 1) 6-8 am 2) 9-11 am 3) 1-3 pm 4) 6-8 pm | 2 hours | Pararosanaline | | Lee, 1997 | 1996,
January to
March | Hong Kong | Indoor and
Outdoor
(residential) | 30 | 15 units in each of 2 staff
quarters: Tsim Sha in a heavy
traffic area; and Shatin in a low
traffic, but industrial area | 8 per site: one in the
living room and one on
the balcony, one on a
weekday morning and
one in the evening,
one on Sunday morning
and one in the evening | 20 minutes | Tedlar bag and pump (1 L/min), analysis by pulsed fluorescence SO ₂ analyzer | | Kukadia &
Palmer, 1998 | 1996, Winter | Birmingham, UK | Indoor and
Outdoor (office) | 2 | 1 ground floor office in naturally
ventilated building, and 1 third
floor office in mechanically
ventilated building. | ~ 2000 records/site
(recorded every 5
minutes over sampling
period) | 1 week | Data logging
continuous gas
analyzer | | | Measured Concentration of SO ₂ | | | | | | | | | | | | |---------------|---|---|--|--|--|-----------------------------------|------------------------------------|--|--|--------------------------------------|---|--| | Units | | | Mean | | | Min | imum | Ma | ximum | Standard
Deviation | Results | | | ug/m³ | I/O Ratio | ~0.20 | | | | Indoor
0 | Outdoor
73 | Indoor
246 | Outdoor
384 | | Multiple regression analysis showed increasing % indoor SO ₂ with older construction. Smoking in the home, outdoor SO ₂ , and gas, coal and oil heating (order highest to lowest; versus central) also associated with increased levels. Natural gas in Rotterdam at the time contained 100-250 mg S/m ³ | | | ug/m³ | Kingston, TN
Portage, WI
Steubenville,OH
St. Louis, MO
Topeka, KS
Watertown, MS | indoor
1
6
222
10
1
8 | outdoor
12
8
52
40
2
25 | | | indoor
0
5
16
10
0 | outdoor
4
7
35
28
1 | indoor
1
10
26
26
2
10 | outdoor
12
10
59
60
5
31 | | Indoor concentrations consistently and significantly lower than outdoor. Differences between cities significant. | | | ppb | indoor
5.1 | outdoor
2.8 | | | | | | | | Indoor Outdoor 5.3 5.0 | Despite higher indoor than outdoor SO_2 levels, authors caution that this result may be confounded by differences between homes and diurnal patterns. | | | ug/m³ | indoors in town
outdoors in town
outdoors control | | 2 - 10
3 - 16
0 - 30 | | | | | | | | Usually lower levels indoors than outdoors at town site. Outdoor concentrations depended on direction of prevailing winds, compared to pollutant sources (oil-burning power plants at the hospital and university). | | | ug/m³ | SUMMER Kitchen/coal Bedroom/coal Kitchen/gas Bedroom/gas WINTER Kitchen/coal Bedroom/coal Kitchen/gas Bedroom/gas | Chengde 71 60 47 39 Chengde 482 274 163 140 | Shenyang
75
51
74
53
Shenyang | Shanghai
694
334
53
33
Shanghai
860
502
65
37 | Wuhan
174
67
76
87
Wuhan
173
87
70 | | | | | | Winter exposure higher than summer; kitchen higher than bedroom, and coal higher than gas. In the 4 cities studied, concentrations of SO ₂ in kitchens and bedrooms in homes using coal stoves in winter almost all exceeded national standard (150 ug/m³ - daily average). In summer, all levels met requirement except for Shanghai. | | | nL/L
(ppb) | Tsim Sha
Shatin | indoor
4.3
3.9 | outdoor
6.0
4.3 | I/O Ratio
0.72
0.91 | | I/O
0.54
0.86 | | I/O
0.85
0.97 | | indoor outdoor
1.4 2.5
1.0 1.3 | Outdoor levels higher than indoor levels, but indoor and outdoor levels were significantly correlated. Outdoor levels at Tsim Sha highest for all times of day, likely due to traffic. No differences observed between morning and afternoon, except that lower levels seen on Sunday evenings. | | | ppb | Mean
I/O Ratio | Nat Vent
4.4
0.4 | Mech Vent
3.9
0.4 | Outdoor
11 | | | | Nat.
10.6
0.3 | Mech.
13.4
0.3 | | Outdoor levels greater than indoor. No distinction between natural and mechanical ventilation with regards to indoor air quality, | | | Reference | Year &
Season
of Study | Location | Type of Exposure | Number of Sites | Site Description | Number of
Measurements | Duration | Sampler
Used | |--|---|--|--|-----------------|--|--|----------------|--| | Bailie, Pilotto et
al., 1999 | Winter (year
not reported) | (not reported:
possibly South
Africa, based on
acknowledge-
ment) | Indoor
(residential) | 72 | Houses, none with chimneys, some with no paraffin use, some with use of paraffin for heating, lighting, and/or cooking | (not reported) | (not reported) | Exotox 75
continuous gas
analyzer | | Camuffo, Brimble-
combe et al.,
1999 | 1996,
February and
August | Venice, Italy | Indoor and
Outdoor
(museum) | 1 | Correr museum: 3 outdoor sites around the museum and 6 rooms indoors | 15 total for the site: 1 in winter only at three of the locations and 2 (one winter and one summer) at 6 of the locations | 2 to 4 weeks | Diffusion tubes, with stainless steel mesh coated with potassium hydroxide, analysis by ion chromatography | | Lee, Chan &
Chui, 1999 | 1996 - 1997,
October to
March | Hong Kong | Indoor and
Outdoor (public
places) | 14 | 3 restaurants, 2 libraries, 3 recreation sites, 3 shopping malls, 2 sports centres, and 1 car park, in rural areas and in commercial and residential urban areas | 2 per site: indoors (in
most densely occupied
area) and outdoors
(near fresh air intake
during peak hours) at
each | 20 minutes | Teflon bag and pump (1 L/min), analysis by pulsed fluorescence SO2 analyzer | | Sanyal &
Maduna, 2000 | 1995 - 1996,
February to
December | South Africa | Indoor
(residential) | 115 | 50 very low income households,
40 low income households, and
25 middle income households;
in cooking and living areas of
each home | 6 per site: 3 days per
site (fall, spring and
winter), twice per day
(once in the morning
and once in the
afternoon) | 6 hours | Exotox 75
continuous gas
analyzer | | Zhou & Cheng,
2000 | (not reported) | (not reported:
possibly New
Mexico, US,
based on
authors'
location) | Indoor
(tent) | 1 | Vinyl-backed canvas army tent inside clamshell structure, with unvented kerosene/jet fuel heaters inside (2 convection type, and 1 radiant type) modelled to simulate Gulf War conditions of 1990-1991 | 36 test runs under various conditions inside and outside clamshell. Sampling probes positioned close to breathing zone of a sleeping person. | 5 hours | Draeger Multi-
gas Multiwarn II
continuous gas
analyzer | | Chao, 2001 | 1997, May to
June | Hong Kong | Indoor and
Outdoor
(residential) | 10 | Apartments of non-smokers in different areas of city, 20 -140 m ² , 2 - 5 occupants and from 2 nd to 35 th floors | 8 per site: 4 outdoors by
fresh air intake of air-
conditioning unit, 4 in
middle of living area | 48 hours | Ogawa PS-100
passive
samplers | | Kindzierski &
Sembaluk, 2001 | 1998, Late
Fall | Boyle and
Sherwood Park,
Alberta | Indoor and
Outdoor
(residential) | 25 | 12 single-family homes in Boyle (rural, population 860) and 13 in Sherwood Park (population 42,000 and near Edmonton, population 800,000, refineries and power generating facilities nearby) | 4 per site: 2 indoors in
main living area near
kitchen and 2 outdoors
under rain shelter | 7 days | Diffusion
monitor with
glass fibre filter
coated with
sodium
bicarbonate,
analysis by ion
chroma-
tography | | | | Measured | d Concentr | ation c | of SO ₂ | | | | | | | |-------------------|---|--|--|--|---|-----------------------------|--------------------------------|-----------------------------|---------------------|-----------------------|---| | Units | | | Mean | | | Mii | nimum | Ма | ximum | Standard
Deviation | Results | | ppm | 0.54 | | | | | 0 | | 6.8 | | | After electricity, paraffin was the most commonly used fuel (69% of households and 64%, respectively). Fuel use not associated with SO ₂ levels. | | | OUTDOORS Piazza San Marcc Enclosed Courtya Enclosed Courtya INDOORS Bellini Room 1 Bellini Room 2 Lotto Room 1 Lotto Room 2 Lotto Room 3 Lotto Room 4 | rd 1 | Feb. 40 34.2 19.9 5.8 5.9 4.8 4.4 5.0 5.6 | Aug. 25.8 16.8 <6 <6 <6 <6 | | | | | | | Outdoor concentrations higher than indoor. Higher levels than those recorded at the V&A Museum in London and at the Residenz in Wurzburg. | | uL/L
(ppm) | restaurant 1 restaurant 2 restaurant 3 library 1 library 2 recreation site 1 recreation site 2 recreation site 3 shopping mall 1 shopping mall 2 shopping mall 3 sports centre 1 sports centre 1 sports centre 2 car park | Indoor 0.006 0.006 0.003 0.005 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.006 0.003 0.006 0.003 0.003 0.000 | Outdoor
0.006
0.007
0.003
0.007
0.003
0.005
0.003
0.009
0.009
0.009
0.003
0.008
0.006
0.003
0.006 | Site Comme rural rural diesel machi | nts
ine outside site | | | | | | Rural SO_2 concentrations about half of those in urban areas. Differences between indoor and outdoor levels were small (I/O Ratio = 0.92), and there was reasonable correlation between indoor and outdoor values (R^2 = 0.56). Outdoor and indoor concentrations were well below the ASHRAE recommended 24-hour average of 0.14 uL/L and the NAAQS annual average of 0.03 uL/L. | | mg/m ³ | Very low income Low income Middle income | cooking
living
cooking
living
cooking
living | June - Sept
60
33
42.5
20
21.5
12.5 | Oct - Dec
35
28
16.5
20
11.5
9.5 | March - May
27.5
35.5
16.5
24
11.5 | | | | | | SO_2 values significantly higher in kitchen than in living room from June-September (winter in South Africa). | | ppm | 0 - 1.5 c | depending on | heater, fuel, an | d air exchange | e rate | | | | | | SO ₂ concentrations rose throughout time heaters were on and decreased rapidly after they were turned off. Convection heaters produced higher concentrations than the radiant heater. | | ug/m³ | Indoor
Outdoor
I/O Ratio | 6.3
8.1
1.01 | | | | 2.6
2.6
0.25 | | 10.4
15.7
3 | | 2.2
3.8
0.78 | SO ₂ levels low inside and outside residential apartments; authors indicate that levels now are lower than previously due to the implementation of restrictions on sulfur content in fossil fuels | | ug/m³ | (MEDIANS)
Indoor
Outdoor
I/O | Boyle
0.5
4.3
0.13 | Sherwood
1.4
9.9
0.13 | | | Boyle
0.2
3.7
0.05 | Sherwood
0.9
8.2
0.08 | Boyle
2.3
5.6
0.52 | Sherwood 5.2 13 0.4 | | Indoor levels much lower than outdoor.
Higher indoor and outdoor (2x) levels in
Sherwood Park than Boyle due to
increased traffic and industrial
emissions. |