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Abstract4

Simple and ubiquitous gene interactions create rugged fitness landscapes composed of coadapted gene com-

plexes separated by “valleys” of low fitness. Crossing such fitness valleys allows a population to escape

suboptimal local fitness peaks to become better adapted. This is the premise of Sewall Wright’s shifting

balance process. Here we generalize the theory of fitness-valley crossing in the two-locus, bi-allelic case by

allowing bias in parent-offspring transmission. This generalization extends the existing mathematical frame-

work to genetic systems with segregation distortion and uniparental inheritance. Our results are also flexible

enough to provide insight into shifts between alternate stable states in cultural systems with “transmission

valleys”. Using a semi-deterministic analysis and a stochastic diffusion approximation, we focus on the lim-

iting step in valley crossing: the first appearance of the genotype on the new fitness peak whose lineage will

eventually fix. We then apply our results to specific cases of segregation distortion, uniparental inheritance,

and cultural transmission. Segregation distortion favouring mutant alleles facilitates crossing most when

recombination and mutation are rare, i.e., scenarios where crossing is otherwise unlikely. Interactions with

more mutable genes (e.g., uniparental inherited cytoplasmic elements) substantially reduce crossing times.

Despite component traits being passed on poorly in the previous cultural background, small advantages in

the transmission of a new combination of cultural traits can greatly facilitate a cultural transition. While

peak shifts are unlikely under many of the common assumptions of population genetic theory, relaxing some

of these assumptions can promote fitness-valley crossing.

Keywords: cultural evolution, cytonuclear inheritance, meiotic drive, peak shift, population genetics,5

valley crossing6

1. Introduction7

Epistasis and underdominance create rugged fitness landscapes on which adaptation may require a pop-8

ulation to acquire multiple, individually-deleterious mutations that are collectively advantageous. Using the9

adaptive landscape metaphor, we say the population faces a fitness “valley” (Wright, 1932). Such valleys10
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appear to be common in nature (Weinreich et al., 2005; Szendro et al., 2013, but see Carneiro and Hartl,11

2010) and affect, among other things, speciation by reproductive isolation, the evolution of sex, the evolv-12

ability of populations, and the predictability of evolution (Szendro et al., 2013). Here we are interested in13

the speed and likelihood of fitness-valley crossing, which we determine by examining the first appearance14

of an individual with the collectively advantageous set of mutations whose lineage will eventually spread to15

fixation.16

Believing epistasis to be ubiquitous, Sewall Wright (1931; 1932) formulated his “shifting balance theory”,17

which describes evolution as a series of fitness-valley crossings. In phase one of the shifting balance process,18

small, partially-isolated subpopulations (demes) descend into fitness valleys by genetic drift. The new19

mutations are selected against when rare, as they will tend to occur alone as single deleterious alleles.20

Eventually drift may allow the deleterious mutations to reach appreciable frequencies in at least one deme.21

Once multiple synergistically-acting mutations arise together, they begin to be locally favoured by selection.22

In phase two, these favoured combinations of mutations sweep to fixation, and those demes ascend the new23

“fitness peak”. Finally, in phase three, the demes that reach the new fitness peak send out migrants whose24

genes invade and fix in the remaining demes, eventually “pulling” the entire population up to the new fitness25

peak. Our focus here is in the first appearance of a genotype on the new fitness peak whose lineage will26

eventually fix, considering a single isolated deme. This is typically the longest stage of phases one and two27

(Stephan, 1996) and hence is likely the limiting step in fitness-valley crossing.28

Fitness-valley crossing has been investigated in a large number of theoretical studies. In the context of29

multiple loci with reciprocal sign epistasis, the first appearance of the genotype with the best combination30

of alleles has been the focus of a few studies (Phillips, 1996; Christiansen et al., 1998; Hadany, 2003; Hadany31

et al., 2004; Weissman et al., 2009, 2010). Many authors have gone on to examine the remainder of phases32

one and two (Crow and Kimura, 1965; Eshel and Feldman, 1970; Karlin and McGregor, 1971; Kimura,33

1985; Barton and Rouhani, 1987; Kimura, 1990; Phillips, 1996; Michalakis and Slatkin, 1996; Stephan,34

1996; Weinreich and Chao, 2005; Weissman et al., 2009, 2010), as well as phase three (Kimura, 1990; Crow35

et al., 1990; Barton, 1992; Kondrashov, 1992; Phillips, 1993; Gavrilets, 1996; Hadany, 2003; Hadany et al.,36

2004). Similar attention has been given to situations with a single underdominant locus (Slatkin, 1981;37

Gillespie, 1984; Barton and Rouhani, 1993; Peck et al., 1998) or a quantitative trait (Lande, 1985a; Barton38

and Rouhani, 1987; Rouhani and Barton, 1987a,b; Charlesworth and Rouhani, 1988; Barton and Rouhani,39

1993). The theoretical and empirical support for Wright’s shifting balance process has been summarized and40

debated (Coyne et al., 1997; Wade and Goodnight, 1998; Coyne et al., 2000; Whitlock and Phillips, 2000;41

Coyne et al., 2000; Goodnight and Wade, 2000; Goodnight, 2013), and the general consensus appears to be42

that, unless the valley is shallow (weakly deleterious intermediates), crossing a fitness valley is unlikely.43

Despite the abundance of literature on fitness-valley crossing, the above studies all assume perfect44

Mendelian inheritance. The question therefore remains: how robust are our ideas of fitness-valley crossing45
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to deviations from Mendelian inheritance? Specifically, how does transmission bias (e.g., meiotic drive or46

uniparental inheritance) affect the speed and likelihood of valley crossing? Departing from strict Mendelian47

inheritance also allows us to consider the idea of valley crossing in cultures, considering the spread of memes48

(Dawkins, 1976) rather than genes. This simultaneously adds a level of complexity to current mathematical49

models of cultural transmission, which typically consider only one cultural trait at a time (e.g., Cavalli-Sforza50

and Feldman, 1981; but see, e.g., Ihara and Feldman, 2004; Creanza et al., 2012).51

Transmission bias in the form of segregation distortion is likely to have a large effect on valley cross-52

ing, as distortion represents a second level of selection (Sandler and Novitski, 1957; Hartl, 1970). Insight53

into how segregation distortion affects valley crossing comes from models of underdominant chromosomal54

rearrangements (mathematically equivalent to models with one diploid biallelic locus), which often find55

meiotic drive to be a mechanism allowing fixation of a new mutant homokaryotype (Bengtsson and Bod-56

mer, 1976; Hedrick, 1981; Walsh, 1982). Populations that have fixed alternate homokaryotypes produce57

heterokaryotype hybrids, which have low viability and/or fertility; thus gene flow between these populations58

is reduced. Segregation distortion is therefore thought to be a mechanism that promotes rapid speciation59

(stasipatric speciation; White, 1978). Although the role of underdominance in chromosomal speciation has60

recently been questioned (reveiwed in Rieseberg, 2001; Hoffmann and Rieseberg, 2008; Faria and Navarro,61

2010; Kirkpatrick, 2010), it is hypothesized to be relevant in annual plants (Hoffmann and Rieseberg, 2008)62

and appears to play a dominant role in maintaining reproductive isolation in sunflowers (Lai et al., 2005)63

and monkey flowers (Stathos and Fishman, 2014).64

Another common form of transmission bias is sex specific, with the extreme case being uniparental65

inheritance. In genetic transmission, strict uniparental inheritance is common for organelle genomes, such66

as the mitochondria, which is typically inherited from the mother. Uniparental inheritance will tend to67

imply further asymmetries. For instance, the mutation rate of mitochondrial genes is estimated to be two68

orders of magnitude larger than the mutation rate of nuclear genes in many animals (e.g., Linnane et al.,69

1989). Higher mutation rates will likely facilitate crossing. That said, higher mutation rates in only one gene70

may have limited effect because the production of double mutants by recombination will be constrained by71

the availability of the rarer single mutant. Previous models of fitness-valley crossing have tended to ignore72

asymmetries (but see Appendix C of Weissman et al., 2010).73

Transmission bias is an integral characteristic of cultural transmission, where it is referred to as “cultural74

selection” (Cavalli-Sforza and Feldman, 1981; Boyd and Richerson, 1985). However, to the best of our75

knowledge, no attempts have been made to examine the evolution of cultural traits (memes) in the presence76

of a “fitness” valley. Boyd (2001) reviews the genetic theory of the shifting balance, and notes that it could77

be applied to culture, but no explicit cultural models were presented. Meanwhile, instances such as the78

so-called “demographic transition” in 19th century western Europe, where societies transitioned from less79

educated, large families to more educated, small families (Borgerhoff Mulder, 1998), suggest that alternate80
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combinations of cultural traits (e.g., ‘value of education’ and ‘family-size preference’) can be stable and that81

peak shifts may occur in cultural evolution. In fact, alternate stable cultural states may be pervasive (Boyd82

and Richerson, 2010), as alluded to by the common saying that people are “stuck in their ways.” Paradigm83

shifts in the history of science (Kuhn, 1962) may provide further examples (Fog, 1999). Cultural peak shifts84

can also be relatively trivial; for instance, changing the unit of time from seconds, minutes, and hours to85

a decimal system is only advantageous if we also change units that are based on seconds, such as the joule86

and volt (Fog, 1999).87

Here we focus on a population genetic model with two bi-allelic loci under haploid selection in a randomly-88

mating, finite population. This model can easily be reduced to a single-locus model with two alleles and89

diploid selection, which is formally equivalent to a model of chromosomal rearrangements (e.g., a chromosome90

has an inversion or not). Interpreting genes as memes produces a model of vertically-transmitted cultural91

evolution. Our model incorporates both transmission bias and asymmetries in mutation and initial numbers92

of single mutants. We first give a rough semi-deterministic sketch to develop some intuition, then follow93

with a stochastic analysis using a diffusion approximation. Our analysis corresponds to the stochastic94

simultaneous fixation regime of Weinreich and Chao (2005), and the neutral stochastic tunnelling and95

deleterious tunnelling regimes of Weissman et al. (2010), where the appearance of the new, favourable,96

and eventually successful “double mutant” occurs before the fixation of the neutral or deleterious “single97

mutants”. Finally, we apply our results to the specific cases of segregation distortion, uniparental inheritance,98

and cultural transmission.99

We derive the expected time until the appearance of a double mutant whose lineage will fix when single100

mutants are continuously generated by mutation from residents (the stochastic model assumes neutral101

single mutants). We also use the stochastic model to derive the probability that a double mutant appears102

and fixes given an initial stock of deleterious single mutants that is not replenished by mutation. Given103

typical per-locus mutation rates, valley crossing is generally found to be a slow and unlikely outcome under104

fair Mendelian transmission, even when single mutants are selectively neutral. Segregation distortion, in105

favour of wild-type or mutant alleles, affects crossing most when recombination and mutation are rare,106

the scenarios where crossing is otherwise unlikely. Cytonuclear inheritance allows increased mutational107

asymmetries between the two loci; higher mutation rates lead to more single mutants and hence faster108

valley crossing, but, when holding the average mutation rate constant, asymmetries hinder crossing by109

reducing the probability that the single mutants recombine to produce double mutants. Finally, we show110

that, when new cultural ideas or practices are not too poorly transmitted when arising individually within the111

previous cultural background, a transmission advantage of the new combination greatly facilitates cultural112

transitions.113
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2. Model and Results114

Consider two loci, A and B, with xij the current frequency of genotype AiBj , where i, j ∈ {1, 2, ..., p} are115

the alleles carried by the individual. When an AiBj individual mates with an AkBl individual, they produce116

an AmBn offspring with probability bklij (mn). Summing over all possible offspring types,
∑p
m,n=1 b

kl
ij (mn) =117

1. We can specify that the bottom index (here ij) denotes the genotype of the mother, while the top index118

(here kl) denotes the genotype of the father. As a consequence, transmission biases according to parental119

sex [bklij (mn) 6= bijkl(mn)] are allowed. When considering sex-biased transmission we assume the frequencies120

xij are the same in females and males (i.e., no sex linkage and no sex-based differences in selection), which121

is automatically the case in hermaphrodites.122

Random mating and offspring production is followed by haploid viability selection, which occurs immedi-123

ately before censusing. The population size, N , is constant and discrete, and generations are non-overlapping.124

Then the expected frequency of AmBn in the next generation, x′mn, solves125

V x′mn = wmn

p∑
i,j,k,l=1

xij xkl b
kl
ij (mn), (1)

where wmn ≥ 0 is the relative viability of AmBn and V is the sum of the right hand side of Equation (1)126

over all genotypes, which keeps the frequencies summed to one.127

Denote the probability that a mating between an AiBj mother and an AkBl father produces an AmBn128

offspring that survives one round of viability selection by bklij (mn)∗ = wmnb
kl
ij (mn), where the asterisk129

indicates “after selection”. And let the average probability that a mating produces AmBn, regardless of130

which parent was which, be b̄klij (mn)∗ = 1
2wmn[bklij (mn) + bijkl(mn)]. Then (as we will see below) selection on131

AiBj in a population of “residents” (A1B1) is described by sij = 2b̄ij11(ij)∗ − 1. Letting wij = 1 + dij > 0132

describe viability selection and 2b̄ij11(ij) = 1 + kij describe transmission bias (−1 ≤ kij ≤ 1), then sij =133

(1 +dij)(1 +kij)− 1. Here we define the relative fitness of genotype AiBj as 1 + sij , which is determined by134

both viability and transmission. Thus defined, fitness is a measure of the “transmissibility” of a genotype as135

it includes several processes (e.g., viability, meiotic drive, recombination, mutation) that affect the number136

of offspring of a given genotype produced by a parent of that genotype. We will see that it is transmissibility137

that determines the dynamics of valley crossing.138

Without mutation or recombination, fair transmission implies kij = 0, or b̄ij11(ij) = 1/2 ∀ i 6= 1, j 6= 1.139

In words, with fair transmission we expect half of all offspring from matings between A1B1 and AiBj to be140

of parental type AiBj . Sex-based inheritance is expected to arise in the form of bij11(ij) = 1 − b11ij (ij) [e.g.,141

maternal inheritance implies bij11(ij) = 1 and b11ij (ij) = 0], which does not directly impose selection as kij = 0.142

Segregation distortion can, however, impose selection. For example, ignoring mutations, if the A2 allele is143

more likely to be transmitted than the A1 allele (in a B1 background) we would have b̄2111(21) > 1/2, giving144

k21 > 0. Interpreting genes as memes, transmission bias kij determines the strength of “cultural selection”145
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(sensu Cavalli-Sforza and Feldman, 1981) on meme combination AiBj . Previous work on multi-locus peak146

shifts has assumed that bias does not influence selection (kij = 0) and that maternal and paternal types are147

equally transmitted [bij11(ij) = b11ij (ij) = 1/2 ∀ i 6= 1, j 6= 1].148

Here we focus on bi-allelic loci (p = 2). We are specifically interested in the case where, in a popula-149

tion composed entirely of residents, “single mutants” (A2B1 and A1B2) are selected against while “double150

mutants” (A2B2) are selectively favoured: s21, s12 < 0 < s22.151

Given that the population is composed primarily of residents, with no double mutants as of yet, the152

population faces a fitness valley. The valley can be created by differences in viability alone, or it can be153

created by differences in transmission, or both. Here we focus on the limiting step in the peak-shift process,154

the probability and expected time until a double mutant arises whose lineage will eventually fix. Following155

the lead of Christiansen et al. (1998), we begin by developing a rough semi-deterministic analysis to gain156

intuition. A stochastic analysis follows. Table 1 provides a summary of notation and a supplementary157

Mathematica file gives a more detailed derivation of the results.158

TABLE 1 HERE159

2.1. Semi-deterministic analysis160

2.1.1. Single mutant dynamics161

Selection against single mutants keeps their frequencies (x21 and x12) small. Let these frequencies be162

proportional to some small number ε << 1. Let the probability that an offspring inherits an allele that163

neither parent possesses [i.e., mutation; e.g., b1111(21)] be of the same small order ε. Then, for large N , the164

frequencies of the single mutants in the next generation are165

x′ij ≈
wij
V

[
b1111(ij) + 2b̄ij11(ij)xij

]
+O(ε2), (2)

where i 6= j and O(ε2) captures terms of order ε2 and smaller.166

We will write µklij (mn)∗ = b̄klij (mn)∗ when m 6∈ {i, k} or n 6∈ {j, l} to highlight the fact that a mutation167

has occurred. Then, ignoring O(ε2), the frequencies of single mutants, which are initially absent [xij(0) = 0],168

in generation t are169

xij(t) ≈

 µ11
11(ij)∗

[
(1 + sij)

t − 1
]
s−1ij : sij 6= 0

µ11
11(ij)∗ t : sij = 0

(3)

Viability and transmission are thus coupled together (in sij) throughout our results, and it is primarily the170

total amount of selection on AiBj in a population of residents (sij) that determines the dynamics. [As a171

technical aside, this is not true in the first generation that mutants appear, via µklij (mn)∗, but this is simply172

because of the order of the life cycle chosen, where these mutants experience viability selection, but not173

transmission biases, when they first occur.]174

Equation (3) assumes the normalizing factor V remains near 1 over the t generations, which is the175
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case when single mutants are rare, as is generally true when single mutants are selected against, sij <176

0 ∀ i 6= j. When sij < 0 and there has been a sufficiently long period of selection, t > −1/sij , the177

single mutant frequencies approach mutation-selection balance xij(t) ≈ −µ11
11(ij)∗/sij . This assumes the178

probability of mutation, µ11
11(ij)∗, is small relative to the strength of selection, sij . We next derive a semi-179

deterministic solution for the crossing time, T , given mutation-selection balance is reached. In Appendix180

A we follow Christiansen et al. (1998) to derive the semi-deterministic crossing time when crossing occurs181

before mutation-selection balance is reached; this occurs when −sijT << 1, which can only be the case if182

the valley is shallow, −sij << 1.183

2.1.2. Waiting time for first successful double mutant184

We now turn to calculating the waiting time until a double mutant that is able to establish first arises.185

Assume the probability two residents mate to produce a double mutant (i.e., a double mutation), b1111(22), is186

very rare, on the order of ε2. Then the expected frequency of double mutants in the next generation before187

selection, assuming single mutant are rare and there are currently no double mutants x22 = 0, is188

x′22 =
[
µ11
11(22) + 2µ21

11(22)x21 + 2µ12
11(22)x12 + 2r1221(22)x21x12

]
+O(ε3), (4)

where we write r1221(22) = b̄1221(22) to highlight the fact that a double mutant has effectively been produced189

by recombination. The expected frequency of double mutants (Equation 4) is measured before viability190

selection to avoid artificially adjusting the double mutant frequency by its viability difference before it191

appears.192

In a truly deterministic model (N → ∞) double mutants are present at frequency x′22 after a single193

bout of reproduction. However, assuming no double mutants have yet appeared, we can use x22(t) as a194

rough approximation for the probability of a double mutant first arising in generation t (Christiansen et al.,195

1998). Summing t from 0 to t′ gives the cumulative probability of observing a double mutant in any of the t′196

generations. The generation T ′ at which the cumulative probability reaches 1/N can be used as an estimate197

of the time we expect to wait until the first double mutant has arisen (Christiansen et al., 1998).198

Here we are more interested in the waiting time until the first successful double mutant appears (i.e.,199

one whose lineage will eventually fix). We therefore want to multiply the probability that a double mutant200

appears at time t, x22(t), by the probability it will fix before taking the sum over t. Using Kimura’s (1962)201

approximation, the probability a double mutant fixes is202

u22 =
1− e−2s22

1− e−2Ns22
. (5)

With a weak double mutant advantage, 0 < s22 << 1, in a large population, Ns22 >> 1, Equation (5)203

simplifies to the familiar 2s22 (Haldane, 1927).204

The selection coefficient s22 can be calculated from the number of double mutant offspring a newly205
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arisen double mutant is expected to leave in the next generation, given that the mean number of offspring206

per individual is one, such that the population size is constant. This expectation, 1 + s22, is the probability207

of mating with a given type, multiplied by the probability of producing a double mutant offspring, multiplied208

by the probability of surviving to the next generation, summed over all possible matings209

1 + s22 =
2∑

i,j=1

2b̄22ij (22)∗xij , (6)

where x22 = 0 in the remaining population (i.e., the double mutant does not mate with itself). Without210

transmission bias, mutation, or recombination, b̄22ij (22) = 1/2 ∀ i, j and Equation (6) reduces to the familiar211

s22 = w22− 1. Here we allow bias, mutation, and recombination, and assume single mutants are sufficiently212

rare, giving s22 ≈ 2b̄2211(22)∗−1. This implies that selection on the double mutant (including transmission) is213

constant over time and that fixation depends only on its dynamics in a population composed almost entirely214

of residents. With recombination and otherwise fair transmission we have b̄2211(22) = (1 − r)/2, where r215

is the probability of recombination between a double mutant and a resident. Writing w22 = 1 + s and216

assuming both s and r are small, recovers the well-known first-order approximation s22 = s− r (Crow and217

Kimura, 1965). This expression highlights the fact that recombination can reduce the probability of fixation218

by breaking up favourable gene combinations (Crow and Kimura, 1965).219

When selection is strong and mutation is rare, relative to the strength of genetic drift, the time to fixation220

is dominated by the time to the arrival of a successful mutant (Gillespie, 1984; Weinreich and Chao, 2005;221

Weissman et al., 2010). The waiting time until the first successful double mutant, which we derive below,222

therefore well approximates the fixation time of a double mutant within a population when double mutants223

are advantageous but rarely produced, x′22 << 1/N < s22.224

Crossing time given mutation-selection balance. When enough time has passed (t > −1/sij) the single-225

mutant frequencies approach mutation-selection balance (MSB), xij(t) ≈ −µ11
11(ij)∗/sij . Using these fre-226

quencies in Equation (4) gives the expected frequency of double mutants in the next generation, which does227

not change until a double mutant arises, i.e., x22(t) = x′22 ∀ t. Summing u22x
′
22 over TMSB generations,228

setting equal to 1/N , and solving for TMSB gives an estimate of the number of generations we expect to229

wait for a successful double mutant to arise when beginning from mutation-selection balance230
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TMSB ≈
1

u22N

[(
1 +

µ11
11(21)∗

s21
+
µ11
11(12)∗

s12

)2
µ11
11(22)

−
(

1 +
µ11
11(21)∗

s21
+
µ11
11(12)∗

s12

)(µ11
11(21)∗

s21

)
2µ21

11(22)

−
(

1 +
µ11
11(21)∗

s21
+
µ11
11(12)∗

s12

)(µ11
11(12)∗

s12

)
2µ12

11(22)

+
(µ11

11(21)∗

s21

)2
µ21
21(22)∗ +

(µ11
11(12)∗

s12

)2
µ12
12(22)

+
(µ11

11(21)∗

s21

)(µ11
11(12)∗

s12

)
2r1221(22)

]−1
− 1. (7)

In our numerical examples, we will track the waiting time until a successful double mutant arises in a231

population that has recently established and is fixed for the resident type (e.g., following a bottleneck or232

a founder event). This time can be approximated by the time that it takes to reach mutation-selection233

balance, T0, and the establishment time once there234

T ≈ T0 + TMSB . (8)

Here we use T0 = max{ 1
−s21 ,

1
−s12 }. As the deleterious single mutants approach neutrality (sij → 0− ∀ i 6= j)235

the waiting time from mutation-selection balance, TMSB , decreases (because there are more single mutants236

segregating), but the waiting time to mutation-selection balance, T0, increases dramatically because it takes237

longer to produce the higher segregating frequencies of single mutants. As −sij becomes small enough such238

that T < −1/sij the approximation breaks down and we must use the non-equilibrium solution derived in239

Appendix A.240

With symmetric Mendelian assumptions, weak selection on single mutants (δ = 1 − wij ∀ i 6= j), rare241

mutation (µ), and infrequent recombination [such that uf ≈ 2(s − r) ≈ 2s], the rate of production of242

successful double mutants from mutation selection balance (Equation 7) is243

TMSB
−1 ≈ 2sNµ2r

δ2
, (9)

aligning with equation 4 in Weissman et al. (2010, see supplementary Mathematica file). This result preforms244

well when TMSB
−1 < δ, or, equivalently, when 3

√
2sNµ2r < δ.245

2.2. Stochastic analysis246

2.2.1. Markov process247

Fitness-valley crossing is naturally a stochastic process. We thus now consider the Wright-Fisher model,248

where the next generation is formed by choosing N offspring, with replacement, from a multinomial distri-249

bution with frequency parameters x′ij (Equation 1). Let the number of A2B1 and A1B2 single mutants in250

generation t be it and jt, respectively. Given that there are currently no double mutants, we have N− it−jt251
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resident individuals and we let X(t) = (it, jt) describe the state of the system in generation t. Let the252

expected frequencies in the t + 1 generation, conditional on X(t) = (i, j), be x′kl(i, j) = x′kl, with x22 = 0.253

The transition probabilities to states without double mutants are then254

P klij = P{X(t+ 1) = (k, l) | X(t) = (i, j)} =

(
N

k, l,N − k − l

)
(x′21)k (x′12)l (x′11)N−k−l. (10)

Note that summing over all k, l ∈ {0, 1, ..., N} gives (1 − x′22)N , the probability that no double mutant is255

sampled. Equation (10) describes a sub-stochastic transition matrix for the Markov process.256

Next, let H be the state with any positive number of double mutants. We then have the transition257

probabilities PHij = 1 − (1 − x′22)N ≈ Nx′22, where the approximation assumes a small expected frequency258

of double mutants in the next generation, x′22 << 1. To calculate the waiting time until the first successful259

double mutant, we replace PHij with P̃Hij = PHij u22 ≈ Nx′22u22, ignoring the segregation of double mutants260

when lost. H is now the state with any positive number of successful double mutants. Dividing each261

x′ij in Equation (10) by the probability a double mutant does not arise (1 − x′22) and multiplying by the262

probability a double mutant does not arise and fix (1−x′22u22) ensures the columns sum to one. To complete263

the transition matrix we make H an absorbing state: PHH = 1 and P ijH = 0.264

We can describe this process, in part, by the moments for the change in number of single mutants,265

conditional on the process not being killed by a successful double mutant. The nth moment for the change266

in the number of A2B1 individuals, 4i = it+1 − it, is267

E[(4i)n|it = i] =

N∑
k=0

(k − i)n
(
N

k

)( x′21
1− x′22u22

)k( x′12 + x′11
1− x′22u22

)N−k
. (11)

Similar equations can be computed for the change in the number of A1B2 individuals, 4j = jt+1 − jt.268

To make analytic progress we use the moment equations to approximate the Markov chain with a diffusion269

process (Karlin and Taylor, 1981, Ch. 15). We do so by taking the large population limit (N → ∞) while270

finding the appropriate scalings to ensure finite drift and diffusion terms (Appendix B).271

2.2.2. Crossing time with neutral single mutants272

The diffusion process yields a partial differential equation describing the expected time until a successful273

double mutant arises given that we begin with Nβy individuals of type A2B1 and Nβz individuals of type274

A1B2 (Christiansen et al., 1998)275

1

2
σ2
Y (y)

∂2T̃ (y, z)

∂y2
+

1

2
σ2
Z(z)

∂2T̃ (y, z)

∂z2
+ µY (y)

∂T̃ (y, z)

∂y
+ µZ(z)

∂T̃ (y, z)

∂z
− κ(y, z)T̃ (y, z) = −1, (12)

where T̃ (y, z) refers to time scaled in units of Nβ generations (parameters defined in Table 1 and Appendix276

B). In Appendix C we solve Equation (12) under the two scenarios explored in Christiansen et al. (1998):277

with and without recombination from neutral single mutants to double mutants when the population begins278
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with only residents, but here generalized to allow unequal mutation rates and sex-biased transmission. While279

the neutrality assumption precludes the existence of a fitness valley, it provides a minimum for the expected280

time to observe a successful double mutant. Previous studies have suggested that fitness valleys will only281

be crossed if single mutants are nearly neutral (e.g., Walsh, 1982).282

2.2.3. Probability of crossing from standing variation283

The diffusion process can also be used to describe the production of successful double mutants from an284

initial stock of single mutants (i.e., evolution from standing variation). Specifically, assuming that residents285

don’t mutate [b1111(12) = b1111(21) = b1111(22) = 0] the process has two absorbing states, fixation of A1B1 and286

fixation of A2B2 (a successful double mutant appears and the process is killed). The probability of fixation287

of residents is the solution, u(y, z), of (Karlin and Taylor, 1981)288

1

2
σ2
Y (y)

∂2u(y, z)

∂y2
+

1

2
σ2
Z(z)

∂2u(y, z)

∂z2
+ µY (y)

∂u(y, z)

∂y
+ µZ(z)

∂u(y, z)

∂z
− κ(y, z)u(y, z) = 0, (13)

with terms defined in Appendix B. The probability that a successful double mutant arises is therefore289

1 − u(y, z). Karlin and Tavaré (1981) used a similar equation to find the probability of detecting a lethal290

homozygote in the one locus, diploid case with Mendelian transmission.291

Deleterious single mutants without recombination. With no recombination from single mutants to double292

mutants [r1221(22) = 0] we have scaling parameter β = 1/2. Then, with equal selection on single mutants and293

some mutational symmetry between the two loci (see supplementary Mathematica file), the single mutants294

are equivalent and we can concern ourselves with only their sum ξ = y+ z. Equation (13) then collapses to295

1

2
ξ

d2u(ξ)

dξ2
+ Smξ

du(ξ)

dξ
− u22w22

[
Bm11(22) +B11

m (22)
]
ξu(ξ) = 0, (14)

where Sm = s21N
β = s12N

β is scaled selection on single mutants and Bm11(22) + B11
m (22) = [b2111(22) =296

b1121(22)]Nβ = [b1211(22) = b1112(22)]Nβ is the scaled mutation probability from single mutants to double297

mutants.298

The boundary conditions are u(0) = 1 and u(∞) = 0. Solving the boundary value problem gives the299

probability of a double mutant appearing when starting with n0 = i0 + j0 single mutants300

1− u(n0) = 1− exp
[
n0
[
− sm −

√
s2m + 2u222µm11(22)∗

]]
, (15)

where sm = s21 = s12 is the total strength of selection on each single mutant type. Setting n0 = 1 gives the301

probability a newly arisen single mutant will begin a lineage which eventually produces a successful double302

mutant.303

Interestingly, Equation (15) does not depend strongly on population size, N . Without recombination304

double mutants are primarily produced by mutations from single mutants, which are rare and hence always305
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mate with one of the large number of residents. In other words, the production of A2 and B2 alleles does306

not rely on the number of residents but only on the dynamics of the rare single mutants.307

Deleterious single mutants with recombination. Finally, we examine the probability of a successful double308

mutant appearing when there is recombination between deleterious single mutants, r1221(22) > 0. With309

sufficiently strong selection against single mutants the single mutant frequencies scale as cny ≈ z when we310

begin with initial frequencies cny(0) = z(0) and both single mutants are under the same selection pressure,311

S21 = S12. Then, without mutation from residents to single mutants, Equation (13) collapses to312

1

2(1 + cn)
ξ

d2u(ξ)

dξ2
+ S21ξ

du(ξ)

dξ
− u22cn2r1221(22)∗ξ2u(ξ) = 0, (16)

where ξ = cn y = z.313

With boundary conditions u(0) = 1 and u(∞) = 0 the probability of valley crossing is314

1− u(i0, N) = 1− exp
[
− (1 + cn)i0s21

]Ai[N(1+cn)
2(s21)

2+i02u22cn(1+cn)2r
12
21(22)

∗

N1/3[2u22cn(1+cn)2r1221(22)
∗]2/3

]
Ai

[
N(1+cn)2(s21)2

N1/3[2u22cn(1+cn)2r1221(22)
∗]2/3

] , (17)

where Ai is the Airy function. Equation (17) extends the one-locus diploid result with Mendelian trans-315

mission (equation 28 in Karlin and Tavaré, 1981) by allowing unequal single mutant frequencies (cn 6= 1)316

while also incorporating transmission bias, recombination, and double mutant fitness. Equation (17) well-317

approximates the Mendelian simulation results of Michalakis and Slatkin (1996, see supplementary Mathe-318

matica file).319

When (s21)2 and i0 are small, we have the first order approximation320

1− u(i0, N) = i0

[
(1 + cn)s21 +

31/3Γ[2/3]

Γ[1/3]

(
2u22cn(1 + cn)2r1221(22)∗

N

)1/3]
, (18)

which is valid only when the term in the large square brackets is positive. Equation (18) can be used321

to show that when holding the initial number of single mutants, (1 + cn)i0, constant, the probability the322

double mutant fixes is maximized when there are equal numbers of single mutants, cn = 1. This is because323

recombination is most efficient in creating double mutants when single mutants are equally frequent.324

2.3. Three scenarios325

We next apply our results to three different scenarios: segregation distortion, cytonuclear inheritance,326

and cultural transmission.327

2.3.1. Segregation distortion328

One form of segregation distortion, found in the heterothallic fungi Neurospora intermedia, is autosomal329

killing (Burt and Trivers, 2006). In heterozygotes, the presence of a “killer” allele results in the death of a330

proportion of the spores that contain the wild-type (“susceptible”) allele, leading to a (1+k)/2 frequency of331
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the killing allele at fertilization, 0 < k ≤ 1. Letting A2 and B2 represent the killing alleles, and, for the sake332

of exploration, assuming that cells with one killing allele are functionally equivalent to cells with two, the333

transmission probabilities are shown in Table 2. The Mendelian case is given by k = 0. When −1 ≤ k < 0334

the allele identities are reversed: A1 and B1 are killers and A2 and B2 are susceptibles.335

INSERT TABLE 2 HERE336

Since segregation distortion imposes selection on single mutants, we can only investigate the effect of seg-337

regation distortion on valley crossing with the semi-deterministic crossing time estimates allowing selection338

on single mutants (Equations 8 and A3) and with the crossing probability estimates from standing variation339

(Equations 15 and 17).340

Figure 1 shows the crossing time as a function of the probability of recombination, and how segregation341

distortion affects this time. Simulations (X’s) well match the numerical solution (Equation A1; dots) and342

the MSB approximation (Equation 8; solid curves in top panel) over the range of parameters tested. When343

valley crossing occurs before reaching MSB (bottom panel) a transition occurs between when mutation344

drives crossing (dashed line; Equation A2) and when recombination does (solid curves; Equation A3), here345

approximately r ≈ 10−4. The largest effect of segregation distortion occurs when the crossing time is long,346

the scenario in which single-mutants must persist the longest before a successful double mutant appears.347

In addition, observe that as the probability of recombination, r, increases above a critical value such that348

s22 < 0, the double mutant is broken apart faster than its selective advantage and valley crossing takes349

longer [equations B21 and B25 in Weissman et al., 2010 approximate the crossing times with no segregation350

distortion (k = 0) when s22 < 0; see also Lynch, 2010; Altland et al., 2011].351

INSERT FIGURE 1 HERE352

Figure 2 shows the probability of crossing from standing variation. Again, segregation distortion has a353

large effect when mutation (top panel) and recombination (bottom panel) are rare, the conditions under354

which single mutants must persist the longest before a successful double mutant is formed. When crossing355

occurs by recombination our analytical approximation (Equation 17) overestimates the probability of crossing356

(bottom panel), especially when the initial number of single mutants is small and therefore subject to strong357

stochasticity (results not shown). This occurs because the assumption that the ratio of single mutant358

frequencies in these simulations remains roughly cn = 1 is violated, reducing the probability that double359

mutants are formed by recombination.360

INSERT FIGURE 2 HERE361

2.3.2. Cytonuclear inheritance362

We next explore how fitness-valley crossing is affected by uniparental inheritance of one of the traits. This363

might occur if, for example, there was reciprocal sign epistasis between cytoplasmic and nuclear loci. Without364

loss of generality we assume that the B trait is always inherited from the mother. For simplicity we assume365
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individuals are hermaphroditic. Here we can use only those results that allow recombination (Equations366

8, A3, C5, and 17), as cytoplasmic and nuclear elements are expected to be inherited independently (i.e.,367

r1221(22) + r2112(22) = 1/2).368

One likely implication of uniparental transmission is asymmetric mutation probabilities. For instance,369

in animals the mitochondrial mutation rate is two orders of magnitude larger than typical nuclear rates370

(Linnane et al., 1989). Let µ be the mutation probability in the biparentally inherited A trait and ν be371

the mutation probability in the uniparentally inherited B trait, with cµ = ν/µ the ratio of uniparental to372

biparental mutation probabilities. The transmission probabilities are shown in Table 3.373

INSERT TABLE 3 HERE374

The top panel of Figure 3 shows the crossing time as a function of the mutation probability in the B375

locus, ν. Increasing ν increases the rate at which single and double mutants are created, aiding valley376

crossing. The bottom panel of Figure 3 shows the crossing time as a function of the ratio of the mutation377

probabilities at the two loci, cµ, while holding the average mutation probability, (µ + ν)/2 = µ(1 + cµ)/2,378

constant. When holding the average mutation probability constant the time to fixation is minimized when379

ν = µ because single mutant types are then equally frequent, increasing the chances they mate with one380

another to produce a double mutant by recombination. As cµ departs from one, the mutation rate at one381

of the loci becomes small, causing those single mutants to become rare. The highly stochastic nature of the382

rare single mutant frequencies causes our semi-deterministic (Equation A3) and stochastic (Equation C5)383

approximations to underestimate the crossing time and, instead, the single mutants first reach mutation-384

selection balance (Equation 8; dashed gray curve).385

INSERT FIGURE 3 HERE386

Given that crossing occurs by recombination from standing variation (Equation 17), asymmetric mutation387

rates have little effect given a particular starting population (i0, j0). However, standing variation will also388

tend to vary in proportion to mutation rates, implying that uniparental inheritance will cause differences in389

the initial numbers of the two single mutants, which can have a large effect. Let cµ now also determine the390

ratio of the initial numbers of single mutants, cµ = cn = j0/i0. Figure 4 shows the probability of crossing391

from standing variation as a function of cµ. When we hold i0 and µ constant and increase j0 and ν (grey392

curve), the probability of crossing increases with cµ as there are then more single mutants segregating. When393

we instead hold the total initial number of single mutants (i0 + j0) and the average mutation probability394

[(µ + ν)/2] constant (black curve), the probability of crossing is maximized at cµ = 1 because the single395

mutants are then equally frequent and hence more likely to mate with one another and produce a double396

mutant through recombination.397

INSERT FIGURE 4 HERE398
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2.3.3. Cultural inheritance399

Finally, we remove Darwinian selection, such that transmission bias alone determines the dynamics, and400

interpret the model in a cultural context. For the sake of exposition we consider only one simplified case of401

cultural transmission. Let trait combinations with only one new trait (A2B1 and A1B2) be inherited relative402

to the previous combination (A1B1) with probability q. Let the new combination of cultural traits (A2B2)403

be inherited relative to the previous combination with probability p. We are most interested in the case of a404

“transmission valley”, where the previous combination of traits is transmitted more effectively than mixed405

combinations of new and old (q < 1/2), but the all-new combination spreads even more effectively than406

the previous combination (p > 1/2). We assume that parental trait combinations can be broken up with407

probability r and mutation occurs with probability µ. The transmission probabilities are shown in Table 4.408

INSERT TABLE 4 HERE409

Figure 5 shows that the crossing time is substantially faster when the new combination of traits has a410

stronger transmission advantage (T decreases with p; compare thick curve with thin). Nevertheless, even411

combinations that are transmitted very effectively (thick curve) spread very slowly when their component412

traits are passed on poorly in the previous cultural background (q << 1/2). In particular, the crossing time413

increases most quickly as q decreases from 1/2, demonstrating that slight biases in the transmission of the414

new traits when arising within the previous cultural background have a strong influence on the spread of415

new combinations of cultural traits, effectively preventing establishment if q << 1/2.416

INSERT FIGURE 5 HERE417

Figure 6 shows the probability of crossing from standing variation. In this case, with such a large418

mutation rate, crossing can be more likely by mutation (Equation 15) than by recombination (Equation 17).419

Recombination has the added effect of breaking up the new combination of traits, reducing the probability420

of crossing. With a lower mutation rate crossing is most likely with moderate amounts of recombination421

(e.g., Figure 1). Figure 6 again shows that the transmission advantage of the new combination of traits422

(p; compare thick lines to thin) and slight biases in the transmission of new traits in the previous cultural423

background (q ≈ 1/2) greatly influence the probability that a new combination of cultural traits successfully424

spreads.425

INSERT FIGURE 6 HERE426

3. Discussion427

Our results support the general consensus that, given reasonable population sizes and per locus per428

generation mutation rates, crossing a particular fitness valley by genetic drift is typically a slow and unlikely429

event (Crow and Kimura, 1965; Bengtsson and Bodmer, 1976; Lande, 1979; Hedrick, 1981; Walsh, 1982;430

Lande, 1985b; Michalakis and Slatkin, 1996; Phillips, 1996; Coyne et al., 1997). For example, with a per locus431

per generation mutation probability of µ = 10−8, a double mutant viability of w22 = 1.01, recombination432
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between the two loci with probability r = 0.01, and a population size of N = 104, the waiting time for a433

successful double mutant, in the best case scenario where single mutants are selectively neutral, is on the434

order of 107 generations (Equation C5). As this is the typical age for living animal genera (Van Valen, 1973;435

Lande, 1979), we should not expect to see this fitness valley forded. Of course, with many potential fitness436

valleys across the genome, the chance that one of them is forded can become substantial.437

By broadening previous treatments to allow for non-Mendelian inheritance, we have shown that a small438

amount of segregation distortion can greatly impact the chances of fitness-valley crossing. Of course, segre-439

gation distortion has a large impact because it provides a second level of selection (Sandler and Novitski,440

1957), often acting like gametic selection (but see Hartl, 1970, 1977). When the A2 and B2 alleles are more441

likely to be passed down than the A1 and B1 alleles, respectively, in matings between single mutants and442

residents, the depth of the valley is effectively reduced and hence crossing is much more likely. For example,443

when single mutants have a relative viability of wm = 0.95, the mutation rate is µ = 10−8, double mutants444

are weakly favoured (w22 = 1.01), and we begin with one single mutant (n0 = 1) in a population of size445

N = 104, in the absence of recombination [r1221(22) = 0] and segregation distortion (kij = 0), the probability446

of crossing is on the order of 10−9 (Equation 15). With a 5% distortion in favour of A2 and B2 alleles447

(k21 = k12 = 0.05) the single mutants are effectively neutral and the probability increases seven orders of448

magnitude to 10−2. And with a 10% distortion the single mutants are selectively favoured and the double449

mutant fixes with probability 0.25.450

Segregation distortion, in the form of meiotic drive, has often been implicated as a force that could help451

fix underdominant chromosomal rearrangements (Sandler and Novitski, 1957; Bengtsson and Bodmer, 1976;452

Hedrick, 1981; Walsh, 1982; Faria and Navarro, 2010). Chromosomal rearrangements, such as translocations453

and inversions, are often fixed in alternate forms in closely related species (White, 1978; Coyne, 1989;454

Faria and Navarro, 2010). Because heterokaryotypes typically have severely reduced fertility (Sandler and455

Novitski, 1957; Lande, 1979), such rearrangements are thought to promote rapid speciation (stasipatric456

speciation; White, 1978, but see Faria and Navarro, 2010; Kirkpatrick, 2010). The trouble is explaining457

how such rearrangements originally increase in frequency when they are so strongly selected against when458

rare (Navarro and Barton, 2003; Kirkpatrick, 2010). Meiotic drive provides one possible answer. Our459

results can be used to investigate valley crossing with chromosomal rearrangements by assuming A and460

B are homologous chromosomes, with A2 and B2 being the novel chromosomes, and A2B1 and A1B2461

interchangeable. For example, with free recombination [r1221(22) = 1/4, r2211(22) = 1/4], a 5% viability462

reduction in heterokaryotypes (wm = 0.95), no meiotic drive [b̄m11(m) = 1/2], a very beneficial mutant463

homokaryotype (w22 = 2.5), and a spontaneous chromosome mutation rate of µ = 10−3 (Lande, 1979),464

when starting with one copy of each mutant chromosome (i0 = 1, cn = 1) in a population of size N = 104,465

Equation (17) gives a 0.4% chance of fixing the mutant homokaryotype. When the mutated chromosome has466

a 70% chance of being passed down in matings with residents, a relatively weak amount of drive (Sandler467
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and Novitski, 1957), the chance of crossing increases two orders of magnitude, to nearly 75%.468

Here we have shown that, for a given number of single mutants, the chance of crossing a valley by469

recombination is best when the two single mutant types are at equal frequencies. This is an important470

factor when the mutation rates in A and B are highly asymmetric. One instance where this asymmetry is471

likely is when one locus (say B) is in the mitochondrial genome, and is passed down maternally, while the472

other (say A) is in the nuclear genome, and is passed down biparentally. Mutation rates in the mitochondria473

can be orders of magnitude higher than in the nucleus (Linnane et al., 1989). With r1221(22) = r/2 = 1/4,474

N = 104, w22 = 2, b1111(21) = µ = 10−6, and neutral single mutants, when the mutation rates in A and B475

are equal [b1111(12)/b1111(21) = cµ = 1] the crossing time is 40, 000 generations. When the mutation rate in B476

is two orders of magnitude larger (cµ = 100) the waiting time is reduced to 2, 500 generations. But when the477

average mutation rate (1 + cµ)b1111(21)/2 is held constant, the asymmetrical mutation rates instead hinder478

crossing, increasing the crossing time to nearly 120, 000 generations.479

By expanding a mathematical model of fitness-valley crossing beyond symmetrical Mendelian inheritance480

we gain insight into transitions between alternate stable states in non-genetic systems, such as culture.481

As mentioned in the introduction, culture may often exhibit alternate stable states; here valley crossing482

corresponds to a shift between alternate combinations of cultural ideas or practices (e.g., the demographic483

transition; Borgerhoff Mulder, 1998). The valley is a “transmission valley”, created by new cultural traits484

that are transmitted effectively in concert but poorly when arising individually within the previous cultural485

background. In this case our simplified example above demonstrates that, given that the component pieces486

are not passed on too poorly in the previous cultural background, the probability that a new set of practices487

or ideas becomes pervasive in society is greatly improved by its transmission advantage over the previous488

set. Valley crossing might also be relevant in the context of gene-culture coevolution, where one trait is489

cultural and the other genetic. For instance, the ability to absorb lactose as an adult is largely genetically490

determined and is positively correlated with the cultural practice of dairy farming, reaching frequencies over491

90% in cultures with dairy farming but typically remaining less than 20% in cultures without (Feldman492

and Laland, 1996). If, as seems reasonable, the ability to absorb lactose as an adult has a cost in the493

absence of dairy farming and the cultural practice of dairy farming has a cost when adults are unable to494

absorb lactose, then the transition from non-pastoralist non-absorbers to pastoralist absorbers may represent495

another example of fitness-valley crossing outside the purely genetic arena. We have used our generalized496

model to begin to explore cultural transitions, but it should be emphasized that we neglect oblique and497

horizontal transmission, common features of cultural evolution (Cavalli-Sforza and Feldman, 1981) and498

likely components of the demographic transition (Ihara and Feldman, 2004). Generalizing models of fitness-499

valley crossing further to include oblique and horizontal transmission would improve insight into cultural500

transitions.501

We have incorporated transmission bias in a model of multi-locus fitness-valley crossing. This allows us502

17

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/025502doi: bioRxiv preprint first posted online Aug. 26, 2015; 

http://dx.doi.org/10.1101/025502
http://creativecommons.org/licenses/by-nc-nd/4.0/


to investigate fitness-valley crossing in new scenarios, such as in genetic systems with segregation distortion503

and/or uniparental inheritance. Segregation distortion acts as a second level of selection and therefore can504

greatly help or hinder fitness-valley crossing, especially when crossing is otherwise unlikely. Uniparental505

inheritance will often imply asymmetric mutation rates, which in turn lead to unequal frequencies of single506

mutants, and therefore, all else being equal, a lower probability of fitness-valley crossing by recombination.507

However, uniparental-inherited cytoplasmic elements tend to have increased mutation rates, which helps508

crossing. Generalizing transmission also allows us to begin to extend the theory of valley crossing to non-509

genetic systems, such as culture. Despite component traits being passed on poorly in the previous cultural510

background, we find that small advantages in the transmission of the new set of cultural traits will greatly511

facilitate a cultural transition. While crossing a deep fitness valley is difficult under Mendelian inheritance,512

it can be easier when Mendel is left behind.513
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A. Dynamic single mutants647

Here we calculate the waiting time for a successful double mutant to arise, starting from a population

that is composed entirely of residents. While single mutants are far from mutation-selection balance, |sijt| <

1 ∀ i 6= j, we can write x22 as a function of t by replacing xij in Equation (4) with the appropriate xij in
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Equation (3). With rare mutation, rare single mutants, and weak selection on single mutants, the expected

number of generations until a successful double mutant appears, T , solves

1

u22N
= µ11

11(22)

+ T
[
µ11
11(22)[1− µ11

11(21)∗ − µ11
11(12)∗] + µ11

11(21)∗µ21
11(22) + µ11

11(12)∗µ12
11(22)

+
1

3
µ11
11(21)∗s21µ

21
11(22) +

1

3
µ11
11(12)∗s12µ

12
11(22) +

1

3
µ11
11(21)∗µ11

11(12)∗r1221(22)
]

+ T 2
[
µ11
11(21)∗µ21

11(22) + µ11
11(12)∗µ12

11(22) + µ11
11(21)∗µ11

11(12)∗r1221(22)

− µ11
11(22)[µ11

11(21)∗ + µ11
11(12)∗]

]
+ T 3

[2

3
µ11
11(21)∗µ11

11(12)∗r1221(22) +
1

3
µ11
11(21)∗s21µ

21
11(22) +

1

3
µ11
11(12)∗s12µ

12
11(22)

]
+O(ε5). (A1)

The O(ε5) terms disappear and the equation is exact when single mutants are neutral, sij = 0. Otherwise,648

with selection against single mutants, the higher order terms can only be ignored as long as the crossing649

time, T , is much smaller than the inverse of the selection coefficients, s21 and s12. Because Equation (A1)650

is a cubic in T , its solution is cumbersome (see supplementary Mathematica file). Here we examine two651

scenarios which give more interpretable approximations for T .652

Without selection on single mutants (s21 = s12 = 0) and without recombination from single mutants to653

double mutants [r1221(22) = 0] the T 3 term in Equation (A1) vanishes. In addition, if the crossing time T is654

long, the dominant term is the one proportional to T 2. Solving for T from this term alone gives655

T ≈
[
u22N

[
µ11
11(21)∗µ21

11(22) + µ11
11(12)∗µ12

11(22)
]]−1/2

, (A2)

where we have ignored double mutants arising instantaneously [µ11
11(22) = 0]. Equation (A2) shows that the656

crossing time without selection on or recombination among single mutants is roughly proportional to N−1/2657

generations. The crossing time decreases with N because increasing N increases the per generation input of658

mutations. Holding mutation input θklij (mn) = Nµklij (mn) constant, the crossing time becomes proportional659

to N1/2. When the single-mutation transmission probabilities are equal [µ11
11(21)∗ = µ11

11(12)∗ = 2µ21
11(22) =660

2µ12
11(22) = µ] and we calculate the first appearance of any double mutant (successful or not; u22 = 1),661

the expected time until the first double mutant appears simplifies to the neutral genetic case without662

recombination, T ≈ 1/
√
µ2N (equation 8 in Christiansen et al., 1998). Equation (A2) clarifies the role of663
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the various, potentially different, mutation probabilities µij11(kl) on the time until the first double mutant,664

while also allowing us to ignore double mutants that are lost.665

When there is recombination between single mutants to produce double mutants [r1221(22) > 0] and the666

crossing time, T , is smaller than the inverse of the selection coefficients, s12 and s21, the dominant term667

in Equation (A1) is proportional to T 3. This term is positive when recombination is frequent relative to668

selection against single mutants. Again, if the time T is long we can use this term alone to approximate T ,669

which gives670

T ≈ 31/3[
u22N

[
µ11
11(21)∗µ11

11(12)∗r1221(22) + s21µ11
11(21)∗µ21

11(22) + s12µ11
11(12)∗µ12

11(22)
]]1/3 , (A3)

where we have once again ignored the instantaneous production of double mutants. Notice that, for a671

given mutation input θklij (mn), when there is recombination between single mutants, the crossing time is672

roughly proportional to N1/3 generations (rather than N1/2 generations without recombination), implying673

that recombination between single mutants tends to shorten the expected time until the first (successful or674

unsuccessful) double mutant arises. However, because recombination can also occur between residents and675

double mutants (reducing u22) Equation (A3) shows that the waiting time until the first successful double676

mutant is minimized at intermediate levels of recombination.677

Equation (A3) reduces to T ≈ 1/ 3
√
Nrµ2/3 (equation 9 in Christiansen et al., 1998) when we ignore678

the weak selection against single mutants (sij = 0), there is equal mutation probability at each locus679

[µ11
11(21)∗ = µ11

11(12)∗ = µ], and we wait until the first double mutant appears, successful or not (u22 = 1).680

Once again our analysis clarifies the role of the various, potentially different, mutation probabilities µklij (mn)681

on the waiting time until the first successful double mutant. Equation (A3) also allows (weak) selection on682

single mutants and incorporates transmission bias, which we explore more fully in the main text.683

Figure A1 compares the approximations derived here (Equations A2 and A3) with that derived in the684

text assuming mutation-selection balance is reached before crossing (Equation 8). The approximations given685

by Equations (A2) and (A3) break down as the depth of the valley (δ = −s21 = s12) increases such that the686

crossing time becomes long, T > 1/δ.687

B. Diffusion approximation688

Here we take the large population limit (N → ∞), scale time such that one unit of time in the scaled689

diffusion process (τ ∈ Z≥0) is Nα generations in the unscaled Markov process (4t = τNα) and define new690
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frequency parameters Y (τ) = iτ/N
β and Z(τ) = jτ/N

β , with 0 < α, β < 1.691

We are concerned with three quantities for each variable 4Y and 4Z. The first is the infinitesimal mean692

µY (y) = lim
N→∞

E[4Y |Y (τ) = y = i/Nβ ] = lim
N→∞

Nα

Nβ
E[4i|it = i]. (B1)

The second quantity is the infinitesimal variance693

σ2
Y (y) = lim

N→∞
E[(4Y )2|Y (τ) = y = i/Nβ ] = lim

N→∞

Nα

N2β
E[(4i)2|it = i]. (B2)

And the third quantity of interest is a higher (n > 2) infinitesimal moment694

lim
N→∞

E[(4Y )n|Y (τ) = y = i/Nβ ] = lim
N→∞

Nα

Nnβ
E[(4i)n|it = i]. (B3)

We can similarly calculate µZ(z), σ2
Z(z), and a higher moment in 4Z.695

The final quantity of interest is the scaled “killing rate”696

κ(y, z) = lim
N→∞

NαP̃Hij ≈ lim
N→∞

NαNx′22u22, (B4)

where the approximation assumes x′22u22 << 1.697

For the Markov chain to converge to a diffusion process as N →∞ we require: 1) µY (y) and µZ(z) to be698

finite; 2) σ2
Y (y), σ2

Z(z), and κ(y, z) to be positive and finite; and 3) some higher moment (in both 4Y and699

4Z) to be equal to zero (Karlin and Taylor, 1981). We first take a hint from the genetic case (Christiansen700

et al., 1998) and scale transmission probabilities as701

bklij (mn) =


Bklij (mn) : m ∈ {i, k}, n ∈ {j, l}
Bkl

ij (mn)

N2 +O(1/N3) : m 6∈ {i, k}, n 6∈ {j, l}
Bkl

ij (mn)

N +O(1/N2) : otherwise

(B5)

In the genetic case this can be interpreted as making the probability of mutation proportional to the inverse702

of population size µ = B/N . Then, as N →∞ mutation probability decreases (µ→ 0), such that mutation703

input B = Nµ is constant. This prevents the process from taking large jumps in frequency space, which704

violate the diffusion process (Karlin and Taylor, 1981).705

In order for the transmission parameters to satisfy the logical constraint
∑2
m,n=1 b

kl
ij (mn) = 1 the diffusion706
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also requires, as N →∞, that707

Bijij (ij) = 1 +O(1/Nβ) (B6)

and708

Bklij (ij) +Bklij (kl) = 1 +O(1/Nβ) (B7)

when either {i 6= k, j = l} or {i = k, j 6= l}. In words, the sum total mutation probability for parents AiBj709

and AkBl must be relatively small, at most on the order of 1/Nβ .710

Finally, our approximation requires weak selection, relative to w11 = 1. In particular, total selection on711

single mutants must be weak, on the order of 1/Nβ ,712

wij [b
ij
11(11) + b11ij (ij)] = 1 + Sij/N

β +O(1/N2β) (B8)

for i 6= j, where Sij is the scaled selection strength. And selection on double mutants must also be weak,713

such that714

s22 = S22/N +O(1/N2). (B9)

With the above assumptions (Equations B5-B9) the Markov chain converges to a diffusion process as715

N →∞ when716

α = β =

 1/2 : r2112(22) ≤ O(1/N1/2)

1/3 : otherwise
(B10)

This scaling implies that if recombination between single mutants to make double mutants r2112(22) is less717

likely that mutation (which is on the order of N−1/2; Equation B6), then the time until the process is killed718

scales with N1/2. Meanwhile, if recombination is more likely than mutation the killing time scales with719

N1/3. These results align with our semi-deterministic analysis (Equations A2 and A3).720

When α = β the infinitesimal variances are σ2
Y (y) = y and σ2

Z(z) = z. The infinitesimal means and the721

killing term depend on the probability of recombination. When recombination is rare the single mutants are722

expected to reach higher frequencies and therefore have a greater influence on the dynamics. To simplify,723

when recombination is rare [r1221(22) ≤ O(1/N1/2)] we assume weak transmission bias for residents mating724

with single mutants [bij11(11) + b11ij (11) = 1 + O(1/Nβ)] and for single mutants mating with each other725

[bklij (ij) + bijkl(ij) = 1 + O(1/Nβ)]. We further assume weak viability selection on single mutants, wij =726
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1−O(1/Nβ), regardless of recombination. The infinitesimal mean is then always727

µY (y) = B11
11(21)− y S21 (B11)

and similarly for µZ(z). The first term, B11
11(21) ≈ b1111(21)N , describes mutation to single mutants in728

resident-resident matings and the second term, with S21 ≈ s21N
β , describes the removal of single mutants729

by selection (both through transmission bias when mating with the resident and survival).730

The killing terms are731

κ(y, z) =


u22w22

[
y[B21

11(22) +B11
21(22)] + z[B12

11(22) +B11
12(22)] + y z R12

21(22)
]

: r1221(22) ≤ O(1/N1/2)

u22 y z r
12
21(22)∗ : otherwise

(B12)

where R12
21(22) ≈ r1221(22)N1/2 describes a (low) probability of recombination. The first line shows that732

the process can be killed by mutations in single mutants that mate with residents [Bij11(22) + B11
ij (22) ≈733 (

bij11(22) + b11ij (22)
)
N ] or by rare recombination between single mutants to produce double mutants R12

21(22).734

When recombination is more likely than N−1/2 the process is essentially always killed by recombination735

r1221(22) (second line in Equation B12).736

C. Stochastic crossing times737

Neutral single mutants without recombination. With no chance of recombination from single mutants to738

double mutants [r1221(22) = 0] we have scaling parameter β = 1/2. Then, without selection on single mutants739

(s21 = s12 = 0) and with some mutational symmetry between the two loci [b̄2111(22) = b̄1211(22) = b̄m11(22)], the740

single mutants are equivalent and we can concern ourselves with only their sum, ξ = y + z. Letting m be741

either single mutant type (m = 21 or 12), Equation (12) reduces to742

1

2
ξ

d2T̃ (ξ)

dξ2
+
[
B11

11(21) +B11
11(12)

]dT̃ (ξ)

dξ
− u22ξ

[
Bm11(22) +B11

m (22)
]
w22 T̃ (ξ) = −1 (C1)

where Bklij (mn) = bklij (mn)N .743

When there are an infinite number of single mutants a successful double mutant is produced immedi-744

ately, giving one boundary condition limξ→∞ T̃ (ξ) = 0. The second boundary condition is dT̃ (0)/dξ =745

−[B11
11(21) +B11

11(12)]−1, which can be derived directly from Equation (C1) by setting ξ = 0 (see appendix746
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A in Christiansen et al., 1998, for a more complete derivation).747

The solution to the boundary value problem, evaluated at ξ = 0, corresponding to the expected number748

of generations until a successful double mutant arises when beginning with only residents, T = N1/2T̃ (0),749

is then750

T =
N1/2Γ

[
1/2
]
Γ
[
B11

11(21) +B11
11(12)

]
Γ
[
1 +B11

11(21) +B11
11(12)

]√
u222

[
Bm11(22) +B11

m (22)
]
w22

, (C2)

where Γ[·] is the gamma function. Setting mutation probabilities equal [B11
11(21) = B11

11(12) = 2Bm11(22) =751

2B11
m (22) = θ = Nµ] reduces Equation (C2) to the neutral genetic case (equation 27 in Christiansen752

et al., 1998) divided by
√
u22w22 because we census after selection and consider double mutant fixation.753

By separating the various mutational terms our analysis clarifies that, while the crossing time is inversely754

proportional to the mutation probability from residents to single mutants, it is inversely proportional to the755

square root of mutation probabilities from single mutants to double mutants. The crossing time is therefore756

increased much more by a reduction in mutations from residents to single mutants than it is by a reduction757

in mutations from single mutants to double mutants.758

When mutations from residents to single mutants [b1111(21) and b1111(12)] are rare, an approximation for759

the crossing time, in terms of our unscaled parameters, is760

T ≈ 1

N [b1111(21) + b1111(12)]
√
u224µm11(22)∗

. (C3)

Increasing the mutational supply of single mutants [N(b1111(21) + b1111(12))] or the probability of mutation761

from single mutants to successful double mutants [u22µ
m
11(m)∗] decreases the amount of time we expect to762

wait before a successful double mutant arises. Holding mutation input, θ, constant, Equation (C3) shows763

that the crossing time without recombination is roughly proportional to N1/2 generations, aligning with the764

semi-deterministic analysis (Equation A2) and indicating that, for a given mutational input, genetic drift765

increases the speed at which fitness valleys are crossed.766

Neutral single mutants with recombination. With recombination the scaling parameter is β = 1/3. We767

can reduce and solve Equation (12) with recombination when the frequencies of single mutants remain768

proportional to one another, such that we need follow only cµ y = z = ξ, where cµ is a constant. This769

requires mutation input [Nb1111(21), Nb1111(12)] to be large enough to make the dynamics of y and z relatively770

deterministic. We further assume no selection on single mutants (s21 = s12 = 0). We then have cµ y = z771

for all time, t, when the ratio of mutation probabilities is cµ [i.e., cµb
11
11(21) = b1111(12)] and we begin with772
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cµy(0) = z(0). Equation (12) then collapses to773

ξ

2(1 + cµ)

d2T̃ (ξ)

dξ2
+B11

11(21)
dT̃ (ξ)

dξ
− u22cµr1221(22)∗ ξ2 T̃ (ξ) = −1. (C4)

The boundary conditions are limξ→∞ T̃ (ξ) = 0 and dT̃ (0)/dξ = −B11
11(21)−1. The solution to the774

boundary-value problem, evaluated at ξ = 0, in units of generations, T = N1/3T̃ (0), is775

T =
25/3π

311/6Γ
[
2/3
] N1/3(1 + cµ)Γ

[
2(1 + cµ)B11

11(21)/3
]

Γ
[
2[1 + (1 + cµ)B11

11(21)]/3
]

3
√
u22cµ(1 + cµ)r1221(22)∗

. (C5)

Letting cµ = 1, B11
11(21) = θ = Nµ, and r1221(22) = r/2 reduces Equation (C5) to the neutral genetic776

case (equation 30 in Christiansen et al., 1998) divided by 3
√
u22w22 because we census after selection and777

consider double mutant fixation. Our result extends the insight of Christiansen et al. (1998) by allowing778

the frequencies of single mutants to differ, cµ 6= 1. Holding average mutation input [(1 + cµ)Nb1111(21)/2]779

constant, Equation (C5) shows that the crossing time is minimized when there are equal numbers of the two780

single mutants (cµ = 1) and increases as the asymmetry grows. This occurs because recombination is most781

effective in creating double mutants when the single mutants are equally frequent.782

Converting the full solution back in terms of our unscaled parameters and letting the mutation probability783

b1111(21) be small, we have the approximation784

T ≈ 22/3π

35/6Γ
[
2/3
]2 1

N2/3b1111(21) 3
√
u22cµ(1 + cµ)r1221(22)∗

. (C6)

Holding mutation input [Nb1111(21)] constant, Equation (C6) shows that the crossing time is roughly propor-785

tional to N1/3 generations, aligning with the semi-deterministic analysis (Equation A3).786

D. Stochastic simulations787

We performed stochastic simulations to verify our analytical and numerical results. Simulation code is788

supplied in the supplementary Mathematica file. Briefly, we performed random multinomial sampling of789

genotypes with frequency parameters given by Equation (1) and transition probabilities defined in Tables790

2-4. Crossing time simulations ended on double mutant fixation and the generation in which this occurred791

was recorded as the crossing time. Crossing time was averaged over all trials (103 trials in Figure 1, 102792

trials in Figure 3 and 5). Crossing probability simulations ended on resident or double mutant fixation and793
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the genotype which fixed in each trial was recorded. The crossing probability was calculated as the fraction794

of trials in which the double mutant fixed (103 trials in Figure 2 and 4, 105 trials in Figure 6).795
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Figure 1: Expected number of generations until a double mutant begins to fix, T , as a function of the probability of
recombination, r. The dots show the full semi-deterministic solution (numerical solution to Equation A1, including higher order
terms, allowing both recombination and mutation to generate double mutants). The solid curves show the semi-deterministic
results when (top) mutation-selection balance is first reached (Equation 8) and (bottom) mutation-selection balance is not
reached and crossing can occur by recombination (Equation A3). The dashed line gives the crossing time when crossing
occurs by mutation only, before mutation selection balance is reached, and single mutants are selectively neutral (Equation
A2). The X’s are mean simulation results (Appendix D). The grayscale corresponds to (dark) distortion favouring single
mutants, k = 10−4; (medium) the Mendelian case, k = 0; and (light) distortion favouring wild-type, k = −10−4. Parameters:
µ = 5× 10−7, N = 106, w22 = 1.05, and (top) w21 = w12 = 1− 10−3 and (bottom) w21 = w12 = 1− 10−5.
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Figure 2: The probability, P = 1−u, of crossing the valley given an initial stock of single mutants (with no further mutations
from resident-resident matings) as a function of the rate at which single mutants produce double mutants (top) without
recombination (Equation 15) and (bottom) by recombination only (Equation 17). The X’s are simulation results (Appendix
D). Parameters and grayscale as in Figure 1 (bottom) with i0 = j0 = 1000.
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Figure 3: Expected number of generations until a double mutant begins to fix, T , as a function of (top) the mutation
probability in locus B, ν, and (bottom) the relative mutability of the two loci, cµ = ν/µ. The top panel holds the mutation
probability in locus A (µ = 5 × 10−7) constant while the bottom panel holds the average mutation probability [(µ + ν)/2 =
µ(1 + cµ)/2 = 5 × 10−7] constant. The solid curves show the stochastic crossing time by recombination with neutral single
mutants (Equation C5). The dashed curves show the semi-deterministic results when crossing occurs (black) before (Equation
A3) and (gray) after (Equation 8) mutation-selection balance is first reached. The dots show the full semi-deterministic solution
(numerical solution to Equation A1, including higher order terms, allowing both mutation and recombination to generate double
mutants). The X’s are mean simulation results (Appendix D). Parameters as in Figure 1 (bottom), except w22 = 2.01, which
ensures s22 ≥ 0 ∀ cµ.
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Figure 4: The probability, P = 1−u, of crossing the valley given an initial stock of single mutants (with no further mutations
from resident-resident matings) as a function of the ratio of the initial numbers of single mutants and mutation probabilities,
cµ = ν/µ = cn = j0/i0 (Equation 17). The gray curve holds the initial number of A2B1 (i0 = 100) and the mutation
probability in the A locus (µ = 5 × 10−7) constant and varies the initial number of A1B2 (j0) and the mutation probability
in the B locus (ν). The black curve holds the initial number of single mutants (n0 = i0 + j0 = 200) and average mutation
probability [(µ+ ν)/2 = 5× 10−7] constant. The X’s are simulation results (Appendix D). Other parameters as in Figure 3.
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Figure 5: Expected number of generations until the new combination of cultural traits (A2B2) begins to fix, T , as a function
of the probability of inheritance, q, of the new traits singly (A2B1, A1B2) over the previous combination (A1B1). The curves
show the estimate given mutation-selection balance is first reached (which assumes A2B1 and A1B2 are disfavoured, q < 0.5;
Equation 8). The dots show the full semi-deterministic solution (numerical solution to Equation A1, including higher order
terms, allowing both recombination and mutation to generate double mutants). The X’s are mean simulation results (Appendix
D). The transmission advantage for the new combination of cultural traits is either weak (thin curves, small dots: p = 0.51) or
strong (thick curves, large dots: p = 0.6). Parameters: N = 103, µ = 10−3, r = 0.01, and w21 = w12 = w22 = 1.
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Figure 6: The probability, P = 1 − u, that the new combination of cultural traits (A2B2) fixes given an initial number of
A2B1 and A1B2 (with no further mutations from resident-resident matings) as a function of the probability of inheritance,
q, of the new traits singly (A2B1, A1B2) over the previous combination (A1B1). The grey curves show the probability of
crossing in the absence of recombination (r = 0; Equation 15), with a strong (thick curves: p = 0.6) or weak (thin curves:
p = 0.51) transmission advantage for the new combination of cultural traits. The black curves show the probability of
crossing by recombination only (r = 0.01; Equation 17). The X’s are simulation results (Appendix D). With such a large
mutation probability, crossing can be more likely without recombination, which has the added effect of breaking apart the new
combination. Parameters as in Figure 5 with i0 + j0 = 20 and c = 1.
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Figure A1: Expected number of generations until a double mutant begins to fix, T , as a function of recombination, r, given
(gray) mutation-selection balance is first reached (Equation 8) or mutation-selection balance is not reached and (black, solid)
crossing can occur by recombination (Equation A3) or (black, dashed) crossing occurs by mutation only and −s21 = −s12 =
δ = 0 (Equation A2). The dots show the full semi-deterministic solution (numerical solution to Equation A1, including higher
order terms, allowing both recombination and mutation to generate double mutants). The mutation-selection balance estimate
(gray) performs better than the dynamic estimates (black) when δ T > 1, and vice-versa. Parameters: symmetrical, Mendelian
inheritance with N = 105, s22 = 0.05, and µ = 5× 10−7 (see supplementary Mathematica file).
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Table 1: Parameters used throughout text

Symbol Description
xij frequency of AiBj in the current generation
x′ij expected frequency of AiBj in the next generation
wij viability of AiBj relative to viability of A1B1

V normalizing factor
N number of individuals in the population
t time, in units of generations
bklij (mn) probability AiBj mother and AkBl father produce AmBn offspring

b̄klij (mn)∗
average probability of surviving AmBn offspring from AiBj x AkBl mating,
1
2wmn[bklij (mn) + bijkl(mn)]

µklij (mn)∗ probability of surviving mutant offspring, b̄klij (mn)∗, m 6∈ {i, k}, n 6∈ {j, l}

rklij (mn)∗
probability of surviving recombinant offspring, b̄klij (mn)∗, m ∈ {i, k}, n ∈ {j, l},
mn 6∈ {ij, kl}

b̄klij (mn)
average transmission probability before selection, b̄klij (mn)∗/wmn
[similarly for µklij (mn) and rklij (mn)]

sij selection on AiBj in a resident population, 2b̄ij11(ij)∗ − 1
T generations until first successful double mutant arises
u22 probability that a double mutant begins a lineage that will fix
it number of A2B1 individuals in generation t (similarly for A1B2, jt)
X(t) numbers of single mutants in generation t assuming no double mutants, (it, jt)
4i change in number of A2B1 individuals, it+1 − it (similarly for A1B2, 4j = jt+1 − jt)
α, β scaling parameters in diffusion process
τ scaled unit of time, t/Nα

Y (τ) scaled frequency of A2B1, iτ/N
β (similarly for A1B2, Z(τ) = jτ/N

β)
µY (y) first moment of 4Y = Y (τ + 1)− Y (τ) given Y (τ) = y = i/Nβ (similarly for Z)
σ2
Y (y) second moment of 4Y given Y (τ) = y (similarly for Z)
κ(y, z) rate diffusion killed by successful double mutants given Y (0) = y, Z(0) = z
Bklij (mn) scaled transmission probability, bklij (mn)Nβ

R12
21(22) scaled (rare) recombination from single mutants to double mutants, r1221(22)N1/2

Sij scaled selection on AiBj in population of residents, sijN
β

T̃ (y, z) scaled time until first successful double mutant given Y (0) = y, Z(0) = z, TNα

m index for single mutant types when equivalent (e.g., sm = s21 = s12)
cµ mutation rate at locus B relative to locus A, ν/µ
cn initial number of A1B2 individuals, relative to A2B1, j0/i0
ξ scaled frequency of single mutants (y + z or ci y = z, depending on assumptions)
u(y, z) probability no successful double mutant appears given Y (0) = y, Z(0) = z
n0 initial number of single mutants, i0 + j0
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Table 3: Transmission probabilities, bklij (mn), with cytonuclear inheritance. The A locus is biparentally inherited with µ the
mutation probability from A1 to A2. The B locus is uniparentally inherited with ν the mutation probability from B1 to B2.

Parents Offspring
Mother Father A1B1 A2B1 A1B2 A2B2

A1B1 A1B1 (1− µ)(1− ν) µ(1− ν) (1− µ)ν µν

A1B1 A2B1
1−µ
2 (1− ν) 1+µ

2 (1− ν) 1−µ
2 ν 1+µ

2 ν
A1B1 A1B2 (1− µ)(1− ν) µ(1− ν) (1− µ)ν µν

A1B1 A2B2
1−µ
2 (1− ν) 1+µ

2 (1− ν) 1−µ
2 ν 1+µ

2 ν

A2B1 A1B1
1−µ
2 (1− ν) 1+µ

2 (1− ν) 1−µ
2 ν 1+µ

2 ν
A2B1 A2B1 0 1− ν 0 ν

A2B1 A1B2
1−µ
2 (1− ν) 1+µ

2 (1− ν) 1−µ
2 ν 1+µ

2 ν
A2B1 A2B2 0 1− ν 0 ν
A1B2 A1B1 0 0 1− µ µ

A1B2 A2B1 0 0 1−µ
2

1+µ
2

A1B2 A1B2 0 0 1− µ µ

A1B2 A2B2 0 0 1−µ
2

1+µ
2

A2B2 A1B1 0 0 1−µ
2

1+µ
2

A2B2 A2B1 0 0 0 1

A2B2 A1B2 0 0 1−µ
2

1+µ
2

A2B2 A2B2 0 0 0 1
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