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ABSTRACT

A statistical postprocessing method for improving probabilistic forecasts of continuous weather variables,

given recent observations, is presented. The method updates an existing probabilistic forecast by in-

corporating observations reported in the intermediary time since model initialization. As such, this method

provides updated short-range probabilistic forecasts at an extremely low computational cost. The method

models the time sequence of cumulative distribution function (CDF) values corresponding to the observation

as a first-order Markov process. Verifying CDF values are highly correlated in time, and their changes in time

are modeled probabilistically by a transition function. The effect of the method is that the spread of the

probabilistic forecasts for the first few hours after an observation has been made is considerably narrower than

the original forecast. The updated probability distributions widen back toward the original forecast for

forecast times far in the future as the effect of the recent observation diminishes. The method is tested on

probabilistic forecasts produced by an operational ensemble forecasting system. The method improves the

ignorance score and the continuous ranked probability score of the probabilistic forecasts significantly for the

first few hours after an observation has been made. The mean absolute error of the median of the probability

distribution is also shown to be improved.

1. Introduction

Correctly predicting forecast uncertainty can bring

significant economic benefits to many decision makers

(AMS 2008). Unlike a deterministic forecast, which

supplies only the expected weather outcome, a proba-

bilistic forecast gives the likelihood of occurrence of all

outcomes. Decisions are based on combining the rela-

tive risks of various weather outcomes with the costs and

losses corresponding to those outcomes. Thus, proba-

bilistic forecasts are naturally preferred for economic

decision making.

Let ft(x) be the forecasted probability density function

(PDF) of a continuous meteorological variable X (such

as temperature) valid for time t. One can generate ft(x)

from an ensemble of numerical weather prediction (NWP)

models by using methods such as Bayesian model av-

eraging (Raftery et al. 2005), the binned probability

ensemble technique (Anderson 1996), the method of

moments (Jewson et al. 2005), or local quantile re-

gression (Bremnes 2004).

Let Ft(x) denote the forecasted cumulative distribu-

tion function (CDF) given by

Ft(x) 5

ðx

2‘

ft(s) ds. (1)

In addition, let xt denote the observed state of X at time

t. Let pt denote the CDF value corresponding to the

observed state:

pt 5 Ft(xt). (2)

Often, pt is called the probability integral transform

value (PIT value) corresponding to the observation.

We will assume an operational ensemble forecasting

system initialized at time t 5 0 that gives hourly forecasts

out to time t 5 T. At times t, where 0 # t # T, hourly

observations from observing stations are made avail-

able, but the models do not incorporate these observa-

tions until the next forecast cycle starts.

Figure 1a shows a sample temperature CDF forecast

for a single location produced from an ensemble. At
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the time the figure was produced, observations up to

1000 UTC were available. What is clear from the figure

is that the CDF value that the observation verifies on

(PIT value) is highly correlated in time (Fig. 1c). Given

that the most recent PIT value (at 1000 UTC) is 0.75, the

next PIT value (at 1100 UTC) will likely be near 0.75.

The probability distribution can therefore be refined

to take into account this new information that was not

available at the time the model was initialized. The ef-

fects of the most recent observation will diminish for

longer lead times. The updated probability distribution

will therefore be narrow near the time of the observation

and widen back to the original distribution for times in

the future (Fig. 1b).

The goal of this paper is to present a method for

producing an updated probabilistic forecast F̂t(x) by

mapping the original CDF Ft(x) by a function F as

follows:

F̂t(x) 5 F[Ft(x)]. (3)

The mapping will concentrate F̂ in a narrower range with

the hope of improving short-term verification scores. End

users in need of rapidly updating probabilistic short-term

forecasts at very low computational costs can benefit

from this update method.

Postprocessing weather forecasts is commonly done

to increase the correspondence between forecasts and

observations. For deterministic forecasts, methods such

as model output statistics (Glahn and Lowry 1972),

Kalman filtering (Homleid 1995), and analog methods

(Delle Monache et al. 2011) are commonly used to re-

duce forecast error. On the other hand, methods such as

ensemble calibration (Hamill and Colucci 1998) and

Bayesian model averaging (Raftery et al. 2005) can be

used to improve probabilistic forecasts from an ensemble

of deterministic forecasts. The method presented here

also aims to improve probabilistic forecasts, but differs in

that it is only invoked once observations are available

after the raw forecasts are created. It is therefore of most

use for operational short-term forecasts.

This paper is organized as follows: the method for

updating probabilistic forecasts is presented in section 2,

the dataset and verification metric used for testing the

method is described in section 3, the performance of the

method is evaluated in section 4, and conclusions are

drawn in section 5.

2. Method

Assume that for a given forecast day, T 1 1 hourly

probabilistic forecasts Ft(x) (where 0 # t # T) are pro-

duced. Let tobs denote the time at which the most recent

observation was made. This observation is then used to

update all hourly forecasts that are still in the future (i.e.,

where tobs , t # T ).

The probabilistic forecast n hours after tobs, that is for

time t 5 tobs 1 n, can be updated according to

F̂t
obs

1n(x) 5 Fn[Ft
obs

1n(x)], (4)

where Fn(p) will in general be different for each value of

n and can be constructed based on forecast and obser-

vation data prior to the time tobs. Here, Fn(p) is the

probability function that the verifying PIT value of the

original forecast will be less than p.

Combining Eqs. (1) and (4) and using the chain rule

gives the following for the updated PDF:

FIG. 1. (a) A sample probabilistic temperature forecast initial-

ized at 0000 UTC. Forecasted cumulative probability values are

shown by lines. Observations are shown by solid dots. (b) The

updated probabilistic forecast (solid lines) based on the most re-

cent observation. The original forecast is shown by dashed lines. (c)

The probability integral transform values of the original forecast

corresponding to the observations.
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f̂ t
obs

1n(x) 5 Cn[Ft
obs

1n(x)]ft
obs

1n(x), (5)

where Cn(p) is the derivative of Fn(p) and acts as an

amplification factor for the original PDF. We note that

Cn(p) increases probability density in regions where

the PIT value is more likely to occur given the recent

observation. That is, Cn(p) is also the probability den-

sity of p being the verifying PIT value of the original

forecast.

a. PIT values as a random walk in time

We model the time sequence of verifying PIT values

within one forecast cycle as a random walk in time.

Mirror barriers at 0 and 1 are used to handle the fact that

PIT values are bounded on the interval [0, 1]. That is,

any random steps across the boundaries are reflected

back into the domain (Fig. 2). Mirror barriers are com-

monly used to describe stochastic processes in other

areas of modeling [Karlin and Taylor (1981); see also

Rose (1995) for applications in economics].

Let ptobs
be the PIT value of the most recent obser-

vation, and let Cn(p) be the probability density function

of the verifying PIT value being p at n hours after tobs.

When n 5 0, the PIT value is fully known and can

therefore be described by

C0(p) 5 d(p 2 pt
obs

), (6)

where d is the Dirac delta function defined by

d(s) 5
1‘ s 5 0

0, s 6¼ 0
and

�
(7)

ð‘

2‘

d(s) ds 5 1. (8)

Let S(p, q) represent the probability density of ar-

riving at a PIT value of p, given that the previous PIT

value was q. Since our stochastic model for PIT values is

a first-order Markov model, the probability of a certain

PIT at time n can be found from all transitions to that

PIT from time n 2 1. The probability density after a

transition can therefore be determined by the following

recursive equation:

FIG. 2. (a) A hypothetical time series of verifying PIT values (solid line). Mirror barriers at

0 and 1 reflect any steps back into the domain. The dashed line shows the PIT time series

without reflections. The transition from time 3 to 4 involves a reflection across 1 as shown by the

arrows. (b) The PDF (thick solid line) of the PIT value for time 9, given that the PIT value at

time 8 was 0.80. The dashed line shows the probability of the Gaussian distribution that has

been reflected back into the domain.

566 W E A T H E R A N D F O R E C A S T I N G VOLUME 26



Cn(p) 5

ð1

0
S(p, q)Cn21(q) dq. (9)

b. Determining the transition function

We assume that the step length from one PIT to the

next is Gaussian distributed with mean 0 and variance

s2. That is, the transition function S can be constructed

as follows:

S(p, q) 5 f(p; q; s2) 1 f(2p; q; s2)

1 f(2 2 p; q; s2) 1 � � � (10)

5 �
1‘

i52‘

[f(p 1 2i; q; s2) 1 f(2p 1 2i; q; s2)],

(11)

where f(x; m; s2) is a Gaussian PDF with mean m and

variance s2. The first term in Eq. (10) comes from steps

within the domain, the second comes from steps reflected

across 0, and the third term comes from steps reflected

across 1. Equation (11) includes all possible steps, inclu-

ding steps that cross both boundaries one or more times.

A transition function that combines n number of

steps can also be constructed and is denoted by Sn. The

variance of multiple steps (under the assumed model)

increases linearly with time, and Sn can therefore be

computed by

Sn(p, q) 5 �
1‘

i52‘

[f(p 1 2i; q; ns2) 1 f(2p 1 2i; q; ns2)].

(12)

Since s is small in our study (around 0.15), and we use

values of n no larger than 24, we restrict the summation

to i 2 [210, 10]. A wider range for i may be required for

large s and n values.

Constructing Sn allows us to simplify Eq. (9) to the

following:

Cn(p) 5

ð1

0
Sn(p, q)C0(q) dq (13)

5 Sn(p, pt
obs

), (14)

FIG. 3. An example sequence of PDFs of PIT values for different numbers of hours (n) after an observation has been

made. In this case at n 5 0, the PIT value is fully known to be 0.7.
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where again p
tobs

is the verifying PIT value at time tobs.

This simplification avoids the need to recursively

compute Cn [as in Eq. (9)]. Note that for forecast var-

iables that require a non-Gaussian transition function,

it is possible that Eq. (12) cannot be constructed ana-

lytically in which case the above simplification may not

be possible.

Figure 3 shows an example sequence of Cn(p) for

various values of n. The PIT value distribution clearly

widens as time goes on, indicative of the disappearing

effects of the last observed PIT value.

c. Parameter estimation

To create the updated forecasts, an estimate of s2 is

needed by Eq. (12). The variance of the step sizes of past

PIT values (s2
0) can be used:

s2
0 5

1

jT j �i2T (pt11 2 pt)
2, (15)

where T represents a set of time points from the past

forecast cycles that compose the training period and

where jT j is the size of this training set. In general, s2
0

will underestimate s2 since some steps will appear to be

short steps when in fact they are longer steps that have

reflected across a boundary.

For a given s, the expected value of s0 can be com-

puted by the integral over all possible PIT transitions

from p to q:

s2
0 5 �

‘

i52‘

ð1

0

ð1

0
[f(p 1 2i; q; s)(p 2 q)2

1 f(2p 1 2i; q; s)(p 2 q)2] dp dq. (16)

Solving this equation for s [as required by Eq. (12)] was

not possible analytically. We found that the following is

a good approximation for s in terms of s0:

s ’ tan(3:5s0)/3:5, (17)

where the input to the tangent function is in radians.

This approximation has errors of less than 3.4% for

s0 values up to 0.3 (Fig. 4).

A summary of the process involved with updating

a probabilistic forecast goes as follows: the variance of

past PIT transition distances (s0) is computed by Eq.

(15), which is used to approximate s in Eq. (17); s is

then used in Eq. (12) to compute the transition function

(Sn); and the transition function, combined with the

latest available verifying PIT value, are used to calcu-

late the PIT distribution (Cn) by Eq. (14), which is used

to update the original probabilistic forecast through

Eq. (5).

3. Operational test case

a. Model data and configuration

Hourly surface temperature forecasts from the Me-

soscale Compressible Community (MC2; Benoit et al.

1997) model, the fifth-generation Pennsylvania State

University–National Center for Atmospheric Research

(Penn State–NCAR) Mesoscale Model (MM5; Grell

et al. 1994), and the Weather Research and Forecasting

Model (WRF; Skamarock et al. 2005) were used for

the case study period: 0000 UTC 1 September 2005–

2300 UTC 1 February 2008. Two runs for the WRF

model were used: one using Global Forecast System

(GFS) initialization (WRFG) and the other using North

American Mesoscale Modeling (NAM) model initiali-

zation (WRFN), while MC2 and MM5 both used NAM

initialization. The MC2 and MM5 runs had outer do-

mains with 108-km grid spacing, and inner 36-, 12-, and

4-km nested domains. The WRF runs were similar, but

did not contain the 4-km nested domain. These domains

composed our 14-member ensemble.

The models were initialized once per day at 0000 UTC,

and hourly forecast output to 60 h was available.

Probabilistic forecasts were generated for the same

time period.

The model runs and probabilistic forecasts were

generally completed by 0600 UTC, after which we used

the latest observation to update the probabilistic fore-

casts valid for the subsequent 24 h. The update process

FIG. 4. Standard deviation of PIT step sizes used in the transition

function as a function of the measured standard deviation of step

sizes of past PIT values (solid line) and the approximation s 5

tan(3.5s0)/3.5 (dashed line).
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was repeated each hour as a new observation became

available. This was done until 0600 UTC the next day,

when the probabilistic forecasts from the next forecast

cycle were used. This means that for each forecast cycle

twenty-four 24-h updated forecasts were produced,

yielding 576 forecasts per day.

We tested the method on temperature probabilistic

forecasts and observations for the following five airport

stations in British Columbia, Canada: Vancouver In-

ternational Airport station (CYVR), Abbotsford In-

ternational Airport (CYXX), Victoria International

Airport (CYYJ), Kamloops Airport (CYKA), and

Kelowna Airport (CYLW). This group of stations

provided a geographically diverse sample from within

our smallest model domain.

b. Original probabilistic forecasts

We used the method of moments to produce the

original probabilistic forecast from the forecast ensem-

ble. The PDF using this method is computed by

ft(x) 5 f(x; jt 1 m; s2), (18)

where again f is a Gaussian PDF, x is a temperature

value, jt is the ensemble mean at time t, m is a bias-

correction term for the center of the distribution, and s2

is the variance of the distribution.

The last two parameters are determined by the fore-

cast errors during the training period T :

m 5
1

jT j �i2T xi 2 ji and (19)

s2 5
1

jT j �i2T (xi 2m 2 ji)
2. (20)

Note that the spread in this case is independent of the

ensemble spread.

The parameters m and s were computed separately for

each station and separately for each of the 24 forecast

hours. They were computed from a 40-day sliding win-

dow that ended the day before the forecast was initial-

ized. A training period of 40 days is a compromise

between the need to use statistics that adapt quickly to

seasonal changes and the requirement to have enough

data to robustly estimate the parameters. Similar train-

ing lengths have been used to produce probabilistic

forecasts using Bayesian model averaging (Raftery et al.

2005; Sloughter et al. 2007).

The spread parameter s0 (and consequently s) was

also computed separately for each station using a 40-day

sliding window; however, all 24 forecast offsets for

a given station were pooled together to give a more

robust estimate.

4. Analysis

a. Ignorance score

We use the logarithmic score of Good (1952), which

has gained popularity over the last decade and has been

referred to as the ‘‘ignorance’’ score owing to its ties

with information theory (Roulston and Smith 2002). It is

defined as follows:

IGN( f ) 5
1

jT j �t2T 2log2[ft(xt)]. (21)

IGN rewards forecasts that place high confidence in the

value where the observation falls. Low ignorance scores

are desired.

The total ignorance scores of the original probabilistic

forecasts were computed by averaging ignorance scores

over all forecast cycles, and forecast hours, but sepa-

rately for each station and each value of n in order to see

how far into the future a recent observation can improve

the ignorance score.

Figure 5a shows the improvement in the ignorance

score provided by the updated probabilistic forecast as

a function of distance from the most recent observation.

The updated forecasts at 0 h after an observation has

been made has an ignorance score of 2‘ since the true

state is fully known. However, this update forecast is of

no value since it is only available after the observation

has been made. As the time since the most recent ob-

servation increases, the improvement in the ignorance

score reduces down toward 0.

b. Continuous ranked probability score

We also computed the continuous ranked probability

score (CRPS) to further evaluate the quality of the

probabilistic forecasts. It is defined as

CRPS(F) 5
1

jT j �t2T
ð1‘

2‘

[Ft(x) 2 H(x 2 xt)]2 dx, (22)

where H(s) is the Heaviside function defined by

H(s) 5
1 s $ 0

0 s , 0
.

�
(23)

Low values of CRPS are preferred.

Figure 5b shows the percentage improvement due to

the updated forecast relative to the original raw forecast.

This is defined as

%improvement5
CRPS(Fraw)2CRPS(Fupdated)

CRPS(Fraw)
3100%.

(24)
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Results for CRPS show a similar pattern as for the

ignorance score, with the update method providing less

improvement as the time since the most recent obser-

vation increases. The average CRPS of the five stations

was 1.508C and the update method brought the values

down to 1.068 and 1.278C at 3 and 6 h, respectively.

c. Reliability

A probabilistic forecast is reliable (or calibrated)

when the PIT values are uniformly distributed between

0 and 1 (Gneiting et al. 2007). This can be diagnosed by

a simple histogram of verifying PIT values, as reliable

forecasts will give a flat histogram.

Figure 5c shows the histogram of PIT values from all

forecast hours, forecast cycles, stations, and values of n.

The update method does not appear to degrade or im-

prove the reliability of the original forecasts in any sig-

nificant way.

d. Mean absolute error

A probabilistic forecast can also provide a best de-

terministic estimate, by using the median of the proba-

bility distribution (as shown by the 50% lines in Figs. 1a

and 1b). We used the mean absolute error (MAE) as

a verification measure of this deterministic forecast:

MAE( f ) 5
1

jT j �t2T jxt 2 F21
t (0:5)j, (25)

where F21
t is the inverse of Ft giving the temperature

value corresponding to a nominal proportion of 0.5.

The MAE of the deterministic forecast (Fig. 5d)

showed a similar pattern to the ignorance score and

CRPS, with the update method improving the MAEs

from 2.078C down to 1.428C and 1.738C at 3 and 6 h,

respectively. Improvements in MAE suggest that the

update method improves the central tendency of the

probabilistic forecasts.

5. Conclusions

We have presented a method to update probabilistic

forecasts of continuous variables based on recent ob-

servations, which should prove useful for a variety of

nowcasting purposes. An alternative to this is to use data

assimilation after new observations are available in

FIG. 5. Verification statistics for the probabilistic forecasts used in the study. (a) Reduction

(improvement) of the ignorance score by the updated probabilistic forecast relative to the

original probabilistic forecast. Each of the five lines represents the score for a different station.

(b) Percentage improvement in the CRPS by the updated probabilistic forecast. (c) PIT his-

togram of the updated forecasts (black bars) and the original forecasts (white bars), indicating

the reliability of the forecasts. (d) Percentage improvement in mean absolute error of the

median of the updated probability distributions relative to the median of the original distri-

bution.
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order to create new initializations for the ensemble, fol-

lowed by a complete rerun of the ensemble. This is con-

siderably more expensive from a computational point of

view, and may be infeasible for many operational systems.

The method improves the ignorance score and CRPS

of the probabilistic forecasts, and improves the MAE of

the median of the distribution significantly for forecasts

up to 6 h after a recent observation, while not affecting

reliability negatively.

Future work includes investigating the benefits of

using a higher-order Markov model for modeling

PIT transitions. In addition to accounting for the

hour-by-hour correlation of PIT values, a higher-order

Markov model can also incorporate any diurnal corre-

lation of PIT values that may exist, thereby allowing for

the potential to improve forecasts for 24 h after a recent

observation.

Acknowledgments. This research was made possible

by funding from the Canadian Natural Science and

Engineering Research Council, the Canadian Founda-

tion for Climate and Atmospheric Science, and the BC

Hydro and Power Authority. We also thank Kristian

Soltesz and two reviewers for providing helpful insight.

REFERENCES

AMS, 2008: Enhancing weather information with probability

forecasts. Bull. Amer. Meteor. Soc., 89, 1049–1053.

Anderson, J. L., 1996: A method for producing and evaluating

probabilistic precipitation forecasts from ensemble model in-

tegrations. J. Climate, 9, 1518–1530.

Benoit, R., M. Desgagne, P. Pellerin, S. Pellerin, Y. Chartier, and

S. Desjardins, 1997: The Canadian MC2: A semi-Lagrangian,

semi-implicit wideband atmospheric model suited for fi-

nescale process studies and simulation. Mon. Wea. Rev., 125,

2382–2415.

Bremnes, J. B., 2004: Probabilistic forecasts of precipitation in

terms of quantiles using NWP model output. Mon. Wea. Rev.,

132, 338–347.

Delle Monache, L., T. Nipen, Y. Liu, G. Roux, and R. Stull, 2011:

Kalman filter and analog schemes to postprocess numerical

weather predictions. Mon. Wea. Rev., in press.

Glahn, H., and D. Lowry, 1972: The use of model output statistics

(MOS) in objective weather forecasting. J. Appl. Meteor., 11,
1203–1211.

Gneiting, T., F. Balabdaoui, and A. E. Raftery, 2007: Probabilistic

forecasts, calibration and sharpness. J. Roy. Stat. Soc., 69B,

243–268.

Good, I. J., 1952: Rational decisions. J. Roy. Stat. Soc., 14B, 107–

114.

Grell, G. J., J. Dudhia, and D. R. Stauffer, 1994: A description of

the fifth generation Penn State/NCAR Mesoscale Model

(MM5). NCAR Tech. Rep. TN-3981STR, 122 pp.

Hamill, T. M., and S. J. Colucci, 1998: Evaluation of Eta–RSM

ensemble probabilistic precipitation forecasts. Mon. Wea.

Rev., 126, 711–724.

Homleid, M., 1995: Diurnal correction of short-term surface tem-

perature forecasts using the Kalman filter. Wea. Forecasting,

10, 689–707.

Jewson, S., A. Brix, and C. Ziehmann, 2005: Weather Derivative

Valuation. Cambridge University Press, 373 pp.

Karlin, S., and H. Taylor, 1981: A Second Course in Stochastic

Processes. Academic Press, 582 pp.

Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski,

2005: Using Bayesian model averaging to calibrate forecast

ensembles. Mon. Wea. Rev., 133, 1155–1174.

Rose, C., 1995: A statistical identity linking folded and censored

distributions. J. Econ. Dyn. Control, 19, 1391–1403.

Roulston, M. S., and L. A. Smith, 2002: Evaluating probabilistic

forecasts using information theory. Mon. Wea. Rev., 130,
1653–1660.

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker,

W. Wang, and J. G. Powers, 2005: A description of the Ad-

vanced Research WRF version 2. NCAR Tech. Rep. TN-

4681STR, 88 pp.

Sloughter, J. M., A. E. Raftery, and T. Gneiting, 2007: Probabilistic

quantitative precipitation forecasting using Bayesian model

averaging. Mon. Wea. Rev., 135, 3209–3220.

AUGUST 2011 N I P E N E T A L . 571


