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ABSTRACT

The presence of a canyon cutting the continental shelf has been observed to enhance wind-driven upwelling.
In particular, in the vicinity of Juan de Fuca Canyon at the mouth of the Juan de Fuca Strait, an eddy containing
deep water (from a depth of approximately 450 m) has been documented. Strong upcanyon flows have been
observed within numerous canyons including Astoria Canyon, which cuts the shelf offshore of the mouth of the
Columbia River. The suthor develop a linear theory for wind-driven flow over an infinitesimally thin but finite
length canyon to illustrate the basic mechanism. Two regimes are considered, the initial growing velocity field
and a later steady velocity field. The flow toward the shore is enhanced by O(10) by the presence of the canyon
in a homogeneous fluid. The presence of stratification introduces smaller horizontal length scales, the baroclinic
Rossby radius, and allows further enhancement of the upcanyon flow.

Numerical simulations show that the linear theory is a reasonable approximation for canyons of finite but
narrow width compared with the baroclinic Rossby radius. The effect of nonlinearity is to advect the flow pattern
downstream, which gives resuits closer to what is observed. In contrast to the case for linear flow, strong cyclonic

vorticity is generated over the canyon, as is observed over Astoria Canyon.

1. Introduction

Freeland and Denman (1982) identified a region of
upwelled California undercurrent water on the coastal
shelf near the Juan de Fuca Canyon, which extends
offshore across the shelf from Juan de Fuca Strait. The
high nutrient content of this upwelled water is consid-
ered to be of importance to the productivity of nearby
La Pérouse Bank (Mackas and Sefton 1982). Strong
flows along the canyon axis have been observed within
a number of.canyons; examples include Quinault
(Hickey et al. 1986), Hudson (Hotchkiss and Wunsch
1982), Lydonia and Oceanographer (Butman 1983),
and Moresby Trough (Ma 1992). Extensive current
meter observations, during upwelling favorable winds,
have been made in Astoria Canyon, which cuts the
shelf offshore from the Columbia River (B. Hickey
1996, submitted to J. Phys. Oceanogr.).

The presence of a cold water anomaly in the region
of the Juan de Fuca Canyon is a persistent feature.
Recent work, Fang and Hsieh (1993), has shown that
an empirical orthogonal function (EOF) incorporating
this feature (as well as shelf break upwelling) is the
second EOF, and accounts for 12% of the variance, in
summer sea surface temperature off Vancouver Is-
land. The upwelled water is not upwelled to the sur-
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face but is mixed so that its signature reaches the sur-
face. The outflow of Juan de Fuca Strait is part of the
first EQF.

Freeland and Denman (1982) proposed that the en-
hanced upwelling over Juan de Fuca Canyon is due to
cross-shore pressure gradients that, within the canyon,
the Coriolis force cannot balance. They showed, using
an available energy argument, that such pressure gra-
dients were capable of bringing water originally at 450
m onto the shelf. Klinck (1988, 1989) considered the
adjustment of a jet crossing an infinitely long, flat-bot-
tom canyon with vertical edges. The linear shallow wa-
ter equations were solved for homogeneous and strat-
ified flow. As the shelf was included in the model, the
effect of upwelled water on the cross-shore pressure
gradient was incorporated. This model showed that, if
the canyon width is less than half the Rossby radius,
the transverse flow is unimportant in the canyon. By
this criterion the Tully Canyon, a spur of Juan de Fuca
Canyon, which appears to be associated with the up-
welling, is a narrow canyon as its width is approxi-
mately 7 km compared to the local baroclinic Rossby
radius, which is approximately 17 km. Astoria Canyon,
about 6 km wide with a similar Rossby radius, is even
a narrower canyon, Recent numerical simulations using
the Blumberg—-Mellor model have been done over
smoother canyon topography (Allen 1992). The ad-
vantage of the Blumberg—Mellor model is that it can
handle continuous stratification. However, in order to
consider steep slopes, a layered stratification will be
used here.
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In this paper, the modeling of topographically gen-
erated flow within a canyon is extended to include 1)
a finite length canyon with a head, ending on the shelf
and a mouth, opening at the shelf break and 2) full
consideration of the flow over the shelf, within the can-
yon and off the shelf break. Freeland and Denman
(1982) included the former and not the latter of these,
whereas Klinck (1989) included the latter and not the
former. If the reduction in cross-shore pressure gradient
due to upcanyon flow is included, a finite length canyon
cannot support steady upcanyon flow without contin-
uous (in time) forcing. The combination of 1) and 2)
leads to a different theory of upcanyon flow.

In section 2 an infinitesimally thin canyon in a ho-
mogeneous fluid is considered. The canyon is of finite
length, opening to the deep ocean at the shelf break and
ending on the shelf. The geometry is illustrated in Fig.
1 and represents an extreme canyon, long and reason-
ably deep. Canyons that more closely represent Astoria
and Tully will be considered in section 6. A steady
upwelling favorable wind is assumed. The wind pro-
duces an Ekman layer (not modeled) whose effect on
the main body of the fluid is modeled by a sink at the
coast, in the manner of Pedlosky (1974). In section 3
we extend the theory to a three-layer stratified fluid.

As time increases the alongshore flow will reach a
steady state where bottom friction balances the surface
forcing. The steady-state theory is derived in section 4.
In section 5 we compare the equilibrium analytic theory
to a linear numerical model for a narrow but finite
width canyon. In section 6 results are shown and dis-
cussed for nonlinear numerical simulations. The nu-
merical models illustrate the adjustment to the equilib-
rium solution, which occurs through Poincaré, topo-
graphic Rossby, and in the case of stratified flow,
baroclinic Kelvin waves. Two cases, one representing
Tully Canyon and one representing Astoria Canyon,
are compared qualitatively to some of the available
field results. Effects due to variations in the stratifica-
tion, geometry, and forcing are considered. The last
section gives a summary and some concluding remarks.

2. Acceleration phase

The acceleration phase describes the flow character-
istics in the one-half to three day time period after the
wind becomes upwelling favorable; that is, there is off-
shore Ekman transport in an upper Ekman layer. The
Ekman layer (not modeled) must be “‘fed’’ at the coast,
and thus the effect of the wind stress is to produce a
sink for the main body of fluid at the coast.

The above assumptions inherently assume the upper
Ekman layer is thin compared with the full depth of the
fluid. This assumption is valid near the shelf break for
both Astoria and Tully and neither of these canyons
closely approach the coast. For consistency, the coast
is assumed vertical. These assumptions lead to a wind-
driven current that lies closer to the coast than is ob-
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FiG. 1. A plan view of the model geometry. The canyon is flat
along its length, infinitesimally thin (very thin for the numerical
work). The forcing width is E = 0.05a; the margin width is M
= 0.2a, and the shelf width is § = 2a, where a is the barotropic
Rossby radius. The canyon is 400 m deep and cuts through a shelf
50 m deep. The shelf break is a step.

served. The position of the current can be adjusted in
the theory by varying the parameter E the distance from
the shore over which the Ekman sink acts.

As the forcing consists of removal of fluid at a con-
stant rate, the total amount of fluid removed will in-
crease linearly with time. We shall look for a two-part
equilibrium solution in which one part increases lin-
early with time and the other is constant in time. Such
a solution excludes waves (topographic and gravity)
and inertial oscillations. It is the solution expected after
the waves have propagated away leaving an equilib-
rium solution. The waves are included in the numerical
solutions and it will be shown in section 6 that they do
propagate quickly enough for this equilibrium solution
to be realized.

The linear barotropic shallow water equations, ex-
cluding the surface Ekman layer, are

%+fk><u=—gVn (la)
and
on _
Yy +V-(hu) = —¢q, (1b)

where 7 is the surface height, u = (u, v) is the hori-
zontal velocity, g is the acceleration due to gravity, f
is the Coriolis frequency, 4 is the fluid depth, and k is
the vertical unit vector. The x axis is taken to lie along
the coast and the y axis along the axis of the canyon so
that y increases offshore. The Ekman pumping at the

coast is
q — {g(h

where gy = 7/E fto match the flux in the Ekman layer
and 7 is the steady and uniform wind stress, assumed

y<E

y>E, (2)
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to be in the alongshore direction. From the shallow wa-
ter equations a potential vorticity conservation equation
can also be derived:

0

a(hV Xu-—-fn)y=fu-Vh+fg. (3)
We letn = nift + 1o, u = u ft + up, and v = v, ft

+ vp. Substitution gives the following equations pro-

portional to ¢:

Sk Xu =—gVn (4a)

and
V-(ha) = 0. (4b)

We note that (4a) implies (4b) over flat topography
and together they imply that there is no growing ve-
locity field (u,, v;) parallel to the depth gradient. That
part of (1) constant in time gives

Sfu + fk Xu, = —gVn, (5a)

and
Sm + V-(hay) = —q. (5b)

At this point, it is useful to separate the steady velocity
into that part in geostrophic balance with the constant
surface elevation,

JkXu =—gVn (6)
and that part in balance with the growing velocity field,
Su + fkXu =0. (7

The steady momentum equation (7) implies that, in the
absence of a constant surface elevation 7, for a linearly
increasing (in time) velocity field, there must be a cor-
responding steady velocity field perpendicular to it to
accelerate the growing velocity in regions beyond the
forcing. Alternatively, one can consider the steady ve-
locity to be necessary to move fluid down the pressure
gradient (the growing velocity is perpendicular to it)
to feed the Ekman layer at the coast. The velocities u,
and u, are geostrophic, whereas u, is the ageostrophic
velocity. Substituting the assumed form of the solution
into the potential vorticity equation gives

Away from topographic changes, the equations for
1, (4a) and (8), reduce to the equation

azvznl — =? ’
and for 7, the integral of (3), (4b), and (5) and as-
suming the flow starts from rest, reduce to the equation

(10)

€))

a*VPn, —ne =0,

where a = @/ f is the local, barotropic Rossby radius.
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a. Primary circulation

The primary circulation [a solution of (9)] consists
of the velocity u, that grows in time, the steady velocity
u, in balance with it, and the growing surface elevation
77:. The secondary circulation [a solution of (10)] con-
sists of the steady surface elevation 7, and the steady
velocity u.. The benefit of this seemingly arbitrary sep-
aration is that the primary circulation satisfies the
boundary conditions at the coast and at the canyon. The
secondary circulation is only required to satisfy the
steady flux conditions at the shelf. The boundary con-
ditions for a ridge (the divergence of the steady flux
must be zero) do require a steady surface deflection,
and this is where the solution for a ridge and a canyon
diverge.

For clarity, at this point we nondimensionalize all
horizontal length scales by ay, the Rossby radius over
the shelf.

The boundary conditions for the primary circulation
problem must be written in terms of 7, to use with (9).
At the coast, y = 0, the normal velocity must be zero.
Thus, v, is zero and therefore by (4a), dn,/dx is zero
and the value of 7, is uniform along the wall. The re-
sponse is expected to be trapped to the coast, so the
surface elevation must approach zero far from the coast
(m — 0 as y = ). Along the shelf break, y = S, 0h/
dy is not zero; so, as derived above, v, is zero and 97,/
Ox is zero. The growing surface height over the shelf
break is uniform, 7. In the absence of a canyon or well
away from the canyon, | x| > q,, the solution must be
independent of x and these boundary conditions are suf-
ficient. In this case, the solution has the form of the
standard Rossby adjustment problem near a coast,
modified by the presence of the shelf break. The solu-
tion is given in the appendix and will be denoted 77,.

Now consider the vicinity of the canyon. The surface
height over the shelf break is given by the value far
from the canyon; that is, from the solution in the ab-
sence of a canyon,

17x=—a;]70sinhEe‘S. (11)

See the appendix for the derivation and definition of o.
Over the canyon side walls 0h/0x is not zero, so u, is
zero and, thus, 9n,/0y must be zero. The value of the
surface height over the canyon walls is given by the
value over the shelf break, n,. With the boundary con-
dition at the wall, the boundary condition as y — o,
and the expectation that the perturbation due to the can-
yon will be trapped, the conditions along the shelf
break and canyon give a full set of boundary condi-
tions. However, we need only solve for the solution in
the first quadrant and invoke symmetry. For a linear
solution, there should be a line of symmetry through
the center of the canyon so that between the canyon
and the wall, 9n,/0x = v, = 0.



AUGUST 1996

The solution in the absence of a canyon is a partic-
ular solution of (9) and a homogeneous solution must
be found to satisfy the boundary conditions at the can-
yon wall. If we remove the particular solution and de-
fine the homogeneous solution as

¢ =m— 1), (12)
then ¢ satisfies the homogeneous equation,
Vg —¢=0 (13)
with boundary conditions:
=0, aa y=0,8 (14a)
=0, as x—ox (14b)
%=0, at x=0, y=[0,M] (14¢)
and
¢=n—-7m(y), at x=0, y=[MS], (14d)

where y = M is the near-coast end of the canyon. The
general solution satisfying the boundary conditions at
y =0 and y = S is given by the Fourier sum,

6= M) sin<m> .

3 (15)

Substituting into (13) gives

ar\2 V2
A, (x) = c, exp{—x[l + (—-S-,—) } }, (16)

where the second solution has been rejected on the ba-
sis of the boundary conditions as x = . The constants
¢, are constrained by the boundary conditions at x = 0
(14c,d). If the Fourier series is truncated at some large
number of modes, N, the ¢, are found by inverting an
N X N matrix. The solution for the extreme model can-
yon case S = 2.0, M = 0.2, E = 0.05 is given in Fig.
2 using N = 50. The size of N is determined by the
resolution needed between the end of the canyon and
the wall. With M/S = 0.1, at least N = 20 is needed
and N = 50 gives a smoother solution.

The other fields can be found from the solution for
7. As the divergence of the (u,, v,) flow is zero, the
surface height also serves as the streamfunction for the
growing velocity. The ageostrophic part of the steady
velocity (u,, v,) can be found from the increasing ve-
locity, (u,;, v;), by using (5). This steady velocity is
everywhere perpendicular but proportional to the in-
creasing velocity.

At the canyon the surface height is continuous but
not smooth. Thus, the (u,, vy) field shows strong di-
vergence over the canyon. This divergence must be
supplied by fluid flowing up through the canyon, which
implies upcanyon flow consistent with upwelling.
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Fic. 2. The growing surface elevation n; for the model geometry
of Fig. 1. The canyon lies along x = 0 and the coast is at y = 0.
Contoured from 0.1 to 0.9 by 0.1 of n,.

The velocity over the canyon walls, u,, is —v; and
the total flux per unit length out of the canyon is 2uh
= —2v,h, where by (4a) v, = (g/f) 8/0x of (15).
Integrating the flux, 2u.h over the length of the canyon,
y = [M, S] gives the total flux through the canyon at
y = S, which in dimensional variables is

F = \qy sinh(E/a,)a? = —2S fa,
Yo, nra,\* "
X — 1
Tl ()]
X [(—1)"—cos<mrM>j|. (17)

The value of N\ varies from about 0.5 to 3 depending
on the sizes of §/a, and M/a,. Figure 3 gives the value
of \ as a function of M/S for various S/a,. The flux at
the shelf break in the absence of a canyon, over a width
C, is vgh, which is (again in dimensional variables)

qo sinh(E/ay)

C 2
4 Ginh(S/a,) + 1/a cosh(S/a,)

(18)

where o« = VHg/H;, and a, is the barotropic Rossby
radius off the shelf.
The ratio of these is

x% [ sinh(S/a,) + cosh(S/a)].  (19)
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F1G. 3. The total flux through the canyon divided by ¢ sinh(E/a,)
as a function of the shelf width over the margin width S/M for various
values of the shelf width S. The error bars reflect the level of ap-
proximation inherent in approximating the sum, (17), by 100 terms.
The forcing width is £ = 0.05a4;.

This ratio is a measure of the enhancement of upwelling
due to the canyon! For a finite width canyon, C should
be taken as the canyon width. For the approximate di-
mension of Tully Canyon, that is, for a shelf of width
90 km with a canyon 8 km wide cutting to within 45
km of the coast with a shelf depth of 100 m and an
offshelf and canyon depth of 250 m, the ratio is 13.

b. Secondary circulation

In the absence of a canyon, the flow off the shelf is
that given in the appendix and consists of a growing
surface height perturbation, a growing alongshore ve-
locity and a steady upwelling flux toward the shore.
The flow across the shelf from deep water matches that
on the shelf. The boundary conditions for the steady
surface height 7, are zero (wall, shelf break, far from
the coast) and thus by (10), o = 0.

However, in the case with a canyon, the steady flux
v,h does not match across the shelf break and a steady
surface elevation field and its accompanying geo-
strophic velocity v, is required to close the problem.
The presence of the canyon causes two changes in the
flux pattern. First, in the vicinity of the canyon the on-
shore flux across the shelf break is reduced and this
flux is redirected through the canyon instead. Second,
there is an additional flux that goes through the canyon
to maintain the higher surface heights in the vicinity of
the canyon than would be present is its absence.
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To support this change in flux across the shelf break
in the vicinity of the canyon, a steady 7, field must be
present. This field is steady as the growing surface el-
evation height along the shelf break is unaffected by
the canyon. But a steady 7, field over the deep ocean
implies a steady 7, field over the shelf. The boundary
conditions that must be satisfied at the shelf break are
conservation of flux: 4(9n,/8y — dny/Ox) continuous,
and continuity of pressure: 1, continuous. Thus, over
the shelf break we have, in dimensional variables,

dno_ _ _Hs _om oo JF

Ox Hp — Hg Oy g(Hp — Hy)
where F is the total flux up the canyon given by (17).
The flux up the canyon implies a step change in 7,
across the canyon and, because part of the flux is not
compensated by a decrease over the shelf break, there
must be a net step change between x = — and x — .
As shelf waves travel with the coast on the right we
expect that to the left, far from the canyon, the surface
height is unchanged. Thus, 7, = 0 as x = —o. Inserting
the expansion for 7, and integrating (20) from x - —
gives

(20)

ns =no(y = 5)
Hy 7w c,(—1)"n
- _ - ,x<0
Ho_ .S Y, o exp(w,x), x
_ H; Ago sinh(E) o ) c.(—1)'n
" Hp — H; f S W

X (1 — exp(—w,,x))] , x>0 (21)

at the shelf break y = S and where all the horizontal
length scales have been made nondimensional by a, and

with w, = V1 + (7wn/S)?. The other boundary condi-
tions are surface elevation zero at the wall (7, = 0 at
y = 0) and over the canyon (n, = O at x = 0 and y
= [M, S]) and far from the coast (7, = 0 for y — =),
The shelf break divides the region of solution into two.

On the ocean side of the shelf break the solution can
be found using an infinite Fourier transform in the
method of Gill et al. (1986). Transforming (10) with
respect to x gives the Fourier transform of 7, as the
product of the Fourier transform of the value of 7, at y

= § and of
exp[(—y + S)(a® + «*)'"?], (22)

where the other solution has been rejected on the basis
of the boundary conditions for y large. By the convo-
lution theorem,

_ay -9 f‘”
"o 27 —w

i {el(y — )% + 1'%}

X df [(y _ S)2 + §2]1/2

ns(x = &), (23)
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where %, is a modified Bessel function; see Abramow-
itz and Stegun (1972).

Over the shelf the problem is complicated by the
boundary conditions at the canyon. The height along
the shelf break (21) can be separated into the expo-
nential variation, which is purely odd in x, and a step
change. The total solution is that due to the first part
plus that due to the second.

The odd part automatically solves the boundary con-
ditions at the canyon (x = 0). The solution for this part
follows that above except the boundary conditions at y
= 0 give the y part of the Fourier transform as

sinh[y(1 + x2)"?]
sinh[S(1 + «2)'"2]

The Fourier transform of this function can be found by
conversion to exponentials and expansion of the denom-
inator using a binomial expansion (valid for all S posi-
tive). Thus, this part of the solution over the shelf is

> - (2j+ 1)S
S ECEIE

Jj=0
" Ty = () + DS + €417
d
<] e T e
o (=y—(2j+1)S
X mo(x ~ &) - 3 X CIE DD

T EUI-y - (2 + 1D)ST1? + £2}1)
xf_md£ {[_y_(2]+1)s]2+€2}l/2
X ns0(x — &) (25)

Each successive term in each sum is smaller by more
than exp(—2S). Provided S < 1.1, only the first term
in each sum is required to give a solution to better than
10%. For S = 2, the first term of the first series is
sufficient.

The other part of the solution over the shelf is that
due to the step change in 7, across x = 0. A solution
of (10) that has the appropriate step change in 7, is
zero at the wall y = 0, and approaches the expected far
field solutions for x large is

(24)

sinhy
3 o' —
o ? sinhS

+ Y a,exp(—w;x) sin(iry/S), x>0

i=1

M s

= ), b, exp(w;x) sin(iwy/S), x <0, (26)

i

where o3 is the step part of 7,. The a; and b; are found
in the way as for the growing solution n, with boundary
conditions along x = 0. For y < § the solution on the
two sides must be equal and smooth; for y > S the
solution must be zero.
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The secondary circulation for the extreme model
canyon is given in Fig. 4.

The primary plus the secondary flux after 5 inertial
periods for § = 2.0, M = 0.2, and a depth ratio of 8 is
illustrated in Fig. 5.

3. Baroclinicity

To illustrate the effects of baroclinicity both on and
off the shelf, a three-layer fluid is considered where the
top two layer lie over the shelf but the lowest layer is
deep enough only to occur off the shelf and within the
canyon. A sketch of the configuration is given in Fig.
6. The governing equations are the linear shallow water
equations:

ou

_8tu +fk Xu,=—-gVnp (27a)
on
— ‘u, = — 27b
ot + h,V-u, q (27v)
aum 71 1
% + fk Xu, =—-gVn—g'V¢ (27c)
8¢’ on
— . = 27d
5 o + V- (hmu,) =0, (27d)

and off the shelf the above equations and

% +fkXw=—gVn—g''VE' - g'?VeE", (27e)
66” 8&-[ B
ot ot +V (hll.l,) = O, (27f)

where £ is the interface elevation; u = (u, v) is the
horizontal velocity; k is the vertical unit vector; the
subscripts u, m, [ refer to the upper, middle, and lower
layer respectively; the superscripts / and /7 refer to the
interface between the upper and middle layer and the
middle and lower layer respectively, and g’' and g'?
are the reduced gravities across the [ and ] interfaces
respectively. The reduced gravity is defined as gAp/
po, Where Ap is the density difference across the in-
terface and p, is a reference density. Three equations,
which express conservation of the potential vorticity
for each of the three layers, can be derived in a fashion
similar to the homogeneous case. Only the primary so-
lution will be considered for the baroclinic case. Sub-
stituting a time-dependent part and a constant part, as
was done for the homogeneous fluid, and through sim-
ilar manipulation gives the following differential equa-
tions. On the shelf:

(R*V? — 1)(a*V?* — )ny = —q (28a)

(R*V? = 1)(a®V? — 1)¢L =0, (28b)
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FIG. 4. A contour plot of the steady surface elevation 7,. Topog-
raphy is the model geometry of Fig. 1. The parameters are the same
as for Fig. 2; that is, the shelf width is § = 2a, the margin width is
M = 0.2, and the forcing width is £ = 0.05. The depth ratio is 8.
Contoured from 0.4 to 1.3 by 0.1 of the height at the shelf break for
large x, o3, as defined in the text.

and off the shelf:

(RIVZ = 1)(R3V? = 1)(a}V?—1)Z, =0, (28¢c)

where Z is any one of n, ¢/, or £”. The Rossby radii
are R* = g''h,h,/[f*(h, + h,)]and a? = g(h, + h,)/
f?, where it has been assumed g’ /g < 1. Off the shelf,
assuming both the relation between g and g’' and that
g'?/g'" < 1, the Rossby radii are a% = g(h, + h,
+ hl)/fz’ R% = gllh'u(hm + hl)/(fz(ku + hm + hl))a
and R3 = g'*h,n/(f*(h, + h;)). The assumption that
g'?*/g"" < 1 follows from the typical stratification in
the coastal area. If g’ ' represents the main thermocline
and g'? crudely represents the deep stratification, it is
reasonable to assume g’? < g''.

The solution in the absence of a canyon is described
in the appendix. The major changes, compared to the
homogeneous case, are the presence of two length
scales over the shelf (and three off it) and the smooth-
ness of the solutions.

To calculate the solution over the shelf consider the
flow in terms of an upper layer streamfunction 7, which
is simply the surface height and a lower layer stream-
function ¢y = g'/gn + ¢’ where ¢/ is the elevation of
the interface between the top two layers. From the gov-
erning equations and the boundary conditions at the
wall and at the shelf break, the perturbation solution
(that is the total solution minus the solution in the ab-
sence of the canyon) can be written
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n=Y sin(?) [AEx(x) + B,E,(x)]

+ cos<%> [Go&e(x) + H,8.(x)] (292)
and
p=3 sin(%) [Coe(x) + D,Eu(x)],  (29b)
where

«\2712
a*(x)=exp{—f[1+<”7Sr )] } (30)

where the asterisk represent the barotropic, a, or the
baroclinic, R, Rossby radius and where

0 =3 G,&r(x) + H,8,(x)

(31)

because the streamfunction must be zero at the wall.

The surface will be smooth across the top of the can-
yon and therefore by symmetry, 9n/8x will be zero at
x = 0 for all y, which implies

aA,P, = —RB,0, (32a)
and
aGnPn = _RHnQn’ (32b)
Total Flux, t=5
4.0
CpL LI
Y
SN DDA
~~~~~~~~~~~ ~ NN R A A I I e
~~~~~~~~~~~~ \:\{ };:,,,-,,__--,,,
———————————— ~aN e e e
———————————— -\\‘\\ P R
____________ et e e e o e e = e e o
9.0
-2.0 X 2.0

FiG. 5. The total analytic velocity field after five inertial periods.
Parameters same as Fig. 2; the position of the canyon and shelf break
are marked.
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Fic. 6. Sketch showing the variables for the three-layer model.

where
(33a)
and

nra\? 1"
Q,,=[1+<—> ] . (33b)
S
The combination of (31) and (32b) imply G, and H,
are zero.

As well as the boundary condition that ¢ is a uniform
over the canyon and equal to the value over the shelf
break (because there is no growing middle layer flow
over either), we need two further constraints to deter-
mine A,, B,, C,, and D,. A mass balance in each of
the two layers provides these constraints. The increas-
ing thickness perturbation of each layer must be bal-
anced by the constant perturbation flux into that layer.
Consider a rectangle against the coast, 0 < y < Y and

0 < x < o. For the upper layer the above balance
implies

f: dx f: dy(n— &) =— f: dx(voh,) | y—y

-fo dy(uohu)| o, (34)

as the perturbation is expected to be localized to the
canyon region and there can be no flux through the
wall. The flux due to the Ekman pumping is accom-
modated by the flow in the absence of the canyon (we
are considering the perturbation to that flow not the
total flow). Expanding, integrating, and substituting
expressions for n and £ gives

in( 7T L
§5m< s >[A"<Pn R&)

a 12 R a
Bn - _En___Fn— =Oa 35
" (Q,. aQn) P, Qn] (33)

£=2 Sin<£§—y) [Eqér(x) + Fo6a(x)], (36)

and [> = gh,/f?. As (35) must be valid for all y, it
must be valid for each »n separately. Analogous manip-
ulation for the middle layer gives

C,L%aQ, + D,L*RP, — E,R%Q, — F.a*RP, = 0,

(37)

where L? = g''h,/f>.

The three conditions, (32a), (35), and (37), and the
definition of ¢, which links C, with A, and E, and
which links D, with B, and F,, allow the calculation of
C,in terms of D,,. In terms of I, = C, + D, the bound-
ary conditions on the middle layer at x = O are

nr

¢s_¢0=23in< Sy)lm y>M (38a)

and

P
0=y sin(m) -1,

<M,
s JrR™ 7

(38b)

assuming g’'/g < 1. The solution method follows
the homogeneous case using a Fourier sum. The
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Stream Function, ¥, /t

2.

2. X 2.

FiG. 7. Middle-layer streamfunction for the three-layer model with
topography of Fig. 1. The shelf width is § = 2a,, the margin width
is M = 0.2a,, and the forcing width is E = 0.05a,. The stratification
isg’' =0.1 ms™ h, = 30 m, maximum A,, = 70 m, and #, = 300 m.

streamfunction for the middle layer is illustrated in
Fig. 7.

For a barotropic fluid the total flux is 2a%q, sinh (E/
a,) for the canyon of Fig. 1, whereas for a stratified
fluid (with stratification given above) it is 8aZq
sinh(E/a,). The large enhancement is due to the
smaller length scale, the baroclinic Rossby radius,
which increases the flux for a given change in stream-
function. Physically, consider the excess mass required
over the canyon in order for the flow to be deflected
around the canyon. For a long canyon, the mass accu-
mulated over the canyon is given by the (canyon
length) X (the appropriate Rossby radius) X (the ap-
propriate height scale). So the ratio of the baroclinic
to the barotropic case is

(§ — M)(R)(g/g'qo sinhE)
(S — M)(a)(go sinhE) °

which gives an enhancement of 5 times for this case,
very close to the 4 times found from the full calculation.

The lower-layer velocity must be parallel to the shelf
break and canyon walls, which implies the pressure in
the lowest layer must be uniform along them. The
growing pressure () is uniform along the topography
in the middle layer; thus, the growing interface eleva-
tion between the lowest and middle layers must also be
uniform along the shelf break and through the canyon.
The canyon brings this higher interface height into the
shelf region and allows it to exist over a larger area,

(39)
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the whole area of the canyon. The deep-water flux into
the canyon is simply the length of the canyon multi-
plied by the elevation of the interface at the shelf break.
In a nonlinear flow a sink for middle layer fluid will
cause the interface between the lower layer and the
middle layer to rise and will, therefore, further enhance
the flux of deep water into the canyon. This effect is
the problem of selective withdrawal in a rotating fluid;
it has been considered by Monismith and Maxworthy
(1989) and McDonald and Imberger (1992).

4. Steady solution

As time progresses, assuming a constant wind stress,
the flow over the shelf will reach a finite velocity con-
trolled by the forcing, by lateral viscosity and by bot-
tom friction. Lateral viscosity is only important over
distances of order ([24,41/[&f1)'"? =~ 14 km, where §
= (2A,/f)"? is the Ekman layer thickness and A, and
A, are the horizontal and vertical eddy viscosities. The
inclusion/exclusion of lateral viscosity does not change
the basic dynamics, so, for clarity, we will neglect lat-
eral viscosity. Bottom friction will generate a bottom
Ekman layer, including its effects on the flow; the lin-
ear barotropic shallow water equation, (1a) remains the
same but (1b) becomes

On
ot

The boundary layer at the coast where the bottom Ek-
man layer rises into the fluid and the upper Ekman layer
is formed is not modeled. The modified potential vor-
ticity equation is

+V-(hu)=%6V><u. (40)

0 \h )
5-’( —f—)——U'Vh-i')\—Z-,

where A = V X u and we have assumed the wind stress
is uniform. In the steady state, 3/0¢t = 0 so the right-
hand side must also be zero. If we consider the shelf
itself (where VA is assumed zero) we have A = 0. In
the steady state, one can show that \ = g/fV 7. Thus,
the governing equation is a Laplace equation,

Vi =0. (42)

The potential vorticity conservation (41) implies that
there is no geostrophic flow over the shelf break or
canyon walls to order §/k. Thus, the surface height n
must be uniform over these depth changes. In sum-
mary, we have a Laplacian rather than a modified
Helmholtz equation and we have the same boundary
conditions. The solution in the absence of the canyon
is given in the appendix.

The Laplace equation leads to a solution similar to
the Helmholtz equation solution but the scale is deter-
mined by the shelf width rather than the Rossby radius.
The solution for i can be found analytically through a
conformal mapping (Naasse and Kabbaj 1990) but, for

(41)
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TABLE 1. A list of the parameters used in the numerical model.

Run
1 2 3 4 5 6 Astoria Tully

Stratified No Yes No Yes Yes Yes Yes No
Nonlinear No No Yes Yes Yes Yes Yes Yes
Bottom friction No No No No No No No Yes
Topography Model Model Model Model Model Model Astoria Tully
E (km) 11.1 11.1 11.1 11.1 i1.1 11.1 38.1 4.0
qo (m s 1.6e—10 1.6e—10 1.6e—10 1.6e—10 1.6e—5 1.3e—4 4.0e--05 9.4e—04
T (m*s7?) 1.7e—10 1.7e-10 1.7e—10 1.7e—10 1.7e-5 1.4e—4 1.5e—-04 3.7e--04
Forcing

ramped up (27/f) 1 1 1 1 1 0.5 No No

steady (2#/f) o o0 o o 3 0 o ®

ramped down (27/f) No No No No 1 0.5 No No
depth (m)

Upper-layer na 30 na 30 30 30 40 na

Middle-layer na 70 na 70 70 70 160 na

Lower-layer na 300 na 300 300 300 700 na
6 (m) na na na na na na na 15

consistency, was found using the Fourier transform
technique used for the Helmholtz equation in section
2. The surface height is expanded as

n= E,l Ca sin(-’ig—y> exp(%) , (43)

and the ¢, are determined by the boundary conditions
through a truncated sum and inverting the resulting ma-
trix. The flux through the canyon is given by

24ES ¢, [(—1)" - cos(m;M>] . (44)

which is, for the canyon of Fig. 1, 6gEa. Note that the
flux is independent of §, the Ekman layer thickness,
and therefore is independent of the value of the eddy
viscosity. However, the theory is based on the assump-
tion of a constant eddy viscosity. Note also that this
solution is a solution of the full nonlinear equations,
but it is not unique.

5. Results from a linear numerical model
a. Homogeneous case—run 1

A homogeneous primitive shallow-water equation
model was run to model the canyon of Fig. 1, that is,

TaBLE 2. Parameters of the various topographies
used in the numerical model.

Topography Model Astoria Tully
Shelf depth (m) 50 135 100
Off-shelf depth (m) 400 900 250
Canyon bottom flat sloping flat
Canyon width (km) 22.2 6.4 8.0
Margin (km) 44.3 17.0 47.0
Canyon length (km) 404.7 21.1 43.0

a canyon cutting into a shelf 50 m deep from 400 m
[but the width of the canyon (22 km) is necessarily
finite]. The model is a finite-difference, leapfrog so-
lution of the layered shallow-water equations (1) and
is described in Allen (1988). The forcing consists of
removal of fluid at the closest grid point to the wall. In
order to be consistent with linear dynamics this rate is
very small, 0.014 mm/day, and is equivalent to a wind
stress of 1.7 X 107" m? s 2. A list of parameters is

Total Flux, t=56

FiG. 8. Results from the linear, homogencous numerical model
(run 1). The total flux at five inertial periods. Parameters are listed
in Table 1. The topography is the model topography described in
Table 2.
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Run 2—-—-Upper Layer Vorticity
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Fi1G. 9. Results from the linear, stratified numerical model (run 2) 100 hours after forcing started. (a) The upper-layer velocity, maximum
velocity vector is 1.8 mm s~'. (b) The upper-layer vorticity, contoured from —1.3 X 107%ft0 6.8 X 1077 fby 2.2 X 1077 £. (c¢) The middle-
layer velocity, maximum velocity vector is 2.2 mm s ~'. (d) The middle-layer vorticity, contoured from —5.2 X 10~%fto 3.4 X 1077 f by

1.1 X 107¢f.

given in Table 1 for the various numerical runs (this is
run 1) and for the various topographies in Table 2. The
grid spacing is equal to the distance between the arrows
in each of the plots. The grid spacing was increased to
confirm that the flow was well resolved.

To compare with the analytic model, the total flux is
plotted in Fig. 8 at the fifth pendulum day. The veloc-
ities at the head of the canyon are slightly smaller than

for an infinitesimally thin canyon. The flux propagating
along the shelf break and through the canyon is clearly
evident and dominates the flux (but not the velocity)
over the outer shelf. The flow pattern on either side of
the canyon is clearly similar to the flux plot shown in
Fig. 3.

The topographic waves, which establish the flow
pattern seen in Fig. 8, propagate fast enough that the
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Run 2——-Lower Layer Vorticity
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FIG. 9. (Continued) (e) The lower-layer velocity, maximum velocity vector is 0.27 mm s ~'. (f) The lower-layer vorticity, contoured from
22%107°f109.2 X 1078 fby 2.2 X 107*f. (g) The interface between middle and upper layer, contoured from 3 X 107> mm to 4.2 X 1072
mm by 3 X 107° mm. (h) The interface between lower and middle layer, contoured from —1.3 X 107> mm to 4.2 X 1072 mm by 5 X 10~ mm.

flow is very close to equilibrium after two inertial pe-
riods. Note that the double Kelvin waves do not
“‘start’’ until Poincaré waves have propagated the in-
formation of the sink at the coast to the shelf break.
The flow adjusts even more quickly for the more re-
alistic canyons considered in sections 6¢ and 6e as
they are shorter.

The canyon in the numerical model (and in the field)
is not infinitesimally thin but is very thin compared to
the barotropic Rossby radius. The two solutions (the
numerical and the analytic) do not differ significantly.
The surface over the finite width canyon (as shown by
the numerical model) is almost flat across the canyon.
However, the velocities in the deep ocean are smaller
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Run 5-~—-Upper Layer Vorticity
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FIG. 10. Results after 103 hours for the nonlinear, stratified numerical model (run 5) with forcing spread over 87 hours. (a) The upper-
layer velocity, maximum velocity vector is 53 cm s~'. (b) The upper-layer vorticity, contoured from —0.11 fto 0.023 f by 0.022f. (c) The
middle-layer velocity, maximum velocity, vector is 70 cm s ™. (d) The middle-layer vorticity, contoured from —0.53fto 0.15 fby 0.11f.

than for the analytic solution due to the width of the
canyon.

b. Stratified case—run 2

The model was run with three layers, using the same
parameters as the case described in section 3 and Fig.
6. The lowest layer intersects the topography along the
canyon and shelfbreak walls. The code can handle the

intersection with topography provided the intersection
line does not move more than half a grid cell size. The
lower layer is assumed to slip freely along the topog-
raphy. The layered model has advantages in that it rep-
licates the stratification used in the analytic model and
can handle steep topography (up to the point where the
hydrostatic approximation is no longer valid).

The velocity, vorticity, and interface heights are
shown in Fig. 9. The equilibrium solution described in
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Run 5—-~Lower Layer Vorticity
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Fi6. 10. (Continued) (¢) The lower-layer velocity, maximum velocity vector is 14 ¢cm s~*. (f) The lower-layer vorticity, contoured from
=22 X 107*ft0 3.4 X 1072 by 5.6 X 107°f. (g) The interface between middle and upper layer, contoured from 30 cm to 4.5 m by 30
cm. (h) The interface between lower and middle layer, contoured from —5 m to 16 m by 3 m.

section 3 is closely approached by the third inertial pe-
riod except in the lower layer. The start of the forcing
causes very strong upwelling in the head of the canyon,
given approximately by 27,fg/¢”, and grows with a
half-life of about two inertial periods. This accumulated
volume of deep water slowly dissipates thereafter, trav-
eling along the upstream side of the canyon (Fig. 9h).
It is a slow process, consistent with a second baroclinic

mode Kelvin wave type phenomenon. The wave front
is less than halfway down the canyon after ten inertial
periods (Fig. 9¢). The fluid traveling up the canyon
increases the lower-layer depth generating cyclonic
vorticity (Fig. 9f) by conservation of potential vortic-
ity. This vorticity scales as fij,/h;.

The upper-layer flow is strongly bent over the can-
yon (Fig. 9a) by the vorticity (Fig. 9b) due to the up-
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FiG. 11. Results after 103 hours for the nonlinear, stratified numerical model (run 6) with forcing spread over 17 hours. (a) The upper-
layer velocity, maximum velocity vector is 57 cm s~'. (b) The upper-layer vorticity, contoured from —0.13 f to 0.025 f by 0.022f. (c) The
middle-layer velocity, maximum velocity vector is 76 cm s ~'. (d) The middle-layer vorticity, contoured from —0.64 fto 0.70f by 0.22f.

ward movement of the interface height (Fig. 9g),
which reduces the upper-layer depth. By conservation
of potential vorticity this leads to anticyclonic vorticity
as is seen. The middle-layer growing velocity (all that
is visible in Fig. 9¢c) cannot cross the canyon and is
bent sharply around the end. The necessary vorticity
(Fig. 9d) is generated by fluid upwelling onto the shelf
from the canyon. This fluid also increases the interface

height (Fig. 9g), which changes the vorticity in the
upper layer.

6. Results from a nonlinear numerical model

a. Test cases—runs 3 and 4

The nonlinear numerical model used the discretiza-
tion of Arakawa and Lamb (1981), which does not
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FIG. 11. (Continued) (e) The lower-layer velocity, maximum velocity vector is 28 cm s™1. (f) The lower-layer vorticity, contoured from
—8.9 X 107°ft0 0.1 fby 5.6 X 1073f. (g) The interface between middle and upper layer, contoured from —30 cm to 4.7 m by 50 cm. (h)
The interface between lower and middle layer, contoured from —2 m to 16 m by 3 m.

have the nonlinear instability problems of the discret-
ization used for the nonlinear code of Allen (1988).
Two cases, one stratified and one homogeneous, were
run with very small forcing in order to compare with
the linear code. The Arakawa and Lamb scheme has a
larger “‘footprint,”” which leads to smoothing, but
otherwise the results were very similar. The velocity
fields are almost indistinguishable but the vorticity pat-

tern has a slightly larger spatial extent for the nonlinear
run (not shown).

b. Effect of advection and the forcing timescale —
runs 5 and 6

The model canyon was run for two cases, one with
very strong forcing (equivalent to a wind stress maxi-
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FiG. 12. Results after 24 hours for the nonlinear, stratified numerical model (run Astoria) over Astoria topography (see Table 2). (a) The
upper-layer velocity, maximum velocity vector is 22 cm s™'. (b) The upper-layer vorticity, contoured from —0.11f to 0.062 f by 0.025f.
(c) The middle-layer velocity, maximum velocity vector is 13 cm s ~'. (d) The middle-layer vorticity, contoured from —0.43f to 0.43 f by

0.121.

mum of 1.4 X 10™* m?s~?) over a short time (one
inertial period) and the other with the same total forc-
ing spread over a longer time [maximum wind stress
(1.7 X 107° m* s %) spread over 5 inertial periods].
Thus, run 6 is a short sharp wind event and run 5 is a
less severe but longer wind event.

First, compare run 5 with the linear run 2. The main
effect of the nonlinear terms is to sweep the pattern

(flow toward the coast followed by flow seaward) far-
ther downstream. In Fig. 9a, the upper-layer flow pat-
tern is centered over the canyon; in Fig. 10a it is over
the downstream edge of the canyon. This effect is much
stronger for a realistic shelf current/canyon (such as
Astoria, see later) than it is for the extreme model can-
yon. The second effect of the nonlinear terms is to ad-
vect the potential vorticity distribution, which in turn
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FiG. 12. (Continued) (e) The lower-layer velocity, maximum velocity vector is 2 cm s~*. (f) The lower-layer vorticity, contoured from
0fto 0.19fby 0.062f. (g) The interface between middle and upper layer, contoured from —30 cm to 4.2 m by 50 cm. (h) The interface

between lower and middle layer, contoured from 3 m to 18 m by 3 m.

modifies the flow pattern. For the linear run the flow
pattern in the middle layer is a simple U shape around
the end of the canyon (Fig. 9¢c). However, in the non-
linear case the advection of the fluid originally in the
canyon has caused a strong anticyclonic circulation
with closed streamlines (Fig. 10c).

The movement of the potential vorticity depends not
only on the total strength of the flow but also on the

history of the flow. Flow that is strong in the early
stages, before the topographic waves have a chance to
establish the equilibrium solution, causes more modi-
fication of the potential vorticity distribution because
at this stage the flow is across the topography and thus
across the strong potential vorticity gradients. Compare
run 5 (Fig. 10c) to run 6 (Fig. 11¢). In run 6 there are
multiple eddies in the middle layer and almost a closed
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TABLE 3. Variations of parameters used in the numerical model of Astoria Canyon. The first column gives a run number, the second the
change in the parameter, the third the appropriate nondimensional number and its change, and the last six columns show the presence of the
change in the field. An ‘’s’’ indicates the change was minor and not dependent on the given nondimensional number.

Nondimensional

Run Parameter number n u ¢! U, & Us
Al g" x5 ilfg'* X 0.5 x x x
A2 g”? x5 inlfg"”? X 5 x X
A3 hy X 1/2, hy X 9/8 Ahylhy, X 0.6 X x
A4 hy X 5/4, hy X 0.91 Ahylhy, X 1.4 x X x
AS flat canyon (g"hy)"*fIL X 1.2 s s x
A6 forcing at wall i lfg’? X 0.94 x x
A7 forcing X 2.0 it/fg'? X 2.0 x x x x

eddy in the upper layer. Cyclonic vorticity (Fig. 11d)
occurs over the downstream edge of the canyon where
the original anticyclonic eddy has caused shelf fluid to
fall into the canyon. The relaxation of the forcing has
allowed the lower layer to adjust more quickly (hence
the flood leaving the canyon in Fig. 11f).

Thus, a true measure of the nonlinearity depends on
the competition of the topographic waves and the ad-
vection. The topographic wave speed for waves in the
canyon is approximately (gAh)'?, where Ah is the
difference in depth between the canyon and the shelf
(Gill et al. 1986; see also Chen and Allen 1996 for the
complete solution). The time for these waves to prop-
agate around the canyon is 2L/(g Ah)'? where L is the
length of the canyon. If in this time the flow has been
strong enough to advect fluid across the canyon, the
flow is nonlinear.

For the model canyon, the timescale is slightly over
one inertial period. Over this time the slowly forced
run 5 has reached only one-eighth of its final velocity
and the advection is only one-tenth of the width of the
canyon. For the quickly forced run, the advection is a
full half of the canyon width.

¢. Astoria Canyon

The nonlinear simulation was run for a representa-
tion of Astoria Canyon. The model canyon has a slop-
ing bottom cutting into a shelf 135 m deep from 900
m. Three layers were used. The top layer is 40 m deep,
the middle layer has maximum thickness of 160 m, and
lowest layer has a maximum thickness of 700 m. The
canyon bottom slopes stowly (over 19 km) from 900
m to 270 m and then quickly (over 1.6 km) to merge
with the shelf. The steep section at the end accommo-
dates the break between the lowest and the middle
layer. The stratification between the upper and middle
layer is strong (g’ ' = 0.1) to represent the thermocline,
whereas the stratification between the middle and lower
layer is much weaker (g’? = 0.01) to represent the
deep stratification crudely.

In order to force a shelfbreak current as opposed to
a current closer to the coast, E, the forcing region, was
set equal to S, the shelf width. In the absence of a

canyon, a strong current forms over the shelf break and
decays exponentially in both directions. Water was re-
moved from the shelf region at a constant rate of 2.5
meters per inertial period, equivalent to a wind stress
of 1.5 X 10™* m?* s~2; this value was chosen to give
the 25 cm s~ upper-layer velocities observed in the
field. The bottom frictional effects were not included
as the model was run for only one day to simulate the
acceleration phase of the flow.

The major effect of the nonlinear terms is to sweep
the inflow/outflow pattern downstream as shown in
Fig. 12c. Thus, the inflow branch actually lies over the
canyon, leading to very large flows over the canyon,
and the outflow branch lies much farther downstream.
This latter branch has been observed south of Astoria
Canyon (B. Hickey 1993, personal communication).

Figure 12d shows the vorticity in the middle layer.
Strong cyclonic vorticity is observed in the middle
layer over the upstream side of the canyon. This vor-
ticity is caused by fluid columns being strongly
stretched as they ‘‘fall’” over the lip of the canyon.
Flow in the lowest layer is primarily cyclonic with the
strongest vorticity at the head (Fig. 12f). Both these
effects have been observed over Astoria Canyon (B.
Hickey, submitted to J. Phys. Oceanogr. 1996).

There is a local ridge of depression in the interface
between the upper two layers at the upstream side of
the canyon and a stronger ridge of elevation over the
downstream side of the canyon (Fig. 12g). A sigma-t
pattern of this form was observed at about o, = 26.68
over the head of Astoria Canyon on 14 August 1978
(Hickey 1987: Fig. 2.48).

The lowest layer is thickest on the upstream side of
the canyon (Fig. 12h). The opposite was observed on
14 August 1978 (Hickey 1987: Fig. 2.48) at o,
= 26.705 or 26.74. The difference could, perhaps, be
due to timing. At earlier times (12 h after forcing be-
gins) the model shows a lower layer deepest at the
downstream side of the canyon, near the head.

d. Astoria Canyon—parameter variation

Section 6b considered the effect of the time history
of the forcing. In this section, using the Astoria Canyon
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FiG. 13. Results after 24 hours for the nonlinear, stratified numerical model (run Astoria) over Astoria topography (see Table 2) with the
following variations: Lower interface level moved down by 65 m (run A4). (a) The middle-layer velocity, maximum velocity vector is 16
cm s'. (b) The middle-layer vorticity, contoured from —0.62f to 0.78 f by 0.16 . Increase in forcing by a factor of 2 (run A7). (c) The
middle-layer velocity, maximum velocity vector is 23 cm s™'. (d) The middle-layer vorticity, contoured from —0.5 f to 0.6 f by 0.12f.

geometry, the effect of varying the reduced gravities,
the levels of the two interfaces, the shape of the bottom
of the canyon, the strength and the position of the forc-
ing will be considered. There are a large number of
nondimensional numbers that can be formed from these
and the other parameters of the system. Varying the
parameters one at a time illustrates the dominance of

three of these numbers. Generaily, the flow pattern is
very robust to parameter variations. Table 3 gives the
varied parameters, the nondimensional number that
governs the field changes observed, and which of the
fields actually changed.

The results indicate that only changes in the canyon
depth effect the surface or upper interfaces. No change



Astoria Interface Height £V

a.
—0&.58 X 0.28

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 26

Astoria Lower Layer Velocity
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Fi1G. 14. Results after 24 hours for the nonlinear, stratified numerical model (run Astoria) over Astoria topography (see Table 2) but with
the reduced gravity across lower interface increased by a factor of 5 (run A2). (a) The lower interface elevation, contoured from 0.8 m to
3.6 m by 0.4 m. (b) The lower-layer velocity, maximum velocity vector is 0.9 cm s~'.

was observed in the surface velocity. If the forcing was
more gradual, the surface velocities would deviate over
the canyon as discussed in section 6b.

~ The middle-layer flow pattern is effected by two fac-
tors: its change in depth over the canyon and changes
in the background flow speed. If the change in depth
of the middle layer over the canyon is larger, the can-
yon has more effect on the flow and flow is diverted to
flow more paralle] to the canyon walls, as shown in
Fig. 13. The region of strong anticyclonic vorticity is
advected downstream by the middle-layer flow. Thus,
if the background (no canyon) flow is increased, the
anticyclonic vorticity moves farther downstream as
shown in Fig. 13.

The amount of upwelling, that is, the height of the
lower interface is primarily effected by the ratio of the
pressure gradient along the canyon (given by the mid-
dle-layer velocity over the canyon, iz, divided by f) to
the reduced gravity across this interface. If the flow is
more along the canyon in the middle layer (less depth
change in middle layer), the pressure gradient is re-
duced and so is the interface height as shown in Fig.
14. When the position of the forcing is moved, the final
middle-layer velocities are similar but the interface
height reflects, to some extent, the differences in the
velocities at early times.

The velocity into the canyon in the lowest layer is
affected by the pressure gradient along the canyon in
the same way as the lower interface and by the speed
of the baroclinic Kelvin wave. The baroclinic Kelvin

wave propagates from the head of the canyon, down
the upstream side of the canyon, reversing the velocity
to out canyon. A flat bottom increases the wave speed
and, therefore, the distance from the head of the canyon
over which the velocity has reversed at a given time as
shown in Fig. 15.

e. Tully Canyon
A canyon loosely representing the geometry of Tully

‘Canyon, a spur of Juan de Fuca Canyon, was run to

investigate the long term, frictionally dominated solu-
tion. The fluid was assumed barotropic; the nonlinear
terms were included. The canyon is 45 km long, 8 km
wide, and cuts into a 90-km shelf. The canyon is 250
m deep and cuts through a shelf 100 m deep. The bends
of the real canyon and the presence of the main canyon
were not modeled.

The flow pattern is shown in Fig. 16a after almost 9
days, for which it has been stable for the last 3. The
incoming flow splits near the head of the canyon, part
going around the head of the canyon as predicted by
the linear model but most going over the canyon wall
close to the shelf break and up through the mouth of
the canyon. The vorticity around the mouth of the can-
yon is strongly cyclonic (Fig. 16b). The flow within
the canyon crosses the downstream edge of the canyon
along its whole length (Fig. 16a). The flow down-
stream of the canyon is weakly anticyclonic (Fig. 16b).

The vorticity pattern, given the flow pattern, is easy
to explain. Columns of fluid are stretched as they cross
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strongly cyclonic flow. Friction tends to spin down the
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canyon and so still have, approximately, their original
potential vorticity as they cross back onto the shelf. The
columns of fluid originally in the canyon have lost their
potential vorticity signature due to spin down.

Observations consistently show that the Juan de Fuca
eddy is cyclonic. The model predicts a strong cyclonic
feature upstream and over the canyon, which implies
that the eddy we observe over the small Tully Canyon
is quite possibly due to the large main canyon down-
stream. However, the model does not predict the ob-
served closed streamlines. A more complete analysis
of a semi-infinite but finite width canyon, which better
represents the geometry of the main canyon than the
analytic work in this paper, can be found in Chen and
Allen (1996).

Freeland and Denman (1982: Fig. 9) observed a
strong shear between 50 m and 100 m, which the baro-
tropic model cannot imitate. As well, the geometry of
the canyon system with the presence of the Olympic
Peninsula must strongly affect the flow. The model run
is probably too nonlinear, with strong, 75 cm s ™! flows
at all depths as opposed to the observations of weak
flow at depth. In many ways, the linear, stratified run
2 (Fig. 9) is more consistent with the observations. The
interface height 7, (Fig. 9g) compares quite well with
the dynamic height at 50 m relative to 100 m in Sep-
tember 1980 (Freeland and Denman 1982: Fig. 9).
Note that the patterns should directly compare but there
is a sign shift. The observed low in dynamic height over
the canyon corresponds to the high interface height.
However, run 2 has a small margin width and a long

Tully Vorticity

2.8
-2.3 X 8.3

FiG. 16. Results after 9 days for the nonlinear, homogeneous numerical model with bottom friction (run Tully). (a) The velocity,
maximum velocity vector is 91 cm s~'. (b) The vorticity, contoured from —0.12f to 0.36 f by 0.08 f.
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canyon length, which probably explains the steep con-
tours along the wall as opposed to the observations with
steep contours toward the mouth of the canyon.

Wind forcing is not the only mechanism at work
causing upwelling through Juan de Fuca Canyon. Wea-
ver and Hsieh (1987) proposed that the estuarine flow
of brackish water out of Juan de Fuca Strait causes the
movement of deep water through the canyon as a deep
return flow. The Eulerian velocities due to tidal recti-
fication in this area will also contribute slightly to the
cyclonic flow. Foreman et al. (1992) have recently cal-
culated these velocities and find a weak, 1 to 2 cm s~
cyclonic eddy in this region.

7. Summary

The tendency of a canyon to cause strong flows to-
ward shore during upwelling favorable winds has been
explained by two conceptually simple linear analytic
models. The first model describes the process over a
one-half to two day timescale (acceleration phase),
whereas the second model describes longer timescales
(steady phase). During the acceleration phase, in the
linear regime:

1) The growing velocity in the layer in contact with
the topography cannot cross the topography and travels
around the head of the canyon, returning to its original
distance from the coast.

2) Anticyclonic vorticity is generated in a homo-
geneous fluid and in the upper layers of a stratified
fluid. Cyclonic vorticity is generated in the layer
trapped within the canyon.

3) For a homogeneous fluid, upcanyon flow is of
order 10 times stronger than flow across the shelf break.
For a stratified fluid this increases to 50 times.

The comparison with the numerical models shows
that the approximations (of an infinitesimally thin can-
yon with vertical walls and linear flow) produce a sim-
ilar pattern to that predicted by the full nonlinear
model. In the acceleration phase, modifications due to
nonlinearity include:

1) The growing velocity in the layer in contact with
the topography can cross the canyon walls. For a short
canyon (less than the width of the shelf current) the
flow tends to go around both ends of the canyon and
not just around the head. The flow around the mouth
of the canyon tends to flow up the canyon.

2) In the upper layers or in a homogeneous fluid
anticyclonic flow is generated at the head of the can-
yon. In the layer in contact with the topography anti-
cyclonic vorticity is generated along the downstream
edge of the canyon and cyclonic vorticity along the
upstream edge. The layer trapped within the canyon is
cyclonic.

3) The upcanyon flow is greatly increased in the
upper layers (over that in the linear case) due to the
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movement of the flow pattern downstream. The
shoreward branch of the shelf current lies over the
canyon.

In the steady phase:

1) The linear theory predicts poorly the nonlinear
numerical results.

2) The strongest vorticity is cyclonic and lies over
the canyon or slightly upstream. Anticyclonic vorticity
is reduced by the bottom friction over the shelf.

Upcanyon flow is caused by:

1) The inshore branch of the main flow that lies over
the canyon due to nonlinear effects (the flow turns in-
shore due to cyclonic vorticity being generated as the
fluid columns move over the canyon).

2) The divergence of the steady flow feeds the
growing shelf current or in the steady case, the con-
vergence of the bottom Ekman layer.

Numerical models approximating Astoria and Tully
Canyons allowed the theory to be compared to obser-
vations. For Astoria Canyon, many of the qualitative
features are in agreement. The agreement for Tully
Canyon is much poorer, perhaps due to the complicated
topography/geometry. A full test of the theory will re-
quire more realistic topography and stratification.
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APPENDIX
Solutions over Rectilinear Shelves

a. Solution for barotropic Rossby adjustment over a
shelf

Consider the solution of (9) over a topography:

H= HS’
HDv

with ¢ as given in (2). Assuming that as the forcing
and the topography are independent of x the solution
will be: (9) becomes, dropping the subscript 1,

y<S

y>S (AD

h 9%
Fa ) *2)



AuGusT 1996

The boundary conditions are
on/dy =0 at y=0 (see section?2),
n, Onldy

n, hOn/Oy are continuous at y = S (as hvy, must be
continuous and vy % u; * 9n/dy),

continuous at y = E,

n—0 as y—ow,

(A3)

Thus, solutions in the various domains are exponen-
tials. Combined with the four boundary conditions at y
= F and y = S results in four linear equations that can
be solved by elimination. The solution is

_Qofc sinh[(S — E)/a,] + cosh[(S — E)/a,]
Ty a sinh(S/a,) + cosh(S/a,)
9o
X cosh(y/a,) — 7, y<E,
) sinh(E/a,)
T= 77 \ & sinh(S/a,) + cosh(S/a,)
X {a cosh[(S — y)1/a,
+ sinh[(S — ¥)/a]}, E<y<S§,
_ 4 sinh(E/a,)
=7 7 \ & sinh(S/a,) + cosh(S/a,)
Xexp(—(y = SYay), y>S, (A4)

where a? = Hg/H)p, and where g, (a,) is the Rossby
radius over (off) the shelf.
The height at the shelf break is given by

do .
n = — — sinh(E/ay)
f

X exp(—S/as)< @ exp(S/a.) )

a sinh(S/a,) + cosh(S/a,)

= —a%sinh(E/as) exp(—S/a,). (AS5)

The last fraction, o, reduces to 2/(1 + VvHp/H;) for S/
a, not very small. For the model canyon with § = 2aq;
and Hy/Hp = 1/, 0 = 0.5179. We have assumed 7, is
zero, which is justified as there is nothing to force 7,
at the shelf break.

b. Diffusion solution over a shelf

Consider the solution of (42) over a topography
(A1) with g as given in (2). Assuming that as the forc-
ing and the topography are independent of x, the so-
lution will be independent of x, (42) becomes 8°n/dy?
=0,andv = 0.

The boundary condition at y = E is that the flux
perpendicular to the coast in the lower Ekman layer
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and in the main fluid must equal the flux in the upper
Ekman layer. As v = 0 the flux is merely in the Ekman
layers. The lower-layer Ekman flux depends on the ve-
locity u, and thus u = —2gE/daty = E. Aty = S, the
flux must be continuous, which implies that zv — ué/
2 is continuous.

The solution allowing u to remain finite far from the
coast 1s

29 fE

=+ 2LIEY (A6a)
g6

u= _—qu—E, (A6b)

where 7, is the height at the coast.

¢. Rossby adjustment over a shelf for a three-layer
Sfluid

The solution for baroclinic Rossby adjustment for a
layered fluid follows the method used in the homoge-
neous case. For the case of three layers where the deep
layer exists only off the shelf, there are two Rossby
radii on the shelf and three off the shelf. Imposing the
boundary conditions of no growing flow at the wall
(because there was none to start with) and of bound-
edness as y — « leaves a set of solutions for the three
layers with a total of 21 constants. The following
boundary conditions were imposed.

Aty =E:

¢ continuity of pressure in both layers

e continuity of velocity in both layers

e continuity of the first derivative of velocity in both
layers

e continuity of the second derivative of velocity in
both layers

Aty =S

e continuity of pressure in upper two layers

¢ continuity of flux A (uy, vy) in upper two layers

e continuity of the first derivative of flux in upper
two layers

® continuity of the second derivative of flux in upper
two layers

e zero velocity into the shelf in the lowest layer

e zero derivative of velocity into the shelf in the
lowest layer

Globally:
e Conservation of mass for each of the layers.

These 21 conditions allow the calculation of the 21
constants. The most straightforward way to solve for
these constants is numerically on a case by case basis.

In the case considered here, the forcing is through
the removal of upper-layer fluid near the coast. Thus,
the barotropic mode is primarily forced and the upper-
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layer and second-layer growing streamfunctions are
very similar both to each other and the homogeneous
case. The deepest layer has a jet against the shelf in the
same direction as the flow in the other layers.
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