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[1] The response over a submarine canyon to a several day upwelling event can be
separated into three phases: an initial transient response; a later, much longer, “steady”
advection‐driven response; and a final relaxation phase. For the advection‐driven phase
over realistically steep, deep, and narrow canyons with near‐uniform flow and
stratification at rim depth, we have derived scale estimates for four key quantities.
Observations from 5 real‐world canyon studies and 3 laboratory studies are used to
validate the scaling and estimate the scalar constant for each scale. Based on 4 geometric
parameters of the canyon, the background stratification, the Coriolis parameter, and the
incoming current, we can estimate (1) the depth of upwelling in the canyon to within 15 m,
(2) the deep vorticity to within 15%, and (3) the presence/absence of a rim depth eddy
can be determined. Based on laboratory data, (4) the total upwelling flux can also be
estimated. The scaling analysis shows the importance of a Rossby number based on the
radius of curvature of isobaths at the upstream mouth of the canyon. This Rossby number
determines the ability of the flow to cross the canyon isobaths and generate the
pressure gradient that drives upwelling in the canyon. Other important scales are a
Rossby number based on the length of the canyon which measures the ability of the
flow to lift isopycnals and a Burger number based on the width of the canyon that
determines the likelihood of an eddy at rim depth. Generally, long canyons with sharply
turning upstream isobaths, strong incoming flow, small Coriolis parameter, and weak
stratification have the strongest upwelling response.
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1. Introduction

[2] Submarine canyons are ubiquitous and steep‐sided
features (up to 45°) that frequently indent the continental shelf
as much as 60 km [Hickey, 1995]. Off the coasts of
Washington State and British Columbia typical canyons are
at least 600 m deep and on the order of 5–30 km wide. These
features are regions of enhanced upwelling [Freeland and
Denman, 1982; Hickey, 1997; Vindeirinho, 1998] and are
important for cross‐shelf‐break exchange including nutrient
flux onto the shelf [Hickey and Banas, 2008]. They are bio-
logically active areas with dense euphausiid and fish aggre-
gations [Pereyra et al., 1969;Mackas et al., 1997; Allen et al.,
2001] during summer upwelling favorable winds.
[3] For eastern boundaries, upwelling along the coast and

within the canyons occurs as a result of pulses of equator-
ward currents due to local alongshore wind [Hickey, 1997] or
equatorward currents generated by poleward propagating

shelf‐waves [Allen et al., 2001]. During an upwelling pulse,
the response over the canyon can be separated into three
phases: an initial transient phase (first inertial period), a near
steady advection‐dominated phase and a relaxation phase
(after the wind‐forcing dies). The initial transient phase is
reasonably well explained by linear dynamics [Allen, 1996].
In this paper a dynamical analysis of the second phase will be
presented. This analysis allows results obtained by obser-
vation and numerical simulation in the relatively few can-
yons that have been studied to be extended to other canyons.
[4] Canyons are three dimensional features with extremely

steep bottom slopes as well as sharp changes in bottom slope.
Incident flow is strong and the water column can be highly
stratified. Because of this challenging environment, ob-
servations within canyons sufficient to delineate the dynam-
ics in even the most rudimentary fashion have been limited to
a handful of canyons [Allen and Durrieu de Madron, 2009].
Moreover, the steep bottom slopes and strong stratification
have proved to be a barrier to realistic numerical modeling
studies. For example, Allen et al. [2003] have demonstrated
that topography typical of many Pacific coast canyons results
in numerical errors in vertical advection schemes for density.
Attempts to date to model canyons using realistic topography
have produced unrealistic flow and density fields where there
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is good observational data with which to compare [Klinck
et al., 1999] or have simply not had sufficient data to thor-
oughly test the model [e.g., Skliris et al., 2001]. Even when
the bottom boundary layer is well resolved, details of sepa-
ration upstream of the canyon are not properly modeled
[Dawe and Allen, 2010]. The goal of the present paper is to
use available observations to extend the dynamical under-
standing obtained to the multitude of canyons that lack
observations as well as to provide a dynamical framework for
future modeling efforts. Such a dynamical analysis has been
produced for oscillatory flow over canyons [Boyer et al.,
2004] although the specific length scales were not deter-
mined. Kämpf [2007] has empirically derived a scaling for
upwelling flux based on numerical results.
[5] The dynamics of upwelling over a number of shelf

break canyons have been examined using observations
[Hickey et al., 1986; Hickey, 1997; Allen et al., 2001]
numerical models [Klinck, 1988, 1989, 1996; Allen, 1996]
and laboratory models [Allen et al., 2003; Pérenne et al.,
2001; Mirshak and Allen, 2005]. Based on these studies
the following picture of the second phase of upwelling over
a canyon in a stratified environment emerges [Allen et al.,
2001] (Figure 1):
[6] 1. Near surface flow is only weakly affected by the

canyon and passes directly over the canyon. However, near
surface isopycnals may be elevated as observed over
Barkley Canyon [Allen et al., 2001].
[7] 2. Flow just above the depth of the canyon rim (the

edge where the near flat shelf meets the steep bathymetry)
flows over the upstream rim of the canyon. As it crosses the
rim, it flows down into the canyon, stretching the fluid
columns and generating cyclonic vorticity. The flow then
turns up‐canyon and flows across the canyon equatorward,
shoreward and upward leaving the canyon shoreward of its

original position. As the flow crosses the canyon it de-
creases its depth and the stretching decreases. As the flow
crosses the downstream rim, fluid columns are compressed
generating anti‐cyclonic vorticity. The stretching can be
strong enough to generate a closed cyclonic eddy at this
depth (“rim depth eddy” in Figure 1).
[8] 3. Flow over the slope at the depth of the rim of the

canyon and for some depth below (“upwelling current” in
Figure 1) is advected into the canyon and upwells over the
downstream rim of the canyon near the head. This flow car-
ries the deepest water advected onto the shelf. Vorticity in this
flow can be generated by both flow separation [Pérenne et al.,
2001] and by stretching [Hickey, 1997]. Recent laboratory
[Waterhouse et al., 2009] and observational studies [Flexas
et al., 2008] suggest that the latter probably dominates.
[9] 4. The upward vertical displacement of water parcels

decreases with depth. Thus water deeper than that which
upwells onto the shelf is stretched within the canyon and has
cyclonic vorticity (“deep flow” in Figure 1).
[10] In order for upwelling to occur within a canyon,

upwelling‐favorable currents must extend down to the shelf
break depth. The formation of an undercurrent at shelf break
depth (seasonal at Astoria Canyon) suppresses canyon
upwelling [Hickey, 1997]. The results presented here are for
canyons experiencing upwelling‐favorable flow to shelf
break depth and for canyons that behave like Barkley
Canyon (located off the West Coast of Vancouver Island at
latitude 48°30′N) and Astoria Canyon (located off the mouth
of the Columbia River at latitude 46°15′N). In particular, the
canyon must have (1) a nearly uniform flow (little horizontal
shear) approaching the canyon, (2) the canyon must not
approach the coast too closely, and (3) the canyon must be
deep, steep and narrow. The third constraint will be made
explicit during the scaling analysis. In the scaling analysis

Figure 1. Schematic of the advection‐driven flow over a submarine canyon.
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we will assume that the cross‐shelf pressure gradient is
nearly uniform along the length of the canyon; this
assumption requires that the approaching flow must be near
uniform across the shelf over the length of the canyon. If the
canyon approaches the coast closely, strong bathymetric
convergences occur and their affect on the flow must be
considered [Allen, 2000; Waterhouse et al., 2009]. These
first two provisos allow the inclusion of most canyons in the
analysis. However two major west coast canyons are
excluded: Monterey Bay Canyon because the regional flow
is non‐uniform and it cuts the continental slope all the way
to the coast; and Juan de Fuca Canyon because it cuts the
continental slope all the way to the coast into Juan de Fuca
Strait. In our comparison to the observations we include one
canyon, Redondo Canyon, which closely approaches the
coast. As expected, Redondo Canyon does not follow the
dynamics and scaling as well as the other canyons. For
Astoria Canyon and other canyons influenced by a seasonal
undercurrent at shelf break depth, observations are only
considered during seasons with upwelling favorable flow
extending down to shelf break depth.

2. Scaling Analysis

[11] In scale modeling of fluid flow a number of dimen-
sionless numbers are selected that represent the essential
dynamics. The laboratory parameters are then selected so
that these numbers match between the real world and the
laboratory. Here we will perform a scaling analysis to allow
the observations from a few canyons (Astoria Canyon,
Barkley Canyon, Carson Canyon, Quinault Canyon and a
canyon off Tidra, North Africa) to be extended to other shelf
break canyons.
[12] The dynamic parameters of the canyon upwelling

problem are the incoming velocity, U, the Coriolis param-
eter, f, the stratification characterized by the buoyancy fre-
quency N and the coefficient of eddy viscosity n. We will
constrain the uniformity of U and N so each is characterized
by a single scale. In addition there are the geometric para-
meters of the system, the depth at the shelf break, Hs, the
length of the canyon, L, the depth at the head of the canyon,
Hh, and the width of the canyon at the shelf break Wsb.
Three more geometric parameters define the shape of the
canyon: R the radius of curvature of the upstream isobaths,
W the width of the canyon at mid‐length and Hc the depth
drop across the canyon at the shelf break. Thus we have a
total of 11 parameters with two dimensions: length and time.
According to the Buckingham PI theorem [Buckingham,
1914] we will have 9 non‐dimensional groups.
[13] The choice of non‐dimensional numbers to charac-

terize upwelling through a canyon depends on the choice of
vertical scale. For processes within the canyon the vertical
scale is determined by the flow, so an obvious choice for the
vertical scale is DH = f‘/N for an appropriate horizontal
length scale ‘, which we take here as L, the length of the
canyon. Given this choice for the vertical scaling, our anal-
ysis will show that the non‐dimensional numbers that best
characterize upwelling through a canyon are two Rossby
numbers (U/fR and U/fL), a Burger number (NHs /fW) and
an aspect ratio (L/Wsb). Each Rossby number is characterized
by the same velocity scale and Coriolis parameter; the length
scale differs between them. Due to the three‐dimensionality

of flow over canyons it is necessary to be very specific as to
exactly what length scales are chosen and which parts of the
flow the various numbers characterize.
[14] The other 5 non‐dimensional numbers can be taken

as an Ekman number: Ek = n/fHs
2, a vertical aspect ratio, Hs /

L, a measure of the slope of the continental shelf (Hs − Hh)/
Hs, and two additional Burger numbers Bc = NHc /(fW) and
Bs = NHs /(fL).
[15] We will neglect friction, characterized by the Ekman

number, Ek, in this analysis. Boundary layers will form over
the shelf, in the abyss, on the slope and within the canyon.
With upwelling favorable flow, these layers will have
toward‐coast velocities [MacCready and Rhines, 1991].
However, as the water is stratified, the Ekman layers on the
slope and within the canyon will be quickly arrested
[MacCready and Rhines, 1991]. In particular, considering
the case of Astoria canyon, one can show that the time to
complete arrest of the boundary layer between 150 and 400m
depth everywhere in the canyon is less than 1 day [Brink and
Lentz, 2010; Allen and Durrieu de Madron, 2009] because
slopes are larger than 0.022 (assuming a drag coefficient of
0.0029 following Brink and Lentz [2010]). Thus these
boundary layers do not carry flow across isobaths and with
sufficient resolution one can show they occupy only a small
proportion of the volume [see Dawe and Allen, 2010,
Figure 11]. Note, however, that the boundary layer on the
shelf is not arrested and its impact on the shelf flow can be
considerable [Jaramillo, 2005; Boyer et al., 2006]. Here we
take the shelf flow as a given, measured, value. Lastly,
although the separation of the slope boundary layer is
thought to bring vorticity into the canyon [e.g., She and
Klinck, 2000], the amount of vorticity created by stretching
is sufficient to account for all the vorticity measured in the
field [Hickey, 1997; Allen et al., 2001]. In addition, the
dependence of vorticity in the canyon with stratification is
consistent with stretching being the dominant mechanism in
generating vorticity [Waterhouse et al., 2009]. Thus, for the
canyons considered here: steep‐sided canyons with realistic
stratification, friction is not expected to play a significant role
in the dynamics within the canyon.
[16] We will assume that the flow is hydrostatic so that the

vertical aspect ratio Hs/L is very small and de‐couples the
horizontal and vertical scales. This is a standard approxi-
mation in oceanography and has been recently verified for
steep canyons [Dawe and Allen, 2010].
[17] Having eliminated the Ekman number and the vertical

aspect ratio we are left with 7 non‐dimensional governing
parameters. The data are insufficient to allow an empirical fit
to these 7 parameters. Instead we use the dynamical equations
to constrain the expected response and then use the data for
verification. The assumptions that the flow is hydrostatic and
that friction can be neglected, along with the Boussinesq,
incompressible and non‐diffusive approximations are the
only a priori assumptions we will make before writing down
our starting dynamic equations. However, through the anal-
ysis we will make a number of restrictive assumptions on the
flow being considered in order to simplify it. These are
summarized and labeled in Section 2.5. Through this process
we will find that 2 of the remaining 7 parameters play no role.
The canyons under consideration will be assumed deep (Deep
Canyon Assumption, see section 2.5), so that the upwelling
flow does not reach the bottom of the canyon and thus the
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canyon is deep enough that the total depth of the canyon Hc

and its non‐dimensional form Bc play no role. We will also
assume that the shelf is shallow so that Bs is less than about 2
(Shallow Shelf Assumption, see section 2.5). This restriction
will be explained in detail in section 2.1.1; it effectively
eliminates a role for Bs.
[18] The upwelling considered in this paper is “steady”

advection‐driven upwelling as opposed to the transient
upwelling that occurs in the initial stages of an upwelling
event. The shallow water equations for steady flow of an
inviscid stratified fluid are

~u � r~u� f k̂ �~u ¼ �1

�o
rp ð1aÞ

r �~u ¼ 0 ð1bÞ

~u � r� ¼ 0 ð1cÞ

@p

@z
¼ ��g ð1dÞ

where ~u is the horizontal velocity, k̂ is the vertical unit
vector, p is the pressure, ro is a constant reference density, r
is the density and g is the gravitational acceleration. The
hydrostatic, Boussinesq, incompressible and non‐diffusive
approximations have been made.
[19] Taking the vertical component of the curl of

equations (1a) gives a vorticity equation [e.g., Holton, 1992]

~u � r� þ � þ fð Þrh �~uh þrhw� @

@z
~uh ¼ 0 ð2Þ

where ~uh, w are the horizontal components and vertical
component of the velocity, respectively, rh is the horizontal
divergence and z = k̂ ·r ×~u is the vertical component of the
vorticity. The vorticity equation (2) consists of three terms,
an advection term, a stretching term and a twisting term. The
latter term corresponds to the generation of vertical vorticity
by “twisting” horizontal vorticity into the vertical. As the
incoming flow is usually vertically sheared (stronger near the
surface), the incoming horizontal vorticity is directed
onshore. However, the variations in vertical velocity occur as
the flow crosses the canyon and are thus mainly directed
cross‐canyon. Thus the cross‐product will be small and we
will neglect this term. Substituting equations (1b) and
equations (1c) one can derive a potential vorticity equation

~u � r f þ �ð Þ @�

@z
þ @�*

@z

� �� �
¼ 0 ð3Þ

[20] The description in the introduction illustrates that the
most important characteristics of the flow within and over the
canyon include: (1) the depth of upwelling; (2) the upwelling
flux; (3) the presence or absence of a rim depth eddy; and (4)
the vorticity of the deep flow. These characteristics are
considered below in terms of similarity theory. A notation
list is included for reference as needed.

2.1. Deepest Water Upwelled Onto the Shelf

[21] To determine the depth of the deepest water upwelled
onto the shelf, we first estimate the strength of the flow
crossing the canyon (that is, the tendency of the flow to
cross the canyon rather than follow the isobaths). Then we
determine the acting pressure gradient, and finally calculate
the resulting deformation of the density field.
2.1.1. Tendency of the Flow to Cross the Canyon
[22] Upwelling flow through a canyon is driven by the

cross‐shelf pressure gradient at the depth of the rim
[Freeland and Denman, 1982; Klinck, 1989; Allen, 1996].
The pressure field can be modified significantly by the
presence of the canyon. To quantify the magnitude of the
pressure gradient in the presence of the canyon consider
the rim depth flow. We choose a curvilinear coordinate
system that follows the shelf break isobath around the rim of
the canyon. Far upstream of our (assumed isolated) canyon,
the flow is rectilinear along the straight isobaths. Horizontal
flow across the isobaths and vertical flow are zero. Flow
along the isobaths is geostrophic and the speed is uniform.
We will assume this uniform flow continues along the iso-
baths as it approaches the canyon and that it has a magnitude
of U.
[23] The shelf break isobath at the upstream corner of the

canyon is approximated as an arc of radius R (Figure 2).
Using polar coordinates around the projected center of this
circle the vorticity z expands as

� ¼ @u�
@r

� 1

r

@ur
@�

þ u�
r

ð4Þ

which scales as

O �ð Þ ¼ U

R� V

R�=2
ð5Þ

where U is the along‐isobath velocity scale, V is the cross‐
isobath velocity scale and p/2 ≈ 1 is the approximate angle of
rotation. The positive curvature (u�/r) has been assumed
larger than the negative term ∂u�/∂r because upstream the
flow is uniform (Uniform Flow Assumption, see section 2.5).
[24] The potential vorticity equation (3) is essentially a

balance between advection of vorticity (the first term) and
stretching (the second term). Consider following a stream-
line from upstream, where the flow is assumed uniform, to
the canyon where it crosses or follows the topography.
Upstream the vorticity is zero and the density perturbation is
zero so the potential vorticity is f∂r*/∂z. Thus as the flow
crosses the topography the vorticity will be given by

� ¼ f
@�*=@z

@�=@zþ @�*=@z
� 1

� �
ð6Þ

Discretizing (6) one can write

� � f
�1 � �b
zu1 � zub

� �
z1 � zb
�1 � �b

� �
� 1

� �
ð7Þ

where we take rb as the isopycnal just above the bottom
boundary layer and r1 as a second isopycnal at some depth
above the topography where the flow is generally unaffected
by the topography. The depth z1 and zb are the depth of r1
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and rb, respectively and z1
u and zb

u are the depths of the
isopycnals upstream of the canyon. If the upper isopycnal
r1 is far enough above the topography that it is unaffected
z1 = z1

u. Writing the original distance between the iso-
pycnals as h = z1

u − zb
u and the change in depth of rb as

Dh = zb
u − zb, then (6) becomes

� � f
Dh

h
ð8Þ

where we have assumed Dh < h.
[25] The change in depth Dh experienced by a column as

it follows the streamline (off the lip of the canyon) is Dr∂h/
∂r. And Dr is vDt and Dt is RD�/u so

� ¼ f
Dh

h
¼ f

v

u

RD�

h

@h

@r
ð9Þ

Scaling this equation gives

U

R� V

R ¼ f
V

U

R
h

@h

@r
ð10Þ

or

U � Vð Þ ¼ V

Ro
ð11Þ

where

Ro ¼ U

fR
h=R
@h
@r

ð12Þ

[26] The depth h is the vertical length scale over which
isopycnals above the canyon are affected by the canyon. If
the depth above the shelf break was infinite, this scale would
be given by the scale depth Dh. If the depth above the shelf
break is very shallow, this scale would be given by the shelf
break depth Hs. The ratio of the shelf break depth to the
scale depth (Bs) varies from 0.5 to 1.8 for the canyons
considered here. Barkley Canyon with the 1997 stratifica-
tion has the second highest value at 1.4. For this case we
have clear evidence that isopycnals were affected up to the
bottom of the mixed‐layer at 10 m below the surface [Allen
et al., 2001]. We have no detailed data for Tidra Canyon
with the highest ratio. Here we will assume that the strati-
fication is weak enough, or alternatively, the shelf break
depth is shallow enough, that isopycnals are affected close
to the ocean surface. This Shallow‐Shelf Approximation
should hold for Bs < 1.4 based on the Barkley Canyon
observations and it may hold for higher values. Thus we
take h = Hs.
[27] The rate of change in depth of topography h/(∂h/∂r) =

Hs/(∂h/∂r) is one over a length scale. We could carry this
scale through our calculations but it is generally similar to
the curvature R. For example, the ratio of the topographic
length scale to the curvature is about 0.9, 0.8, 0.7 and 1.0 for
Astoria Canyon, Barkley Canyon, Carson Canyon and the
laboratory canyon used by [Allen et al., 2003], respectively.
Thus we assume that the change in depth of the topography
scales similarly to the curvature and Ro = U/fR (Regular
Shape Assumption, see section 2.5).
[28] A simple balance in (11) occurs for both weak

incoming velocities Ro � 1 where V / RoU and for strong
incoming velocities Ro � 1 where V ≈ U. To exactly esti-

Figure 2. Plan view of the isobaths of Barkley Canyon showing the location of the shelf break, the
length L, the width W, the width at the shelf break Wsb and the radius of curvature R for this canyon
as an example. One over this radius multiplied by the incoming flow and divided by the Coriolis param-
eter gives the Rossby number which determines the ability of the incoming flow to follow the topography.
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mate the in‐between scaling for V it would be necessary to
know the relative size of the coefficients in front of the
terms in (11). Without this information we can write the
scaling with two unknown coefficients, both expected to be
of order 1. So V = F (Ro)U where

F Roð Þ ¼ c1Ro

c2 þ Ro
ð13Þ

[29] Note that if the stratification is not weak or the shelf
break depth is not shallow (Bs > 2), Ro = U/fR should be
replaced with Ro = U/( fRBs) = U/(NHs) (L/R) which is a
Froude number rather than a Rossby number.
2.1.2. Rim Depth Pressure Gradient
[30] Now that the tendency for the flow to cross the

canyon has been determined, the pressure gradient along the
canyon can be quantified. Returning to equations (1a) and
using polar coordinates

ur
@u�
@r

þ u�
r

@u�
@�

þ u�ur
r

þ fur ¼ �1

�or

@p

@�
ð14Þ

The first term is small compared to the third [see discussion
below equation (5)]. By conservation of volume 1/r∂u�/∂� =
−∂w/∂z − ∂ur/∂r scales as −V/R and so the second two
advection terms scale similarly as UV/R but with opposite
signs. For strong flows their sum can be shown to be zero;
for weak flows they are negligible compared to the Coriolis
term. Thus we neglect them and take the pressure gradient
force as scaling as fV = fUF and the pressure gradient along
the upstream rim edge of the canyon as −ro f UF . We note
that here we have implicitly assumed near uniform incoming
flow over the shelf for the length of the canyon (Uniform
Flow Assumption, see section 2.5).
[31] The relationship between the pressure gradient and

the Rossby number can be understood physically. For very
wide canyons the cross‐shelf pressure gradient is modified
over the canyon so that the flow can smoothly follow the
isobaths. A measure of the ability of the flow to follow the
isobaths is given by the Rossby number (Ro = U/fR) based
on the ratio of the required acceleration of the flow to turn
onshore at the upstream side of the canyon to follow the
isobaths (U2/R where R is the turning radius, Figure 2) to
the Coriolis force f U.
[32] If the flow passes directly across the canyon (large

Ro), the along‐canyon pressure gradient is identical to that
upstream of the canyon which, assuming geostrophy, is
ro fU. The actual pressure gradient along the canyon at the
rim level is expected to be O[ro f UF (Ro)] where F is an
appropriate function (as derived above). Physically one can
argue that for very small Rossby numbers, the flow will
follow the isobaths and the pressure gradient along the
canyon will be negligible (F small). For very large Rossby
numbers the flow will cross directly over the canyon and the
pressure gradient is expected to be close to ro fU (F order 1).
[33] The pressure difference between the canyon mouth

where the canyon opens to the deep ocean (Figure 2) and the
canyon head where the canyon ends on the shelf (Figure 2)
is the pressure gradient multiplied by an appropriate length.
Because advection onto the shelf occurs at depths near rim
depth, the length L of the canyon is taken as the length from

the shelf break (canyon mouth) to the last isobath that is
significantly deflected by the canyon (the canyon head).
2.1.3. Deformation of the Density Field
[34] To determine the deformation of the density field we

use the natural coordinate system [e.g., Holton, 1992] where
s is along the horizontal direction of the flow and n is across
it. Note that this choice implies that the flow in the direction
n is zero. The equations (1) become

u
@u

@s
¼ �1

�o

@p

@s
ð15aÞ

u2

R
þ fu ¼ �1

�o

@p

@n
ð15bÞ

@u

@s
þ @w

@z
¼ 0 ð15cÞ

u
@�

@s
þ w

@�

@z
¼ 0 ð15dÞ

@p

@z
¼ ��g ð15eÞ

where R is the radius of curvature of the streamlines. By
convention, R is taken to be positive when the curvature is
to the left of the flow.
[35] Consider the deepest streamline which crosses the rim

of the canyon. It comes from a depth Hh + Z at the mouth of
the canyon and rises a distance Z to reach the depth of the
head of the canyon Hh. Along this streamline density is
conserved (15d). Equation (15d) scales as

U*G
L

� W�oN 2

g
¼ 0 ð16Þ

because the dominant vertical gradient of density is the
undisturbed gradient ∂r*/∂z. The Brunt‐Väisälä frequency is
N where (N2 = −g/ro∂r*/∂z), G is the scale of horizontal
density perturbations, L is the length scale of the streamline,
U* is the scale of the horizontal velocity of the upwelling
stream and W is the vertical velocity scale.
[36] By conservation of mass (15c) the horizontal and

vertical velocity and linear scales are related according to

U*
L

� W
Z
¼ 0 ð17Þ

[37] This streamline marks the depth where the total
pressure gradient is zero. The pressure change along the
canyon that drives upwelling was estimated above as
ro fUFL and this must balance the density gradient due to
the perturbation density. Scaling (15e) gives

�o f UFL

Z
¼ Gg ð18Þ
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[38] Combining (16), (17) and (18) allows us to solve for
the three scales

Z ¼ fULF
N 2

� �1=2

¼ DH FRLð Þ1=2 ð19Þ

W ¼ U*
fUF
N 2L

� �1=2

¼ U*DH

L
FRLð Þ1=2 ð20Þ

G ¼ �2o fUFN 2L

g2

� �1=2

¼ @�*
@z

DH

� �
FRLð Þ1=2 ð21Þ

where DH = fL/N and RL = U/( fL). The scale Z is the depth
of upwelling, a quantity that will be compared with ob-
servations in the subsequent section. Note that here we have
implicitly assumed a near uniform N value over a depth
range Z below the depth of the head of the canyon (Uniform
Stratification at Rim Depth Approximation, see section 2.5).
[39] One can also derive the scale for Z from physical

arguments. Consider the water which passes through the
mouth of the canyon and is upwelled onto the shelf. The
deepest isopycnal that is upwelled onto the shelf is that one
which just touches the rim of the canyon at the canyon head
(depth Hh). At the canyon mouth, this isopycnal has depth
Z + Hh. At this depth there must be a balance in the canyon
such that the pressure at the mouth of the canyon is the same
as that at the head (Figure 3). The tilted isopycnals provide a
baroclinic pressure gradient to balance the rim depth pressure
gradient so that below this isopycnal the flow does not go
from the canyon up onto the shelf.

[40] Assuming that the average tilt of the isopycnals is T =
Z/L, the density difference along the canyon (length L) is
∂r*/∂zT L. Thus the baroclinic pressure difference along the
canyon due to the tilted isopycnals (integrating over the
depth Z) is O(roN

2Z2). Equating this baroclinic pressure
change and the pressure change at rim depth ( fUroLF )
gives equation (19).

2.2. Upwelling Flux

2.2.1. Speed of the Upwelling Stream
[41] Quantitatively, to determine the upwelling flux

through the canyon, we scale (15b). This flow lies directly
below the shelf‐depth flow crossing the canyon and it twists
more up‐canyon as it goes deeper. However, most of the
upwelling stream crosses the downstream canyon rim with
only a little flowing out the head of the canyon. The top of
this flow is thus exposed to the same pressure gradient
along‐canyon as the shelf‐depth flow, and the lowest part of
this flow is at Z and there is no pressure gradient. Thus the
flow speed varies with depth but mid‐way through it will be
driven by a pressure gradient 1/2 the strength of the shelf
break pressure gradient immediately above the upwelling
stream which is fUF so

U2
*

Wsb
þ f U* ¼ 1

2
fUF ð22Þ

where Wsb is the width of the canyon and the required
turning radius for flow into the canyon. Writing Rw = U/
( fWsb) we see that for small FRw/2 the balance is between
the last two terms. One would expect that the coefficients c1
and c2 in F would be of order 1 which will be verified later
using the data. If we assume c1 and c2 are 1, for all canyons

Figure 3. Sketch to illustrate the baroclinic pressure gradient due to isopycnals (thin lines) tilting
towards the head of the canyon. The sketch shows a cross‐section through the centreline of the canyon.
The bottom‐topography away from the canyon is given by the bold dashed line. The height Z is deter-
mined by balancing the pressure gradient at rim depth and the change in baroclinic pressure gradient
due to the tilted isopycnals. The depth Hh + Z is the deepest water upwelled onto the shelf. The col-
umn‐stretching deep in the canyon is given by the ratio Z/Dw where Dw is the vertical scale within the
canyon.
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for which we have found data (Table 1), FRw is less than
0.2 and so we will neglect this term (Weak to Moderate
Flow Assumption, see section 2.5). Thus the upwelling
stream velocity scales as UF with a coefficient expected in
the range of 1/2.
[42] Physically, the upwelling stream velocity is propor-

tional to the strength of the pressure gradient along the
canyon.
[43] At this point it is useful to also consider the flow

above the rim of the canyon as in practice it is difficult to
distinguish these two flows. In Section 2.1.1 we separated
the shelf break depth flow into two components: U, the flow
following the isobaths and V, the flow crossing the isobaths.
This latter flow is proportional to FU and will tend to shift
shoreward as it crosses the canyon.
[44] The first component U which follows the isobaths

should return to its nominal depth on the downstream side of
the canyon and thus should not contribute to the upwelling
flux. However, if the shelf is flat there are no topographic
gradients to drive this nearly geostrophic flow back toward
the shelf break. One can contrast the flow over a sloping‐
shelf which has a strong off‐shore flow downstream of the
canyon [She and Klinck, 2000, Figure 6] to the flow over a
flat shelf with flow from the canyon reaching the coast
[Klinck, 1996, Figure 4a; Kämpf, 2007, Figure 5]. Thus for a
flat shelf this component forms part of the shoreward flux
whereas for a sloped shelf it does not.
[45] We will assume the shelf is sloped. A measure of the

strength of the slope is (Hs − Hh)/Hs and this should be
substantial compared to the strength of the geostrophic flow
on the shelf, given by say RL = U/fL. It is difficult to put
limits on this ratio M = (Hs − Hh)fL/(HsU) because obser-
vational data does not generally include the full velocity
field. Our lowest non‐zero value is over Tidra Canyon
where M = 0.4. The path of a single drifter above head‐
depth shows flow directly along the canyon axis to the 50 m
isobath [Shaffer, 1976, Figure 44] which would suggest that
this might be a flat‐shelf case. However, density sections up
the canyon and onto the shelf [Shaffer, 1976, Figure 20] are
far more similar to the sloping case [e.g., Dawe and Allen,
2010, Figure 9] than they are to the flat‐bottom case [e.g.,
Pérenne et al., 2001, Figure 15]. The second lowest non‐

zero M value is 1.1 over Barkley Canyon. Here the ob-
servations of salinity contours on a density surface show
flow turning downstream at about head‐depth [Allen et al.,
2001]. Thus our estimate is that a critical value for M is
below 1 but might indeed be below 0.4 (Sloped‐shelf
Approximation, see Section 2.5).
2.2.2. Upwelling Flux
[46] The flux up the canyon is the flux through the canyon

mouth. The flow velocity scales as U* and the width is Wsb

unless the canyon width is considerably wider than the
Rossby radius (Narrow Canyon Assumption, see section
2.5). The deepest water upwelled is Hh + Z. To calculate
the upwelling flux the vertical thickness of the upwelled
stream must also be estimated.
[47] At the upstream canyon rim, water from the shelf (the

rim depth flow) crosses the isobaths. It drops down into the
canyon and then separates from the topography. Below this
flow, the upwelling stream flows nearly parallel to the iso-
baths as it has no shelf source. This flow is geostrophic to
first order and so the pressure gradient along this line is
zero. This requires a balance between the baroclinic pressure
gradient due to the tilted isopycnals within the canyon and
the rim depth pressure gradient. As calculated above, at the
mouth, the depth at which this balance occurs is Z + Hh.
Below this depth the water re‐circulates within the canyon.
But this depth is also the depth of the bottom of the rim
depth flow crossing the canyon. Thus, against the upstream
rim of the canyon, the depth of the top of the upwelling
stream and the depth of the bottom of the upwelling stream
are the same (Figure 4). Thus on the upstream side of the
canyon the upwelling stream is pinched to zero vertical
height [see Hickey, 1997, Figure 3].
[48] The rim depth flow crosses the canyon at an angle, is

advected slightly up‐canyon and crosses the downstream
rim. So at the downstream rim of the canyon, the bottom of
the rim depth flow is rim depth. As the top of the upwelling
stream is the bottom of the rim depth flow, at the down-
stream rim, the top of the upwelling stream is rim depth. At
the mouth of the canyon, the bottom of the upwelling stream
is the depth of the deepest water upwelled, Z + Hh. Thus the
upwelling stream forms a wedge with vertical thickness Z at
the downstream side and zero vertical thickness on the

Table 1. Scales for Three Shelf Break Canyons on the West Coast of Canada and the United States, One on the East Coast of
Newfoundland, One on the Northwest Coast of Africa, and Three Model Canyons Used in Laboratory Studiesa

Number Astoria Barkley Quinault Carson Tidra Lab‐Allen Perenne Mirshak Redondo

Hs 150 m 200 m 180 m 125 m 130 m 2.2 cm 2.5 cm 2.2 cm 80 m
Hh 110 m 170 m 130 m 110 m 100 m 1. cm 2.5 cm 1.0 cm 40 m
Hc 450 m 350 m 1200 m 375 m 470 m 3. cm 4. cm 3. cm 375 m
U 0.20 ms−1 0.1 ms−1 0.2 ms−1 0.1 ms−1 0.15 ms−1 1.2 cm s−1 0.8 cm s−1 0.4–1.7 cm s−1 0.15 m s−1

f 1.05 × 10−4 s−1 1.08 × 10−4 s−1 1.07 × 10−4 s−1 1.03 × 10−4 s−1 0.49 × 10−4 s−1 0.52 s−1 0.5 s−1 0.4–0.7 s−1 0.81 × 10−4 s−1

L 21.8 km 6.4 km 16.6 km 16.5 km 5.1 km 8 cm 15 cm 8 cm 8.5 km
W 8.9 km 8.3 km 30.0 km 11.8 km 10.2 km 2.4 cm 8.6 cm 2.4 cm 7.0 km
R 4.5 km 5.0 km 44.0 km 18.4 km 2.7 km 1.4 cm 3.1 cm 4.0 cm 6.0 km
N 7.5 × 10−3 s−1 5.0 × 10−3 s−1(’97) 7.5 × 10−3 s−1 9.7 × 10−3 s−1 3.5 × 10−3 s−1 2.2 s−1 2.4 s−1 2.2−4.4 s−1 9.5 × 10−3 s−1

4.5 × 10−3 s−1(’98)
Wsb 15.7 km 13 km 50 km 33.7 km 8.5 km 6.9 cm 20 cm 5.8 cm 8.5 km
DH 305 m 138 m (’97) 237 m 175 m 71 m 1.9 cm 3.1 cm 1–2.5 cm 72 m

154 m (’98)
DW 103 m 140 m (’97’) 334 m 174 m 52 m 0.8 cm 2.1 cm 0.3–0.9 cm 34 m

156 m (’98)

aA ninth shelf break canyon, which closely approaches the coast, Redondo Canyon, is included for contrast.
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upstream side of the canyon. Hence for canyons narrower
than the Rossby radius, the upwelling flux scales as

F ¼ U*WsbZ ¼ UWsbDHð ÞF 3=2R1=2
L ð23Þ

with an expected coefficient on the order of 1/4.

2.3. Eddy Presence at Rim Depth

[49] An eddy is generated at the depth of a canyon rim due
to stretching of the water column as it crosses the canyon
[Hickey, 1997; Allen et al., 2001]. The rim depth flow
crosses the upstream canyon edge, feels the slope of the
canyon, and drops down to a depth Z. The thickness of this
flow is the full depth of the water column Hs because DH is
generally larger than the depth of the water column. The
stretching of this flow across the canyon is given by Z/Hs

which generates a vorticity fZ/Hs assuming conservation of
potential vorticity.
[50] This cyclonic vorticity has a width given by the half‐

width of the canyon W/2 and is embedded in a flow of
strength U. If the flow velocity generated by the vorticity is
equal to the background flow then the total flow will be zero
in one region. If the vorticity is stronger, closed streamlines
will form. The circulation 2p uR around a circle of radius R
due to a patch of vorticity is equal to the area of the circle
multiplied by the vorticity. Thus the velocity due to the
vorticity scales as fZW/Hs and an eddy forms if this velocity
is large compared to the background velocity U; that is, if

E ¼ f W

U

Z

Hs
¼ 1

Bu

F
RL

� �1=2

ð24Þ

is large, where Bu = NHs /fW and the coefficient is expected
to be about 1/2.

2.4. Deep Water Vorticity

[51] Assuming conservation of potential vorticity, the
stretching S of the water column multiplied by the Coriolis
frequency gives the deep cyclonic vorticity. The fluid of
interest is that below Z to the deepest isopycnal that is
significantly elevated within the canyon. If this isopycnal
occurs at scale depth Dw below Z at the mouth of the can-

yon, then the water column that has a length Dw at the
mouth of the canyon has a length Z + Dw near the head of
the canyon (Figure 3) and S = Z/Dw. For a geostrophically
balanced flow we would expect a vertical scale depth given
by f‘/N where ‘ is an appropriate horizontal length scale. We
observe that the velocity in the deep canyon is into the
canyon on the downstream side and out of the canyon on the
upstream side.
2.4.1. Scale Depth Deep in the Canyon
[52] To quantify the scale depth Dw, we will scale the

equations for the deep cyclonic circulation. Deeper than (Z +
Hs), that is under the deepest isopycnal that upwells through
the canyon, the pressure along the centre axis of the canyon
is lower than at the side of the canyon, assuming the pres-
sure gradient is in balance with the cyclonic circulation at
depth.
[53] From (15b) and (15e) we can form the thermal wind

equation

f
@u

@z
¼ g

�o

@�

@n
ð25Þ

where we have assumed UD /fWsb is small and UD is the
velocity scale at this depth.
[54] From conservation of potential vorticity

f þ u

R
� @u

@n

� �
@�

@z
¼ f

@�*
@z

ð26Þ

and so assuming ∂r/∂z ≈ ∂r*/∂z to first order then

@u

@n
� u

R
¼ f

@�

@z
� @�*

@z

� �
@�*
@z

� ��1

ð27Þ

Combining these equations gives

@

@n

@u

@n
� u

R

� �
¼ f 2

N2

@2u

@z2
ð28Þ

The two terms on the left‐hand side have the same sign.
This flow is the deep flow in/out on the downstream/
upstream side of the canyon so the cross‐flow length scale is
about half Wsb. Scaling (28) we get that vertical length scale
of this flow is Dw = fWsb/2N.
2.4.2. Deep Water Stretching
[55] The deep stretching is of order

S ¼ NZ

fWsb
¼ F Roð ÞRLð Þ1=2 L

Wsb
ð29Þ

where the coefficient is expected to be of order 2. The
vorticity deep in the canyon is given therefore by a com-
bination of two Rossby numbers and an aspect ratio and is
independent of the stratification. This independence occurs
because both the drop into the canyon Z and the scale depth
within the canyon Dw decrease with stratification. As
stretching is a ratio between these depths, the vorticity is
independent of N. Note that for canyons deeper than the
depth of upwelling plus the scale depth (Dw + Z < Hc), the
total canyon depth is unimportant because the flow does not
feel the canyon bottom (Deep Canyon Assumption, see
section 2.5).

Figure 4. Cross‐section through a canyon. The flow pat-
tern is separated into three regions in the vertical: rim depth
flow crossing the canyon, the upwelling stream flowing up‐
canyon, and the deep flow recirculating within the canyon.
The upwelling stream has a strong component into the page
and a weaker component across the canyon and up onto the
shelf.

ALLEN AND HICKEY: DYNAMICS OF UPWELLING OVER A CANYON C08018C08018

9 of 20



2.5. Restrictions on Cases Considered

[56] During the scaling derived above we have made a
number of implicit and explicit assumptions that restrict the
canyons and flow under consideration. These assumptions
are summarized below:
2.5.1. Uniform Flow
[57] We have assumed the incoming flow is nearly uni-

form along the length of the canyon and from the depth of
the head of the canyon to the depth of the shelf break. As
mentioned in the introduction, this eliminates a number of
real world canyons.
2.5.2. Weak to Moderate Flow
[58] We have assumed that FRw, which is approximately

a Rossby number squared, is small (<0.2). Larger flow
speed would require high order terms in the upwelling flux
calculation.
2.5.3. Uniform Stratification Near Rim Depth
[59] Over a scale Z the stratification ∂r*/∂z or N has been

assumed nearly uniform. If the value of N was 20% lower at
a depth Z we would expect an under‐estimate of the
upwelling depth by about 10% as the back‐pressure pro-
vided by the baroclinic pressure gradient would be best
estimated with the average N over the depth Z rather than the
value at the depth of the shelf break. An error of 10% for
these scaling estimates is reasonable based on the order of
the scatter in our empirical fits to observations. This con-
straint is met by most canyons as typically the pycnocline is
much shallower than shelf break depth. For Barkley Canyon
the variation in N is about 12%, for Astoria it is larger at
18% mainly due to the larger value of Z.
2.5.4. Shallow Shelf Break Depth
[60] We have assumed that the isopycnals over the canyon

are affected to near the surface of the ocean so that the
effective depth over the canyon is set by the shelf break
depth. This assumes that Bs is not too large (<2).
2.5.5. Sloped Continental Shelf
[61] We have assumed that the continental shelf is sloped

so that onshore flow is inhibited on the shelf due to its slope.
This assumes that M is large: greater than 1 is a conservative
limit. If the continental shelf is flat or only weakly sloped,
our analysis will under‐estimate the total flux onshore as it
will not include a branch of the incoming flow that follows
the canyon rim to the head of the canyon and is not turned
back to the shelf break by the shelf‐topographic slope.
2.5.6. Steep Canyon Walls
[62] We have assumed friction is not important as the

bottom boundary layer will have arrested within the canyon
and over the continental slope. For a given canyon, this
constraint can be evaluated using the Brink and Lentz [2010]
criteria.

2.5.7. Deep Canyon
[63] For the upwelling flux scaling we have assumed the

depth of the canyon is much greater than Z. For the deep
vorticity scaling we have made the stronger assumption that
the scale depth, Dw is of order of, or smaller than, the depth
of the canyon.
2.5.8. Narrow Canyon
[64] We have assumed, in the upwelling flux scaling, that

the canyon width is narrower than about 2 Rossby radii, a.
For wider canyons, 2a should replace Wsb as the width scale
for the flux.
2.5.9. Regular Shape at Upstream Corner
[65] We have assumed that the topographic length scale

near the upstream corner of the canyon, Hs(∂h/∂r) −1, is
similar to the radius of curvature of the isobaths, R. This
ratio is very close to one for all the canyons considered here
but may eliminate certain types of canyons.

3. Scaling Applications

[66] In the following sections, the scaling analysis is
applied to eight different canyons, five real world and three
laboratory models. For each canyon, the maximum depth of
upwelling, presence of a rim depth eddy and the deep can-
yon vorticity are estimated from available data. Results are
compared with estimates derived from the scaling arguments
and the fit between the observed and scaled results is used to
estimate the scalar coefficients for the scaling factors for
upwelling depth, eddy presence and deep vorticity. For
contrast we also give results for Redondo Canyon which
closely approaches coast and therefore can be expected to
have somewhat different dynamics [Allen, 2000]. We use
the information from the flux estimates of a single labora-
tory canyon study to compare with upwelling flux [Mirshak
and Allen, 2005]. Geometric and flow characteristics for
each canyon are given in Table 1. Geometric parameters are
derived from bathymetric maps; flow velocity is for near
rim depth and is estimated from nearby current meters; and
the Brunt‐Väisälä frequency is also for near rim depth and is
estimated from nearby CTD casts. Non‐dimensional numbers
for the nine canyons are given in Table 2.
[67] Four of the canyons are located on the U.S. or

Canadian west coast. One canyon is on the northwest coast
of Africa and one is on the east coast of Newfoundland. The
first five are subject to intermittent upwelling conditions
whereas Carson Canyon off the coast of Newfoundland only
occasionally receives upwelling‐favorable flow. The shelf
width varies from about 30 km to 60 km. Redondo Canyon
extends closest to the coast (2 km). Widths vary from about
8 km (Barkley) to 30 km (Quinault). A variety of shapes are

Table 2. Dimensionless Parameters for Six Shelf Break Canyons and Three Laboratory Model Canyonsa

Number Astoria Barkley Quinault Carson Tidra Lab‐Allen Perenne Mirshak Redondo

Ro 0.42 0.19 0.04 0.05 1.1 1.6 0.52 0.22–0.93 0.31
F 0.32 0.17 0.05 0.06 0.56 0.65 0.36 0.20–0.51 0.26
RL 0.09 0.14 0.11 0.06 0.60 0.29 0.11 0.11–0.47 0.22
Rw 0.12 0.07 0.04 0.03 0.36 0.33 0.08 0.15–0.64 0.22
Bu 1.2 1.1 (’97) 0.42 1.0 0.91 3.9 0.72 2.9–7.6 1.3

1.0 (’98)

aA ninth shelf break canyon, Redondo Canyon, which closely approaches the coast, is included for contrast.
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represented, from the squat Barkley canyon to a long, thin
laboratory canyon.

3.1. Available Data

[68] Astoria canyon is a narrow, deep canyon (9 km by
600 m) situated off the U.S. west coast just offshore of the
Columbia River (Figure 5). The walls of Astoria canyon are
steep, approaching 45° in some locations. The canyon is
relatively symmetrical in shape and is aligned such that the
canyon axis is roughly perpendicular to the direction of the
local isobaths. Since the shelf circulation is quasi‐geostrophic,
the regional flow follows the northwest to southeast direction
of the local isobaths to intersect the canyon axis at roughly
right angles [Hickey, 1989]. An 18 element moored velocity/
temperature array deployed for several months during the
early upwelling season as well as CTD/transmissometer
surveys during one strong upwelling event have been used to
provide valuable “ground truth” data for model studies of
submarine canyons [e.g., Klinck et al., 1999]. The data used
in this study were all obtained prior to the development of a
poleward undercurrent at the shelf break depth [Hickey,
1997]. The data has proved especially valuable because
moorings were placed at closely spaced (≈2–5 km) intervals
both along and across the canyon (Figure 5). The data were
used to provide time‐ and space‐dependent estimates of

vertical velocity and of relative and stretching vorticity. These
estimates were compared with results from available models
as well as with along‐shelf wind and velocity incident on the
canyon to provide a detailed description of time variable
upwelling within a canyon [Hickey, 1997].
[69] Barkley Canyon is situated off the southern end of

Vancouver Island (Figure 5). The shelf in this region is wide
(60 km) and shelf break depth deep (200 m). In this region,
shelf waves propagating from the south can have a stronger
effect on long‐shore currents than the local wind [Hickey et
al., 1991]. The California Undercurrent is somewhat deeper
(core at 400–500 m depth) off Vancouver Island than it is
further south and it does not penetrate onto the shelf near
Barkley Canyon [Krassovski, 2008]. Barkley Canyon is
short (17 km) for its width (8 km) (Figure 6). Incident flow
is approximately perpendicular to the canyon axis. In 1997
four current meter moorings were deployed in the canyon
(Figure 6) and a detailed CTD survey of the region was
performed [Vindeirinho, 1998; Allen et al., 2001]. The CTD
survey extended both upstream and downstream from the
canyon which allowed the use of diagnostic model to
determine the mean currents around the canyon [Allen et al.,
2001]. These currents clearly show a strong, closed eddy at
rim depth (Figure 6). The study was repeated in 1998.
Conditions differed from 1997; a summer storm of maxi-

Figure 5. Bathymetry of Astoria Canyon. Inset shows the locations of Astoria Canyon, Barkley
Canyon, and Quinault Canyon. Mean currents above and below the rim are shown as solid and dotted
arrows, respectively. Note the tendency for the near‐surface flow above 100 m to pass unaffected over
the canyon, the rim depth (150‐m) flow to go up the canyon and the deep flow to form a possibly closed
cyclonic gyre. The two CTD stations used for estimating the depth of upwelling are marked with trian-
gles.The solid straight line marks a detailed hydrographic survey line along which stretching was calculated.
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mum wind speed 14 m s−1 on Jul 14 reversed upwelling
currents from Jul 11–21, several days before the CTD sur-
vey over the canyon which was completed on Jul 25. The
lack of a synoptic CTD survey meant the diagnostic model
could not be used for 1998.
[70] Quinault submarine canyon is a broad, relatively deep

canyon (≈30 km by 1200 m) located off the Washington
coast 60 km north of Astoria canyon (Figure 7). Quinault is
subject to roughly the same environmental conditions as
Astoria canyon because both wind stress and ambient cur-
rents are large scale in this region [Hickey, 1989]. Quinault
Canyon was studied with current meters and sediment traps
primarily placed along the axis and with CTD surveys along
and across the canyon [Hickey, 1989].
[71] A scaled physical model of a shelf/slope geometry

including a canyon in a stratified density field was con-
structed in the laboratory (Figure 8) [Allen et al., 2003]. The
Lab‐Allen canyon shelf break depth is 2.2 cm and the depth
at the headof the canyon is 1 cm. The canyon is 7 cm wide,
8 cm long and strongly tapered towards the head. The flow
was forced by changing the rotation rate of the tank. The flow
was observed using neutrally buoyant particles with the
position of the particles noted at intervals and velocities cal-
culated from position differences. Other than the initial den-
sity distribution (determined by the filling parameters) the
density distribution was unknown so that all parameters were
estimated from the measured velocity field. Particle depth
was estimated in two ways. First the particles were illumi-
nated by colored light using different colors above and below
the shelf break depth. A more precise measure of the particle
depth was obtained from a numerical model (S‐Coordinate
Rutgers UniversityModel Version 3.1 (SCRUM) [Hedström,
1997]) configured to accurately reproduce the laboratory
experiment.
[72] A second, similar but not identical canyon (Lab‐

Mirshak), was used in the same shelf/slope topography to

estimate the net effect of a canyon on spin‐down [Mirshak
and Allen, 2005]. The change in spin‐down can be written
as an extra drag caused by the canyon and assuming geo-
strophic flux one can estimate an on‐shore flux through the
canyon of

Yo ¼ FD

�FL
ð30Þ

where FD is the drag force [Mirshak and Allen, 2005].
Results from these experiments will be used to verify the
flux scaling.
[73] Carson canyon is a wide canyon (34 km) of moderate

length (16 km) on the east coast of Newfoundland. Typical
currents are downwelling favorable but in June 1981 the
effects of a current reversal were documented by three
current meters moored over the canyon [Kinsella et al.,
1987].
[74] A detailed CTD survey of a canyon off Tidra, North‐

west Africa shows the effect of strong upwelling flows
[Shaffer, 1976]. Tidra is a small canyon (width 10 km,
length 5 km) with a sharp upstream corner (R = 2.7 km) at
low latitude (20°N) so moderate flows (0.15 m s−1) lead to
high Rossby numbers.
[75] A laboratory study of impulsively started flow over a

canyon was performed at the Arizona State University
rotating table facility [Pérenne et al., 2001]. Their canyon is
wider and shorter than the Lab‐Allen canyon used by Allen
et al. [2003]. It is also less tapered with width at half‐length
almost 50% of the width at the shelf break. Velocity data
was collected at three depths: above, at and below rim depth.
This canyon will be referred to as “Perenne‐Lab”.
[76] Redondo submarine canyon is a narrow canyon with

steeply sloping sides (≈2 km wide by 500 m deep) that
projects into the Santa Monica Bay shelf (Figure 9). It
extends to within 2 km of the coast. The flow is predomi-
nantly equatorward over the canyon in the upwelling season
[Hickey et al., 2003].

3.2. Comparisons of Scaling to Observations

3.2.1. Upwelling Flux
[77] As the experiments of Mirshak and Allen [2005]

provide the largest number of data points and thus provide
the best estimate of the function F , we will begin by
comparing the observed upwelling flux to the scaling esti-
mate. We fit the non‐dimensional observed upwelling flux

Fo

UWsbDh
¼ FD

�fLUWsbDh
ð31Þ

to the non‐dimensional scaled flux

F
UWsbDh

¼ F 3=2R1=2
L ¼ c1Ro

c2 þ Ro

� �3=2

R1=2
L ð32Þ

As we have no direct estimates of F , it is not possible to
determine c1; it always appears multiplied by an unknown
constant (in this case the scale for the flux). Hence we will
assume c1 = 1 and absorb it into the coefficients for the
parameters that can be estimated.

Figure 6. CTD stations (pluses) and moorings (asterisks)
around Barkley Canyon in July 1997. The thick solid line
is a closed streamline at 150 m depth from a diagnostic
model inversion of the density field. This streamline shows
the boundary of a closed eddy about 50‐m above rim depth
(200‐m). The moorings were in the same position in 1998.
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[78] Using the Levenberg‐Marquandt algorithm for
non‐linear least‐squares optimization, the observed non‐
dimensional flux (31) was fit to

c3c
1:5
2

Ro

1þ Ro=c2

� �3=2

R1=2
L ð33Þ

to give c2 = 0.9 and c3 = 1.0 (Figure 10) with an root mean
square error of 26%. The value of c2 is reasonably well
constrained by the data; a value of 0.8 leads to a 33% error and
a value of 0.95 leads to a 35% error.

3.2.2. Depth of Upwelling
[79] The depth of the deepest upwelling was estimated for

each canyon in different ways, depending on the data
available for each canyon.
3.2.2.1. Barkley Canyon
[80] To estimate the deepest depth of upwelling over

Barkley Canyon in 1997 the densest water observed over the
shelf (stations BCD2 (150 m depth) and BCC2 (172 m
depth)) was compared to a CTD cast at the mouth of the
canyon (BCC4 (772 m depth) (Figure 6)). In 1997, the
densest water on the shelf, 26.64 st, was observed in
the bottom boundary layer at BCC2 right at the head of the
canyon. This water occurred at a depth of 226.5 m at the

Figure 7. (top) Bathymetry of Quinault Canyon. Solid dots mark the location of CTD stations. Arrows
give the geostrophic velocity (0/500 db) during an upwelling event. Data have been extrapolated into
regions shallower than the reference level using the method of Montgomery [1941]. Geostrophic currents
perpendicular to the CTD transects show the tendency for the flow to follow local isobaths. (bottom)
Geostrophic velocity (0/1000 db) across Quinault Canyon during an upwelling event. Off shelf flow is
shaded. The data are consistent with the presence of a rim eddy over the canyon and cyclonic vorticity deep
in the canyon.
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canyon mouth and thus the deepest water upwelled onto the
shelf came from deeper than 226.5 m. Similarly the deepest
depth of upwelling was found from CTD sections for Astoria
Canyon, Quinault Canyon, Barkley Canyon in 1998, Carson
Canyon and the canyon off Tidra.
3.2.2.2. Astoria Canyon
[81] The Astoria Canyon calculation is based on a station

at the mouth and a station at the head taken during an
upwelling event in May 1983 (Figure 5).
3.2.2.3. Quinault Canyon
[82] The Quinault Canyon calculation was based on a

survey in May, 1979 that fortuitously took place during an
upwelling event.
3.2.2.4. Carson Canyon
[83] For Carson Canyon the depth of upwelling was

estimated from the observed rise of the 1°C isotherm
[Kinsella et al., 1987, Figure 5].
3.2.2.5. Tidra Canyon
[84] For the canyon off Tidra it was estimated from the

depth of the 26.7–26.8 st averaged from stations 123, 124
and 140 versus mouth stations 132 and 125 [Shaffer, 1976,
Figures 14, 17, and 20].

Figure 8. Bathymetry of the Lab‐Allen canyon. All dimensions are in cm. The tank is cylindrical (radius
50 cm) with the coast and shelf running around the outside. The deep ocean is toward the center of the
tank. The diamonds mark the sequential position (0.5 s apart) of tracers in the flow. The last position is
marked by a square. All the tracers shown were at 1.5 cm to 1.6 cm depth (above the shelf break depth of
2.2 cm). The tracers show coastward flow over the downstream edge of the canyon consistent with
upwelling. The tracers do not show any evidence of an eddy over the canyon.

Figure 9. Bathymetry of Redondo Canyon. Solid and dot-
ted arrows mark the currents below and above the rim of the
canyon, respectively on May 3, 1988 during a strong
upwelling event. Upper water column flow (46, 50, and
100 m) is directed across the canyon with little apparent
influence by the canyon. A cyclonic circulation pattern
occurs at and below rim depth (100 m; 130 and 150 m).
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3.2.2.6. Lab‐Allen Canyon
[85] For the Lab‐Allen canyon [Allen et al., 2003] the

depth of upwelling was estimated from the depth of the
deepest particle that was observed to upwell onto the shelf
(1.9 cm). Extrapolating to the mouth of the canyon this
particle would have originated from a depth of 2.0 cm.
3.2.2.7. Perenne‐Lab Canyon
[86] For the Perenne‐Lab canyon the depth of upwelling

could not be determined beyond that it was less than 5 cm
depth based on flow patterns at that depth [Pérenne et al.,
2001, Figure 10a].
3.2.2.8. Redondo Canyon
[87] For Redondo Canyon the depth of deepest upwelling

was derived from time series of temperature within and over
the canyon. Specific upwelling events have been identified
in previous research [Hickey et al., 2003].
3.2.2.9. Results
[88] The observed deepest depth of upwelling is in rea-

sonable agreement with predictions from the scaling anal-
ysis (Figure 11). The farthest departure from the line is
Redondo Canyon where we expect different dynamics to
hold due to its very close (≈2 km) approach to the coast. The
linear fit of the observed to the predicted values (neglecting
Redondo Canyon) gives

Z

DH
¼ 1:3 FRLð Þ1=2 þ 0:06 ð34Þ

with an average fractional error of 21%. The intercept is to
be expected; even in the absence of a canyon, upwelling is
occurring along the coast and this effect is not removed from
the observations.
[89] The value measured from particle tracking (Lab‐

Allen Canyon) appears to be lower than the values measured
from CTD profiles. The particle tracking method provides a
lower limit as the whole water column is not sampled. The
upwelling depth estimated from the current meter array at
Redondo Canyon is higher than values for the other canyons.
Water from 80 m is upwelled to 40 m in Redondo Canyon

consistent with the stronger upwelling expected in canyons
which closely approach the coast [Allen, 2000].
3.2.3. Deep Vorticity
[90] Depending on what data was available for each can-

yon, deep vorticity within the canyons was estimated either
from current meter records or by estimating stretching from
density records.
3.2.3.1. Barkley Canyon
[91] The deep vorticity over Barkley Canyon in 1997 was

estimated from CTD profiles at station BCC4 at the mouth of
the canyon and at station BCC3 (630 m depth) in the centre
of the canyon. The stretching was calculated for isopycnals
0.1 st apart and averaged over the stretching region (215 m
to 345 m). For 1998, the vorticity was based on the average
of two stations in the canyon versus the average of a station
upstream and downstream of the canyon.
3.2.3.2. Astoria Canyon
[92] For Astoria Canyon, deep stretching vorticity was

estimated using upstream hydrographic data compared to in‐
canyon data to estimate changes in layer depth (Figure 12).
Calculation of relative vorticity using the shear between
current meters at similar depths gave a much smaller value
of 0.2f rather than about 1.0f. However, these current meters
were at 230 m and thus perhaps were too shallow to sample
the strongest stretching seen at 300 m depth.
3.2.3.3. Quinault Canyon
[93] On the other hand for Quinault Canyon, deep vor-

ticity was estimated using along‐canyon geostrophic flow
on the two sides of the canyon during an upwelling event in
May 1979 as well as the data shown in Figure 7 from an
upwelling event in October 1981 [Hickey, 1989].
3.2.3.4. Lab‐Allen Canyon
[94] For the Lab‐Allen Canyon, the vorticity deep in the

canyon was estimated from the shear between two deep
particles, one on each side of the canyon.

Figure 10. Flux through the canyon, observed versus the
predicted scaling. The straight line (slope 1.0) is the best fit.

Figure 11. Depth of upwelling, observed versus the pre-
dicted scaling. The values are labeled: A‐Astoria, B‐Barkley
(data from years 1997 and 1998), C‐Carson, L‐Lab‐Allen,
R‐Redondo, Q‐Quinault, and T‐Tidra Canyon. Note the
stronger upwelling observed in Redondo Canyon which
closely approaches the coast and thus has different dynamics.
The straight line (slope 1.3) is the best fit for the other
canyons.
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3.2.3.5. Perenne‐Lab Canyon
[95] For the Perenne‐Lab canyon it was estimated from

flow patterns at 5 cm depth [Pérenne et al., 2001, Figure 10].
3.2.3.6. Redondo Canyon
[96] For Redondo Canyon the deep vorticity was esti-

mated from current meters at 130 and 150 m on opposite
sides of the canyon (Figure 9).
3.2.3.7. Results
[97] The estimated deep vorticity shows a linear rela-

tionship with the observed deep vorticity for the four can-
yons excluding Redondo Canyon (Figure 13). The linear fit
of the observed to the predicted values (neglecting Redondo
Canyon) gives

S ¼ 2:5 FRLð Þ1=2 L

Wsb
þ 0:3 ð35Þ

with an average error of 16%. The intercept is to be
expected; even in the absence of a canyon, upwelling and
thus stretching is occurring along the coast and this effect is
not removed from the observations. Redondo Canyon has the
weakest deep vorticity, again consistent with its distinctly
different dynamics.
3.2.4. Eddy Presence
3.2.4.1. Barkley Canyon
[98] In 1997, the presence of a rim eddy over Barkley

Canyon at 100 to 150 m depth is apparent in the currents
derived from a diagnostic model [Allen et al., 2001]. The
eddy has a radius of 5 km and peak velocities of 30 cm s−1

with a vorticity of 0.3 f (Figure 6). The eddy was observed
in 1998 using current meter observations. Average currents
for Jul 25 show flow generally southward over the canyon at
150 m depth but the four current meters (Figure 6) clearly
show a cyclonic eddy at 250 m depth.
3.2.4.2. Astoria Canyon
[99] For Astoria canyon, the presence of a rim eddy dur-

ing upwelling was deduced from available current meter
data near the rim (Figure 5).
3.2.4.3. Quinault Canyon
[100] Over Quinault canyon, the presence of a rim eddy

was deduced from geostrophic velocities across the canyon
during an upwelling event in October 1981 (Figure 7).
3.2.4.4. Carson Canyon
[101] An eddy is evident around Carson canyon from

current meter observations [Kinsella et al., 1987, Figure 8].
3.2.4.5. Tidra Canyon
[102] A 100‐m deep drifter over the canyon off Tidra

shows a rim depth eddy [Shaffer, 1976, Figure 44].
3.2.4.6. Lab‐Allen Canyon
[103] The particle trajectories over the Lab‐Allen Canyon

clearly show that there is no rim‐level eddy (Figure 8).
3.2.4.7. Perenne‐Lab Canyon
[104] However, the broader Perenne‐Lab canyon does

have an eddy [Pérenne et al., 2001, Figure 7].
3.2.4.8. Redondo Canyon
[105] The presence of a rim eddy over Redondo Canyon

was deduced from moored array data on two sides of the
canyon (Figure 9).
3.2.4.9. Results
[106] The value of the eddy number for all 8 canyons is

given in Table 3. All real canyons and the Perenne‐Lab
canyon had a rim depth eddy whereas the Lab‐Allen canyon
did not. Redondo Canyon, which closely approaches the
coast, appears to fit the theory though this is probably for-
tuitous. The observations imply that the critical value of the

Figure 12. Stretching vorticity across Line 1 over Astoria
Canyon (Figure 5) relative to a station upstream. Units are
f. Shading marks cyclonic vorticity. Note the strong cyclonic
vorticity deep in the canyon. Even stronger cyclonic vor-
ticity is seen at rim depth in the vicinity of the observed rim
depth eddy. From Hickey [1997].

Figure 13. Deep vorticity, observed versus the predicted
scaling. Labeling as in Figure 11. Note that the weakest
vorticity is observed in Redondo Canyon illustrating the
different dynamics over this canyon. The straight line (slope
2.5) is the best fit for the other canyons.

Table 3. Eddy Likelihood From Scaling Versus the Observation
of the Presence or Absence of a Rim Depth Eddya

Canyon E Rim Eddy

Astoria 1.5 yes
Quinault 1.4 yes
Perenne 1.2 yes
Barkley ’98 1.0 yes
Tidra 0.93 yes
Barkley ’97 0.92 yes
Carson 0.92 yes
Redondo 0.76 yes
Lab‐Allen 0.33 no

aHere E is eddy likelihood from scaling.
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eddy number for the presence of an eddy is greater than 0.33
and less than 0.92. So an eddy will be present if E ≥ 0.9.
[107] The parameter E is primarily determined by the

inverse of the Burger number fW/NHs. Laboratory experi-
ments have often been configured to match a field Burger
Number based on the length of the canyon or the shelf break
width. As laboratory canyons are often strongly tapered, the
appropriate Burger number Bu is thus too high and rim depth
eddies are not generated. The Pérenne experiments are an
exception, with a much less tapered canyon and a small
Burger number [Pérenne et al., 2001].

4. Discussion

[108] The dynamics of upwelling over submarine canyons
are nonlinear and complex. Even small topographic varia-
tions can cause significant changes in velocity and density
fields [Klinck et al., 1999]. However the study presented
here shows that the basic response of the stratified fluid
within and above the canyon can be estimated from bulk
geometric parameters. The scaling analysis was performed
assuming near‐steady advection‐driven upwelling driven by
the flow that is nearly uniform over the length of the canyon.
The canyon is assumed not to closely approach a coast (the
distance between the coast and the head of the canyon is
greater than 0.5(UX/f)1/2 where X is the distance from the
coast to the Hh isobath away from the canyon [Allen, 2000]).
These assumptions eliminate the initial transient upwelling
which occurs as an equatorward wind event starts, and also
eliminate from consideration canyons such as Juan de Fuca
Canyon (approaches coast), Monterey Canyon (regional
flow is non‐uniform) and Redondo Canyon (approaches
coast). However the analysis is applicable to the majority of
canyons along the shelf break of the West Coast of Canada
and the United States and in other regions where upwelling
occurs and where and/or when the undercurrent is not
present or lies below shelf break depth.
[109] As we proceeded through the scaling analysis we

made further simplifying assumptions (Section 2.5). These
restrict the analysis to steep‐sided, narrow, deep canyons
cutting into sloped continental shelves that are not overly
deep. The canyons must be steep enough that the Ekman
layers arrest within a day [Brink and Lentz, 2010]. We have
assumed the canyons are less than two Rossby radii wide

and deep enough that the upwelling stream does not reach
the bottom. The continental shelf is assumed to have a slope
and be shallow enough that the shelf Burger Number based
on the length of the canyon is less than 2. All these
assumptions are met by the real canyons presented here.
[110] The scaling analysis was tested for four measurable

quantities against observations collected in the field and data
collected from three laboratory canyons. The reasonable
agreement between the observed values and the predicted
values gives us confidence in the scaling analysis. A least
squares fit was used to set scalar coefficients for the scaled
parameters.
[111] While deriving the scaling analysis, an estimate for

the size of the scalar coefficients was made. The coefficient
for the deepest depth of upwelling, 1.3, is close to 1, as
expected; the coefficient for the vorticity, 2.5, is close to 2,
as expected; the critical number for the presence of an eddy,
between 0.33 and 0.92, is close to 1/2 and the coefficient c2
in F 0.9 is close to 1 as expected. The only deviation
between our initial expectations and the observations occurs
with the coefficient for the upwelling flux, that we expected
to close to 1/4 and is actually 1. The difference is partially
due to the difference in what was estimated and what was
measured. The estimate was for the upwelling stream alone.
However, the measurement will include all water turned
through the canyon (including the rim depth stream) to give
a total onshore flux. The fit here implies that the rim depth
stream has 3 times the volume of the upwelling stream. Note
that this does not include the extra onshore flux that occurs
if the continental shelf is flat, because the Lab‐Mirshak
canyon shelf is sloped.
[112] For most real‐world canyons, the Rossby number Ro

is small (<0.5) and F [defined in (13)] can be approximated
by 1.1Ro. This approximation allows simplification of the
scaling (Table 4). In particular, the depth of upwelling can
be expressed as Z = 1.4(U/N) × (L/R)1/2. Thus the depth of
upwelling is linearly proportional to the strength of the flow
across the canyon and inversely proportional to the strength
of the stratification. Longer canyons and canyons with sharp
inflow regions will have stronger upwelling.
[113] Making the same approximation for upwelling flux

gives

F ¼ 1:2
U3WsbL1=2

NfR3=2

� �
ð36Þ

Thus upwelling flux is proportional to the cube of the
strength of the flow across the canyon. The flux is stronger
for wider or longer canyons and for canyons with sharp
inflow regions and the flux is inversely proportional to the
strength of the stratification. This steady upwelling flux for
Astoria Canyon is equivalent to a wind‐driven Ekman mass
flux due to a 16 m s−1 wind or about twice the flux that
would be associated with the actual observed peak Bakun
wind over the canyon during the 1983 measurements.
[114] Similarly, the vorticity in the deep water can be

expressed as Sf = 2.6UR−1/2 L1/2 Wsb
−1. Thus the vorticity

deep in the canyon increases with the strength of flow across
the canyon and is independent of the stratification. Vorticity
is stronger for longer canyons and weaker for wider canyons
or for canyons with smoother inflow regions.

Table 4. A Synopsis of the Simplified Scaling for Four Signifi-
cant Components of the Upwelling Process for Small Ro

a

Feature Symbol Scaling

Effects

U N f L R Wsb W

Depth of upwelling Z 1.4
U

N

L

R
� �1=2

⇑ + – ↑ ↓ – –

Upwelling flux F 1.2
U 3WsbL1=2

NfR3=2
⇑⇑ + + ↑ + ⇑ –

Deep vorticity Sf 2.6
UL1=2

WsbR1=2
⇑ – – ↑ ↓ + –

Eddy presence E 1.0
fWL1=2

NHsR1=2
– + ⇑ ↑ ↓ – ⇑

aUpward/downward pointing arrows imply the component increases/
decreases with the parameter. Strength of variation increases from ↑ to ⇑
to ⇑ ⇑.
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[115] The condition for an eddy at rim depth is E large and
for small Rossby number E ≈ fWL1/2/(NHsR1/2). The like-
lihood of an eddy increases with the ability of the fluid
column to generate vorticity by stretching fW/NHs and with
the ratio of the canyon length to radius of curvature. All the
real canyons studied here had eddy numbers greater than 0.7
and rim depth eddies were observed over each of these
canyons. The generic canyons of some previous modeling
studies [e.g., Allen et al., 2003] are generally too triangular
(narrow near the head W � NHs/f ) to have rim eddies.
Realistic canyons taper much less towards the head than has
often been assumed in modeling studies. The canyon used in
the Pérenne et al. [2001] study has a more realistic hori-
zontal shape.
[116] One of the most important geometric parameters is

the shape of the shelf break upstream of the mouth of the
canyon. The radius curvature of this region, R, determines
the tendency of the flow to cross the canyon bathymetry.
Many canyons (Astoria, Figure 5; Barkley, Figure 6) appear
to have fans in this area which increase the radius of cur-
vature. These fans may be due to winter sediment fluxes
from the canyon being transported poleward by the winter
poleward currents. These fans greatly increase R and thus
decrease upwelling within the canyon. Recent results for a
buoyancy current traveling over a canyon found a similar
importance of the upstream radius of curvature as to whether
the current crossed the canyon (separated) or flowed into the
canyon [Sutherland and Cenedese, 2009].
[117] The upwelling flux data used in this paper were

measured in a laboratory study by Mirshak and Allen
[2005]. Those authors used an empirical scaling to deter-
mine the dependence of the flux on powers of N, U and f:
flux varied as U2(U/f )nN−1, where n = 0.66 ± 0.35. Length
scales were not varied in their study. Here we find the same
relationship with respect to N and between U and f. How-
ever, our relationship for flux as a function of Ro (≈U/f ) is
not a simple power relationship because of the shape of the
F function (13). When plotted over the measured range of
Ro and compared to the power law relationship including its
error the new relationship falls within the bounds of the
Mirshak and Allen [2005] relationship (not shown). Thus,
over the range of Ro used (0.2–1.0) the two relationships are
not significantly different. However, the new dynamically
based relationship predicts more moderate upwelling at high
Rossby number: this result is more realistic than the power
law relationship of Mirshak and Allen [2005] which fails as
Ro goes to infinity.
[118] Mirshak and Allen [2005] did not vary the shape of

the canyon and thus the dependence on canyon length scales
was assumed and not determined. They extrapolated their
laboratory results to Astoria Canyon based on the similarity
between the shapes of the canyons. However, the ratio
between the radius of curvature and the length of Astoria
Canyon is twice as large in the laboratory canyon. This lead
them to underestimate of the flux through Astoria Canyon
compared to the more thorough analysis given here.
[119] Our parameterizations for other canyon variables

such as depth of upwelling and vorticity provide estimates
consistent with real world observations, suggesting that our
general approach is correct. We have no field observations
for flux; however, our results can be compared to previous
scaling analyses. For oscillatory flow over a canyon:

dependencies for the net flux through the canyon on strati-
fication, flow speed and Coriolis parameter are similar to
ours; the flux increases with increasing flow speed, whereas
increasing stratification and Coriolis parameter decrease the
flux [Boyer et al., 2004; Haidvogel, 2005]. Length‐scale
dependence has not been analyzed for oscillatory flow
[Boyer et al., 2006]. However a scaling analysis for steady
flow (similar to our analysis) that was based purely on
numerical results [Kämpf, 2007] differs substantially from
our results. Dependence on stratification is consistent with
our results. However, the Kämpf [2007] dependence on the
Coriolis parameter is in the opposite direction from ours:
ours decreases upwelling flux as f increases, whereas his
increases the flux. Applying the final formula by Kämpf
[2007] to laboratory canyons gives erroneously large re-
sults, implying that its dependence on f cannot be extrapo-
lated to the high values found in the laboratory. The
dependence on incoming flow is more similar in the two
analyses: however, our dependence is stronger, being pro-
portional to the cube of the incoming flow rather than the
square. The length‐scale dependence of the flux for the
Kämpf study is simply the depth of the canyon whereas ours
is its length and width. The canyon depth does not appear in
our analysis because we are assuming much deeper canyons.
Our shallowest canyon, Barkley Canyon, has a shelf break
to center depth of over 350 m. Kämpf [2007] is considering
canyons from 45–230 m deep. Another type of comparison
is to apply the estimates of Kämpf [2007] and our estimates
to the real canyons for which there is data. Comparing the
values of flux through the canyons, our fluxes are substan-
tially (1.6 to 29 times) smaller than his.
[120] The difference between the estimates appears to be

the slope of the continental shelf. The central case canyon
from Kämpf [2007] is within the parameter range studied
here for the other restrictions (Section 2.5). It does indeed
have uniform moderate flow and uniform stratification near
rim depth, and it is narrow and regular. It is deep enough
that the upwelling flux should be unaffected by the canyon
depth (which would not be true for the shallower canyons
considered by Kämpf [2007]). The numerical canyon is not
as steep as the canyons considered here and given the same
drag coefficient as used by Brink and Lentz [2010] would
not have arrested bottom boundary layers for the first 3.5–
3.9 days. However, the linear friction coefficient used (7 ×
10−4 m s−1) in the numerical model gives a higher drag
which should lead to arrested boundary layers within a day.
Our conjecture is that the crucial difference between the
numerical canyons of Kämpf [2007] and the canyons con-
sidered here is that Kämpf [2007] uses a flat continental
shelf. Thus in addition to the flux estimated here, the flux
over his canyons includes a branch of the incoming flow
that follows the canyon rim to the head of the canyon and is
not turned back to the shelf break by the shelf‐topographic
slope. Note that the final formula presented by Kämpf
[2007] cannot be extrapolated to laboratory settings.
[121] Few submarine canyons have been studied with the

detail of Astoria or Barkley Canyon. The scaling presented
here for upwelling over coastal submarine canyons allows
estimation of the effects of upwelling over the many
unstudied canyons with minimal measurements. Besides
detailed bathymetry (to estimate the geometric parameters
R, L, Wsb and W), a local CTD cast (to estimate N near rim
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depth) and local current meter data upstream of the canyon
(to estimate the incoming, near shelf bottom velocity U
during an upwelling event) are required to perform the
suggested scaling. Given these parameters, the depth of
upwelling in the canyon can be estimated to within 15 m,
the deep vorticity can be estimated to within 15% and the
presence or absence of a rim depth eddy can be determined.
Based on the laboratory data, total upwelling flux can also
be estimated.
[122] The scale analysis developed herein demonstrates

the important point that in spite of very steep topography
and variable spatial structures, some aspects of canyon
dynamics in upwelling environments obey relatively robust
and simple relationships. This information can be used to
advantage in regions where detailed canyon data are lack-
ing. In particular, one of the reasons canyons are of great
interest is that they are known to enhance cross‐shelf
exchange of properties such as carbon and nutrients.The
relationships presented here can be used to estimate such
fluxes within a given region that includes canyons with a
reasonable degree of certainty. In addition, we expect that
the relationships for depth of upwelling, deep vorticity and
eddy presence, which are strongly constrained by data from
a number of canyons, will provide critical benchmarks for
future modeling in canyon regions.

Notation

a Rossby radius NHs/f.
Bc non‐dimensional canyon depth NHc /( fL).
Bs non‐dimensional shelf break depth NHs /( fL).
Bu Burger number NHs /( fW).
DH depth scale fL/N.
Dw scale depth deep in the canyon fWsb /(2N).
E eddy number fWZ/UHs.
Ek Ekman number n/( fHs

2)
f Coriolis parameter.

F a function of Ro defined in (13).
g gravitational acceleration.
h fluid column length.

Hc depth change across the canyon mouth
Hh depth at the head of the canyon.
Hs shelf break depth.
k̂ vertical unit vector.
‘ unspecified horizontal length scale.
L length of the canyon.
M ND shelf‐slope (Hs − Hh)fL/(HsU)
N Brunt‐Väisälä frequency near rim depth.

(r, �) polar coordinates around the projected center of
the upstream isobaths.

R radius of curvature of streamlines (natural
coordinates).

R radius of curvature of shelf break isobath ups-
tream of canyon.

p pressure.
RL Rossby number U/fL.
Ro Rossby number U/fR.
Rw Rossby number U/fWsb.

(s, n) natural coordinates, s along flow, n across flow.
S stretching deep in the canyon.
T isopycnal tilt along the canyon.

~u = (~uh, w) flow velocity: horizontal and vertical
components.

U strength of velocity upstream of the canyon.
UD velocity scale deep in the canyon.
U* strength of upwelling stream.
V strength of flow across the canyon at rim depth.
W width of canyon at half‐length.

Wsb width of canyon at shelf break.
u horizontal velocity in natural coordinates.

(ur, u�) polar, horizontal, velocity components.
z vertical distance, positive upwards.
Z vertical depth change of deepest isopycnal

upwelled onto shelf.
G strength of horizontal density perturbations.
F flux of water upwelled onto shelf.
r density.
ro constant reference density.
r* horizontally uniform, undisturbed density.
n viscosity or eddy viscosity
W strength of vertical velocity.
z vertical component of relative vorticity.
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