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Abstract. Shelf break canyons on the west coast of Canada and the United States 
have been observed to be regions of enhanced upwelling during southward currents 
compared to the surrounding shelf break. Most shelf break canyons from Oregon 
north cross only part of the continental shelf cutting from the shelf break toward 
the coast but end on the continental shelf well below the mixed layer. Juan de Fuca 
canyon, on the other hand, cuts the continental shelf from the slope to, and actually 
continues into, the Strait of Juan de Puca. This difference in geometry has a very 
strong effect on the subinertial flow around the canyon. Model canyon shapes, which 
include convergent bathymetric contours, axe constructed and motivated for Juan 
de Fuca canyon and a typical shelf break canyon. Geostrophic analytic solutions 
show that the in-cai•yon flow in Juan de Fuca canyon is generated by first-order 
geostrophic dynamics, whereas in the majority of canyons, of which Astoria is an 
example, in-canyon flow is generated by higher-order effects. This difference is 
postulated to lead to the observed, very deep upwelling over Juan de Fuca canyon 
compared to more moderate, episodic upwelling over Astoria canyon. 

1. Introduction 

Canyons are ubiquitous features of many continental 
shelves and, in particular, the western coast of Canada 
and the United States. Off Oregon, Washin.on, and 
British Columbia the canyons are mainly deep canyons 
in the sense that their rims are below the mixed layer. 
Most deep canyons are of finite length: that is, they 
cut from the slope onto the shelf and end on the shelf. 
A number of canyons, however, continue into straits or 
estuaries. This last set includes Juan de Fuca canyon off 
Vancouver Island, Bio Bio canyon off the coast of Chile, 
and the Congo canyon. The purpose of this paper is to 
investigate the differences in the dynamics between a 
canyon such as Juan de Fuca canyon and a finite length 
canyon, for example, Astoria canyon off the coast of the 
Colmnbia River. 

Juan de Fuca sub•narine canyon runs frmn the shelf 
break off southern Vancouver Island into Juan de Fuca 

Strait. It has been associated with the large seasonal- 
scale upwelling over the nearby shelf [Freeland and Den- 
man, 1982]. More recent observations [Vindeirinho, 
1998] show that temperature decreases at 75 m over 
a spur of Juan de Fuca canyon frmn early May 1993 
to the end of July. Both of these observational studies 
show upwelling occurring on a seasonal timescale over 
Juan de Fuca canyon. 
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Astoria sub•narine canyon cuts the shelf break off the 
Colmnbia River between Oregon and Washington. It is 
20 k•n long but ends on the shelf 20 km from the coast 
in 100 m of water. Detailed current and conductivity- 
temperature-depth (CTD) measurements were made 
over and within Astoria canyon in 1983 [Hickey, 1997]. 
Temperatures within the canyon vary episodically as 
strong upwelling favorable winds occur. Unlike Juan 
de Fuca canyon, there is little or no seasonal-scale up- 
welling. 

A model for flow over Juan de Fuca canyon was pre- 
sented by Chen and Allen [1996]. They considered 
barotropic, linear flow and showed strong shoreward 
flow during periods of southward shelf currents. A 
layer-stratified numerical model gave similar results for 
the layer that lies at the level of the canyon rim [Chen, 
1995]. Flow over a finite length canyon similar to As- 
toria canyon has been numerically modeled by Klinck 
[1996] and Allen [1996a]. Both studies considered an 
upwelling episode of short duration (10 days and I day, 
respectively). Strong upwelling was observed, particu- 
larly over the downstream side of the canyon near its 
head. 

Two models, one for Astoria canyon and one for 
Juan de Fuca canyon, will be introduced in section 
2. The Juan de Fuca .cemyon model includes singular 
points, and the inclusion of these points in the geomet- 
ric model is justified in section 3. An investigation of 
the geostrophic flow around the canyon models is pre- 
sented in section 4. This investigation illustrates the 
fundamental difference in the dynamics between the two 
types of canyons. 
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2. Models 

The choice of geometrical model must satisfy two con- 
straints. It must be true enough to the real problem to 
contain most of the observed dynamics, but it must also 
be simple enough for, in this case, analytic treatment. 

For a finite length canyon consider the model drawn 
in Figure 1. It is a symmetric canyon of two depths em- 
bedded in a flat shelf. For a Juan de Fuca-type canyon 
consider the •nodel drawn in Figure 2. It is a symmetric 
canyon joined to a strait. The canyon has two depths, 
the strait has two depths, and the shelf is flat. Through- 
out this paper the x axis will be taken to lie parallel to 
the coast, and the y coordinate will be taken to decrease 
offshore, as ilhtstrated in Figure 2. The Coriolis param- 
eter will be assumed to be positive. The two edges of 
the canyon will be referred to as left and right as they 
appear in Figures 1-3, and 13-15 (the right side occurs 
at larger x than the left). The origin of the coordinates 
will be changed from section to section for convenience. 

The full governh•g equations are the nonlinear shal- 
low water equations: 

Du -1 V2 02u D-• + 'f •: x u - -- V p + An u + Aw•-•z • (la) Po 

Ou Ov Ow 

+ + - 0 
Op = -Pg (lc) 
Oz 

Dp 
=0, (ld) 

D• 

where l is time, u- (u, v) is the horizontal velocity, w 
is the vertical velocity, p is the pressure, p is the density, 
po is a constant reference density, ] is the Coriolis pa- 
rameter, assumed to be positive and constant, g is the 
acceleration due to gravity, D/Di is the horizontal total 
derivative, •: is the vertical unit vector, An and Av are 

Figure 1. Plan view of the model topography for As- 
toria canyon. 

Figure 2. Plan view of the model topography for Juan 
de Fuca canyon. The directions of the x and y axes 
are given. The solid small circles mark the two sin- 
gular points in the closed strait case. The solid black 
square •narks an additional singular point in the open 
strait case. The open box shows the area considered in 
section 3.1. 

the horizontal and vertical eddy viscosities, respectively, 
and V is the horizontal gradient. The hydrostatic and 
Bousshmsq approximations have been made. 

Consider a simplified stratification, that of a series of 
homogeneous (p constant) layers. The flow is assumed 
to be linear (V/fL << 1, where V is a velocity scale 
and œ is a horizontal len•h scale), steady (O/Or- 0), 
and inv•cid. Inclusion of viscosity would cause the flow 
to slowly spin-down. It is •sumed that this process • 
much slower than the adjustment to geostrophy. Equa- 
tions (la)- (ld) s•p•fy to 

-1 
fxu- Vp (2a) 

Po 

V-(Hu) - 0, (2b) 

where H is the undisturbed thickn•s of the layer. 
These equations are degenerate for layers of constant 
thickess H; i.e., for those layers not in contact with 
the bottom and any deep layers over a flat bottom. As 
the topo•aphies under consideration are piecewise flat, 
the solution for the steady state uses the conservation 
of potential vorticity equation (derived •om the t• 
dependent version of (2) [Gill, 1982])' 

05 H Ox • - f (h- H) -0, (3) 
where h • the thickess of the layer. The distribution of 
potenti• yogicity is chosen to give a simple shelf/she• 
bre• current • the absence of a canyon. 

In layers h• contact with the topography, over the 
regions where the depth changes, (2) imp•es that there 

. 

is no flow across the depth contours. This is the familiar 
tendency for geostrophic flow to follow bathymetry. As 
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geostrophic flow follows pressure contours, (2) implies 
that the pressure is constant over depth changes in the 
layer in contact with the topography. 

Therefore a complete steady state solution for geo- 
strophic flow over a canyon requires a determination of 
the pressure at the coast and at the other depth changes 
and then solution of (lc), (2), and (3) over the fiats. 
Although the required solution is steady, to find which 
steady solution is appropriate, one must consider the 
transient effects. In particular, the pressure over the 
depth changes is determined by the propagation of long 
topographic waves [Gill et al., 1986; Chen and Allen, 
1996] and that along the coast is determined by Kelvin 
waves. As these waves keep the shallow water or land 
to their right, information propagates from the right to 
the left in Figures I and 2. 

Consider first the model of Astoria canyon. As the 
information (pressure) propagates along the shelf break 
and into the canyon, it encounters the change in depth 
within the canyon. Here the information splits and trav- 
els both ways: across the canyon at the depth change 
and around the canyon head. It meets on the other side 
of the canyon and continues along the shelf break. So, 
determination of the pressure at the depth changes is 
trivial as it is the same value as that at the shelf break. 

Consider now the model of Juan de Fuca canyon (Fig- 
ure 2). Information propagates again from the right 
along both the shelf break and the coast. Far to the 
right, the pressure at the shelf break Inust be differ- 
ent froIn that at the coast as there is a current on the 

shelf. The information traveling along the shelf break 
turns up into the canyon and splits at the canyon depth 
change. The information continuing up the right-hand 
canyon wall encounters the coast along which different 
information has been traveling. This convergence gives 
rise to a sh•gular point. Note that such sh•gular points 
can be avoided by slightly inodifying the topography as 
shown in Figure 3 and that real topography does not 
include singular points, although the contours Inay get 
very close. 

The Inodel we wish to consider is a layered, lh•ear, 
inviscid, steady state flow over the two topographies 
shown in Figures I and 2. However, first, we Inust jus- 
tify the choice of using the singular points as shown in 
Figure 2 over the topography without singular points 
as shown in Figure 3. 

3. Justification for Singular Points 

In this section we will consider a homogeneous layer 
in contact with the topography. For example, the mid- 
dle layer would be the layer of interest in a three-layer 
systmn with an upper layer representing the mixed layer 
(say 30 in deep), a middle layer extending down to up- 
per slope depths (say 250 m), and a deep layer below. 

Steady, low Rossby number flow in a homogeneous 
layer that is in contact with the bottom follows bathy- 
metric contours. However, bathymetric contours do not 
relnain a constant distance apart. For example, con- 
sider the 50 and 200 m contours north of Juan de Fuca 

canyon (Figure 4). In the region north of the canyon 
these contours are 60 km apart, while near the west 
end of Juan de Fuca Strait they close to 5 km. If the 
flow continues to follow the depth contours and remains 
geostrophic, the total flux between the contours remains 
constant. Hence the flow speed must accelerate by a 
factor of 12. Flow that is quite slow (low Rossby num- 
ber) where the isobaths are far apart will become much 
stronger where the isobaths converge. Given an acceler- 
ation of a factor of 12, it is quite possible that flow that 
has a low Rossby number north of the canyon has, at 
the west end of the strait, a moderate Rossby number 
and is no longer purely geostrophic. 

Essentially, this is the physical limitation. In prin- 
ciple, bathymetric contours can become infinitely close 
together, but it is unphysical to expect the flow to ac- 
celerate without bound. To investigate the behavior of 
flow as bathymetric contours converge, consider the ge- 
ometry of Figure 5 and consider a homogeneous layer 
in contact with the topography. 

Across the converging flow, 

Figure 3. Plan view of the modified topography model 
for Juan de Fuca canyon. 

Ou Ou Ou - 10p 
O--•+U•xx+V•- - fv .... •A,Vu+Av (4) y po Ox 

which is the x direction momentum equation. Assume 
that the flow is steady and that the flow across the 
depth contours, even as they converge, is much smaller 
than the flow along the contours. Thus lu[ << [v[, and 
(4) is dominated by the geostrophic balance. This gives 

Ap 
v - (s) 

pof Ax' 

where v is the velocity along the contours, Ap is the 
pressure change between the two contours, and Ax is 
the distance between the two contours. 
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Figure 4. Map of the Southern Vancouver Island Shelf showing the coastline and the 50 and 
200 m depth contours. 

Along the converging flow, 

Ov Ov Ov -10p 02v 
Y Po Oy 

Away from the convergence, the flow is assumed to 
be geostrophic. However, as the contours converge, 

depth=h ] depth=h 2 

Y 

Pl P2 

Figure 5. Plan view of the convergence of two bathy- 
•netric contours with notation for section 3 marked. 

both the advection terms and the frictional terms in- 

crease. For a large difference in the initial pressure the 
nonlineax advection terms will dominate. For smaller 

pressure differences the horizontal or vertical viscos- 
ity will dominate. The relative importance is given by 
the Reynolds numbers, ReH -- VoAx/AH and Rev = 
VoH2/(AxAv). For typical shelf values, Vo = 0.3 
m s -z the depth scale H = 100 m, and Ax = 10 
kin. Ranges for AH are 10-1000 m • s -• and for Av are 
0.001-0.1 m • s -• [Pedlosky, 1979]. The shelf is a rela- 
tively active area, so upper range values are probably 
•nore appropriate. This gives Res and Rev numbers 
of 300 to 3. We will assume here that the nonlinear 

advection terms dominate. 

Assrune that two contours converge over a length 
scale L much greater than the final distance between 
them, e. The velocity parallel to the contours, assum- 
ing the flow continues along the contours, is given by 

Ap 
_ (7) 

poe/' 

The velocity along the contours must accelerate as 
the contours converge. This acceleration is given by 
vOv/Oy and is provided by the pressure gradient in (6), 

thus v 2 Ap 
-- (8) 
L poL' 

Eliminating the velocity between (7) and (8) gives the 
•nini•num distance ec that can separate the two contours 
while ensuring that the flow can re•nain strictly along 
the contours: 

(_•o p) 1/21 = f (9) 
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Another way to quantify the convergence is given the 
final convergence e, we can compare it to the minimum 
convergence ec and define a convergence parameter G: 

or 

- 

/ )•/• G- e VoAZ ' (11) 
The value of (7 detemnines the structure of the flow at 

the convergence. For large (7 the convergence is weak, 
and flow continues along the isobaths. For ranall (7 the 
convergence is strong and the flow crosses the isobaths. 
In section 3.1 the minionurn value of G(= 1.5) for which 
the flow can be considered weak (no isobath crossing) 
and the •naxi•nmn value of G(- 0.3) for which the con- 
vergence can be treated as a singular point will be esti- 
•nated numerically. 

It is interesting to note that G is simply the square 
root of the reciprocal of the Rossby number evaluated at 
the convergence if the flow follows the isobaths. (This 
result follows from conservation of flux; the flow at the 
convergence is VoAx/e.) 

In stunmary, the •naximum acceleration possible for a 
given flow is li•nited by available pressure difference (8), 
but for regions where the bathymetric contours sharply 
converge this acceleration may be insuificient to allow 
the flow to continue along the contours (7). As the flux 
•nust be accmmnodated, the flow will expand over a 
larger region. The flux between the two contours will 
reduce, which implies that the interface elevation along 
the contours is not conserved as the flow is principally 
geostrophic across the contours (frmn (4) with [u[ << 

To solve for flow in the region of sharp convergence 
of bathy•netric contours, conservation of •nass must be 
used. This •nethod is exactly that used by Chen and 
Allen [1996] to solve for flow in the vicinity of the sin- 
gular points in the Jua• de Fuca model. Thus the use of 
singular points can be justified as a very good approx- 
i•nation for broad low Rossby number flow that only 
beco•nes strongly nonlinear in small regions. 

Figure 5 does not include any bending or curvature in 
the isobaths. However, at the head of canyons, isobaths 
turn 180 ø over the width of the canyon, W. Why can 
this effect be neglected? Consider two cases- one where 
there is curvature and a second where there is conver- 

gence. An esti•nate of the effect of curvature is given by 
the Rossby number V/fW. An estimate of the effect 
of convergence is also given by the Rossby nmnber, in 
this case, V/f•. However, whereas around the curve the 
velocity changes little so V • Vo, through the conver- 
gence the velocity increases to VoAx/e. Charts show 
that the width of a canyon is similar but larger than 
the isobath convergence seen at Juan de Fuca. That 
is, W _> e. Thus the Rossby number due to the conver- 
gence is larger than the Rossby nmnber due to curvature 

by at least Ax/e, which is order 10 for Juan de Fuca 
canyon. The effect of curvature is i•nportant to canyons 
like Astoria, but it is a second-order effect. 

3.1. Numerical Verification 

In this section a nmnerical solution of the nonlinear 

reduced gravity equations is used to illustrate the dy- 
na•nics described above and to determine the critical 

values for (7. The use of a single active layer allows 
a large nmnber of different parameter sets to be simu- 
lated. Note that the lower layer is taken as the active 
layer. The model solves (4) and (6) with Av taken as 
zero, the pressure given as pot'h, and a conservation of 
volrune equation 

Oh 

+ v. (nu) - o. 
The •nodel is a finite difference, leapfrog explicit method 
on an Arakawa C grid [Allen, 1996a]. It uses an enstro- 
phy- and energy-conserving formulation for the advec- 
tion and Coriolis terms [Arakawa and Lamb, 1981]. The 
topography investigated corresponds to the point in the 
Juan de Fuca canyon geo•netry where a slope within the 
canyon •neets the left canyon wall as illustrated by the 
open box in Figure 2. To avoid boundary effects, the 
numerical boundaries have been greatly expanded com- 
pared to the box shown. The topography is illustrated 
in Figure 6. Parmneters used in the numerical solutions 
are given in Table 1. 

401 

120 m 

40 m 

200 m 

y=b 

X •5•. 
60 •o 160 by 20 

Figure 6. Plan view of the bathymetry for the nu- 
•nerical si•nulations showing the whole computational 
do•nain with domain size in kilometers. The shallowest 

water (40 •n) is to the left side; the deepest water (200 
•n) is at the bottmn right; and the depth at the upper 
right is 120 •n. Depth contours, 20 m apart, are solid 
lines. The dashed horizontal line marks the potential 
vorticity discontinuity (y = b). The two arrows mark 
the position where cross sections were taken. The small- 
dashed square is the subdomain shown in Figure 8. 
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Table 1. Para•neters Used in the Numerical Simulations 

Parameter Value 
Grid size 2.5 km 

Time step 175-400 s 
f 1 X 10-4s -t 

Av 0 

g• 0.02 and 0.10 m s -2 
Re 2000 

Boundary condition- offshore constant gradient u, v, •1 
Boundary condition- left constant gradient u, v, r/ 

Boundary condition- right constant gradient u, v, r/ 
Boundary condition- onshore 5 grid point sponge to 0 u, v, r/ 

The distribution of potential vorticity is chosen to 
give a si•nple shelf/shelf break current in the absence 
of the canyon. For a southbound (in the positive x 
direction) current this i•nplies higher potential vorticity 
near the coast, decreasing offshore: 

•,_ { -fr Y< • 0 y>b ' 

where P is the potential vorticity given by the term in 
square brackets in (3) and •/o is positive for a south- 
bound current. This distribution of potential vorticity 
gives a geostrophic jet the width of the Rossby radius, 
centred at y = b. Over the fiat shelf (on the left in 
Figure 6), 

u - • exp R ' (14) 
where R = (g'H)•/=/f is the internal •ssby radius. 

•ther than sta•ing the •nodel with a sharp poten- 
tial vorticity controt, the flow w• forced gradually. 
Spreading the forcing in time reduces the amplitude of 
the generated Poincar• waves. The forcing (tax adding 
of fluid to the father offshore section of the domain, 
y < b) w• ra•nped up over half an inertial period and 
reduced down over half an ine•ial period. There w• no 
forcing after the first inertial period. So, a•er one iner- 
tial period the potential vorticity is a slightly smoothed 
version of (13). The line separating the unforced sec- 
tion of the do•nain from the forced section • marked • 

a d•hed line on Figure 6. 
If the flow h• a small Rossby number even through 

the convergence, the solution is linear. The two re- 
gions of topographic slopes carry information, • this 
c•e the interface height, in the direction that keeps 
the shMlower water to the right. Thus information 
is propagating offshore (toward negative y) Mong the 
canyon wall and to the left along the slope. The inter- 
face height propagated along the canyon wall is that of 
the onshore section of the domain, whereas the interface 
height propagated along the slope is that of the offshore 
section. This configuration gives a convergence of dif- 
fering information. If the flow remains linear through 
the convergence, the value of the interface height along 

each topographic contour can be found by tracing the 
topographic contour back to its source on the onshore 
or right boundary of the domain. In particular, those 
contours originating at the onshore boundary have in- 
terface heights of zero. Figure 7a shows cross sections 
between the two arrows marked on Figure 6 of the in- 
terface height for a nearly linear case, (7: 2.5, at three 
different times. The sharp transition (with some over- 
shoot) between the topographic contours carrying r/= 0 
and those (to the right) carryh•g • = 0.125 m is clear. 
The variation between the different times shows that 

the flow is not completely steady. Topographic Rossby 
waves propagate along the canyon edge, causing oscil- 
lations in the depth at the canyon edge [Allen, 1996b]. 
This propagation can be seen by comparing Figures 8a 
and 8c, which show contours of the interface elevation at 
days 10 and 15 for the weakly forced case. The trough 
over the canyon edge at • y = 170 k•n at day 10 has 
•noved to y: 120 km by day 15. 

Figures 8a and 8b show the interface elevation at day 
10 for a weakly forced case, G = 2.5, and for a strongly 
forced case, G = 0.25, respectively. In Figure 8a the 
four surface height contours that enter the domain from 
the left side turn right and follow the canyon wall off- 
shore; they do not cross the canyon wall. The four 
surface height contours from the right-hand side simi- 
larly turn and follow the canyon wall. In contrast, in 
the more strongly nonlinear case, Figure 8b, two of the 
four contours do cross the canyon wall in the vicinity 
of the bathymetric convergence. As the flow is nearly 
geostrophic, this implies flow crossing the bathymetry 
here (Figure 9). 

Figure 7b shows the interface cross section for the 
strongly forced case. As flow has crossed the bathyme- 
try at the convergence, the minimum interface value at 
this cross section is greater than zero. Given a small G, 
the theoretical value for the minimum interface height 
can be calculated by conservation of mass. For this 
topography the value is r/o/2 or 6.25 m as shown in the 
appendix. 

If the flow follows the topography, the minimum value 
of the cross section is 0, whereas if flow acts as if there 
is a complete convergence, the minimum value is r/0/2. 
Thus we can use this parameter as a measure of the type 
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Figure 7. Cross sections of interface height for (a) G - 2.5 and (b) G - 0.25, respectively at 
three different times (solid, 10 days; dashed, 20 days; and dotted, 30•days). The position of the 
cross section is shown by arrows in Figure 6. The vertical axis is in meters; the horizontal axis is 
in kilometers. Note that the whole width of th• domain is not shown. 

of flow occurring. The minimum value of the interface 
elevation along this cross section (normalized by •0) was 
found as a function of time for a number of Cs. The 

value of r/0 was varied by 2 orders of magnitude giving 
a single order of magnitude variation in (7. 

As short topographic waves travel along the slope, 
t!xe •nini•num interface value oscillates in time. Various 
different measures from this time series were calculated. 

All gave a si•nilar transition between the linear result 
and the nonlinear result. Figure 10 shows the average 
value from days 5 to 30 of the minimum interface ele- 
vation along the cross section. The maximum value of 
G for which the flow follows the isobaths is m 1.5. The 

minimum value of G for which the flow acts like a sin- 

gular point is 0.3. At an intermediate point where G is 
m 0.5- 0.6, the behavior is halfway between. (Note 
that neither of the theoretical values were found for 

the asymptotes. This discrepancy is probably due to 
a number of factors, one is simply the estimation of the 
mini•nmn interface height from a time-varying series.) 

Thus, for a velocity of 30 cm s -• between two con- 
tours initially 10 km apart the flow can continue to 
follow contours as long as they remain 8 km apart 
(G = 1.5). The totally converged solution becomes 
valid when the contours converge to within 2 kin (G = 
0.3). 
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A contour plot showing e as a fu,•ction of Vo and Ax 
at G = 1.0 for a range of values relevant to the shelf is 
shown in Figure 11. For other values of G, such as the 
,ni,fimum and •naximu,n values given above, multiply 
the e given in Figure 11 by the required G. 

3.2. Field Evidence 

There are some field observations in support of G 
deter•ni,fing the ability of geostrophic flow to follow 

301 . 

101 . 
126. 

ß 

ß 

x 326. 

isobaths. Noble and Ramp [2000] used an array of 
six curre,•t ,neter moorings to investigate the Califor- 
nia undercurrent in the Gulf of the Farallones off San 

Francisco. South of the moored array the shelf and 
slope form a broad, relatively shallow sloping continen- 
tal shelf. Within the mooring array the topography 
steepens dramatically (from 2ø-3 ø at the southern line 
to 9ø-10 ø at the norther,• line). At their souther,• line 
the distance between the 200 and 1000 •n isobaths is 25 
k,n. Their typical flow values are 25 cm s -•. At the 
northern li,•e the 200 and 1000 m isobaths are only 5 
k,n apart. This gives a G of 0.6. This low value of G 
i,nplies that the flow will not be able to follow strictly 
the isobaths through this convergence. Noble and Ramp 
[2000] find that the undercurrent, clearly visible in the 
southern line, is not visible and assu,ned offshore of the 
northern line. 

U,•der conditions where the undercurrent velocity 
drops to 8-12 cm s -h, so that G increases to 0.9 the 
volu,ne flux through the two lines becomes more simi- 
lar. Thus, under larger G the tendency to cross isobaths 
is s,naller. 

Considering just the upper part of the slope, the 200 
,n isobath and the 500 ,n isobath are 6 km apart at 
the southern line and only I km apart at the northern 
line. This topographic convergence gives G = 0.2 under 
strong flow and G = 0.4 under weak flow. At these low 
values of G the theory above predicts that the topogra- 
phy should act as a singular point. Indeed, Noble and 
Ramp [2000] find that the current meter over the upper 
slope at the northern line is always "shadowed." 

301 . 

101 . 
126. 

1 

X 326. 1•6. 

Figure 8. Plan view of the interface contours for (a) a weakly forced case (contours -0.025 to 
0.125 ,n by 0.025 m), and (b) a strongly forced case (-12.5 to 15 m by 2.5 m) after 10 days and 
(c) the weakly forced case (contours -0.05 to 0.15 m by 0.025 m) after 15 days. Note that the 
whole domain is not shown. Positive contours, the zero contour, and negative contours are shown 
as solid lines, a dashed line, and dotted lines, respectively. 
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Figure 9. Plan view of the velocity vectors for • - 
0.25 flow at the bathymetric convergence. Flow is cross- 
ing the bathymetry along the canyon slope down the 
center of the domain shown. The velocity is in m s -•. 
Flow is shown at day 10. Note that the domain shown 
is smaller than that for Figure 8. 

4. Implications for Geostrophic Flow 

Now that the use of convergent bathymetric contours 
has been justified, we return to the geostrophic solution 
for flow over the two model geometries (Figures I and 

2). Assrune a potential vorticity distribution given by 
(13) where y = b occurs on the shelf. Calculations of 
the interface heights at the coast and shelf break far 
to the right are given by Chen [1995] for the reduced 
gravity case. Rather than repeating the formulas here, 
we will use nu,nbers from an exa,nple. Assume that the 
active layer is 40 m deep over the shelf, 120 m deep 
over the shallow canyon section, and 200 m deep off- 
shore. The reduced gravity is 0.02 m s -•, and the Cori- 
olis para,neter is 10 -4 s -• . This gives Rossby radii of 
R• - 8.9 k,n, R2 - 15.5 kin, and R3 - 20 km for the 
shelf, shallow canyon, and offshore, respectively. From 
Chen [1995] this gives the interface height at the shelf 
break far to the right as r/so - 0.90r/0 and that at the 
coast as r/½ - 0.17,/0. The flow vectors, in the absence 
of a canyon, for this geometry are given in Figure 12 
(for,nula given by Chen [1995]). 

Consider first the model for Astoria canyon. The 
value of the interface height at the boundary between 
the shallow shelf and the canyon is determined by the 
value from the right at the shelf break r/•o. The value 
at the boundary between the two canyon depths is the 
sa,ne. Now that all the values at the canyon edges have 
been determined, the full solution can be found by nu- 
,nerical solution of (lc), (2), and (3), which in this case 
reduces to 

R2V2r/- r/- -P/f. (15) 

The solution was found using relaxation (Figure 13). 
Parameters for the numerical relaxation are given in 
Table 2. 

For Juan de Fuca canyon the conditions far to the 
right are the same as those for Astoria. The value of 
the interface height on the right-hand side of the canyon 
and across the slope within the canyon is r/so. However, 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 ....... ' • 
0.1 1 

Figure 10. The average (days 5-30) of the mini,num interface height (normalized by r/0) across 
the canyon wall offshore of the bathymetric convergence. The chosen cross section is shown in 
Figure 6. The diamonds are for g• - 0.02 m s -• and r/o from 50 to 0.025 m. The crosses are for 
g• = 0.10 m s -• and r/o from 10 to 0.025 m. Lines simply join the points to aid the eye. 
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Figure 11. Contour plot showing the distance between 
two converging bathymetric contours that gives G = 1.0 
as a function of initial velocity and initial distance be- 
tween the bathymetric contours. The region not con- 
toured h• the lower right corner below the dashed line 
represents the region with initial Rossby number above 
1. For other values of G, multiply the value of e given 
by the required value of G. 

where the right side of the canyon meets the coast, there 
is a singular point. The value of the interface height for 
the right side of the strait can be found by conservation 
of •nass [Chen and Allen, 1996] and, for the values here, 
is 0.66 •10- This value is carried across the slope in the 

strait. The value at the left-hand strait wall depends on 
the assumptions made about the strait. Chen and Allen 
[1996] assumed an infinitely long strait, i.e. no connec- 
tion between the two strait walls. This solution is given 
in Figure 14a. In Figure 14b the strait is considered to 
be closed. The real solution probably lies between these 
two and. for Juan de Fuca canyon, is likely determined 
by •nixing in the San Juan/Gulf Islands area. 

For the open strait case the upper left strait wall has 
an interface height of 0.27 r/0. A second singular point 
occurs at the strait slope. Again, using conservation 
of •nass. the value of the interface height for the lower 
left strait wall, along the left coast and for the upper 
left canyon, is 0.53 T10. The third singular point occurs 
where the canyon slope •neets the left canyon wall. The 
interface height for the lower left canyon wall and along 
the shelf break is 0.72 t10- The fluxes that these interface 
heights i•nply are given in Figure 15a. 

For the closed strait the value of the interface height 
along the left side of the strait, the upper left canyon 
wall, and the left coast is 0.66 r/0. The value of the 
interface height for the lower left side of the canyon and 
the left shelf break is 0.78 r/0. The fluxes these interface 
heights imply are given in Figure 15b. 

In either the open or closed strait case a significant 
fraction of the shelf break current originally flowing off- 
shore of the shelf break ends up on the shelf. This flow 
enters the right shelf at the singular point between the 
coast and the canyon. In the Astoria canyon case, no 
flow •noves across the shelf break. Flow across bathy- 
•netric contours implies vertical motion (upwelling) in 
these models. Thus, for the Juan de Fuca model case, 
upwellinõ occurs within the canyon and over the right- 
hand canyon wall near the coast. For the Astoria canyon 
•nodel case, no upwelling occurs. 

-lO 
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45 

Coast 

•J•elLbreak 

Figure 12. Flow vectors for geostrophic flow in the absence of a canyon given a shallow shelf, 
sharp shelf break, and deep ocean. Geometric parameters are given in Table 2. The dashed line 
•narks the shelf break. The dotted line at y - b marks the discontinuity in potential vorticity. 
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-40.0 
-20 

Figure 13. Plan view of the interface height for 
geostrophic flow over the Astoria canyon model. The 
solid lines •nark the topographic depth changes. Con- 
tours are 0.067-0.93 by 0.67 r•o (contours 0.2, 0.4, 0.6, 
and 0.8 •1o are shown dashed; the other contours are 
dotted). The domain size is in kilometers. The whole 
dmnain is not shown. 

Chen [1995] and Chen and Allen [1996] used the sixn- 
piest possible stratification, a single active layer. Exten- 
sion to a homogeneous layer in contact with the topog- 
raphy (with active layers above and below) is concep- 
tually trivial. Consider two cases: a single active layer 
case versus a multiple active layer case. In the multiple 
active layer case assume that the hmnogeneous layer in 
contact with the topography has the same undisturbed 
depth profile as the single active layer case. Further- 
more, assume that an initial potential vorticity distri- 
bution (varying through the active layers) is specified in 
such a way that in the absence of a canyon the flux over 
the shelf and the flux offshore of the shelf is the same 

in the two cases. Then the fluxes through the system 

Table 2. Para•neters Used in the Geostrophic 
Solutions 

Parameter Value, km 
b 17.6 

Canyon width 8 
Shelf width 22 

Canyon length, Astoria 14 
Deep canyon length, Astoria 3 

Deep canyon length, Juan de Fuca 8 
Strait length modeled 25 

Deep strait length 8 
Domain size, Astoria 50 x 50 

Grid size, Astoria 0.25 
Domain size, Juan de Fuca 70 x 95 

Grid size, Juan de Fuca 0.33 

20.0 

-30.0 X 30.0 

20 

-40.0 

-30.0 X 30.0 

Figure 14. Plan view of the interface height for 
geostrophic flow over Juan de Fuca canyon model (a) 
assuming that the strait is open, and (b) assuming that 
the strait is closed. The solid lines mark the topogra- 
phy depth changes. Contours are 0.067-0.93 by 0.067 
(contours 0.2, 0.4, 0.6, and 0.8 r•o are dashed; the other 
contours are dotted). Domain size is in k•n. The whole 
dmnain is not shown. 

shown in Figure 15 are unchanged. This result can be 
justified as follows: (1) As described in sections 2 and 
3 the pressure is used, instead of an interface height, as 
the governing variable for the multiple active layer case. 
(2) As the flow is geostrophic (except at the singular 
points), the flux between two lines determines the pres- 
sure difference between them. (3) Thus, as the fluxes 
in the absence of the canyon are the sazne in the two 
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3.1 

Figure 15. Plan view showing the fluxes in 
x10 • m • s -t for the geostrophic solution of Juan de 
Fuca canyon (a) assulning that the strait is open, and 
(b) assuming that the strait is closed. Shading corre- 
sponds to Figure 2. 

cases the pressure at the coast and shelf break can be 
taken to be the same (as the origin for pressure is arbi- 
trary, only pressure differences matter). (4) Pressures 
at depth changes beyond singular points are found by 
conservation of mass, and as the flux approaching the 
singular points in the two cases is the same, the pres- 
sures in the two cases will be the same. (5) Thus the 
pressure at all depth changes (coastline, canyon walls, 
canyon depth changes, and the shelf break) will be the 
same in the two cases. (6) As flux and pressure are di- 
rectly related, all the fluxes will be the same in the two 
cases. However, finding the full solutions (flow at each 
point) is not so trivial. Finding the potential vorticity 
distribution to give the fluxes or finding the fluxes from 
a given potential vorticity distribution is algebraically 
messy even in the three-layer case [Allen, 1996a]. Once 
the fluxes are found, finding the pressures at the vari- 
ous depth changes is straightforward. Then determin- 
ing the final solution requires relaxation over all layers 
of an equation complicated by the number of vertical 
•nodes now allowed. 

However, assuming that the first baroclinic inode 
would be expected to dominate and that the reduced 
gravity in the one active layer case is chosen so that the 
baroclinic Rossby radii •natch, changes due to the other 
modes should be s•nall. The expected final result is that 
the solutions shown in Figures 13 and 14 would be very 
good approximations to the inultiple-layer case. In sum- 
•nary the single active layer gives the correct fluxes for 
a •nultiple-layer case, but details of the flow would be 
slightly different. 

5. Conclusion 

A canyon such as Juan de Fuca, which has strong 
bathymetric convergences, can support geostrophic up- 
welling. However a canyon such as Astoria which does 
not have strong bathymetric convergences cannot sup- 
port geostrophic upwelling. Of course, upwelling is ob- 
served over Astoria canyon, but it is episodic and must 
be due to second-order dynamics such as time depen- 
dence or widespread nonlinearity. Thus, at Juan de 
Fuca we observe strong seasonal scale upwelling whereas 
at Astoria the upwelling is episodic. 

Appendix: Calculation of the Pressure 
After a Convergence for G- 0 

Consider flow over the topography illustrated in Fig- 
ure 6. As G approaches 0, the convergence is so strong 
that there will be only one value of the pressure over 
the canyon wall offshore of the convergence. This value 
Oc• can be found by conservation of mass. 

The flux into the domain from the left is the integral 
in y of the velocity (14) multiplied by the depth, which 
gives •1oR•f, where Rs is the Rossby radius in the shal- 
low shelf water. The flow out of the domain to the right 
is similarly rloR2mf, where Rm is the Rossby radius in 
the shallow part of the canyon. The flux out of the 
do•nain, offshore along the wall of the canyon but over 
the shelf, is rlc•Rs2.f. The flux into the domain, from 
the offshore, along the wall of the canyon, and over the 
canyon is rk,,R•f, where Ra is the Rossby radius in the 
deep part of the canyon. Equating the incoming to the 
outgoing flux gives 

•%• H,, - H• 
,lo = Hd - H• ' (A1) 

where H•, H,,, and Hd are the undisturbed depths over 
the shelf, the shallow canyon, and the deep canyon, re- 
spectively. For the numerical values used in the simu- 
lation, Hd = 200 in, Hm = 120 m, and Hs = 40 m; 
•lc• = 0.5•1o. 

Acknowledgments. The author gratefully acknowl- 
edges the support of NSERC through the Research Grants 
and Strategic Grants programs and from NSERC and DFO 
Canada through the GLOBEC Canada project. Discussions 



ALLEN: GEOMETRIC EFFECTS ON UPWELLING OVER CANYONS 1297 

with G. Holloway and comments on the maauscript by J. 
Klinck, C. Vindeirinho, R. Mirshak, and two anonymous 
reviewers were most helpful. 

References 

Allen, S. E., Topographically generated, subinertial flows 
within a finite length canyon, J. Phys. Oceanogr., 26, 
1608-1632, 1996a. 

Allen, S. E., Rossby adjustment over a slope in a homoge- 
neous fluid, J. Phys. Oceanogr., 26, 1646-1654, 1996b. 

Arakawa, A., and V. R. Lamb, A potential enstrophy and 
energy conserving scheme for the shallow water equations, 
Mon. Weather Rev., 109, 18-36, 1981. 

Chen, X., Rossby adjustment over canyons, Ph.D. thesis, 
279 pp., Univ. of B.C., Vancouver, B.C., Canada, 1995. 

Chen, X., and S. E. Allen, Influence of canyons on shelf cur- 
rents: A theoretical study, J. Geophys. Res., 101, 18,043- 
18,059, 1996. 

Freeland, H. J., aad K. L. Denman, A topographically con- 
trolled upwelling center off southern Vancouver Island, J. 
Mar. Res., •0, 1069-1093, 1982. 

Gill, A. E., Atmosphere-Ocean Dynamics, 662 pp., Aca- 
demic, San Diego, Calif., 1982. 

Gill, A. E., M. K. Davey, E. R. Johnson, and P. F. Linden, 
Rossby adjustment over a step, J. Mar. Res., •, 713-738, 
1986. 

Hickey, B. M., The response of a steep-sided narrow canyon 
to strong wind forcing, J. Phys. Oceanogr., 27, 697-726, 
1997. 

Klinck, J. M., Circulation near submaxine canyons: A mod- 
eling study, J. Geophys. Res., 101, 1211-1223, 1996. 

Noble, M., and S. Ramp, Subtidal currents over the cen- 
tral California slope: Evidence for spatial and temporal 
variations in the undercurrent and for local wind-driven 

currents over the outer slope, Deep Sea Res., Part II, in 
press. 2000. 

Pedlosky, J., Geophysical Fluid Dynamics, 624 pp., Spring- 
er-Verlag, New York, 1979. 

Vindeirinho, C., •Vater properties, currents and zooplankton 
distribution over a submarine canyon under upwelling- 
favorable conditions, Master's thesis, 121 pp., Univ. of 
B.C., Vancouver, B.C., Canada, 1998. 

S. E. Allen, Department of Earth and Ocean Sciences, 
University of British Columbia, 6270 University Boulevard, 
Vancouver, B.C., Canada V6T 1Z4. (allen@ocgy. ubc.ca) 

(Received July 15, 1998; revised May 18, 1999; 
accepted July 20, 1999.) 


