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The influence of canyons on shelf currents: A theoretical study 
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Abstract. The influence of submarine canyons on shelf currents is studied using the Rossby 
adjustment method for a homogeneous, inviscid fluid on an f plane. The canyon in the model 
is assumed to have vertical edges and constant width. The geostrophic flow around a canyon 
is found to be dependent upon two geometric parameters: the ratio of the depth of the canyon 
to the depth of the shelf and the ratio of the width Of the canyon to the Rossby radius over 
the canyon. Moreover, a single parameter determines most of the properties of the 
geostrophic state. This parameter is called the canyon number and is a combination of the 
two basic geometric parameters. In the geostrophiC .state an infinitely long flat-bottom 
canyon Will act as a complete barrier to an approaching shelf flow. The approaching flow is 
asymmetrically diverted along the canyon, and a net flux is generated to the left of the flow 
in the northern hemisphere. If the canyon cuts a shelf between the Shelf,break and the coast 
and connects to a atrait (the geometry of Juan de Fuca Canyon) an inrcanyon (out-canyon) 
current will be generated when the shelf break current flows keeping the shelf at its left 
(fight) in the northern hemisphere. If the canyon has a stepped or sloped bottom, the 
geostrophi c flow has a singularity where the step or slope meets the left canyon edge 
(looking upcanyon) in the northern hemisphere. How can cross the Canyon edge through the 
singularity, so the canyon is no longer a complete barrier to the approaching shelf flow. In 
this case, as above, a net flux is generated to the left of the apprøaching shelf flow. 

1. Introduction 

Submarine canyons are one of the main topographic fea- 
tures of the coastal regions of the world's oceans. 
Observations have shown that a canyon may have very impor- 
tant effects on the local circulation. Many observational •Stud- 
ies in the past focused on tides or internal waves and the ef- 
fects of these relatively high frequency currents on sediment 
distribution and resuspension in canyons [Drake et al., 1978; 
Gordon and Marshall, 1976; Hotchkiss and Wunsch, 1982; 
Inntan et al., 1976; Keller et al., 1973; Keller and Shepard, 
1978; Shepard et al., 1979]. The study of longer-timescale 
(and time mean) currents in and around submarine canyons 
started in the early 1980's with Han et al. [1980] and Freeland 
and Denman [ 1982]. 

Han et al. [1980] found that the velocities at the bottom 
near the Hudson Shelf Valley were clearly aligned with the 
canyon topography. Freelahd and Denman [i982] and Freeland 
et al. [1984] presented observations over th e continent/il shelf 
near VancOUver Island that showed a persistent deflection of 
the summer: coastal flow near a small submarine canyon in this 
region. Hickey et al. [1986] described multiyear observations 
of currents and suspended sediments in Quinault Canyon. Their 
observations revealed a correlation between flow along the 
canyon axis and the along-shelf circulation; the pressure gra- 
dient due to the geostrophically balanced coastal flow forces 
upwelling or downwelling in the deep parts of the canyon. 
Hunkins [1988] analyzed a set of approximately yearlong cur- 
rent measurements near the head of and in Baltimore Canyon 
that show the existence of persistent upcanyon and down- 
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canyon flows. CUrrents near the surface are not' strongly af- 
fected by the submarine canyon; however,•currents at the bot- 
tom seem to align with the canyon isoba•hs. :All of these ob- 
servational studies support the existence of coupling between 
shelf and canyon circulation. This coup!•ing exist• both in 
shallow shelf-canyon systems (e.g., Hudson Shelf Valley 
[Mayer et al., 1982]) and in deep ones (e.g., .Juan de Fuca 
Canyon [Freeland and Denman, 1982].). 

Several efforts have been made to d6nstruct theoretical 
models to explain the dynamics of 'the coupling between shelf 
and canyon circulation. Freeland and Denman [1982] proposed 
that the currents within a narrow canyon are. forced by the un- 
balanced pressure gradient, which is supplied by the 
geostrophic shelf flow just above the top of the canyon. In 
their theoretical model, the shelfzi:an•on interaction allows 
water to be raised from depths much greater than that normally 
expected fro m the classical wind-driven upwelling mechanism. 
Their calculations correspond reasonably well with the'tr ob- 
servations. However, their theory neglected the transwerSe ve- 
locity and hence the Coriolis effect within the canyon, limit- 
ing its validity to canyons much narrower than the Rossby ra- 
dius. 

The geostrophic adjustment of a stratified coastal Current in 
the presence of an infinitely long, rectangular, flat-bottom 
canyon is cons!.dered by Klinck [1988, 1989]. His model in- 
cludes the feedback of the upwelled dense water on the cross- 
shelf pressure gradient, which was not considered in the model 
of Freeland and Denman [1982]. In Klinck's model, the initial 
flow on the shelf is assumed to be geostrophic and barotropic 
with trigonometric dependence in the along-canyon direction. 

ß 

For each vertical mode the decay scale of the perturbation is 
determined by a scale that is the shorter of the radius of defor- 
mation for that mode and the width of the coastal current. The 

width of the canyon determines the strength of the cross- 
canyon flow and thus the strength of the canyon's effect on the 
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shelf 

Figure 1. The geometry of the stepped-bottom canyon 
model. The canyon has vertical walls and is infinitely long. 
The shelf is flat and infinitely wide with depth H 1 . The 
canyon bottom is divided by a step into two portions: a shal- 
low upper canyon portion with depth H 2 and a deep lower 
canyon portion with depth H 3. Here x is in the cross-canyon 
direction, and y is along the central axis of the canyon. The 
step is at y=d. 

overlying coastal current, with the interaction becoming 
smaller as the canyon width becomes smaller than the current 
width or the radius of deformation. Even in the case of flow 

over a narrow canyon, the isopycnals at the top of the canyon 
are distorted, and there is also some residual circulation on the 
shelf forced by the presence of the canyon. 

It is tempting to seek a steady state for the interaction be- 
tween shelf and canyon circulation. One of the possible ap- 
proaches is to use Rossby adjustment to derive the steady state 
solution and avoid the relatively complicated, transient initial 
value problem. One purpose of our study is to apply this ap- 
proach to investigate the basic dynamics in the interactive 
process of a shelf flow and a canyon. For a review of the open 
ocean adjustment problem, see Gill [1982, pp. 191-203]. Gill 
et al. [1986] applied the Rossby adjustment method to study 
the topographic problem and considered the problem of how a 
barotropic flow is modified when it passes over a steplike to- 
pography, using linear analysis and numerical and laboratory 

experiments. Extending the work of Gill et al. [1986], Allen 
[1988, 1996a] studied Rossby adjustment over a slope. 

Since the purpose of our research is to reveal the basic 
properties of the shelf-canyon interaction and the effect of the 
canyon shape on the circulation, as a first step this paper will 
consider a homogeneous, inviscid fluid on an f plane. As will 
be demonstrated later, a rotating fluid, not initially in equilib- 
rium, adjusts around a canyon to a final geostrophic state 
through long modified double Kelvin waves which transmit in- 
formation along the canyon. The geostrophic state will be de- 
rived by constructing the solution from these long "canyon 
waves." The transient, propagating wave solution is investi- 
gated numerically by Chen [ 1996]. 

Three types of canyon geometry, all with vertical walls and 
constant width, will be considered. The simplest is an in- 
finitely long flat-bottom canyon cutting a flat shelf. Some ef- 
fects of topography within the canyon will be investigated us- 
ing an infinitely long canyon with a step dividing it into two 
sections, one deep and one shallow but both deeper than the 
shelf. The geometry of this type of canyon is shown in Figure 
1. The third canyon geometry is designed to include the main 
features of Juan de Fuca Canyon. In this case the canyon cuts 
through a flat shelf, the mouth of the canyon is at the shelf 
break, and the head of the canyon connects with a strait. The 
bottom of the canyon consists of four segments, with two flat 
regions and two slopes joining them. The geometry of this 
type of canyon is shown in Figure 2. The coordinates used in 
this paper are oriented with x in the across-canyon direction 
and y along the central axis of the canyon. 

The governing equations will be given in next section. The 
properties of the double Kelvin waves that exist in a flat-bot- 
tom canyon will be discussed in section 3. To provide the 
foundation for this paper, the geostrophic circulation over a 
flat-bottom canyon will be described in section 4. The far-field 
solution will be found by constructing a solution of long 
canyon waves. This solution will be demonstrated, in the case 
of a specified initial condition in which the fluid is at rest but 
in which there is a surface discontinuity, to be the geostrophic 
solution for a flat-bottom canyon in the far-field. An impor- 
tant parameter, or, will be defined in the process of solving 

land 

coast 

head slope 

shelf 

shelf break 

mouth slo 

deep ocean 

Figure 2. The geometry of the Juan de Fuca Canyon model. The bottom of the canyon consists of four seg- 
ments: deep mouth part, mouth slope, main body, and head slope; the edges are vertical, and the width is con- 
stant. The shelf break, coast, and strait walls are all vertical. The length of the strait is infinite. The shelf is 
infinitely long and is flat. 
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the problem. The flux and the full solution will be calculated 
under the special initial condition. By applying the solutions 
obtained in section 4, discussion of the geostrophic state 
around a stepped-bottom canyon will be presented in section 
5. Effects of the shelf break, coast, and strait on the circula- 

tion around a canyon will be studied in section 6. A discussion 
will be given in section 7, and the conclusions will be pre- 
sented in section 8. 

2. Governing Equations 

In a homogeneous, inviscid fluid on an f plane the govern- 
ing equations for small disturbances are the linear shallow wa- 
ter equations, 

(la) 

(lb) 

(lc) 

where f is the Coriolis parameter, g is the acceleration due to 
(possibly reduced) gravity, H the undisturbed depth of the 
fluid, and u=(u,v) the horizontal velocity of the fluid. The 
coordinates are defined in section 1. 

The depth in all our canyon models is constant except at the 
canyon edges, the shelf break, and the canyon slopes. In all 
other regions the gradient of the topography, VH, is zero. 
Therefore introduce an initial quantity 

H 

QI(x,Y) = '•-•'I(Y)- rll(Y), (2) 
where •' = o•v ! •x- o•u ! o•y is the relative vorficity and the sub- 
script I denotes a variable at the initial time t=0 and where we 
have assumed the initial conditions are independent of x. 
Manipulating (1) gives an equation for r/alone in terms of 
this initial quantity 

7•-•--R2V 2 +1 rl(x,y,t)=Ql(X,y ), (3) 
where R=(gH)l/2/f is the barotropic Rossby radius of de- 
formation. 

Solution of this initial value problem (3) can be found by 
adding a particular solution of it, which is the steady solution 
r/s (x, y), given by 

R2V2rls(X,y) - rls (X,y)= Ql(X,y ) (4) 
to the solution of the homogeneous equation, which is the 
transient wave solution rlw(x,y,t), given by 

c)t. 2 +1 rlw(X,y,t)=O, (5) 
and with the initial condition rlw(X,y,O)=-Ql(x,y)= 
-rls(X,y). 

Equation (4) can be solved only after the values of r/s at the 
edges of the piecewise composed domain have been deter- 
mined; these are the boundary conditions for (4). 

A property of the boundary conditions for (4) can be ob- 
tained by combining (1) and assuming a steady state, 

u s .VH= 0. 

Thus geostrophic currents, u s, must be parallel to the canyon 
walls, the canyon bottom step or slope, and the shelf break 
since at these locations VH • 0. The combination of requir- 
ing no flow across the canyon edges and along the canyon 
over the canyon bottom slope implies that there is no flow 
over the canyon bottom slopes. Geostrophic flows cannot 
cross these changes in depth (except at their intersections). 
This requirement means that r/s is a constant along the edge of 
each piecewise segment of the domain. We will use this prop- 
erty later to determine the boundary conditions for (4). 

3. Canyon Waves 

Instead of solving the complete time dependent problem (5) 
in this section, we present an analysis of the properties of 
canyon waves and of the structure of long canyon waves. 
Since the purpose of this paper is to present the geostrophic 
circulation, i.e., the solution of (4), the transient solution of 
(3) will be deferred to a later paper. 

Consider an infinitely long canyon with vertical walls and a 
constant depth H2; the width of the canyon is a constant 2L, 
and the depth of the shelf is a constant H 1 ( H 1 • H 2 ). Assume 
that the solution of (5) takes a wavelike form 

•lw(X, y,t)= E(x)exp[i(ky- (ot)], (6) 

where E(x) is a function of x, (o >0 is the frequency, and k is 
the wave number in the along-canyon direction. Substituting 
(6) into the momentum equations (la) and (lb) gives 

uw(x,y,t)=ig[f2_(o2 exp[i(ky- (ot)], (7) 
v w (x,y,t) = f2 _ 002 exp[i(ky- rot)], (8) 

where E'(x) is the fu'st derivative of E. Substituting (6) into 
(5) gives 

d 2E a/2E=0, i=l, 2, (9) dx 2 
where 

f2 (o 2 oti 2 ((o,k) = - + k2 gHi i = 1, 2. ( 1 O) 
Because we are looking for waves trapped to the canyon, the 
parameter a must be real, i.e., a• > 0. 

The bounded solution of (9) has the form 

Ai exp(a•x), x <-L, E= A 2 exp(a2x)+B 2 exp(-a2x), x<lL[, 
B• exp(-alX ), x > L, 

(11) 

where A•, A 2, B 2 and B 3 are all nonzero constants. 
Substituting the form (11) into the equations for r/w and u w 

[(6) and (7)], the requirement of continuity of r/w and Hu w at 
the canyon edges gives 

exp(-a 1L)A 1 - exp(-a 2 L)A 2 - exp( a 2 L)B 2 = 0, 

H 1 (a'l (o- kf) exp(- o:1L)A 1 - H2(o•2(o-kf)exp(-ot2L)A 2 
(12a) 

+H2 {a2(o + kf)exp(a2Z)B 2 = O, (12b) 

exp( a2 L )A 2 + exp(-a2 L )B 2 - exp(-a• L )B 3 =0, 

•: (•: •o - •) •xp(•: •)•: - •: (•: •o + •r) •xp(- •: •)•: 

+H 1 (a'l (o + kf)exp(-oqL)B 3 = O, 

(12c) 

(12d) 
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which can be written in matrix form as 

A• 

M B2 =0. 

For a nontrivial solution of (12), the determinant ]M] must 
be zero, which yields the dispersion relation for canyon waves 

/n• j cøth(2Lø•2 
where ot 1 and tz 2 are functions of to and k as given by (10), 
and coth( ) is the hyperbolic cotangent function. 

The phase and the group speed of canyon waves can be ob- 
tained from the dispersion relation (13). Both the phase and 
the group speed are functions of the wave number, so canyon 
waves are dispersive. Because the dispersion relation is sym- 
metric about the to axis, the phase and energy (as well as in- 
formation) of canyon waves propagate in both directions 
along the canyon. 

The dispersion relation for canyon waves with •= 
2L/R 2=1 and 72=H 2/H 1=2, 3, 4, and 5 is given in 
Figure 3, for k > 0. Obviously, for canyon waves, the shorter 
the wave length is (compared with the Rossby radius over the 
canyon), the smaller the group speed is (the derivative of the 
dispersion relation). The limiting cases are as follows: 
1. For short waves (k >> 1/R2), the group speed approaches 

zero. 

(13) 

2. For long waves ( k << 1/R 2, and so to << f), (13) gives 

to I y2 -11 
= = ' )it2 ' (14) Co '•' cl (72+2ycoth•+l 

where c 1 = (gH 1 )112 is the long-wave phase speed on the shelf. 
The parameter C o is the group speed and phase speed of the 
long canyon waves. For the infinitely wide canyon limit 
(fi-->oo), Co=(gH2)ll2-(gH1)ll2 which is identical to the 
double Kelvin wave phase speed for a single step found by Gill 
et al. [1986]. 

Poincare waves (first class waves) are the only waves pos- 
sible in a barttropic, flat-bottom ocean on an f plane far from 
lateral boundaries. These waves establish the classic Rossby 
adjustment [Gill, 1982], which will be the solution far from 
the canyon in our infinitely long canyon models. Note that 
the final, steady state will differ from the initial condition 
only in a narrow (one Rossby radius wide) region around the 
original change in surface elevation. Farther from the initial 
disturbance the propagating Poincare waves will carry energy 
but no surface height changes. 

The presence of a change in depth allows second-class 
waves (potential vorticity waves [see Rhines, 1969]), of 
which canyon waves are an example. These waves travel along 
a depth change and can carry changes of surface elevation over 
infinitely long distances. Permanent changes over long dis- 
tances, which determine the steady state, are controlled by 
long waves. Long Poincare waves have zero group velocity, 
but long double Kelvin waves have finite group velocity as 
shown in (14) for the example of long canyon waves. 

Canyon waves are dispersive in general; however, long 
canyon waves are nondispersive, and the group speed ap- 

D i specs • on Re ! a t: i on for Canyon Waves 
0.8 

y2=4 

Y•--3 

y2=2 

0.0 
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WRVE NUMBER RLONG CRNYON DIRECTION 

Figure 3. Dispersion relation of canyon waves for the fiat-bottom canyon of fi = 1, y2 = 2, 3, 4, and 5. The 
horizontal axis is the nondimensional wave number along the canyon, kR 2, and the vertical axis is the 
nondimensional frequency to / f. 
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proaches a maximum value that is determined by the geometric 
parameters of the system. The group speed of short canyon 
waves approaches zero. These properties of canyon waves will 
be used in the next section to determine the far-field solution 

for a flat-bottom canyon. 

4. Geostrophic Circulation Over a Flat-Bottom 
Canyon 
4.1. General Far-field Solution 

The far-field solution for a flat-bottom canyon will be ob- 
tained in this section by constructing the solution as long 
canyon waves. The Poincare waves are very much in presence 
but are not explicitly calculated because they are not important 
to the far-field solution, as was noted in the last section. 

Using potential vorticity, the solution can be calculated with- 
out a full calculation of the time variation. This method is the 

standard technique of Rossby adjustment [Gill, 1982; Gill et 
al., 1986]. In the far field (lyl >> •2) th• surface is ini- 
tially flat (i.e., r/l =const) assume that the solution of (1) 
takes the form 

rl(x,y,t)= rll(y)-E(x)exp[i(ky-wt)], (15) 
where E(x) has the form of (11) with a 1 = 1/R 1 and a 2 = 1/R 2 
for long canyon waves. The corresponding u(x,y,t) and 
v(x,y,t) are given by (7) and (8), respectively. Now using 
(15), (7), and (8) to examine the magnitude of each term in the 
momentum equations, (la) and (lb), for long canyon waves 
( k << 1 / R 2 and ro = cok ), we have 

f2 ' (16a) 
lYvl -- glE'l, (16b) 

igal __ gig' I , ( 
(17a) 

Iful glcøg'- (7b> 
f 

(17c) 
The first term of (la), i.e., (16a), is much smaller than the sec- 
ond and the third ones, i.e., (16b) and (16c), so the first term 
is negligible in (la); all terms of (lb), i.e., (17a), (17b) and 
(17c), are small but of the same order, so all terms must be 
considered in (lb). For a solution of (1) having the form (15), 
the momentum equations (la) and (lb) reduce to 

-fv+gxx =0, 

t•-•-+fu +g-• = 0. (18b) 
Using (11) for E(x), we write (15) in another form, 

rl(x,y,t)=rli-A(y,t)exp[(x+L)/R•], x<-L, (19a) 
rl(x, y,t) = rll - B(y,t)exp[-(x + L) / R 2 ] 

+C(y,t)exp[(x-L)/R2], <lml, (19b) 

rl(x,y,t)=rll-D(y,t)exp[-(x-L)/R1], x> L, (19c) 

where A, B, C, and D are functions of two variables and are to 

be determined. An advantage of assuming that (1) has a solu- 
tion of the form (19) is that 

A(y,0) = B(y, 0) = C(y,0) = D(y,0)= 0. 

Substituting (19) into (18a) gives 

v(x,y,t)=-g A exp[(x+L)/R 1], x<-L, 

g 1 Bexp[-(x+L)/ v(x,y,') {- 
+Cexp[(x-L)/R2] }, x<l/•, {2lb) 

v(x, y,t)= g-D-D exp[-(x- L) / R1], x> L. (21c) 
Then substituting (19) and (21) into (18b) gives 

u(x,y,t)=-y rl•y- + exp[(x+L)/R•], x<-L, 

where the subscript t deno•s a derivative with respect to •e 
and •e subscript y denotes a defivaave wi• res•ct to y. 

Using the bound•y conditions that the surface elevation 
and the cross-canyon flux •e continuous at the edges of •e 
canyon, we have 
Atx=-L 

A = B + Cexp(•), (22a) 

1 [-Bt + Ct exp(-•)]}, (22b) 
Atx=L 

B exp(-•) + C = D, 

{ 1 [-Btexp(-•)+Ct]} H2 rlly- By exp(-fl)-Cy -'•2 

(20) 

(21a) 

(22c) 

(22d) 

where •/, as defined in last section, is the width of the canyon 
made nondimensional by the Rossby radius over the canyon. 
If we assume that the surface height is rlL(y,t) at the canyon 
edge x=L and is rl_L(Y,t) at the canyon edge x=-L, we 
have r/_ L = r/z - A and r/L = r/l - D. By combining with 
(22a) and (22c), (19) can also be expressed in another form, in 
terms of r/œ and 

rl(x,y,t)= rll+(rl_L- rll)exp[(x+ L)/R1], x <-L, (23a) 

1 { cosh(x/R 2 ) rl(x,y,t)= rll +• (rlL +rl-L-2r/l} cosh(L/R2) 
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sinh(x / R 2) } x <ILl, (23b) +(riL - ri-L) s'•'Z • •22 )' ' 
ri(x,y,t) = ril +(rtL - rt•)exp[-(x- L)! R 1 ], x > L. (23c) 

This form of solution will be used later to analyze the 
geostrophic circulation around the other two canyon models. 

Now we have four equations (22) for four unknowns A, B, C, 
and D. For f>0 the procedure to solve the system is given in 
the appendix. The functions A and D are 

A(y,t)= ril(y)-[1-•]Wn (Y+Cot)- Cr W 2 p(y-cot), (24a) 

D(y,t)= ril(y)--•Wn(Y+Cot)- 1-•- p(Y-C0t ). (24b) 

In (24) 

I 7(coshfl-1)+ sinhfl ]112 = 1- r(cosh/ + 1)+ sinh'/ , (25) 
where 7 and fl were defined in section 3. The ratio 7 is > 1 
for canyons. The canyon number cr • {0,1} (for fl • {0, o•} ) is 
determined by the geometry of the system and is an important 
parameter in describing the geostrophic circulation of a 
canyon-shelf system. The wider the canyon is (hence the 
weaker the effects of one canyon edge on the circulation at the 
other edge), the smaller the canyon number is. It represents 
the interactive strength of one edge of the canyon on the circu- 
lation induced by the other edge. 

The quantities Wn(Y+Cot) and Wp(Y-Cot) in (24) repre- 
sent the information, which is the surface elevation in this 
case, transmitted into the study region by the long canyon 
waves from the positive y direction and negative y direction, 
respectively. The canyon wave that is induced by and intensi- 
fied on the canyon edge at x=-L carries the information 
W• (Y+Cot) and travels from the positive end of the canyon 
into the study region, whereas the canyon wave that is induced 
by and intensified on the canyon edge at x=L carries the in- 
formation W n (y-cot) and travels from the negative end of the 
canyon into the study region. Together they determine the fi- 
nal geostrophic state. We will use the physical meanings of 
W• (y + Cot) and W n (y - Cot) to study the geostrophic circula- 
tion for all our canyon models. 

Iff<O, A will equal the right-hand side of (24b) and D will 
equal the fight-hand side of (24a). Therefore flow patterns in 
the southern hemisphere are the reverse of those in the north- 
em hemisphere. The following discussion will be limited to 
the northern hemisphere (f>0). 

Substituting (24) into (22a) and (22c), B and C can be 
found. Then substituting A, B, C, and D into (19) gives a solu- 
tion of (1) expressed in terms of Wp(y+cot) and Wn(Y-Cot). 
As will be demonstrated in an example in the next subsection, 
this solution is the far-field geostrophic solution. 

4.2. Far-field Solution for an Initial Surface 

Discontinuity 

In the preceding discussion the initial conditions were quite 
general. To simplify further discussion, consider the simple, 
classical initial condition 

ril (Y)=-ri0 sgn(y), (26a) 

ul =v• =0. (26b) 

For a flat-bottom open ocean with depth H 1 , this initial con- 

dition will lead to a geostrophic state [Gill, 1982, pp. 191- 
203] 

ri(Y) =- ri0 sgn(y)[1-•xp(-lyl/•)], (27a) 

v=0, (27c) 

which represents a geostrophic jet with a width of 2R 1 and a 
core at y=O. 

Given a flat shelf (no shelf break), far away from the canyon 
(Ixl>> + •), adjustment will be the same as that in a 
flat-bottom ocean, and the geostrophic state is described by 
(27). Far away from the core of this jet, initially, r/is -ri0 
for y>> R 1 and ri0 for y<<-Rl. This surface elevation in- 
formation will have been transmitted along the canyon by the 
long canyon waves provided that t >> 1/I fl. It is represented 
in (24) by Wp(y+cot) and Wn(Y-Cot). So for the specific 
initial condition (26), (24) reduces to (for f>O) 

-or, y > 0, (28a) A(y,t)= rio (2-or), y<0, 

-(2- or), y > 0, (28b) D(y,t)= rio or, y < O. 
In the discussion above, (28) was obtained by considering 

the physical meaning of Wp(Y+Cot ) and Wn(Y-Cot ). 
However, (28) can also be obtained by using the purely math- 
ematical method given below. 

By using condition (20), (24) yields Wn(Z)=W•(z)= 
ril(Z) where z is a free variable. So (24) can be written as 

A(y,t)=ril(y )- 1-• ril(Y+Cot )- ril(Y-Cot), (29a) 

D(y,t)= ri1(y)--•-ri1(y+cot )- 1-• ri1(y-cot). (29b) 
For the initial condition (26), in front of the wave front of the 
long wave (lyl > cot), (29) gives A(y,t)=0 and D(y,t)---O, so ri 
remains ril(Y) and u=v=0; i.e., the state has not been adjusted; 
behind the wave front of the long wave (lYl << cot, which is 
equivalent to t>> /Ifl lyl>> > =co/Ifl), (29) 
gives the same results as (28). The state has been adjusted by 
the long waves and 

ri(x,y,t) = -ri0 sgn(y) + ri0 [sgn(y) + (1- cr)sga(x)] 

I1> L, (30) 

cosh(x ! R 2 ) ri(x,y,t) =-rl0 sgn(y)+ ri0 sgn(y) cosh(fl / 2) 
sinh (x_./..R_2..).] +(l-a) sinh(fl/2) J' Ixl<, (30b) 

u(x,y,t)=O, 

v(x,y,t)=-I•ø1ø ]sgn(x)[sgn(y)+ (1-o')sgn(x)] 
x xp[< L-Ixl>/g ], Ixl > L, 

v(x,y,t) = sgn(y) cosh(• / 2) 

cosh(x / R 2 ) ] +O- a) 'J' Ix[ < œ. 

(30c) 

(30d) 

(30e) 

(27b) 
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Equations (30) describe a state that is independent of t and 
the value of y and that is valid only under the conditions 
lyl >> t>> 1/Ifl, it is the far field geostrophic so- 
lution. If t is finite, the transient effects due to shorter canyon 
waves will be present. It is obvious that the effects of the 
canyon on the geostrophic shelf circulation in the far-field de- 
cay exponentially with the distance from the nearer edge of the 
canyon. The width of the affected region is approximately R 1 
on the shelf. 

The solution (30), for two examples, is given outside the 
dashed lines in Figure 4. This figure shows the contours of sur- 
face elevation, which also form the streamlines. Details 
within the dashed lines, where the flow turns near the canyon 
edges, will be calculated in section 4.3. However, even for the 
far-field circulation, the picture that emerges is most intrigu- 
ing. First, in the geostrophic state the canyon acts as a com- 
plete barrier to the approaching jet, which is completely de- 
flected along the canyon. Second, as a jet approaches a canyon 
in the northern hemisphere, most of it is deflected to the fight. 
Note also that the solution is symmetric about the origin. If 
the initial condition is changed so that the geostrophic flow 
direction is reversed, the flow pattern will be that of Figure 4 
turned 180 ø around the Z axis. 

The canyon induces a flux along it that is of great interest. 
Integrating (27b) with respect to y for y•{-oo,•} gives the 
flux approaching the canyon (in the +x direction) 

F• =H• dy= 2gill//ø . (31) 
f 

Integrating (30d) and (30e) with respect to x for x 
gives the net flux in the +y, along-canyon, direction 

Fy = H• + H 2 + H• dx= Fx(r 2 -1)(1- (r).(32) 

If f>0, then F x>0, and then Fy>0. In the geostrophic 
state for a shelf-canyon system, the net flux transported in the 
along-canyon direction is proportional to the flux approach- 
ing the canyon and is to the left of the approaching flux; if 7 
is a constant, the wider the canyon (the smaller 0), the larger 
is Fy. The maximum transport is F x (72 - 1) in the limit of in- 
finitely wide canyon ( • --• oo and hence (r --• 0). 

4.3. Full Solution for an Initial Surface 

Discontinuity 

In section 4.2 the analytic far-field solution was obtained. 
To complete the geostrophic solution of (4), we will use the 
far-field solution as the boundary conditions to calculate the 
solution in the regions where the streamlines turn, inside the 
dashed lines in Figure 4. In these regions, x and y are not very 
large compared with R 1 and R 2. 

For the initial condition (26), the surface discontinuity 
(equation (2)) becomes 

Ql(x, y)=-rh(y). 

The solution of (4) should approach (30a) and (30b) as 
lyl •-Equations (30a) and (30b) give the far-field values of 
//at the two edges of the canyon as -(1-ct)//0 at x=-L and 
(1-•y)//0 at x= L, respectively. As was stated in section 2, 
for a homogeneous, inviscid, linear fluid no flow can cross the 
edges of the canyon in the steady state, so // will be uniform 
along either edge of the canyon, i.e., tl_ L =-(1-•y)//0 at 
•x=-L and //L =(1- •Y)//0 at x= L for all values ofyo 
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Figure 4. Contours of surface elevation // which also form 
the streamlines for the flat-bottom canyon. Thick lines repre- 
sent the position of the canyon edges. Dotted lines represent 
negative // values. Arrows represent the direction of the flow 
in the northern hemisphere. The far-field solution applies out- 
side the dashed lines. The range of values contoured is -//0 to 
•/0, and the contour interval is 0.2 t10. The position of the 
initial surface discontinuity is at y=O. The length unit is R 2, 
72 = 2 and ]• = (a) 2 and (b) 30. 

The partial differential equation (4) will be solved f•rst in- 
side and then outside the canyon but only in the region x <-L 
(from which the solution in the region x > L can be easily de- 
rived owing to the symmetry of the solution). 

Writing the solution of (4) as //2(x,y) inside the canyon 
and nondimensionalizing (4) with (.•,•)=(x/R2,y/R2) and 
•2 =//2///0 gives 

o32•2 (•,9) //I(9) • ø•2•2(•'9) + ø• 2 -•2(•,9)=- . , I•l < ß (33a) •2 •o 
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The boundary conditions are 

+(1- a), (33b) 

cosh.• ] sinh.• •2('•,•"->+•) =+ c0Sh(fi/2) -1 +(1-O)sinh(fi/2 ) 
(33c) 

is 
It is easy to demonstrate that a particular solution of (33a) 

•'(•) = -sgn(•)[1- exp(-I•l) ] . (34) 
Applying the technique used by Gill et al. [1986], we put 

= % (35) 

into (33). Using Fourier transforms and expressed in convolu- 
tion form the solution is 

sinhi 

•2 (i, •) = •'(•) + (1- or) sinh(fi / 2) 

where 

(36) 

oo cosh(•(P 2 +1) 1/2) 

The typical shapes of G2(•,•) versus • (for the examples 
of i = 0.2, • = 2 and i = 0.5, fi = 2) and E2 (Y- •) versus • 
(for the examples of •= 0.5 and • =-1) are shown in Figure 
5, from which we see that G2(•,•) decreases very quickly as 
I•l increases. So (36) can be easily evaluated numerically (it is 
sufficient to take lel < 10 in the numerical evaluation). 

Following the same procedure but writing the solution of 
(4) as •1• (x,y) in the region x <-L and changing to nondi- 
mensional variables (•,•)=((x+L)/Ri,y/R•) and 
•I --•1]•0, (4) becomes 

•2•1('•'•) • ø• 2 -•1(.•,•)=-•, •<0. (37a) •2 

1.5 

1.0 

0.5 - 

0 

-0.5- 

-1.0 - 

-1.5 I I 

I I 

• G2,•=0.5 

, I I 

0 2 4 

Figure 5. Shapes of G2(•,•) (for •=0.2, fi=2, and 
•=0.5, fi =2) and Ei(•-•) (for •=-1 and 0.5) versus •. 

The boundary conditions are 

•I (-• '-> 0, •) = -(1- 

= 

•1 ('•,• '-> oo) =-1 + aexp(•), 

•I (•,• -'> -=) = 1- (2- (•)exp(•), 

where •(•) is given by (34). 
The solution of (37) is 

•I (•,•) = •(•)+ o'exp(•)- exp(•) 

(37b) 

(37c) 

(37d) 

(37e) 

where 

(38) 

in which K 1 is the modified Bessel function as defined bY 
AbramowitZ and Stegun [1968]. 

The shapes of G 1 (.•,½) versus • and •1 (•--•) versus • are 
quite similar to those of G 2 (•,½) and E 2 (9-½), so (38) can 
also be rapidly evaluated numerically. 

Combining (30a), and (30b), (36), and (38) gives the whole 
picture of the solution in the steady state as that shown in 
Figure 4. It can be seen that as the canyon becomes wider 
(fi -.-> oo ), the flow pattern near either edge of the canyon is in- 
distinguishable from that for a single-step topography derived 
by Gill et al. [1986]. This result is expected, since the effects 
of one edge of the canyon can not be felt at the other edge if 
the canyon becomes infinitely wide, 

For Rossby adjustment over a flat-bottom canyon, the 
canyon acts as a complete barrier to the approaching 
geostrophic flow. The flow is diverted in both directions 
along the canyon, with most of the flow turning to the fight in 
the northern hemisphere. Within the canyon, a unidirectional 
current is generated. A shelf-canyon system generates a net 
flux to the left of the shelf flow in the northern hemisphere, 
which decreases with increasing canyon number for a constant 
depth ratio of the system. The results mentioned above will be 
reversed in the southern hemisphere. 

5. Geostrophic Solution Over a Stepped-Bottom 
Canyon 

In the ocean the depth of a canyon is never uniform. As a first 
approximation to real situations, assume that the canyon is 
composed of two portions: a shallow upper canyon portion 
with constant depth H 2 and a deep lower portion with con- 
stant depth H 3 (H 3 > H2). If the length scale of the region 
where the depth changes from H 2 to H 3 is much shorter than 
the local Rossby radius, the bottom of the canyon can be rep- 
resented by a step as shown in Figure 1. The canyon is as- 
sumed to be infinitely long with vertical walls, the step is at 
y = d, the width of the canyon is 2L, and the depth of the shelf 
is H 1 . The geostrophic solution around this stepped-bottom 
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canyon will be found by applying the results obtained in the 
preceding section. First, the far-field solution will be deter- 
mined. 

5.1. Analytical Far-Field Geostrophic Solution 
.•. 

Define the following parameters: 

, 
2L 

[3 i = [3.•_1, 

[ •'i (coshfli - 1) + sinhill ] 1/2 ai(ri,0i)= •- r,(cosh0 ' +l}+sinh•i ' 
lYi 2 -11 

cøi=Cl i 1)•/2 ' 7'i 2 + 2 •'i cothill + 

e23 = (1 - 0' 2 )(1 - o' 3 )( 7'32 - 722 ), 

(39) 

8i = ei , (40) 
E2 + E3 + •23 

where c 1 was given in section 3, and i=2, 3. 
Assume that the region where o•r/1//•y ,• 0 is a small, lim- 

ited region around y =0. Far enough from the canyon bottom 
step and the region where ar/l / o9y • O, i.e., lyl > > la + a2 I, the 
circulation will' have the same pattern as that in the far field for 
a flat-bottom canyon. Thus the far-field solution for a stepped- 
bottom canyon can be expressed in the form of (23) in terms 
of the unknown rl values at the canyon edges. In the 
geostrophi c state, .as was discussed in section 2, values of sur- 
face elevation r/ a,t the canyon edges and canyon bottom step 
must be constant so that there is no large-scale flow across the 
canyon edges or the canyon bottom step. Once these con- 

ß 

stant. s are found, the far-field geostrophic solution is given by 
(23). 

The geostrophic state around a canyon is set up by canyon 
waves transmitting information in both directions along the 
canyon, as was discussed in the preceding section. Assume 
that the information (surface elevation /•, in our case) trans- 

mitted in the -y and the +y directions is Wp2 (y+co2t) and 
Wn2(y-co2t), respectively, in the region y>d, and 
W-b3(y+co3t) and Wn3(Y-Co3t ), respectively, in the region 
y< d. The quantities Wn2(Y-Co2t ) and Wp3(y+co3t) are the 
information carried away from the step, whereas Wl•2(Y+Co2t ) 
and Wn3(Y-Co3t) are the information carried from the posi- 
tive and negative ends of the canyon toward the step:.Write r/ 
atx=-L as r/_L2 for y>d and rl_L3 for y<d, and r I atx=Las 
r/L for y < d. The surface height at the step must be r/L be- 
cause the double Kelvin wave propagating along the step will 
carry the information r/L away from the x=L edge. Similarly, 
r I atx=L for y > d is also r/L. Since r/L is generally not equal 
to /l-L2 or /l-L3, there must be a singularity where the step 
meets the x=-L edge. Similar to the case discussed by Gill et al. 
[1986] in which double Kelvin waves propagate along a step 
toward a wall, there should be flux across the step (and in our 
case the x=-L edge), through the singular point, in order to 
conserve mass. 

In the linear steady state the transport across a line between 
two points P and Q (say) in a region of depth H is 

gH 
f (•lP-•l(2), 

to the right. Thus in our case, writing Z/]x•_• = z/ø• and 
•lx• = • at y=d, the flux across y = d + g, where g is in- 

finites•al is 

•H , 

and •e flux across y = d- g is 

•[H1 <"-L3- .S.)+ H3<.L- ._L3) + H, (.•- 
•e •u•ement that •ese two fluxes •e •u• at y = d is 

(7•2-722)•L +(y22-!)•_[2-(7•2-1)•_[• =0. (41a) 
In the regions far away from both the core of the 

geos•ophic flow •d •e step, •ogous m (•), for•0 

•om consideration of •e region y<d, and 

• =•wv3(y+Co3t)+(1- )w•(y-Co•t), (41d) 

•-L,=(!-•)Wv3(Y+Co3t)+•Wn3(Y-Co3t ). (41e) 
from consideration of •e region y>d. 

Combining (4!), the solution expressed i n terms of 
W v • (y + cm t) •d W, • (y - Co•t) c• be found: 

"L3 = (1- •)[(282 WV2 )+ (1-2 82 )Wn3 ]+• Wn3, (42c) 
whe• •i •d 8 i (i = 2, 3) •e given by (39) and (40), res•c- 
•vely. Equations (42) •e •e general geos•ophic f•-field so- 
luffon •ound a step.d-bottom c•yon for a nons•cific ini- 
tial condifon. 

•en H 2=H 5 (so eg=e 3, e23 =0, and 82=83=0.5), 
•-L2 •d •-L3 •e identical. Toge•er wi• •L •ey •e con- 
sistent with •e results for a flat-boSom canyon. 

If •e inifi• condi•on is a s•face discontinuity (equations 
(26)), similar to the last •ection, Wr2(y+c•t ) and 
Wn3(Y-Co3t ) in (42)•e -•0 •d •0, res•ctively. The cot- 

resending solution is 

nL =[(2-%)83 -%82 In0, (43a) 

n-L2 =[283% -1]n0, (43b) 

n-j3 = [1- 28• (2- a3)]n0. (43c) 
Equations (42) or (43) with (23) give the far-field 

geos•ophic solution for • •ound a stepped-bottom c•yon. 
•e flux approaching a step.d-bottom c•yon under •e 

inifi• condi•on (26) is F x given by (31), whereas •e flux in 
•e along-canyon dkec•on is 

Fy =2e382F• = 2e283F•. (•) 
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If H 2 = H 3, (44) is identical to (32), the value for the flat-bot- 
tom canyon. Again, there is a net flux generated in the along- 
canyon direction to the left of the approaching shelf flow in 
the northern hemisphere. 

•.2. Numerical Full Geostrophic Solution 

The geostrophic solution near the canyon edges and the step 
may be calculated from the far-field solution assuming 
geostrophy. However, as was discussed for a similar case by 
Gill et al. [1986], in practice, geostrophy will not occur ev- 
erywhere for a stepped-bottom canyon as a result of nonlinear 
or frictional effects and the advection of potential vorticity 
through the singularity. The solution achieved by solving (4) 
can be regarded only as a first approximation. 

The complicated geometry of a stepped-bottom canyon 
makes an analytic solution complicated. Consider instead a 
numerical solution of (4). After multiplying by the grid space 
size, the f'mite difference form of the elliptic type equation (4) 
is 

•i+l,j + •i-l,j + •i,j+l + •i,j-1 +ei,j•i,j = f i,j (45) 
where i/j is the grid index in x/y dimension of a square domain. 
The coefficients ei, j and fi,j can be calculated from the grid 
space and the canyon system parameters Y2 and Y3- If the 
domain is large enough, (27a) and (30a) and (3Oh) can be used 
as the domain boundary condition. In fact, the numerical solu- 
tion of (45) is done in pieces with boundary conditions given 
by (43) along all depth discontinuities. The singularity also 
occurs on a boundary. With the Chebyshev acceleration and a 
reasonable tolerance, the solution of (45) is calculated by si- 
multaneous overrelaxation [Press et al., 1986, pp. 657-659]. 
The precision of the solution has been checked by comparing 
different spatial resolutions. 

Solutions of (45) for some examples are given in Figure 6, 
which shows the contours of surface elevation, which also 

form streamlines. Because the Rossby radius over a stepped- 
bottom canyon has different values for the deep and shallow 
portions, the Rossby radius on the sheif, R•, is chosen as the 
length scale instead of the Rossby radius over the canyon. 

As is shown in the three panels of Figure 6, a stepped-bot- 
tom canyon is not a complete barrier to an approaching shelf 
flow. The shelf flow can cross the canyon edge in a small re- 
gion where the junction occurs between the step in the canyon 
bottom and the left canyon edge (looking upcanyon) in the 
northern hemisphere; a stepped-bottom canyon can also in- 
duce an along-canyon flux that is directed to the left of the ap- 
proaching shelf flow in the northern hemisphere. Note that 
the solution is no longer symmetric owing to the existence of 
the step. Figures 6a and 6b, compared with Figure 4a, show 

Figure 6. Contours of surface elevation •, which also form 
the streamlines, for the stepped-bottom canyon. Thick lines 
represent the position of the canyon edges and the canyon 
bottom step. Dotted lines represent negative • values. 
Arrows represent the direction of the flow in the northern 
hemisphere. The range of values contoured is - r/0 to r/0. The 
position of the initial surface discontinuity is at y=0. The 
length unit is R 1, y22 = 2, •'32 = 4, (a) The step is at y=4, 
•1 = 2, the grid points are 385 x 385, and the contour interval 
is 0.16 •0. (b) The step is at y=-4, •1 = 2, the grid points are 
385 x 385, and the contour interval is 0.16 •/0. (c) The step is 
at y=10, •1 = 30, the grid points are 401 x 401, and the con- 
tour interval is 0.2 
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that the flow on the fight-hand side of the canyon (looking up- 
canyon) is almost unaffected by the slope; however, on the 
left-hand side, much of the approaching flow that for a flat- 
bottom canyon would turn right, is deflected into the canyon. 
In Figure 6c the canyon is wide enough that the two sides are 
essentially decoupled. The solution in the canyon in the re- 
gion of the junction between the step and the canyon edge is 
similar to that observed by Gill et al. [1986] for a channel but 
modified by the source of fluid from the shell 

6. Geostrophic Circulation Over a Sloping- 
Bottom Canyon With a Coast and a Shelf Break 

6.1. Values of the Surface Elevation at Depth 
Changes 

This geometry (shown in Figure 2) has the gross features of 
Juan de Fuca Canyon including the shelf break, the coastline 
broken by the Strait of Juan de Fuca and variations of bottom 
depth. For convenience, the initial condition (26) is chosen 
with the fluid at rest and with a surface discontinuity along a 
line in the across-canyon direction. 

It is assumed that the coast is at y = d c , the shelf break is at 
y = dsB, the lower bound of the canyon head slope is at y = dht 
while the upper bound of the slope is at y = dhu, and the lower 
bound of the canyon mouth slope is at y = dmt while the upper 
bound of the slope is at y = dmu. 

The depth ratios in this model are defined as 

),j = Rj / R! = (h d / h 1 )1/2 J = 0,2,3, (46) 
where Rj is the barotropic Rossby radius corresponding to 
depth hj. Specifically, h 0 is the depth of the strait, h 1 is the 
depth on the shelf, h 2 is the depth of the middle canyon por- 
tion, and h 3 is the depth of the deep canyon portion and the 
deep ocean. 

To solve for the case with a canyon, the surface elevation at 
the coast and shelf break in the case without a canyon are re- 
quired. This solution can be found by assuming geostrophy, 

no variation in the along-shelf direction, and conservation of 
potential vorticity. Boundary conditions include no flow 
through the coast, mass flux conservation over the sheff break 
and conservation of mass. A full derivation is given by Chen 
[1996, Appendix C]. The required surface elevation values are 
as follows: At the shelf break, 

•I.,C = r•o [A exp( DsB3 ) + 1] (47a) 

and at the coast 

r/k = % [ 2 E exp(Dc ) - 1] 
where 

A = {211-exp(2D c )l}{xp(os3- osa ) 

(47b) 

x[( ?'3 -1)exp(2OsB1 )+( ?'3 + 1)exp(2 Dc )]}-l, 
E= {2 exp(Dstt3 )It3 cøsh(Dsztl >-sinh(Dsttl )]} 

x{2 exp(Ds•3 )[ 73 cosh(Dsm )-sinh(Dsm )] 

x[( 73 -1)exp(2 Dsm ) + ( 73 +l)exp(2 Dc ) ] }-1 
and Dsm = dsa / Ri , Dsm = dsB / R3, and De =dc / Ri. 

Now consider the case with a canyon as shown in Figure 7. 
At the coast and at all changes in depth, the surface height will 
be a constant as discussed in section 2. The waves, Kelvin 
waves induced by the coast and double Kelvin waves induced 
by the shelf break, are one sided; they propagate with the shal- 
lower water or the coast on the right. Following the direction 
of propagation of these waves and of the double Kelvin waves 
over the canyon slopes allows calculation of the surface 
height at all the depth changes. 

Because Kelvin and double Kelvin waves can propagate 
only in the -x direction, the existence of the canyon and the 
strait does not affect the adjustment process for x--> oo. Thus 
in the steady state, the surface elevation at the coast 
(denoted r/K ) is given by (47b), and the surface elevation at 
the shelf break (denoted r/LC) is given by (47a). 

land land 

head slope 

Y=dhu 

y=d hi 

Ps TI K 
y=d c 

shelf h 1 shelf hi 

mouth slope 
y--dmu 

y=dm• 

x=-L x=L Y=dsB 
TI.L3 

Figure 7. Top view of the Juan de Fuca model canyon. The shaded regions represent the canyon bottom 
slopes. The dotted line represents the position of the initial surface discontinuity. The width of the canyon as 
well as the strait is 2L. The depths in the inner strait, on the shelf over the middle canyon, and over the deep 
canyon (as well as in the deep ocean) are h 0, h 1 , h 2 and h 3, respectively. The surface elevation in the 
geostrophic state at all depth changes and boundaries is indicated. See text for other notations. 
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At the part of the canyon edge at x = L between the shelf 
break and the canyon mouth slope, which is contiguous with 
the shelf break, the surface elevation must be the same value as 

that at the shelf break for x > L, riLC. 
The surface elevation at the canyon edge at x = L is trans- 

mired by the canyon waves along the canyon edge in the +y 
direction and transmitted by the slope-induced topographic 
waves towards the canyon edge at x = -L. Regardless of the 
shape of the slope, the surface elevation over it is a constant, 
riLC, determined by the canyon waves. A constant surface el- 

evation over the slope implies that the fluid there, in the 
geostrophic state, is stagnant (see Allen [1996a] for details). 
The canyon waves carry the surface height riLC to the edge of 
the strait. 

Beyond the canyon head slope, in the geostrophic state, the 
surface elevation is uniform along the strait walls. If the sur- 
face elevation along the strait wall at x = L in the lower strait 
is assumed to be ri/3, the Kelvin waves within the strait will 
transmit this information along the strait wall at x = L toward 
the +y direction. Similar to the analysis for the canyon mouth 
slope, the canyon head slope does not interfere with the 
transmission of the information along the strait wall at x = L. 
The information ri• will be transmitted continuously along 
the whole length of the strait wall at x = L and transmitted by 
the slope-induced topographic waves toward the strait wall at x 

Note that riL• is equal to neither rizc nor rir. Thus Ps is a 
singular point similar to that discussed in section 5. At P s, 
where the coast meets the canyon edge at x = L, the incoming 
Kelvin waves which carry the information rlf f confront the 
incoming canyon waves which carry the information riLC. 
The outgoing Kelvin waves from P s propagate along the strait 
wall at x = L and transmit the information riLX in the +y direc- 
tion. 

Along the strait wall at x = -L, the Kelvin waves that propa- 
gate in the -y direction toward the head slope make the surface 
elevation a constant denoted ri-ro. However, in the region 
where the strait wall at x =-L meets the canyon head slope, 
these incoming Kelvin waves confront the incoming slope- 
induced topographic waves that carry the information ri•. 
The outgoing Kelvin waves that propagate toward the mouth 
of the strait make the surface elevation along the strait wall at 
x = -L in the lower strait a constant denoted ri-L2. The region 
where the canyon head slope meets the strait wall at x = -L is a 
singular line, an extension of the singular point discussed in 
section 5. 

When the Kelvin waves reach the junction of the coast and 
the canyon edge at x =-L, the task of transmitting the infor- 
mation, ri-L2, is handed over to Kelvin waves that propagate 
in the-x direction along the coast and the canyon waves that 
propagate toward the canyon mouth slope. 

The region where the canyon edge at x =-L meets the 
canyon mouth slope is another singular line. The outgoing 
canyon waves that propagate away from this region make the 
surface elevation along the canyon edge at x = -L in the deep 
canyon portion a constant denoted ri-L3' 

The double Kelvin waves that propagate in the -x direction 
along the shelf break for x <-L make the surface elevation at 
the sheff break ri-Z3- 

The geostrophic solution of the steady state governing 
equation (4) at all depth changes and boundaries has been ana- 
lyzed qualitatively and is indicated in Figure 7 for easy refer- 
ence. Now the relations between these surface elevations must 

be found using conservation of mass and the properties of 
Kelvin waves. 

Solution for riLS. Equating the flux across the lines 
y=dc-•, xe{-X,X}, and Y=dc+•, xe{-L,L}, where 
t; --> 0 and X --> oo shown in Figure 8a, gives 

)t2 2 _ 1)riLC + rile 
r•s = 2 ß (48) 

Solution for ri_LO o A strait acts similarly to a canyon 
with the canyon waves replaced by Kelvin waves. Thus the 
surface elevation at the two walls of the inner strait beyond the 
canyon head slope is given by 

(49a) 

"s(y+cøst)+TWps(Y-Cøst)' (49b) 
where Wns(Y+Cost ) is the infomarion caffied by the Kelvin 
waves •om the f•thest end of the s•ait towed the canyon 
head slope, Wps(y-Cost ) is the infomation caffied by the 
Kelvin waves moving in the +y direction, and 
a s = 1-tanh(fi / 2). 

El•inating Wps(y-Cost ) between (49a) and (49b) gives 

•-•0 = (50) 
2-as 

where Wns =-ri0 for the chosen initial condition (26). 

b) T•L• i!i Y=dhu+ œ 
land ii•i.:....T....:.:', 

i.l,c - 

hl 

p Y=drnl' gq .... 

ha 

land 

hl 

.... ..•-- y=d mu+ F_. 

Figure 8. Close up views of the Juan de Fuca model canyon 
near (a) the mouth of the strait, (b) the canyon head slope, and 
(c) the canyon mouth slope. The surface elevation in the 
geostrophic state at all depth changes is indicated. 
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Solution for /•-L2' Equating the flux across the lines 
y=dht-t; and y=dhu+t;, where t;--)0 and xt[-L,L} 
shown in Figure 8b, gives 

- + /•-L2 = "2 " 

where 7 is defined by (46). 
Solution for //-L3' Consider the rectangle shown in 

Figure 8c, which includes the canyon mouth slope. The four 

points of the rectangle are A(-X, dml-e ), B(X, dml-e ), C(X, dmu q' E), and O(-X,dmu q' E), in which e -->0 and 
X--> oo. Forcing the mass flux entering the box to be zero for 
the steady geostrophic state gives 

(?'32 -722)///_17+(722 - 1)r/-L2 
= . 

Solutions of the steady state governing equation (4) have 
been obtained at all depth changes (the canyon bottom slopes, 
the canyon edges, and the shelf break) and at all internal 
boundaries (the coast and the strait walls). Equation (4) can 
now be solved in each flat-bottom segment following the nu- 
merical procedure discussed in section 5.2. 

6.2 Numerical Solution for Full Domain 

The steady state governing equation (4) was integrated in a 
square domain several Rossby radii in width. The values of the 
surface height at all the depth changes were taken from the re- 
sults of the previous section. The solutions at the open 
boundaries are as follows. 

1. The solution at the right (southern) boundary is the 
geostrophic solution over a single step parallel to a coast 
without a canyon as discussed in the preceding section. The 
full solution is given by Chen [ 1996]. 

2. The solution at the left (northern) boundary is the 
geostrophic solution over a single step parallel to a coast 
forced to have surface elevations at the coast and shelf break 

given by •/-L2 and /•-L3, respectively. The full solution is 
given by Chen [1996]. 
3. The solution at the bottom (deep ocean) boundary is esti- 

mated from the surface elevation at the right and left bottom 
corners by linear interpolation. 
4. The solution at the top (strait) boundary is given by the so- 

lution for geostrophic flow constrained by the values of the 
surface elevation at the strait walls, r/_LO and r/L s. 

The results of the numerical integration for two sizes of 
canyon are given. First consider a canyon with width of 1 
Rossby radius (the barotropic Rossby radius on the shelf) and 
length of 4 Rossby radii. The depths are 100 m in the inner 
strait, 150 m on the shelf, 300 m in the middle canyon and 
1800 m in the deep canyon and over the deep ocean. Relative 
to the line of the surface discontinuity (at y= 0), the coast is 
at 3 Rossby radii, the shelf break is at -1 Rossby radius, and 
the two canyon slopes are located between 3.75 and 4.5 and 
between -0.6 and 0.2, again in Rossby radii. The distribution 
of the surface elevation is shown in Figure 9a, and a close-up 
of the flow vectors in the region of the canyon is given in 
Figure 9b. 

Similar to the stepped-bottom canyon, this geometry is not 
a complete barrier to the incoming shelf break current, part of 
which crosses the canyon walls at the canyon mouth slope. 
Some flow is diverted from outside the shelf break into the 
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Figure 9. Geostrophic state around the large size Juan de 
Fuca model canyon. (a) Contours of the surface elevation 
(b) Velocity field around the canyon; note that this is an ex- 
panded view. The thick lines represent the positions of the 
canyon edges, shelf break, coast, strait walls and boundaries 
of the canyon bottom slopes. Solid lines in Figure 9a repre- 
sent positive rl, while dotted lines represent negative fl. The 
length scale is R 1. The range of r/contoured is from -r/0 to 
r/0, and the contour interval is 0.14 r/0 where r/0 is half the 

height of the initial surface discontinuity, which was taken as 
0.2 m in this example. 

canyon through the mouth. Some of the flow in the canyon 
"squeezes" out of the canyon through the singular point where 
the coast meets the right canyon edge. 

The second canyon size chosen corresponds to the geome- 
try of Juan de Fuca Canyon. The depths are the same as in the 
previous case, but the canyon is 14 .kin wide (0.04 Rossby 
radii) and the shelf is 70 km wide (0.2 Rossby radii). The cal- 
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Vancouver 
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de Fuca Cany( 

Juan de Fuca Strait 

Olympic 
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deep ocean 

X -- CR•SS CI:INY•N DIRECTION 

Figure 10. Geostrophic state around the model of Juan de 
Fuca canyon. Only the inner grid is shown. The thin lines are 
contours of the surface elevation •/, which are also the stream- 
lines in the geostrophic state. Thick lines represent the posi- 
tions of the canyon edges, shelf break, coast, strait walls, and 
boundaries of the canyon bottom slopes. Arrows represent the 
direction of flow during a southerly coastal flow. The range of 
q contoured is from 0.5 q0 to 0.98 q0, and the contour inter- 
val is 0.01 •/0, where •/0 is half the height of the initial sur- 
face discontinuity. 

culation was done using a nested grid method. The first relax- 
ation was done for a 6 Rossby radii by 6 Rossby radii domain. 
Then, relaxation was done on a smaller grid (shown in Figure 
10) using, as open boundary conditions, values interpolated 
from the original large grid. Contours of surface height, 
which are the streamlines are shown in Figure 10. 

In the region of Juan de Fuca Canyon, the observed circula- 
tion is determined by a competition among several different 
physical processes including estuary effects, wind, and topo- 
graphic effects. However, even with neglect of stratification, 
some features of the flow around Juan de Fuca Canyon are simu- 
lated by this simple model. First, as was predicted by previous 
models and in agreement with this model, the southbound 
shelf break current leads to an in-canyon flow as observed by 
Freeland and Denman [1982]. Second, at the mouth of Juan de 
Fuca Strait, the flow around the corner of the Olympic 
Peninsula is strong and multidirectional [Thomson etal., 
1989]. Third, the model predicts cyclonic flow to the north of 
the canyon (most clearly seen in Figure 9a) in the region 
where the Tully eddy is observed. The model does not give a 
closed eddy, which is to be expected; the presence of nonlin- 
earity and the surface outflow from Juan de Fuca Strait must 
play a role. Fourth, the model shows a shift of the position of 
the shelf break current as it flows over the canyon to further 
inshore. Unfortunately, there are no detailed observations of 
the shelf current off the Olympic Peninsula to confirm or refute 
this prediction. 

Some other properties of flow around this geometry include 
the following. 
1. Unlike the infinitely long canyons, the streamlines are not 

symmetric owing to the existence of the shelf break. If the ini- 

tial condition is changed so that the geostrophic flow direc- 
tion is reversed, the flow patterns will be similar to those 
shown except with all flow directions reversed. 
2. A canyon can cause the inshore excursion of a shelf break 

current of either direction, but the net transport along the 
canyon and the flow within the canyon is always to the left of 
the shelf break current in the northern hemisphere. 

7. Discussion 

The analysis in this paper is based on the linear shallow wa- 
ter equations for the barotropic case and thus represents the 
strongest effects of the topography on the flow. Once stratifi- 
cation is considered, our results should be modified (see Allen 
[1996b] for the narrow canyon case). The barotropic solution 
can be directly extended to a special baroclinic case. If reduced 
gravity is used and hence the deformation scale is the internal 
Rossby radius, all results in this paper are retained in the bot- 
tom layer of a system with a relatively deep overlying layer 
(one and a haft layer stratified model [Gill et al., 1986]). 

In this paper, the dispersion relation for canyon waves has 
been calculated. The properties of long canyon waves are dis- 
cussed and are essential for determining the geostrophic state. 
The wave solution is not given in this paper, and thus the ad- 
justment problem posed in section 2 is only partially solved. 
Even so, some basic properties of the effect of canyons on 
shelf circulation have been revealed. Some important parame- 
ters defined in the process are ry and c o , and they are expected 
also to be significant for the wave solution. 

The canyon number ry is an important parameter for de- 
scribing the geostrophic state around a canyon. The value of 
• is determined by the geometry of the canyon system, i.e., 
the depth of the water layer on the shelf and over the canyon, 
the width of the canyon, and the Rossby radius over the 
canyon. For the bottom layer of the special baroclinic model, 
the one and half layer model, three canyons (Juan de Fuca 
Canyon, Astoria Canyon, and Moresby Trough) are chosen to 
illustrate the values of cr for real canyon systems (however, 
note that the upper layer is not relatively deep compared with 
the bottom layer, so the calculations give only the approxi- 
mate values of ry). For the Juan de Fuca Canyon system the 
depth of the bottom layer is assumed to be 50 m on the shelf 
and 250 m over the canyon; the average width of the canyon is 
7 km, while the local internal Rossby radius is about 20 km 
[Freeland and Denman, 1982]. Thus the calculated o' is 0.684. 
For Astoria Canyon the depth of the bottom layer is assumed 
to be 50 m on the shelf and 500 m over the canyon; the aver- 
age width of the canyon is 7 km, while the local internal 
Rossby radius is about 30 km (B.M. Hickey, The response of a 
narrow canyon to strong wind forcing, submitted to Journal of 
Physical Oceanography 1996, hereinafter referred to as B.M. 
Hickey, submitted manuscript, 1996). Thus the calculated ry is 
0.880. For Moresby Trough the depth of the bottom layer is 
assumed to be 50 m on the shelf and 250 m over the canyon; 
the average width of the canyon is 40 km, while the local in- 
ternal Rossby radius is about 20 km [Crawford etal, 1985]. 
Thus the calculated ry is 0.171. Thus Astoria canyon is nar- 
row with strong coupling between the two sides, Moresby 
Trough is wide with weak coupling, and Juan de Fuca lies in be- 
tween. 

A simple classical initial condition was used in most of the 
discussion. As long as the forcing is small enough that the 
flow remains approximately linear, solutions for other initial 
conditions can be found by linear superposition. 
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The topography involved is simplified but contains the ba- 
sic features of a real canyon. Studying the circulation around a 
flat-bottom canyon lays the foundations for analyzing that 
around a more realistic, complicated canyon. The circulation 
pattern for an infinitely wide flat-bottom canyon is identical 
to that derived by Gill et al. [1986] for a single-step topogra- 
phy, which has been demonstrated to be consistent with nu- 
merical and laboratory experiments [Gill et al., 1986]. To 
study a canyon with a stepped bottom is the first step toward 
studying a real, sloping-bottom canyon. Then a geometry was 
chosen that has the major features of Juan de Fuca Canyon, in- 
cluding the shelf break, coast, and Strait of Juan de Fuca. 

Extension of the results of this paper must be made carefully 
on account of the linear and inviscid assumptions. For in- 
stance, our results for a very narrow, infinitely long flat-bot- 
tom canyon will lead to currents within the canyon too strong 
to have physical meaning. This deficiency is probably due to 
neglecting the effects of turbulent viscosity or advection. 
Inclusion of viscosity and nonlinear advection in a stratified 
fluid is expected to improve our current theory. 

Our theoretical results are qualitatively consistent with 
some observations. For example, the mean shelf break current 
along the west coast of Vancouver Island, where the Juan de 
Fuca Canyon is located, is southeastward in the summer. A 
mean in-canyon current within the Juan de Fuca Canyon was 
observed in the summer [Freeland and Denman, 1982]. When a 
northwestward shelf break current is forced by a winter storm 
in this region, an out-canyon current within the canyon was 
observed [Cannon, 1972]. However, the current magnitudes 
predicted here, approximately equal in the canyon to that over 
the shelf, are a factor of 3 too high compared with Cannon's 
[1972] observations. The overprediction is expected; the ap- 
proximation of homongeneous flow tends to overestimate the 
effect of the topography. 

The theoretical results are also verified by the observations 
around the Hudson Shelf Valley [Mayer et al., 1982], where the 
strongest in-canyon and out-canyon flows are associated with 
northeastward and southwestward winds (and hence shelf cur- 
rents), respectively. All these observations are consistent 
with the prediction from our model with a shelf break. Using 
the conductivity-temperature-depth data from specific La 
Perouse cruises, Foreman [1992] simulated the summer 
geostrophic current in the coastal area southwest of Vancouver 
Island with a numerical model. The model results show that 

upwelling is associated with horizontal velocity excursions of 
the shelf break current onto the shelf through the canyons in 
this region. The dynamics for the horizontal movement of the 
currents around the canyons have not been given. Our theoret- 
ical analysis provides a possible explanation of Foreman's 
numerical results. The shelf break current has also been ob- 

served to turn shoreward and have a strong velocity compo- 
nent upcanyon over Astoria Canyon during periods of weakly 
vertically sheared southerly flow (B.M. Hickey, submitted 
manuscript, 1996). 

8. Conclusions 

In this paper the geostrophic adjustment method has been 
used to study the influence of submarine canyons on 
geostrophic shelf currents. The fluid is homogeneous, invis- 
cid, and on an f plane. Some conclusions can be drawn. 
1. The subinertial, double Kelvin waves over a canyon deter- 

mine the geostrophic solution. These waves can propagate in 
either direction along the canyon but are trapped to one of the 

canyon edges along which they propagate, keeping the deep 
water of the canyon to their left in the northern hemisphere. 
All but very long canyon waves are dispersive. 
2. An important parameter for describing the geostrophic 

state around a canyon is the canyon number cy, which is de- 
ternfined by the geometry of the canyon system (ty • {0,1}), 
for an infinitely narrow canyon cy--> 1 and for an infinitely 
wide canyon cy---> 0. The canyon number measures the influ- 
ence of one canyon edge on the other. 
3. For an infinitely long flat-bottom canyon, the canyon acts 

as a complete barrier to an approaching shelf flow in the 
geostrophic state. The net transport along the canyon is to the 
left of the approaching geostrophic flow in the northern 
hemisphere. 
4. For an infinitely long stepped-bottom canyon the canyon 

is not a complete barrier to an approaching shelf flow in the 
geostrophic state. In the northern hemisphere, flow crosses at 
the singular point where the left canyon edge (looking up-. 
canyon) meets the canyon bottom step. The net transport 
along the canyon is to the left of the approaching geostrophic 
flow in the northern hemisphere. 
5. For a canyon with geometry similar to Juan de Fuca, the 

canyon causes an inshore excursion of the geostrophic shelf 
break current, and flow also enters the canyon across the 
canyon wall at the mouth slope. Some flow exits the canyon 
where the canyon and shelf intersect, but flow within the strait 
is strong and an inflow. The net transport along the canyon 
and the flow within the canyon are toward the left of the shelf 
break current in the northern hemisphere. 

Appendix: Solving the System of Partial 
Differential Equations 

As an example we present the solution procedure for the 
system of first-order partial differential equations (22) for f> 
0. For f < 0 the process is similar. Substituting (22a) and (22c) 
into (22b) and (22d), the system reduces to 

cothfi + A t (y,t ) - 'sinhfi Dt (y,t ) 
-( H 2 - H 1 )Ay (y,t ) = -( H 2 -- H 1 ) lily , (Ala) 

1 At(y,t)+ cothfi + Dt(y,t ) - 'sinhfi 

+(H 2 - H 1 )Dy(y,t)=(H 2 - H• )rlly. (Alb) 
Define 

all = a22 = coth• + , (A2a) 
•,gj 

a12 = a21 = - sinhi] ' (A2b) 
- (A2c) 

h I = -h2 = -(H 2 - H 1 ) r/ly (y), (A2d) 
and let t = t(gt) and y = y(W), where W is a reference variable, 
so A = A(W) and D = D(W). Equation (A1) then collapses to 

(blli-allP)Ay - a12pDy =hli-allA-a12b, (A3a) 
a•2pAy +(blli+a•p)Dy =h•i+a•2A+alllS. (A3b) 

where the overdot denotes the derivative with respect to •. 
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The characteristic directions are given by 

blli-a11• -a12• [=0, 
a12• bali+ alii21 

(A4a) 

j• = + coi (A4b) 

where the positive parameter c o is defined as 

gl/2 

co- / 
or, in terms of 7 and • defined in section 3 and with 
C 1 =(gill) 1/2, 

C 0 C1 I •2 --11 = (M) 

(72 +27•thfl +1) 1/2' 
Equation (A5) is the group and phase speed of long canyon 
waves •at was derived in section 3. 

From (A4b), we know that •e system (A3) is of hyperbo•c 
ty• and •e •o sets of ch•actefistics are 

• =-codt, i.e., y +Cot = C1, 

dy = codt, i.e., y-Cot = C2 

where C1 and C2 •e constanU. From (A4a) the coefficients of 
(A3a) and (A3b) must be in a constant •tio for a solution to 
exist. We defoe this ratio as Z, i.e., 

•l[--all•_ -a12• hli-all•-a12• 
a12P - bill+all • = hli+a12•+all • =Z. (A6) 

Substituting (A2d) into (A6), we obtain 

(Zal2 +all ) •(y,t)+(Zall +a12 ) dD(y,t) 
dt 

= o. 
On a ch•acmristic, y + Cot = C1 (i.e., dy = -Co• ), (A6) be- 

comes 

•1 •--••1 +talc0 •, (A8) a12c0 

•d (A7) becomes 

(•1a12 +all )•(y,t)+(•la11 +a12 )dD(y,t) 

- o. 
c0 

Integrating (•), we have 

(•1a12 + all )A(y,t)+{•lall + a12 )D(y,t) 

-0-Zl) - = c3 (no) 
c0 

where C3 is a const•t along a ch•acm•sfic y + Cot = C1. 
S•l•ly, on a ch•acte•sfic, y- Cot = C2 (i.e., dy = c0•), 

(A6) becomes 
' •1 - allC0 

Z2 = , (A11) 
a12c0 

•d s•l• to (A10), we have 

(Z2al2 +all )A(y,t)+(Z2all +al2 )D(y,t) 

+(1-Z2) H2 - H1 •I(Y) = C4 (A12) 
c0 

where C4 is a const•t along a ch•acm•sfic y-Cot = C2. 

Because on each characteristic y + Cot = C1, the left-hand 
side of (A10) is a constant C3, and on each characteristic 
y-cot = C2, the left-hand side of (A12) is a constant C4, let 
these two constants be 

C3=-!H2-Hll(1-z1)Wp(y+cot ), Co 

C4= H2 - H1 (1-z2 )Wn (y-cot), 
Co 

where W n and Wp are arbitrary functions of one variable and 
are related to the information carried along the characteristics 
(see section 4.1). Then 

(Zla12 + all )A(y,t)+(Zlall + a12 )D(y,t) 

= -(H2-H1){1-Zl)[wt,(Y+Cot)- rlI(Y)] (A13a) 
co 

(X2a•2 + all)A(y,t)+(X2a•l + a12)D(y,t) 

= (H2 - H1 )(•- ;t2)[W• (y-cot)- rh (y)]. (^13b) 
Co 

It is straightforward to solve this system. Substituting 
(AS), (All), (A2a), and (A2b) into (A13), and defining a pa- 
rmeter found in the process 

o'=1-I all + al-••-2 / al 1 - al 2 

[ )l/2cosh]5+(H1)l/2sinh]5-(H2)l/211/2 = 1- (H2)1/2 )1/2 )1/2 ' (H2 cosh•5 + (H1 sinh•5 + (" 2 
or, in terms of 7' and •6, 

[ 7(coshfi- 1) + sinh]•] 1/2 tYiY']•) = 1- 'y(coshfl + 1) + sinh•/ ' 
we obtain the solution of (A13) as (24) in the terms 
W•, (y + Cot) and W n (y - Cot). 
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