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ABSTRACT

A novel pattern-based model evaluation technique is proposed and demonstrated for air quality models

(AQMs) driven by meteorological model (MM) output. The evaluation technique is applied directly to the

MM output; however, it is ultimately used to gauge the performance of the driven AQM. This evaluation of

AQM performance based on MM performance is a major advance over traditional evaluation methods. First,

meteorological cluster analysis is used to assign the days of a historical measurement period among a small

number of weather patterns having distinct air quality characteristics. The clustering algorithm groups days

sharing similar empirical orthogonal function (EOF) representations of their measurements. In this study,

EOF analysis is used to extract space–time patterns in the surface wind field reflecting both synoptic and

mesoscale influences. Second, simulated wind fields are classified among the determined weather patterns

using the measurement-derived EOFs. For a given period, the level of agreement between the observation-

based clustering labels and the simulation-based classification labels is used to assess the validity of the

simulation results. Mismatches occurring between the two sets of labels for a given period imply inaccurately

simulated conditions. Moreover, the specific nature of a mismatch can help to diagnose the downstream

effects of improperly simulated meteorological fields on AQM performance. This pattern-based model

evaluation technique was applied to extended simulations of fine particulate matter (PM2.5) covering two

winter seasons for the San Francisco Bay Area of California.

1. Introduction

Photochemical air quality model (AQM; Russell and

Dennis 2000) simulations are increasingly used for regu-

latory purposes (Fine et al. 2003). They provide technical

information to support air quality planning decisions. The

resulting policies can affect billions of dollars worth of

public health and economic activity annually (Yang et al.

2005). Because of the large stakes involved, policy makers

require confidence that simulation results are valid. For

use in policy making, AQM simulations must go beyond

merely reproducing observed pollutant levels. They must

additionally represent atmospheric processes with suffi-

cient fidelity to allow inferences about dominant pollutant

buildup mechanisms. Understanding the major buildup

pathways for regulated pollutants provides the only sound

basis for optimizing emission control strategies. Thus,

modelers must additionally evaluate AQM inputs such as

meteorological fields, pollutant and precursor emissions

inventories, and land use, as well as the inner workings of

the model to track ambient conditions.

AQMs need to accurately reproduce dominant pollutant

buildup pathways across the full range of meteorological
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conditions experienced during the modeled period. The

atmospheric processes responsible for pollutant buildup

are represented in gridded meteorological fields input to

AQMs. These fields are often prepared using separate

meteorological models (MMs). Thus, biases in the MM

output are propagated through the AQM. If MM biases

can be identified, they can provide strong signals to

assess the accuracy and diagnose the shortcomings of

an AQM.

Traditionally, simulated variables such as wind speed

and direction, temperature, and humidity are directly

compared against routine measurements (e.g., Seaman

2000) in an attempt to gauge the accuracy of the MM

output. Such an operational evaluation (Tesche 2002) is

simple to implement: error and bias statistics are com-

puted between corresponding modeled variables and

measured parameters that are paired in space and time.

These paired comparison statistics assay the magnitude

and sign of the discrepancy between simulation and ob-

servation. Large errors and/or biases indicate MM out-

puts that are unacceptable for use in AQMs. Smaller

error and bias levels, however, do not guarantee the

modeled meteorological fields are acceptable for use in

AQM simulations. That is, error and bias statistics are

necessary but insufficient for evaluating MM outputs as

AQM inputs. For example, two ozone episodes from the

same summer were modeled for the Central California

Ozone Study (CCOS). Operational evaluations of the

simulated meteorological fields indicated similar MM

performance for both episodes (Wilczak et al. 2005;

Tesche et al. 2004). These fields drove otherwise iden-

tical AQM simulations. AQM performance was ade-

quate for one episode but poor for the other.

Various technical issues limit the robustness of opera-

tional evaluation statistics. A commonly cited problem is

incommensurability (Swall and Foley 2009), also known

as change of support (Wilke 2003): measurements, which

are point estimates, are not directly comparable with

modeled quantities, which are volume averages. Also,

decreasing the model grid size often fails to yield better

operational performance statistics (Rife and Davis 2005,

and references therein). Most surface meteorological

networks are insufficiently dense to sample the localized

air flows represented in a finely gridded MM (Gego et al.

2005). Additionally, error and bias statistics cannot ac-

count for stochastic fluctuations that are absent from

deterministic model outputs (Hanna and Yang 2001).

Finally, point-by-point operational evaluation cannot

distinguish between atmospheric features that are miss-

ing altogether in the simulated fields, as opposed to those

that are present but dislocated in time and/or space.

Evaluation methods based on space–time patterns

(Casati et al. 2008) often provide more physical insight

than operational evaluation. Generally, a statistical

method is applied to extract patterns from either a spa-

tial field or a time series for both simulated and observed

values. The extracted patterns are then compared be-

tween simulation and observation. This framework to

compare patterns avoids the direct pairing of observed

point estimates with simulated quantities. Incommen-

surability issues are largely avoided. Also, the patterns

are estimated using multiple data points (from either

a spatial field or time series). This approach contrasts

markedly with operational evaluation, which pairs single

data points in space or time. Thus, simulated quantities

may be more robustly compared against measurements

by using a pattern-based approach instead of paired sta-

tistics. Moreover, evaluation explicitly based on space–

time patterns is likely to characterize a model’s ability to

reproduce physically relevant atmospheric features. Al-

ternatively, operational evaluation is purely empirical

and may lack physical meaning.

There are many types of model evaluation based on

space–time patterns. Spectral decomposition can de-

termine whether important time scales are sufficiently

represented in a simulation. Decompositions can be

performed using linear filtering (Rao et al. 1997; Gilliam

et al. 2006) or wavelets (Li and Shue 2004). Also, joint

distributions between different fields (e.g., wind and

temperature) can be estimated. Comparing simulated

and observed joint distributions can indicate how well

the temporal coherence of the respective fields has been

simulated (Mueller 2009). Spatial patterns are com-

monly isolated from fields of model output and obser-

vations using empirical orthogonal functions (EOFs;

Ludwig et al. 1995), also known as principal component

analysis (PCA; Rohli et al. 2004). These spatial patterns

can then be compared qualitatively and/or quantita-

tively to evaluate the simulated fields. Cluster analysis

(Ainslie and Steyn 2007) and other data partitioning

methods (Cannon et al. 2002) are also useful for ex-

tracting patterns in space and/or time. In practice, mul-

tiple space–time statistical techniques may be combined

to focus on specific scales at which conceptually impor-

tant phenomena occur.

Ideally, coupled MM–AQM evaluation should ex-

plicitly account for MM shortcomings that may degrade

AQM performance. In practical terms, such an evalua-

tion technique would save resources, as meteorological

fields unsuitable as AQM inputs could be identified di-

rectly. This foresight would avoid the costs of running and

evaluating AQM simulations destined to perform poorly.

An evaluation technique that predicts AQM perfor-

mance based on MM performance is also attractive from

a scientific standpoint. Empirical relationships linking

the weather and air quality may aid conceptual model
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development for air pollution meteorology (Christakos

2003).

This paper introduces a novel model evaluation tech-

nique for a coupled MM–AQM in which the MM output is

used as AQM input. It is based on comparing statistically

extracted space–time weather patterns embedded in me-

teorological observations and MM output. The method

achieves two important goals. First, it predicts how inac-

curacies for MM-generated meteorological fields may

degrade AQM performance. Second, it evaluates coupled

MM–AQM performance across different weather pat-

terns. It can identify and diagnose representative weather

patterns for which systematically poor MM performance

consistently degrades AQM performance.

2. Proposed pattern-based evaluation framework

We propose a two-stage pattern-based framework

for coupled MM–AQM evaluation. First, actual mete-

orological conditions are categorized among, or binned

into, a set of statistically defined weather patterns. Each

weather pattern should reflect different spatial and tem-

poral distributions for the analyzed meteorological pa-

rameters and should also be associated with distinct air

pollution characteristics. The historical period from which

the weather patterns are identified must include, but can

extend beyond, the simulation period for which model

evaluation will be performed. Second, MM outputs are

classified into the previously identified, measurement-

derived weather patterns. For a given period, agreement

between the observation-based categorization and the

simulation-based classification implies model validity. A

mismatch in the labeling of some period between sim-

ulation and observation implies that the distribution of

simulated quantities is inconsistent with observation.

The nature of any mismatch allows inference as to how

AQM performance may be degraded by MM short-

comings. Simulated pollutant levels are likely to re-

semble those associated with the mistakenly simulated

weather pattern indicated by the classification, instead

of the observed weather pattern reflected by the mea-

surements. Longer durations for such mismatches will

likely result in increasingly severe AQM performance

degradation.

Labelings of the observed and simulated meteoro-

logical conditions are implemented using unsupervised

(data driven) cluster analysis and supervised classifi-

cation, respectively (Jain 2000). Clustering both iden-

tifies the measurement-derived weather patterns and

labels their times of occurrence. Each weather pattern,

or cluster, is associated with a distinctly parameterized

statistical model that best describes the distribution

of its assigned data. Classification determines which

measurement-derived weather pattern most closely

matches the modeled meteorological fields for a given

period. The classification is performed using a statis-

tical calculation analogous to that used by the clus-

tering algorithm that defined the weather patterns.

Here, both clustering and classification are based on

EOF analysis of wind fields, as described in section 3.

Clustering of meteorological parameters can readily

establish the links between measured air quality and

observed meteorological conditions. These links allow

prediction of AQM performance based on MM output.

But, the clustering does need to be implemented on ap-

propriate data to identify atmospheric features at scales

relevant to air quality over the modeling domain. These

scales may generally include the planetary, synoptic,

meso-, and microscales. This model evaluation frame-

work assumes that nonmeteorological inputs to the AQM

such as emissions, chemistry, and land use are reasonably

accurate. Otherwise, it may not be possible to determine

the causes of AQM performance issues based on an

evaluation of meteorological fields alone.

To illustrate the utility of pattern-based model evalu-

ation, consider a simple two-pattern example. Suppose

that actual conditions are clustered as stagnant, but sim-

ulated conditions are classified as windy and turbulent. In

this case, the AQM would be expected to underestimate

pollutant levels. On the other hand, suppose that condi-

tions are in fact windy but are simulated as stagnant. In

that case, the AQM would be expected to overestimate

pollutant levels. Continuing with the same example,

consider the case in which actual conditions are stagnant

for an entire week. If only one day of the week is mis-

takenly simulated as windy, then AQM performance may

not be severely degraded. If the mismatch occurs for the

entire week, however, the AQM performance would be

expected to be worse.

3. Theory

a. EOF analysis of wind fields

In this study, clustering of meteorological observa-

tions and classification of MM outputs are both based

on EOF analysis (Lorenz 1956), also known as PCA

(Jolliffe 2002). This statistical approach can extract

features from meteorological parameters measured

over space and time. Here, EOFs are estimated from

hourly u and y wind components measured from a net-

work of s surface weather stations. In terms of PCA, the

model is applied in the S mode (Serrano et al. 1999) with

the parameters (u or y at a specific station) treated as

‘‘variables’’ and the sampling times treated as ‘‘cases.’’

The u and y components for each station are scaled
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by dividing by the mean observed wind speed for that

station. This scaling weights each weather station roughly

equally in the EOF analysis without distorting the wind

directions. To account for the autocorrelation (Shumway

and Stoffer 2005) in the hourly wind measurements,

replicated values at 1- and 2-h delays are concatenated

to the original values. Scaled values for each hour h are

stacked into ‘‘measurement vectors’’ x(h)(1 3 6s) as

follows, where the subscript is an index over the s

weather stations,

x(h) 5
u

1
(h), y

1
(h), u

1
(h� 1), y

1
(h� 1), u

1
(h� 2), y

1
(h� 2), . . . ,

u
s
(h), y

s
(h), u

s
(h� 1), y

s
(h� 1), u

s
(h� 2), y

s
(h� 2)

� �
. (1)

The EOFs for any set of measurements vectors x(h)

are estimated by applying singular value decomposition

(SVD). Each EOF is associated with a singular value si

that is proportional to the amount of variance in the set

of measurements vectors explained by that EOF. The

EOFs are rank ordered by decreasing level of variability

explained. The first EOF has the lowest order (1), has

the largest singular value, and explains more variance

than any other EOF. Of a possible 6s EOFs, only the first

nmax � 6s EOFs are retained and stacked into the col-

umns of P(6s 3 nmax). The percentage of the variability

in the decomposed data that is explained by the first nmax

EOFs is calculated from the singular values,

%variance explained 5

�
nmax

i51
s

i

�
6s

i51
s

i

3 100. (2)

The EOFs are orthogonal, and, when applied to time

series values, reflect wind field variability within distinct

frequency bands (Galin 2007). Atmospheric processes

occurring at lower frequencies generally have larger

spatial scales (Steyn et al. 1981). Because the EOFs are

a spectral decomposition of the wind field time series,

they are also associated with any atmospheric processes

that are coherent (correlated in time) with the wind

field.

For regional study domains in which large-scale in-

fluences dominate the weather, the EOF rank-ordering

is similar to the classical concept of wavenumber for

numerical weather modeling. Relatively lower ranked

EOFs tend to represent features at relatively larger

scales. Synoptic influences generally affect all stations

in a region and thereby tend to contribute the largest

amounts of variability to the measurements vectors.

Thus, synoptic influences tend to be represented by the

lower-order EOFs. More localized atmospheric fea-

tures affect subsets of the stations and thereby tend

to contribute less to the overall variability in the wind

field. These mesoscale influences tend to be represented

by the middle-order EOFs. Microscale influences and

stochastic fluctuations may affect each weather station

uniquely. They tend to be represented in the higher-

order EOFs, which explain small amounts of variability.

Microscale structures in the boundary layer are of little

interest for model validation purposes because MMs

typically do not represent such finescale processes. Thus,

the user should attempt to select nmax to retain the

lower-order (synoptic) and middle-order (mesoscale)

EOFs and discard the higher-order (microscale) EOFs.

b. EOF-based cluster analysis

The nontraditional nonhierarchical clustering algo-

rithm of Beaver and Palazoglu (2006a) is applied to

measurements vectors x(h) to produce k clusters of days,

or weather patterns. Each cluster c is represented by

a distinctly parameterized set of nmax EOFs appearing as

the columns of matrix Pc(6s 3 nmax). The parameter nmax

is determined by trial and error such that all clusters suf-

ficiently reflect the various synoptic and mesoscale phe-

nomena represented in their assigned measurements. The

clustering algorithm is constrained to always assign the

24 h from a given day (midnight to midnight, local time)

to the same cluster. This blocking of the hourly cluster

assignments into 24-h windows serves as a simple low-pass

filtering to generate daily labels by clustering hourly

measurements. Measurement vectors x(h) for each day

d appear as the rows of data block X(d)(24 3 6s).

Initially, each cluster is randomly seeded with the

daily data blocks. Then, the days are reassigned itera-

tively to produce an optimized set of clusters. On each

iteration, an EOF model Pc is estimated for each cluster

c from its assigned data blocks X(d) vertically concate-

nated into the rows of supramatrix xc(24Nc 3 6s), where

Nc is the number of days assigned to cluster c. The scalar

sum-of-squares errors totaled across 24 h, ec(d), is com-

puted for fitting the block of data for each day d into the

EOF model for each cluster c,

e
c
(d) 5 [ X(d)(I� P

c
PT

c )
�� ��

F
]2

5 �
t(d)123

h5t(d)

[ x(h)(I� P
c
PT

c )
�� ��]2.

(3)
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The notation indicates squared Frobenius (matrix

Euclidean) and L2 (vector Euclidean) norms, I is an

identity matrix, and t(d) is the first hour (midnight local

time) of day d. Then, each day d is reassigned to the cluster

c satisfying argmincec(d). The iterative procedure con-

tinues until no further reassignments are possible.

The nonhierarchical algorithm usually converges to a

local minimum for a given value of k, the number of

clusters. The procedure of Beaver and Palazoglu (2006b)

is applied to an ensemble of randomly initialized runs of

the clustering algorithm. This randomized resampling ap-

proach, similar to bootstrapping, yields a final ensemble-

averaged solution with an appropriate number of clusters

that is near the global minimum of the solution space.

Most days are assigned a single cluster label having a

high level of confidence. Some transitional days sharing

properties of two clusters may be doubly assigned with

moderate confidence. A small proportion of the days

cannot be assigned to any cluster with reasonable con-

fidence and remain unlabeled.

Properly identified weather patterns should be asso-

ciated with distinct aloft conditions, despite no aloft data

having been input to the clustering algorithm. The cor-

responding aloft conditions for each cluster are deter-

mined by compositing weather maps across the days

assigned to that cluster. Cluster-averaged precipitation

and surface temperature fields can further characterize

the weather patterns.

c. Multiscale classification of model outputs using
EOFs

Once the weather patterns are established by clus-

tering, MM outputs can be classified among these known

categories. Simulated wind values are first interpolated

from model grid points to the corresponding locations of

the weather stations that provided the clustered mea-

surements. The simulated u and y components are scaled

by the modeled mean wind speed for that location. This

scaling reduces discrepancies in wind speed between

model and observation while still preserving the simulated

wind field spatial structure. The processed model output is

arranged into vectors analogously to (1). Then, the sum-

of-squares errors for fitting each day of model output into

each cluster’s EOFs are calculated analogously to (3).

Each day of model output is classified into the cluster

having the EOFs that represent those simulated winds

with the smallest sum-of-squares error.

The classification can be performed using different

subsets of the EOFs. Here, classifications are always

performed using the first n EOFs, where n # nmax is said

to be the EOF model order. This hierarchical EOF

model structure is used because finer-scale patterns are

not well defined without being superimposed on their

larger-scale settings. Classification using EOF model or-

der n is achieved analogously to (3), except using only the

first n columns of Pc. A given day of model output may be

classified into different clusters at different EOF model

orders. Such behavior indicates simulated conditions cor-

responding to different measurement-derived weather

patterns at different scales. The clustering, on the other

hand, only needs to be performed once using nmax EOFs,

as determined during execution of the algorithm. The

clustering estimates a total of nmax EOFs for each cluster

that are by definition consistent across all scales. This

consistency across scales for the measurement-based

clusters reflects how distinct synoptic regimes set the

stage for distinct mesoscale air flows to develop.

4. Case study

a. Description of study domain

The proposed pattern-based model evaluation tech-

nique is demonstrated for the San Francisco Bay Area

(SFBA) of California (Fig. 1) for the core fine particulate

matter (PM2.5) season of December–January. Exceed-

ances of the 24-h PM2.5 National Ambient Air Quality

Standard (NAAQS) of 35 mg m23 occurred mostly dur-

ing these months. During these winter episodes, synoptic-

scale stability and subsidence often trapped PM2.5 and its

precursors close to the ground. At the mesoscale, terrain-

induced air flows defined the source–receptor relation-

ships, limited pollutant dispersion, and controlled the

PM2.5 spatial distribution. The SFBA is ideal for dem-

onstrating pattern-based model evaluation at both the

synoptic scale and mesoscale.

The SFBA is part of the larger central California do-

main, which also includes the Sacramento Valley (SV)

and the San Joaquin Valley (SJV). This pair of large,

inland valleys together forms the Central Valley (CV).

The SFBA, the SV, and the SJV have major connections

at the Delta region to the east of the Bay. Air flows

between the SFBA and the CV occurred through the

narrow Carquinez Strait, the only major gap in the rims

surrounding the CV. These three basins shared similar

air quality characteristics because of similar emissions,

coupled meteorological conditions, and interconnected

terrain. During episodic winter conditions, the SV and/

or the SJV were often upwind of the SFBA.

b. Summary of previous cluster analysis results

Cluster analysis was applied to SFBA surface wind

measurements from 12 winter seasons (November–

March) from 1 January 1996 to 31 March 2007 (Beaver

et al. 2010). Clustering 1754 days robustly identified the
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relevant weather patterns impacting PM2.5 levels. The

clustered surface wind measurements were from a net-

work of 12 SFBA weather stations shown in Fig. 1.

Based on previous experience, microscale structures and

noise were assumed to account for around 10% to 15%

of the SFBA wind field variability. Thus, the cluster

analysis was performed using nmax 5 14 to explain

around 85%–90% of the variability in each cluster that

represented mostly synoptic and mesoscale influences.

The clustering identified five weather patterns having

distinct PM2.5 characteristics. The synoptic-scale condi-

tions were resolved by compositing gridded pressure

level data up to the 500-hPa pressure level. The 500-hPa

composite National Centers for Environmental Pre-

diction (NCEP) reanalysis (http://www.esrl.noaa.gov/

psd/) geopotential height fields (not shown) were used

to name the clusters. The type of synoptic features im-

pacting the SFBA, their relative strengths of forcing on

the surface winds, and cluster names are indicated in

Table 1. Interregional surface airflow patterns for these

clusters are shown in Fig. 2. Distinct wind field patterns in

the CV, outside of the clustered domain, provided further

evidence that the weather patterns are real. Each cluster

was also verified to exhibit a distinct surface temperature

FIG. 1. SFBA and partial CV study domain showing surface wind stations used in cluster

analysis, PM2.5 monitors, the Arbuckle weather station, and important geographic features.

2082 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 49



pattern (not shown). These five weather patterns are fully

described in Beaver et al. (2010).

Three clusters (named R1, R2, and R3) were associ-

ated with anticyclonic conditions and elevated PM2.5

levels; ‘‘R’’ denotes upper-level high pressure ridges.

Over 80% of the SFBA PM2.5 24-h exceedances oc-

curred under R2. The rest occurred mostly under R3.

Episodic weather patterns R2 and R3 both had ridges of

aloft high pressure positioned over the SFBA, resulting

in weak large-scale pressure gradients. Light, shallow,

easterly air flows developed around the SFBA. Cluster

R3 had the weakest large-scale forcing and the lowest

SFBA wind speeds. It was also the only weather pat-

tern with diurnally reversing wind directions. Both epi-

sodic weather patterns exhibited near-calm conditions

throughout the CV. Like the episodic weather patterns,

R1 also had easterly surface winds through the SFBA.

Unlike the episodic patterns, however, the R1 airflow

pattern was driven by a strong large-scale pressure gra-

dient. The R1 flow pattern was relatively deep, and both

moderate mechanical mixing (vertical dispersion) rates

and mixing depths resulted in moderate PM2.5 levels.

Strong winds entered the SV from the north and flowed

southward along the SV major axis. Unlike the episodic

TABLE 1. Names, number of occurrences, number of NAAQS exceedance days (any SFBA monitor exceeds 35 mg m23), and qualitative

characteristics of five clusters.

Name No. days total No. exceedance days PM2.5 levels Synoptic (500-hPa level) feature

Strength of synoptic

forcing

R1 219 7 Moderate Offshore high pressure ridge Strong

R2 422 145 Highest Shoreline high pressure ridge Weak

R3 279 25 High Inland high pressure ridge Weakest

V 413 6 Low Trough (ventilated) Strong

S 489 6 Low Storm–cyclone (zonal flow aloft) Strong

FIG. 2. Mean 0900 PST 1-h surface wind fields for five clusters. Arrow lengths are proportional to wind

speed. Arrows point along direction of wind. Arrow tails are positioned at stations.
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weather patterns, the aloft ridge for R1 was positioned

offshore instead of over the SFBA. Two other cyclonic

weather patterns were named V for ventilated and S for

stormy. Both exhibited strong large-scale pressure gra-

dients, strong marine winds entering the SFBA from the

west, and low PM2.5 levels. Nearly all SFBA precipita-

tion occurred under S.

c. Description of MM–AQM simulations

Mesoscale meteorological and photochemical simu-

lations were performed for a subset of the 1996–2007

winter cluster analysis study period. The modeling do-

main included the SFBA, the SV, the SJV, and remote

regions over the Pacific Ocean and the Sierra Nevada.

Simulations for 1 December–2 February were perfor-

med for both the 2000/01 and 2006/07 winters, for 128

days total. Meteorological fields were prepared using

the fifth-generation Pennsylvania State University–

National Center for Atmospheric Research Mesoscale

Model (MM5) with 4-km horizontal grid size and 30

vertical layers. Then, PM2.5 levels were simulated using

the Community Multiscale Air Quality (CMAQ) model

with the Statewide Air Pollution Research Center,

version 1999 (SAPRC99), chemical mechanism and the

Models-3 AERO3 aerosol module with the Regional Acid

Deposition Model aqueous chemistry mechanism (AE3-

aq). Emissions only varied by day of week, with significant

weekday–weekend differences, and by winter season.

CMAQ performance was evaluated for three key

monitoring locations. Gravimetric samplers analyzed us-

ing the federal reference method (FRM) provided daily

24-h PM2.5 measurements at Concord and San Jose. Beta

attenuation method (BAM) instruments provided daily

24-h PM2.5 measurements at Livermore and San Jose.

San Jose PM2.5 level was taken as the average of the

FRM and BAM measurements. Observations were

compared against the minimally deviating simulated

value within a 3 3 3 array of first-layer grid cells cen-

tered around the monitor. Pairing the observations with

simulated values in adjacent grid cells helped account

for the sharp PM2.5 gradients over the complex terrain.

5. Results

a. MM evaluation

Simulated hourly winds were interpolated from the

MM5 output to locations corresponding to the surface

weather stations used in the clustering. These simulated

winds were used to classify each day among the five

weather patterns described in section 4b. Classifications

were performed using EOF model orders 1–14.

Table 2 shows the correspondence of each pair of

clustering (observation) and classification (simulation)

labels using selected lower- and middle-order EOFs. The

selected lower-order EOF classification used the first 3

EOFs and reflected mostly large-scale (synoptic) vari-

ability. The selected middle-order EOF classification used

the first 11 EOFs and reflected more localized (mesoscale)

circulations. In reality, there is a continuum of scales

represented across the 14 EOF model orders. Repre-

sentative results for two model orders (3 and 11) near

opposite ends of this spectrum demonstrate the multi-

scale capabilities of the EOF-based evaluation technique.

Regardless of actual conditions (cluster label), MM5

was generally unable to reproduce the R3 pattern. The

cluster analysis assigned 23 days from the simulation

period to this pattern. Of the 128 simulated days, only 5

and 6 (column sums in Table 2) were simulated as R3

(correctly or otherwise) at the selected lower and middle

EOF model orders, respectively. Many of the R3 days

were incorrectly simulated as either R1 or S, both windy

patterns. This mismatch suggested CMAQ would un-

derestimate PM2.5 levels for most of the R3 days because

simulated wind speeds were too high.

MM5 also had trouble simulating R2. At the selected

lower model order, under half (19 of 51) of the R2 days

were correctly simulated. Around half (24 of 51) of these

R2 days were mistakenly simulated as R1, a windy

pattern. At the selected middle EOF model order, MM5

performance was further degraded. More R2 days (34)

were mistakenly simulated as R1, and fewer R2 days

(10) were correctly simulated. MM5 performance for

this episodic cluster was more degraded at finer scales.

TABLE 2. Numbers of assigned days for observed clusters (first two columns). Numbers of simulated days from each cluster classified to

each pattern, using lower- and middle-order EOFs. Sums across columns for the classification tables (center and right groups of columns)

may not match value in same row under ‘‘observed clusters’’ because any doubly assigned days were counted as full matches to both patterns.

Observed clusters Classification using first 3 EOFs (lower order) Classification using first 11 EOFs (middle order)

Name No. days R1 R2 R3 V S R1 R2 R3 V S

R1 31 26 0 0 0 4 28 0 0 0 4

R2 51 24 19 1 0 7 34 10 1 0 7

R3 23 12 1 4 2 6 14 0 4 3 4

V 11 5 0 0 4 4 2 0 1 5 5

S 22 1 1 0 0 22 2 0 0 1 20
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These mismatches suggested that CMAQ would un-

derestimate PM2.5 levels for the majority of the R2 days

because they were simulated as high wind pattern R1.

This systematic MM5 bias to mistakenly simulate ob-

served episodic R2 conditions as nonepisodic R1 con-

ditions is termed the R2–R1 mismatch.

Across all scales, both R1 and S were usually simulated

correctly. MM5 had difficulty simulating V on more than

half of its occurrences. At lower order, V was likely to be

confused with either R1 or S. At middle order, however,

V was generally only confused with S. Simulating V as S

was not likely to degrade CMAQ performance signifi-

cantly, because both cyclonic weather patterns had low

PM2.5 levels.

Figure 3 shows the time series for the clustering and

classification labels. Results of the classification across all

14 EOF model orders are shown for 2000/01 only. The

time series for the model evaluation results indicated one

significant problem with the timing of MM5. The cluster-

ing indicated that the transition R2 / S occurred over 8–

9 January. MM5, however, produced this same transition

two days in advance of the observed transition. This mis-

timing suggested that CMAQ would produce a premature

decrease in simulated PM2.5 levels before 8–9 January.

For most EOF model orders, the classification label

varied smoothly with EOF model order (vertical di-

mension in Fig. 3, bottom panel). For example, R2 days

were often simulated as R2 for lower model orders, but

they were simulated as R1 for middle orders. Classifi-

cations using just the lowest lower-order EOF (1) and

including the highest middle-order EOFs (13–14) were

often inconsistent with those using intermediate EOF

model orders (2–12).

b. AQM evaluation

The coupled MM–AQM evaluation technique gen-

erally indicated that episodic conditions (R2 and R3)

were inaccurately simulated whereas nonepisodic con-

ditions (R1, V, and S) were reasonably accurately sim-

ulated. Thus, CMAQ performance varied considerably

between episodic and nonepisodic conditions. Days

clustered into R1, V, or S exhibited simulated 24-h PM2.5

levels at Concord, Livermore, and San Jose with mean

biases (model minus observation; negative biases indi-

cated model underestimation) and errors of 21.6 6 6.4,

24.2 6 8.8, and 0.0 6 9.3 mg m23, respectively, relative

to the measurements over 2000/01 and 2006/07. In

comparison, days clustered into R2 or R3 had consid-

erably poorer statistics of 27.3 6 12.2, 213.7 6 15.6, and

27.3 6 14.8 mg m23, respectively. Despite significant

biases, the observed and simulated PM2.5 levels were

well correlated. Pearson correlation coefficients be-

tween simulated and observed PM2.5 levels for 2000/01

and 2006/07 at Concord, Livermore, and San Jose were

0.81, 0.69, and 0.82, respectively.

Time series for the CMAQ simulation results are

shown in Fig. 4 for 2000/01. This simulation period in-

cluded four complete episodes of elevated PM2.5 in-

terspersed with relatively unpolluted conditions. Three

episodes occurred under persistent R2 conditions, as de-

termined by the clustering (see cluster labels on Fig. 3):

1–7 December; 26 December–8 January; and 17–22

January. As indicated in Fig. 3, each of these episodes

exhibited varying degrees of the R2–R1 mismatch.

Meteorological conditions for these episodes were often

simulated correctly at lower EOF model orders; how-

ever, MM5 mistakenly simulated many of the R2 days as

R1 at middle EOF model orders. Moreover, the R2–R1

mismatch occurred for multiple consecutive days during

each episode. Therefore, as expected, CMAQ-simulated

PM2.5 levels were underestimated, and in many cases,

severely so. The third persistent R2-type episode (17–

22 January) exhibited the most severe R2–R1 mismatch,

with mismatches occurring for most days at most EOF

FIG. 3. Time series for cluster and classification labels for 2000/01 simulation period. Each square indicates label(s)

for a single day using a given EOF model order. Squares are broken into pairs of triangles for doubly assigned days.

(top) Cluster (observation) labels using nmax 5 14; (bottom) classification (simulation) labels for 1 # n # nmax stacked

vertically. Patterns R1, R2, and R3 are indicated by grayscale shading. Patterns V, S, and unlabeled days are shown as

white with no marker, a dot, and an x, respectively.
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model orders. CMAQ-simulated PM2.5 levels were

most severely underestimated for this episode. Also, the

second persistent R2-type episode exhibited the R2–R1

mismatch at most scales during 31 December–2 January.

Simulated PM2.5 levels for this episode were more se-

verely underestimated during this period of intensified

R2–R1 mismatch as compared to the straddling periods

having mismatches at fewer scales. During the persistent

R2-type episodes, the simulated meteorological condi-

tions were most accurate during 4–6 January. These days

were correctly simulated as R2 for most EOF model

orders, except for orders 13–14, which often resulted in

inconsistent classifications. The downward bias in sim-

ulated PM2.5 levels was less severe for most locations

during this period.

Figure 5 provides a snapshot for a day exhibiting the

R2–R1 mismatch. Simulated PM2.5 levels and winds are

shown for the central California modeling domain on R2

day 27 December 2000. In reality, this day had near-calm

winds and high PM2.5 levels throughout the CV. The

simulation, however, produced winds that were too strong

in the northern SV. The simulated surface airflow pattern

(Fig. 5) most strongly resembled that of R1 (see Fig. 2).

Diagnosis of the R2–R1 mismatch focused on surface

locations in the southern SV. Winds here were impor-

tant for several reasons. First, clusters R1 and R2 were

most strongly differentiated in the SV (see Fig. 2). Sec-

ond, previous research has suggested that the complex

SV surface flows are more sensitive to small changes in

the large-scale pressure gradient driving flow through

the Carquinez Strait than for the other central California

basins (Bao et al. 2008). Third, the southern portion of

the SV is connected with the SFBA, and direct pollutant

exchange may have occurred here.

Figure 6 shows the time series for simulated and ob-

served hourly wind speed and direction at Arbuckle (see

Fig. 1) for the first two persistent R2-type episodes.

Similar behavior was observed for the third persistent

R2-type episode (not shown). The Arbuckle station was

representative of the southwestern SV during these epi-

sodes. When the R2–R1 mismatch occurred, simulated

wind speeds were too high. The model also did not appear

to reproduce the timing of the observed wind speed

minima that often occurred overnight. Additionally, the

observations indicated diurnally shifting flows with over-

night westerly winds. MM5 winds were persistently from

the northwest. During 4–6 January, when the R2–R1

mismatch was minimal, the simulated Arbuckle winds

tracked the observed winds reasonably well. A similar

pattern appeared in the southeastern SV (not shown),

except that the observed overnight flows were easterly.

A different type of episode developed over 17–

25 December, during which the sequence R1 / R2 /
R3 / R1 occurred. This more transient type of episode

having evolving large-scale conditions over an 8-day

period was reasonably well modeled by MM5. Except

for the R3 days, which were almost never simulated

properly, the lower-order classification labels matched

the cluster labels. Mismatches occurred at middle EOF

orders. CMAQ performance for this episode was less

degraded than for the other episodes that occurred un-

der persistent R2 conditions.

The mismatch in timing for the R2 / S transition

observed to occur over 8–9 January appeared to signifi-

cantly degrade CMAQ performance. As expected, sim-

ulated PM2.5 levels at many locations began to decrease

in advance of the observations. The PM2.5 levels were

severely underestimated on 7 January.

FIG. 4. Simulated (plus signs) and observed (squares) 24-h PM2.5 levels at three SFBA monitoring locations for

2000/01 winter. Four highlighted episodes are of two classes: persistent R2 (diagonal hatch) and more transient R1 /
R2 / R3 / R1 (vertical hatch). Horizontal lines are at 24-h PM2.5 NAAQS exceedance threshold (35 mg m23).
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6. Discussion

a. MM diagnosis

The predominant classification mismatches signaled

a classic deficiency of MM5 to overemphasize the large-

scale pressure gradient and underemphasize localized

air flows (e.g., Hogrefe et al. 2001). MM5 generally had

difficulty reproducing the conditions associated with

weak synoptic forcing having an aloft ridge over the

SFBA. The model was unable to produce R3, the pat-

tern with the weakest synoptic forcing, regardless of

actual conditions. The model also had difficulty re-

producing R2, the pattern with the second-weakest

synoptic forcing. Anticyclonic conditions (R1, R2, and

R3) were generally simulated as R1, the anticyclonic

pattern having the strongest synoptic forcing and mod-

erate PM2.5 levels. Here, R1, V, and S shared strong

large-scale pressure gradients, regionally high winds,

and lacked strong stability. The R1 days were usually

simulated correctly. The cyclonic patterns (V and S)

were typically simulated as cyclonic, although the V–S

mismatch was common. The V–S mismatch was not very

important for air quality applications because both

patterns were windy and well ventilated; however, this

finding may be important for precipitation applications

because V is dry and S is rainy.

The clustering indicated that PM2.5 episodes in the

SFBA resulted upon transitions from cyclonic toward

anticyclonic regimes. MM5 could distinguish between

anticyclonic (R1, R2, and R3) and cyclonic (V and S) re-

gimes having moderate-to-high and low PM2.5 levels, re-

spectively. Thus, the simulated meteorological conditions

should be able to distinguish between days with moderate

to high PM2.5 levels and days with low PM2.5 levels. These

simulated fields would be expected to reproduce the tim-

ing of PM2.5 episodes when used to drive an AQM. One

exception would be the prematurely simulated R2 / S

transition observed to occur over 8–9 January 2001. Mis-

matches among the anticyclonic weather patterns would

be expected to result in appreciable downward biases for

CMAQ-simulated peak PM2.5 levels that occurred under

episodic patterns R2 and R3.

FIG. 5. Simulated surface layer 24-h PM2.5 levels and 24-h wind field for 27 Dec 2000. Arrows

point along direction of wind. The PM2.5 levels are indicated by grayscale. California bound-

aries and CV municipal boundaries for Sacramento, Stockton, Modesto, Fresno, and Bakers-

field (north to south) are shown for reference. The dashed box indicates the extent of Fig. 1.
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The R2–R1 mismatch was an important systematic

bias identified for MM5 because the R2 conditions

accounted for most SFBA PM2.5 episodes. This sys-

tematic bias occurred only under certain conditions, so

it was not obvious using traditional operational evalua-

tion techniques. The observed R1 and R2 patterns were

clearly distinguished by the EOF-based clustering; how-

ever, simple analyses of weather maps or surface wind

fields may not have distinguished these conditions. The

EOFs reflected atmospheric processes coherent with the

surface wind field, and therefore helped to reveal three-

dimensional features differentiating the related R1 and

R2 patterns. The clustering of surface observations clearly

indicated differences in the positions of the ridges aloft.

For R1 the ridge was positioned offshore, whereas for R2

the ridge was positioned directly over the SFBA. MM5,

on the other hand, appeared relatively insensitive to dif-

ferences in the boundary conditions between R1 and R2.

Both R1 and R2 were observed to produce persistent

easterly surface winds through the SFBA. These airflow

patterns appeared similar based on simple wind field

analyses of the SFBA measurements. The EOF-based

clustering, however, distinguished R1 as a relatively deep

flow generated by the large-scale pressure gradient and

R2 as a relatively shallow flow generated by terrain and

surface heating effects.

The performance of MM5 was scale dependent, espe-

cially under conditions with pronounced terrain-induced

airflow features. At the synoptic scale (lower-order

EOFs), MM5 was able to reproduce the effects of the

strong ridging pattern R2 about half of the time. Thus,

the model was often able to replicate the bulk easterly

SFBA surface air flows associated with the ridge. At

the mesoscale (middle-order EOFs), however, MM5-

simulated conditions that were not strongly conducive to

PM2.5 buildup. SFBA surface winds were correctly sim-

ulated as persistently from the east; however, the R2–R1

mismatch implied that wind speeds, mixing rates, and

therefore overall pollutant dispersion rates were too high,

especially in the SV. The scale dependency was less

prevalent for the weather patterns with strong synoptic

forcing. At lower orders, V was mistakenly simulated as

R1 or S, the other patterns with strong synoptic forcing.

At middle orders, however, V was only mistakenly sim-

ulated as S, the other pattern with westerly marine surface

winds. At middle orders that reflect mesoscale influences,

R1 and V were not confused because they exhibited op-

posite directions of bulk surface flow through the SFBA

(easterly and westerly, respectively).

At the very lowest (1) and highest middle (13–14)

EOF model orders, the model evaluation technique

itself did not perform well. The first EOF typically rep-

resented 40%–50% of the variability in the MM5 out-

put. The simulated conditions likely were insufficiently

represented using this lone EOF. Classification using the

highest middle-order EOFs (13–14) generated many

labels that did not vary smoothly with EOF model order.

These highest middle-order EOFs were likely explain-

ing highly localized conditions that were not strongly

connected to the organized flows that determined PM2.5

source–receptor relationships. Also, these highest middle-

order EOFs may have represented stochastic fluctuations

and/or microscale structures in the ambient condi-

tions that were not represented by MM5. The poor

FIG. 6. Time series for observed (solid line with plus signs) and simulated (dashed line with circles) hourly 1-h (top)

wind speed and (bottom) direction at Arbuckle (see Fig. 1). Two periods exhibiting R2–R1 mismatch from 2000/01

winter are separated by a gray patch: 1–7 Dec and 26 Dec–8 Jan. Hashed vertical lines appear at midnight PST

beginning each day.
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performance of the model evaluation technique at ex-

treme EOF model orders (1 and 13–14) represented ef-

fects of underfitting and overfitting, respectively, by the

EOF models when classifying MM5 outputs.

b. AQM diagnosis

The predictive capability of the proposed MM–AQM

evaluation technique provided a number of insights be-

yond those revealed by operational evaluation. As ex-

pected, episodic PM2.5 levels were usually underestimated

by CMAQ. This effect was pronounced for episodes

occurring under persistent R2 conditions, as manifested

by the R2–R1 mismatch. The scale dependency of MM5

to exhibit the R2–R1 mismatch appeared to explain

the degree of degraded CMAQ performance. Periods

with R2–R1 mismatches occurring across more EOF

model orders exhibited poorer CMAQ performance.

Also, longer durations for the R2–R1 mismatch produced

larger downward biases for the simulated PM2.5 levels.

Presumably, a lack of simulated pollutant buildup helped

cause these significantly underestimated PM2.5 levels,

especially during persistent R2 conditions. For a different

type of episode with stronger synoptic forcing, CMAQ

performed reasonably well. With a single exception, the

timing of the episodes was reproduced accurately. A

mistiming occurred for a storm observed to pass over 8–

9 January 2001 that was simulated two days in advance.

The otherwise accurate model timing was reflected by the

high correlation coefficients between observed and sim-

ulated PM2.5 levels, despite often severe biases.

During the R2–R1 mismatch, the simulated winds

speeds in the SV were too high. Surface winds appeared

to be reasonably well simulated within the SFBA; how-

ever, the inaccurately simulated conditions upwind of

the SFBA in the SV appeared to considerably degrade

CMAQ performance. Surface wind speeds in the SV were

too high, suggesting artificially high simulated mixing

rates under the stable and subsiding conditions. During

these episodes, the SJV may also have been upwind of the

SFBA. SJV winds appeared to be simulated reasonably

well during the R2–R1 mismatch.

Beyond inaccurate wind speeds, the R2–R1 mismatch

indicated that MM5 produced the wrong type of low-level

airflow features. The observed overnight westerly flows at

Arbuckle (Fig. 6) represented terrain-induced downslope

(drainage) flows under clear-sky anticyclonic conditions.

The diurnally shifting observed wind directions further

evidenced the localized nature of this flow pattern. No

aloft measurements were available over the SV; however,

the observed overnight downslope flow pattern was pre-

sumably relatively shallow. A similar pattern along the

eastern SV slopes also suggested overnight downslope

flows. These observed downslope flows over the CV rims

have been previously linked with SFBA exceedances

(Beaver et al. 2010). MM5 winds, however, were persis-

tently from the northwest. During the overnight hours,

MM5 was producing low-level down-valley flows chan-

neled along the SV major axis when in fact downslope

flows converged toward the valley floor. The simulated

northerly flows over the SV extended from the surface

through the tenth model layer, or around 800 m AGL.

The simulated down-valley flows were likely deeper and

had higher mixing rates than the observed downslope

flows. The model likely created too much dispersion in

the SV, which subsequently affected downwind SFBA

locations. Also, MM5 appeared to be unable to simulate

the overnight calm conditions in the SV. This likely al-

lowed for insufficient air mass aging in CMAQ, inhibiting

buildup for dominant secondary PM2.5 components such

as ammonium nitrate. The underestimation of PM2.5

levels during the R2–R1 mismatch may have also resulted

from inaccurately simulated stability; R1 was far less

stable than R2, allowing additional vertical dispersion of

pollutants.

A second type of episode occurred under somewhat

stronger synoptic forcing than episodes occurring under

persistent R2 conditions. Localized terrain-induced flows

were not as prevalent for this second type of episode.

Thus, CMAQ performance was relatively improved be-

cause of the ability of MM5 to better handle these more

synoptically forced surface air flows. Also, for episodes

occurring under persistent R2 conditions, the R2 days

with correct lower-order EOF classifications had some-

what improved CMAQ performance. One brief period

(4–6 January 2001) having persistent R2 conditions was

simulated correctly for both the lower- and most middle-

order EOF classifications. MM5 reproduced diurnally

shifting winds in the SV, and coupled MM5–CMAQ

performance was better than for any other period ex-

hibiting persistent R2 conditions. Nonepisode days typi-

cally occurred under patterns R1, V, and S. They had

strong large-scale pressure gradients and reasonable

performance for both the MM5 and CMAQ. The rea-

sonable CMAQ performance to simulate the moderate

PM2.5 levels associated with R1 suggested that the emis-

sions inventory and chemical mechanism were reason-

ably accurate. Thus, overall, the most important factor for

explaining degraded CMAQ performance appeared to

be the inability of MM5 to produce terrain-induced flows

over the complex central California terrain during weak

synoptic forcing events.

7. Conclusions

A pattern-based method for coupled MM–AQM

evaluation has been developed. It was tested for PM2.5
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simulations over the SFBA for two winter PM2.5 seasons.

An EOF-based clustering of surface winds was per-

formed using SFBA measurements. Five major weather

patterns reflecting both synoptic and mesoscale variabil-

ity impacting PM2.5 levels were identified. MM5 outputs

for the two winter seasons were classified among these

five measurement-derived weather patterns. For each

day of the simulation period, the labels for the observed

winds and MM5-simulated winds were compared. The

effects of the MM5 classification mismatches were used to

diagnose degraded CMAQ performance.

In general, MM5 had difficulty reproducing the me-

teorological conditions associated with weak synoptic

forcing events. CMAQ performance was especially de-

graded for episodes having persistent ridges of aloft high

pressure over the study domain, leading to stagnating

surface conditions. For such episodes, the model often

incorrectly produced winds driven by the large-scale

pressure gradient instead of by localized mechanisms.

(This discrepancy was termed the R2–R1 mismatch.) A

key shortcoming of MM5 appeared to be its inability to

simulate overnight downslope flows over the complex

central California terrain, especially in the SV. It was

interesting to find that the CMAQ performance for the

SFBA appeared to be limited by degraded MM5 per-

formance in the upwind SV. Episodes having somewhat

stronger synoptic forcing were better simulated by MM5,

and CMAQ-estimated PM2.5 levels were in closer

agreement with observations. The timing of most epi-

sodes was properly simulated because MM5 could usually

distinguish between anticyclonic and cyclonic conditions.

The above MM5 shortcoming is consistent with a well-

known deficiency of this model. It typically provides too

much synoptic push through complex terrain during pe-

riods of weak large-scale pressure gradients and light

localized winds. The pattern-based evaluation technique

was quite valuable to identify and diagnose the impact

of this general MM5 shortcoming for a specific applica-

tion. Identification of the MM5 bias would have been

difficult using traditional methods. First, the meteorology-

dependent bias was not obvious from operational eval-

uation statistics averaged across entire winter seasons.

Second, the MM5 bias was not apparent using only local

surface analyses. The systematic deficiency involved

inaccurately simulated three-dimensional structures in

the boundary layer. The evaluation of CMAQ per-

formance based on MM5 performance was only possi-

ble because other CMAQ inputs such as emissions and

chemistry appeared to be reasonable.

Identification and diagnosis of systematic model biases

are critical for transferring knowledge between mod-

elers and model developers. Such knowledge transfer is

of paramount importance for collaboratively improving

model performance to meet the needs of air quality

planners.
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