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ABSTRACT

Two high-resolution, real-time, numerical weather prediction (NWP) models are verified against case study
observations to quantify their accuracy and skill in the mountainous terrain of western Canada. These models,
run daily at the University of British Columbia (UBC), are the Mesoscale Compressible Community (MC2)
Model and the University of Wisconsin Nonhydrostatic Modeling System (NMS). The main motivations of this
work are: 1) to extend the lead time of avalanche forecasts by using NWP-projected meteorological variables
as input to statistical avalanche threat models; and 2) to create another tool to help avalanche forecasters in
their daily decision-making process.

Observation data from the Whistler/Blackcomb ski area in the British Columbia (BC) Coast Mountains and
from Kootenay Pass in the Columbia Mountains of southeast BC are used to verify the forecasts. The two models
are run with grid spacings of 3.3 km (MC2) and 10 km (NMS) over Whistler/Blackcomb, and with 2, 10 (MC2),
and 30 km (NMS) over Kootenay Pass. The quality of the forecasts is measured using standard statistical methods
for those variables that are important for avalanche forecasting. It is found that the raw model output has biases
that can be easily removed using Kalman filter predictor postprocessing. The resulting automatically corrected
forecasts have quite small absolute errors in temperature (0.78C).

It is also found that the coarser-resolution NMS model produces comparable results to the finer-resolution
MC2 model for precipitation at Kootenay Pass. These objective forecast errors are of the same order of magnitude
as the meteorological observation (sampling/representativeness) errors in the snowy, windy mountainous terrain,
resulting in forecasts that have value in extending the range of avalanche forecasts for locations such as Kootenay
Pass, as discussed in a recent study by Roeger et al.

1. Introduction

Forecast verification, as discussed in this paper and
understood in meteorological literature, is concerned
with measuring the quality of a forecast. In general, ‘‘the
process and practice of determining the quality and val-
ue of forecasts’’ is called forecast evaluation (Murphy
and Daan 1985). Two types of forecast evaluation with
different goals can be distinguished: empirical evalua-
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tion (verification) with the goal to determine the quality
of a forecast; and decision–theoretic (or operational)
evaluation, which is important to relate the value of a
forecast to its users. Work in this latter area has been
concerned with the development of measures of the
monetary value of forecasts. For avalanche forecasting,
the value of the forecast depends highly on the quality
of the forecasts.

Along with accuracy, skill is also an important mea-
sure of the quality of a forecast. In this context, accuracy
is the ability of a forecast to match the observation and
the extent to which a forecast agrees with the measure-
ment (Roeger et al. 2001). A forecast of good quality
may also show skill, which is the degree of correctness
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above some reference baseline, such as a climatological
average. Thus, by determining the accuracy and skill of
a forecast, one can improve it and use it with confidence
in the future.

Although these theoretical ideas about weather fore-
cast verification are well known, not many verification
results are actually published or are easily accessible
for mesoscale models in complex terrain. While most
weather forecast centers have their own routine model
verification schemes using several statistic methods for
their global- and regional-scale models, results of those
verifications often appear only in technical reports or
internal Web pages. Therefore, it was not possible to
compare our results to other results. Similarly, we know
through personal communications with colleagues at
workshops and conferences that attempts are being
made to apply mesoscale models to complex terrain, but
these ideas are young and few verification results have
been published except for a handful of ‘‘golden’’ case
study days. We encourage the routine use and verifi-
cation of mesoscale models in complex terrain.

The accuracy of the Mesoscale Compressible Com-
munity (MC2) Model and the University of Wisconsin
Nonhydrostatic Modeling System (NMS) is determined
with statistical verification against both manual and au-
tomatic surface weather observations for continuous as
well as categorical variables at two avalanche sites in
British Columbia (BC), Canada. Numerical weather
forecasts depend highly on the initial conditions and the
topography estimation in mountainous terrain, and
hence, the resolution of the model grid. To estimate this
dependence—which is especially important in moun-
tainous terrain—numerical weather prediction (NWP)
models are run at the University of British Columbia
(UBC) with slightly different initial conditions and with
different grid resolutions for the same forecast period.
This is done to estimate the improvement using a higher-
resolution grid and to reveal the effect of different to-
pography approximations from each model.

Snow avalanche forecasting is a complex problem,
based on the interaction of weather, terrain, and the
snowpack. It is defined as the prediction of current and
future snow instability in space and time relative to a
given triggering level. The goal of avalanche forecasting
is to minimize the uncertainty about instability intro-
duced by the temporal and spatial variability of the snow
cover (including terrain influences), any incremental
changes in snow and weather conditions, and any var-
iations in human perception (McClung 2000).

Statistical avalanche prediction refers to the organi-
zation of a database of previously measured parameters,
including avalanche occurrences, for use with a com-
puter to help compare current or expected future con-
ditions with past ones. There are many different param-
eters that contribute toward snowpack instability, but
primary emphasis is on meteorological data (McClung
and Schaerer 1993), not only because they are usually
measured by instruments at regular intervals and there-

fore are relatively easy to get, but also because snow
avalanche forecasting is a multiscale problem (La-
Chapelle 1980; McClung and Schaerer 1993; McClung
2000). Office-based forecasters often need to predict
avalanches for an entire mountain range or parts of rang-
es, for which high-quality meteorological information
is more relevant and can assume greater importance than
local snow-stability information.

Precipitation and temperature are the key variables
for dry or wet avalanche forecasting, respectively. Dry
avalanches are most often slab avalanches that occur
due to an initial failure underneath a wind-packed layer
of snow. This slab may be of several centimeters to
more than a meter in thickness, and its fracture line can
reach over entire mountain slopes. Once in motion, the
slab breaks into blocks and particles, which—if the orig-
inal snow is very dry—may result into the separation
of a dust cloud with very low density.

Wet avalanches are often loose avalanches, usually
triggered by heavy melt due to warming. Loose snow
avalanches—as opposed to the cohesive nature of slab
avalanches—start from a point at or near the surface
snow and spread out in a triangular pattern as they move
down the slope. For this avalanche type the snow must
have low cohesion. The cohesion of snow decreases
with increasing water content; namely, wet snow has
less cohesion than dry snow. Warm-up-related avalanch-
ing can abruptly occur when the air temperature warms
to 08C in the initiation areas (McClung and Schaerer
1993).

Due to the great variety of climate zones in Canada,
the demand for avalanche prediction is at the mesoscale
(horizontal scales of 2–1000 km), which requires more
accurate finescale prediction than for synoptic-scale
forecasts (1000–20 000 km). The avalanche hazard is
concentrated in local areas where people and facilities
are present in mountainous regions (McClung 1995).
Any avalanche model is dominated by the interaction
of weather with terrain and the physical processes in
the snow cover, which leads to avalanche formation.
Therefore, detailed networks of meteorological and
snowpack measurements combined with avalanche ob-
servations are necessary for good avalanche forecasts
(Foehn 1998).

The comparison of output variables from NWP mod-
els and input variables for statistical avalanche fore-
casting models (AFM) shows that a lot of the NWP
variables can be directly applied into an AFM or can
easily be derived. The remaining AFM variables are
usually measured in the field and cannot be directly
received from standard weather forecasts. But they can
be estimated or approximated with empirical relation-
ships. When weather forecasts are reasonably accurate
on the local scale and they are included in avalanche
forecasting models, the two fields may be combined
successfully, allowing the prediction of future snowpack
instabilities and avalanches (Roeger et al. 2001).

This paper contains comprehensive results of the
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FIG. 1. Map of southwestern BC, and northern Washington (WA),
indicating the site locations. WB: Whistler/Blackcomb, KP: Kootenay
Pass.

TABLE 1. Parameters used from each station at Whistler/Blackcomb
and Kootenay Pass and their type of observation (M: manual; R:
remote); asl: above sea level.

Weather station Parameters

Whistler/Blackcomb Catskinner
(1550 m asl)

Temperature (R)
Precipitation (M)

Horstman Hut
(2240 m asl)

Temperature (R)
Wind speed (R)
Wind direction (R)

Whistler Alpine
(1825 m asl)

Temperature (R)
Wind speed (R)
Wind direction (R)

Pig Alley
(1650 m asl)

Precipitation (M)

Kootenay Pass Kootenay Pass
(1780 m asl)

Temperature (R)
Precipitation (R, M)
Wind speed (M)
Wind direction (M)

Stagleap
(2140 m asl)

Temperature (R)
Wind speed (R)
Wind direction (R)

weather forecast verification and the methods used. The
avalanche sites and numerical model characteristics are
identified in section 2, and statistical verification meth-
ods are discussed in section 3. Verification results for
the key avalanche-prediction variables of wind, precip-
itation, and temperature are presented in section 4, with
conclusions in section 5.

2. Data

Data from two different sites are used. The ski area
Whistler/Blackcomb (50.058N, 122.98W) in the Coast
Mountains in BC represents a maritime mountain cli-
mate, which is characterized by relatively heavy snow-
fall and relatively mild temperatures, resulting in deep
snow covers and the possibility of rain at any time dur-
ing the winter. Kootenay Pass (49.058N, 117.08W) in
the southern Selkirk Mountains (Columbia Mountain
Range) of southeastern BC represents a transitional cli-
mate zone, midway between a maritime and a conti-
nental climate (McClung and Schaerer 1993; Armstrong
and Armstrong 1987). While a continental snow climate
is characterized by relatively low snowfall (shallow
snow covers), cold temperatures, and a location con-
siderably inland from coastal areas, the transitional
snow climate zone shows higher precipitation amounts
resulting in middeep snow covers and temperatures cold
enough for only snow events during midwinter, but also
mostly located inland from coastal areas. Figure 1 shows
a map with the two sites indicated.

In addition to two different climate zones, these sites
represent two different types of operations (ski area ver-
sus highway operation) affected by avalanches. The ski
area Whistler/Blackcomb is concerned about avalanches
that may start on or above ski runs. While most ski runs
experience relatively low avalanche danger due to con-
stant grooming and skier traffic throughout the season,

steep less-trafficked slopes higher above may require
systematic avalanche control programs. In order to
avoid large hazardous avalanches, some ski runs must
be closed regularly in order to intentionally trigger
smaller avalanches. These closures should be short in
time and locally limited. The time of concern is during
ski hours, roughly between 0900 and 1600 local time.

The highway operation at Kootenay Pass is concerned
with avalanches large enough to cover parts of the high-
way. Avalanche mitigation efforts primarily consist of
either hand or artillery control. Because large avalanch-
es need to be avoided due to the high costs associated
with highway closures, avalanche control is a 24 h day21

concern.
With data from six meteorological observation sta-

tions, as described in detail later, a wide range of dif-
ferent locations is covered. Elevation of the six stations
varies from 1550 m (Catskinner) to 2240 m (Horstman
Hut); their surrounding topography varies from a partly
sheltered location at midmountain (Pig Alley) to a lo-
cation on top of a mountain ridge, well exposed to the
wind (Stagleap). By using data from these six stations
the behavior of the models in complex terrain is tested.
Of most interest is model performance and output qual-
ity for different elevations and topographical charac-
teristics. This information is critical for both model de-
velopers and end users.

a. Meteorological observations

Observation data from Whistler/Blackcomb were
from automatic weather stations as well as manual ob-
servations taken by ski-patrol avalanche forecasters. Re-
mote, automatic weather stations record weather con-
ditions hourly or every 15 min, depending on the station.
Manual observations are done twice daily. Table 1 lists
the parameters used from each weather station. Except
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FIG. 2. Map of ski area Whistler/Blackcomb with weather stations
indicated. Not to scale. Distance between the two peaks is ø6500 m.

FIG. 3. Topographic map of Whistler/Blackcomb with locations of
weather stations and other points of interest.

FIG. 4. Topographic map of Kootenay Pass area with the highway
and locations of weather stations indicated.

for precipitation, which is observed manually, data from
remote stations have been available for two winters,
1998/99 and 1999/2000. Precipitation was verified with
data from 1999/2000.

Precipitation rate (mm h21) was collected hourly from
gauge measurements (remote observations) and twice
daily with snow-measurement boards (manual obser-
vations: solid precipitation) at Kootenay Pass. At Whis-
tler/Blackcomb, snow measurements were assessed with
manual snowboards at the weather stations Pig Alley
and Catskinner.

For better orientation Fig. 2 shows a drawing map
(not to scale) of the ski area Whistler/Blackcomb with
the weather stations and their altitude indicated. Figure
3 shows a topographic map of the area with the scale
given. The distance between Blackcomb Peak and Whis-
tler Peak is 6.6 km. From Whistler Village in the valley,
the distances are 6.8 km to Balckcomb Peak and 5.9
km to Whistler Peak.

Catskinner (1550 m asl) and Horstman Hut (2240 m
asl) are on Blackcomb Mountain (Fig. 2). Precipitation
is measured at Catskinner, which is on the southwest
side at midmountain elevation, neither particularly shel-
tered nor exposed. (Note that an ideal site would have
had sheltered locations for precipitation, and well-ex-
posed locations for wind; however, such designs are
difficult to implement in some places due to the lay of
the land and the forest cover.) Horstman Hut is located
on the NW–SE-aligned ridge, northwest of Blackcomb
Peak. The station is well exposed to winds from all
directions.

At Whistler Mountain, temperature, wind speed, and
wind direction were measured at Whistler Alpine at the
ski-patrol building near the Roundhouse Lodge (1825
m asl). Since the site is in open terrain, neither sheltered
nor particularly exposed, it is an ideal location for wind
data verification. The avalanche forecasters also use
wind data from other stations, representing more specific
locations on the mountain.

The field site for precipitation at Whistler (Pig Alley)
is at 1650 m asl elevation in a central location of the
ski area. The site is surrounded by trees, but fairly open
so that the trees have little influence on the measure-
ments. The location has proven to be representative of
snow amount at midelevation (J. Tindle, avalanche fore-
caster, 1999, personal communication).

Observation data from the Kootenay Pass site are
described in detail in Roeger et al. (2001). The operation
consists of two weather stations collecting manual and
remote data: Kootenay Pass and Stagleap. A topographic
map of the area with the scale is given in Fig. 4. The
manual observation site at the summit of Kootenay Pass
is located at 1780 m asl elevation in an open area sur-
rounded by trees. It is fairly sheltered and therefore wind
observations here might be too slow, with direction that
is less meaningful. Precipitation measurements are rep-
resentative for the area, and temperatures are typical for
this elevation. Temperature is measured at shelter height
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FIG. 5. Forecast grids of MC2 and NMS models run at UBC. The
NMS 30-km grid covers the same domain as the MC2 30-km grid.

above the ground or snow surface. Stagleap is a remote
weather station at the top of a ridge (2140 m asl) and
well exposed to the wind. Wind speeds are therefore
typical for this mountain ridge and elevations, but are
not representative for some avalanche starting zones at
midmountain elevation, especially on the lee side. At
this station, winds are measured remotely (anemometer)
atop a 10-m-high tower. Data from both areas are gath-
ered according to the guidelines from the Canadian Av-
alanche Association (CAA 1995).

In general, dysfunctional measurement devices can
be a problem especially related to winter weather, for
example, frozen anemometers due to significant riming
effects. At Kootenay Pass, information about the work-
ing condition of the instruments and a first check of the
measured value (within a certain range depending on
the variable) is done automatically with the measure-
ments (true/false signal). At Whistler/Blackcomb, the
avalanche forecasters regularly check their remote, au-
tomatic measurements with additional manual measure-
ments as well as examine the significant values by eye.
Therefore, the avalanche forecasters know which data
are reliable, and a certain standard is maintained at both
sites. For this project, all measured data were again
examined in detail and only correctly measured data
(within its range of uncertainty related to the measure-
ment itself ) have been chosen for verification. As a
result of this process, 10% of the data (some tempera-
tures at Whistler/Blackcomb, and some winds at Koote-
nay Pass) were rejected based on observer discretion
and evaluation, in order to ensure reliable results.

b. Meteorological forecasts

The two research NWP models used here are the MC2
(version 4.8), refined by Environment Canada’s Nu-
merical Prediction Research group (RPN), and the Uni-
versity of Wisconsin NMS. Both were run in real-time
for this verification study, making daily forecasts on
multiple grids out to 48 h into the future with no manual
ex post facto tuning, in order to simulate operational
conditions.

The MC2 model (Benoit et al. 1997, 2002) utilizes
nonhydrostatic, fully compressible, non-Boussinesq dy-
namics, and is discretized on an Arakawa C grid using
semi-Lagrangian numerics and semi-implicit time dif-
ferencing. The coordinate system is polar stereographic
in the horizontal, and modified Gal-Chen in the vertical.
The top boundary utilizes an absorbing layer, while lat-
eral boundaries are nested with a ‘‘sponge’’ region. Bot-
tom-boundary fluxes of heat, moisture, and momentum
are parameterized using bulk-transfer and similarity al-
gorithms between a force–restore soil layer and a 1.5-
order closure turbulence scheme with turbulence kinetic
energy prediction in a diffusive boundary layer. Cu-
mulus convection is parameterized using the Zhang and
Fritsch method; mixed-phase microphysics with the
Sundqvist scheme; and radiation with Fouqart–Bonnel

and Garand schemes (see Benoit et al. 1997 for details).
Surface conditions (vegetation, snow cover, sea surface
temperature, albedo, etc.) are from climatology fields
from the Canadian Meteorological Centre (CMC) of En-
vironment Canada. Benoit and colleagues (1997) have
used the model both for real-time operational forecasts
over all of North America, and for very fine resolution
(3-km horizontal grid spacing) forecasts over the Alps
for the Mesoscale Alpine Experiment (MAP; see Benoit
2002).

MC2 was run at UBC with horizontal gridpoint spac-
ings of 90, 30, 10, 3.3, and 2 km, where the finer grids
in small domains were one-way nested inside coarser,
larger-domain grids (see Fig. 5). The two highest res-
olutions (smallest grid spacing) have been used for ver-
ification, and these grids have 35 layers in the vertical.
These horizontal grid spacings are 3.3 and 10 km over
Whistler/Blackcomb, and 2 and 10 km over Kootenay
pass. Two resolutions were used in order to compare
the specific improvements related to increasing reso-
lution. The 10-km grid has X 3 Y 3 Z 5 85 3 60 3
19 grid points, the 3.3-km grid has 141 3 141 3 35
grid points, and the number of grid points of the 2-km
grid is 60 3 60 3 35 (all resolutions are true at 608N).

The NMS model was developed primarily by G. Trip-
oli at the University of Wisconsin (Tripoli 1992). It uses
a nonhydrostatic, quasi-compressible, non-Boussinesq
formulation on local spherical horizontal coordinates
and Gal-Chen vertical coordinates. Dynamics utilize an
enstrophy-conserving second-order leapfrog scheme on
an Arakawa C grid, while the thermodynamics use a
flux-conservative sixth-order Crawley scheme. The up-
per boundary has an absorbing layer, while radiative
lateral boundaries are used. A multilayer soil model is
used with a Tremback and Kessler parameterization,
with Louis surface layer similarity, 1.5-order turbulent
kinetic energy (TKE) turbulence closure, a cumulus
convection scheme by Kuo and Anthes, mixed-phase
microphysics of Flatau et al., and radiation parameter-
ization of Chen and Cotton (see Tripoli 1992 for details).
Tripoli has used this model to simulate convection and
banding in hurricanes, for daily real-time forecasts for
the midwestern United States, and to forecast and sim-
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FIG. 6. Highly simplified scheme of interpolation (nonlinear). Two
verification points within the same grid cell have different values.
The value 6.7 derives from the interpolation between its nine sur-
rounding grid cells, sketched with the solid line. The dashed lines
show interpolation for the value 7.5.

ulate winter convection snowbands over Lake Michigan
(Kristovich et al. 2000).

NMS was run at UBC for two-way interactive nests
with 90-, 30-, and 10-km grid spacing. For verification,
10 km was used for Whistler/Blackcomb and 30 km for
Kootenay Pass (because the latter location was outside
the operational 3.3-km domain, which was limited by
computer power). The number of grid points is 50 3
68 3 24 for the 10-km gridpoint spacing and 68 3 80
3 28 for the 30-km spacing. The vertical domain is also
nested (viz., the top of the finest-mesh grid is below the
top of the coarser grids). For each weather station, fore-
cast values from the surrounding four or nine gird points
have been interpolated to calculate the forecast for the
exact location. Figure 6 shows a highly simplified
scheme of interpolation (nonlinear), which explains why
two verification points have different values although
they may be located within the same grid cell.

Initial and boundary conditions for MC2 and NMS
coarse grids (90-km grid spacing) are from Eta Model
forecasts (U.S. National Centers for Environmental Pre-
diction), valid every 3 h from 0 to 48 h. In turn, forecasts
from MC2 and NMS coarse meshes provide the bound-
ary conditions for the embedded finer meshes.

From the MC2 model, not only the raw NWP fore-
casts were verified with observations, but also forecasts
that have been improved by the Kalman-predictor post-
processing correction method (Bozic 1979) have been
compared to observation data. The Kalman-predictor
correction is an automatic postprocessing method (a
type of model-output statistics) that uses the observation

and the original forecast from the day before to calculate
the model error. It then predicts the model error for the
next day and uses it to correct the forecasts. This re-
cursive, adaptive method ‘‘learns’’ on the fly (see de-
scription in appendix B) and does not need an extensive,
static database to be trained. It can be used for every
forecast where observation data are also available. For
days of missing observations, it uses the unaltered cor-
rections from the day before. The Kalman-predictor cor-
rection method applied to output from both the NWP
models has been tested for all parameters to measure
its overall improvement compared to the raw model
output.

For the verification of temperature, wind speed, and
wind direction, the forecasts were divided into two fore-
cast time periods. The first includes forecasts from 0 to
24 h. The second covers forecasts that are valid 24–48
h into the future. For precipitation, only 0–24-h fore-
casts could be verified because of gaps in the MC2
forecasts during the 2- and 3.3-km grid test period at
the beginning of this project.

3. Evaluation methods

a. Evaluation methods for continuous variables

For continuous variables, standard statistical methods
as well as graphical techniques have been used. Em-
phasis was on robust and resistant mathematical mea-
sures. The mathematical measures include interquartile
range (IQR) for information about the variation/spread
of the dataset, and the median (0.5 quantile q0.5) as a
single representative number for the dataset. Descriptive
statistical parameters (mean M, standard deviation s,
variance y) have been calculated as well, but they may
be neither robust nor resistant. Robustness and resis-
tance are two aspects of insensitivity to assumptions
about the nature of a set of data. Robust methods are
generally not sensitive to particular assumptions about
the overall nature of the data (e.g., it is not necessary
to assume that the data have a Gaussian distribution).
A resistant method is not strongly influenced by outliers.
As an example, the data series A 5 [12; 14; 13; 15; 12;
14; 13; 123] contains an outlier (123) about which we
do not know if it is a correct measurement (physically
possible) or even a typo. The data series B is the same
but without the outlier: B 5 [12; 14; 13; 15; 12; 14;
13]. While the mean MA 5 27 is strongly affected by
the outlier (the mean MB 5 13.3), the median q0.5A 5
13.5 is not (median q0.5B 5 13); hence, the median is
resistant.

A summary of statistical verification equations is giv-
en in appendix A. For information about the linear re-
lationship between two datasets, the correlation coef-
ficient [Pearson product–moment; Eq. (A1)] was used.
Basic absolute measures for ordinal predictands are the
mean error [ME; Eq. (A2)], the mean absolute error
[MAE; Eq. (A3)], the mean square error [MSE; Eq.
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TABLE 2. Indicators for phase and magnitude errors.

Precipitation
Storm duration (h)
Start time of storm cycle
Time of max precipitation rate
Accumulated percipitation (mm)
Max precipitation rate (mm [3 h]21)
Avg precipitation rate (mm h21)

Temperature
Time of max temperature
Time of min temperature
Max temperature (8C)
Min temperature (8C)

(A4)] and the root-mean-square error [RMSE; Eq.
(A5)].

b. Evaluation methods for categorical variables

For nominal predictands, contingency tables were
used for measurements of accuracy (see Table A1 in
appendix A, illustrating a 2 3 2 contingency table). Our
measurements include the hit rate (H), the probability
of detection (POD), the false-alarm ratio (FAR), and the
bias ratio (BIAS). These quantities are given as Eqs.
(A6)–(A9).

The hit rate (or the percentage of forecast correct) is
the ratio of correct forecast events to the total number
of events. The worst possible hit rate is zero. A value
of 1 would represent a ‘‘perfect forecast.’’

The bias ratio is the comparison of the average fore-
cast with the average observation. It is the ratio of the
‘‘yes’’ forecasts to the number of yes observations. The
value BIAS 5 1 indicates that the event was forecast
correctly the same number of times that it was observed.
Bias ratios greater than 1 indicate that the event was
forecast more often than it was observed (overfore-
casting). Conversely, bias ratios less than 1 indicate un-
derforecasting. The bias is not an accuracy measure be-
cause it says nothing about the correspondence between
the forecasts and observations of the event on particular
occasions (Wilks 1995).

Equations (A10) and (A11) show the Heidke skill
score (HSS) and the true skill score (TSS). They are
derived by contingency table analysis as well.

The Heidke skill score is based on the actual forecast
hit rate relative to the hit rate expected for random fore-
casts, which is used as a baseline or reference accuracy
measure. Forecasts equivalent to the reference forecasts
receive 0 scores. Negative scores are given to forecasts
that are worse than the reference forecasts. Perfect fore-
casts receive a Heidke score of 1 (Wilks 1995).

TSS is a measure of true forecast skill. In short, the
true skill score is the POD, adjusted by the POFD (prob-
ability of false detection); namely, TSS 5 POD 2
POFD. It was originally proposed by Peirce (1884), then
known as the Hanssen–Kuipers discriminant or Kuipers’
performance index (Murphy and Daan 1985), or referred
to as the true skill score as discussed in Flueck (1987)
(Wilks 1995). It is similar to the Heidke skill score but
the random forecast that is taken into account is con-
strained to be unbiased. Similarly, a value of 1 repre-
sents a perfect forecast, 0 is random/neutral, and neg-
ative values indicate forecasts that are inferior to a ran-
dom forecast.

c. Time series analysis

In order to assess phase errors, time series analyses
were performed on two variables: precipitation and tem-
perature. Here, the main interest was to look at specific
storm cycles to see how the models perform in terms

of the timing and amount of precipitation. Precipitation-
event timing is the key for dry avalanche forecasting.
Temperature was also chosen for this analysis because
it is the parameter with the most complete and contin-
uous time series for the field sites studied here, and it
is the key to wet avalanche forecasting (see section 1).

First, cross correlation as a function of phase lag was
calculated using the statistical package Systat. The in-
puts are the two time series that one would like to com-
pare. The output gives the correlation values for each
phase lag and the standard error. Significantly correlated
time series can be identified by comparing the corre-
lation with the standard error of the time series. Two
time series are significantly correlated when their cor-
relation exceeds 2 times the standard error. Therefore,
two time series have a phase lag when their correlation
exceeds 2 times the standard error for any lag not equal
to 0. A case where the correlation does not exceed 2
times the standard error for any lag would indicate that
the two time series are not significantly correlated. A
time lag refers to the time period between two forecasts,
which is 3 h for precipitation and 1 h for temperature.

Second, a more descriptive analysis was done for each
storm. The time difference between precipitation and
temperature peaks as well as their difference in mag-
nitude were compared subjectively. Table 2 contains a
list of the different phase and magnitude indicators.

4. Results

a. Precipitation rate

Contingency table analysis was used as a verification
method, as outlined in section 3b. First, two categories
(precipitation yes/no) were chosen. Second, precipita-
tion rate was divided into seven categories (Table 3),
depending on the type of precipitation and the type of
observations. The categories intense [(12.5–80 mm h21

or 37.5–250 mm 3 h)21] and extreme [(.80 mm h21

or .250 mm 3 h)21] did not occur during these winters
and are therefore not mentioned any further. Heavy pre-
cipitation [(1.7–12.5 mm h21 or 5–37.5 mm 3 h)21] was
forecast and observed only once or twice at each station.
For such a small number of events, the correct or in-
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TABLE 3. Precipitation rate in categories (water equivalent).

Category mm h21 mm (3 h)21 mm (12 h)21

None
Very light
Light
Moderate

0
0–0.4

0.4–0.8
0.8–1.7

0
0–1.25

1.25–2.5
2.5–5

0
0–5
5–10

10–20
Heavy
Intense
Extreme

1.7–12.5
12.5–80

.80

5–37.5
37.5–250

.250

20–150
150–1000
.1000

TABLE 4. Results from contingency table analysis of precipitation at Kootenay Pass, Nov–Dec 1999, remote and manual observations.
NMS, MC2 original, and MC2 Kalman-predictor-corrected forecast. Corr. [ corrected.

Precipitation vs nonprecipitation

Hit rate Bias HSS TSS

Precipitation rate in
categories

Hit rate

Remote observations (liquid and solid precipitation)
MC2 10-km grid

MC2 2-km grid

NMS 30-km grid

Original
Kalman-corr.
Original
Kalman-corr.
Original

0.75
0.76
0.73
0.74
0.73

0.73
1.08
0.86
1.10
0.75

0.47
0.51
0.43
0.48
0.43

0.46
0.52
0.42
0.49
0.44

0.56
0.56
0.56
0.53
0.56

Manual observations (solid precipitation)
MC2 10-km grid
MC2 2-km grid
NMS 30-km grid

Original 0.79
0.73
0.73

0.83
0.95
0.71

0.59
0.46
0.45

0.60
0.46
0.54

0.55
0.51
0.53

correct forecast may be coincidence and gives no mean-
ingful information. Therefore, the bias of this precipi-
tation category is not included. The remaining four cat-
egories used for the verification of precipitation rate are:
none, very light, light, and moderate (Table 3). As
mentioned before, only 0–24-h forecasts could be ver-
ified for precipitation.

Details of verification results for only the remote ob-
servations (total precipitation: liquid 1 solid) from
Kootenay Pass were published in Roeger et al. (2001),
and are briefly summarized here (see Table 4). Both
models (24-h forecast) underforecast precipitation
events, which means that precipitation was observed
more often than it was forecast. The best value for the
bias ratio is achieved from the MC2 2-km grid (0.90).
The MC2 10-km grid and the NMS 30-km grid achieved
0.71 and 0.75.

The hit rate is close to 0.75 for all forecasts (H 5
0.74 for the MC2 10 km; H 5 0.72 for the MC2 2 km;
and H 5 0.73 for the NMS 30 km), which shows that
in almost 75% of all cases, precipitation events were
forecast as such and nonprecipitation events were fore-
cast as such. Regarding this fairly high hit rate and the
bias ratio lower than one for both models, we conclude
that most precipitation events that were forecast did in-
deed occur, but on the other hand, precipitation also
occurred that was not forecast.

Both models show some skill, with skill scores (HSS
and TSS) of 0.4–0.5 (see Table 4 for details), but could
be improved. The 2-km grid shows no improvement for
the skill scores compared to the 10-km grid, but the bias

ratio is somewhat better (closer to one) than the MC2
10-km grid. For most cases, the NMS model with the
significantly lower resolution produces comparable re-
sults to the MC2 model with the higher-resolution grids.

All statistical results from the original MC2 forecasts
were improved when the original forecasts were auto-
matically corrected with the Kalman-predictor correc-
tion method (see section 2b). Results are included in
Table 4. Whereas only minor improvements are shown
for the hit rate (from 0.75 to 0.76 for the 10-km grid
and from 0.73 to 0.74 for the 2-km grid) and the skill
scores (10%–15% improvement), the bias ratio was sig-
nificantly better using this method. However, the trend
for precipitation rate goes in the opposite direction: pre-
cipitation events are overforecast with the Kalman-pre-
dictor-corrected forecast, whereas they are underfore-
cast by the original forecast at 24 h. For the MC2 10
km, bias ratios are 1.08 (Kalman corrected) versus 0.73
(raw forecast). The MC2 2 km achieved values of 1.10
(Kalman corrected) versus 0.86 (raw forecast) for the
bias ratios.

New results from verification with manual observa-
tions (solid precipitation in mm water equivalent) for
Kootenay Pass are shown in Fig. 7 and listed in Table
4, again for two categories (precipitation yes/no) and
24-h forecast period. The MC2 10-km grid gives the
best results for both of the skill measurements, but not
for the bias ratio. The hit rate is fairly high for all models
(0.73–0.79), similar to the results with remote obser-
vations. Also similar to those results, the bias ratio is
highest for the MC2 2-km grid, with a value of 0.95
very close to a perfect forecast. The NMS model has
the lowest bias ratio.

When the precipitation rate was divided into more
than two categories (see Table 3), the hit rates with
manual observations are 0.55, 0.51, and 0.53 for the
MC2 10-km, MC2 2-km, and NMS 30-km grids, re-
spectively.

At Whistler/Blackcomb, the results of all three models
are similar to each other for solid precipitation (mm
water equivalent), as given in Figs. 8 and 9 for Pig Alley
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FIG. 7. Verification results for solid precipitation rate at Kootenay
Pass, manual observations, Nov 1999–Apr 2000. Results from con-
tingency table analysis. Perfect forecasts have a value of 1.

FIG. 9. Same as in Fig. 8 but for Catskinner.

FIG. 8. Verification results for solid precipitation rate at Pig Alley,
Nov 1999–Apr 2000. Results from contingency table analysis. Perfect
forecasts have a value of 1.

TABLE 5. FAR and H for solid precipitation at Pig Alley
and Catskinner.

FAR

Pig Alley Catskinner

H

Pig Alley Catskinner

MC2 10-km grid
MC2 3.3-km grid
NMS 10-km grid

0.19
0.21
0.12

0.24
0.23
0.12

0.65
0.62
0.62

0.72
0.71
0.66

(Whistler Mountain) and Catskinner (Blackcomb Moun-
tain); only precipitation versus nonprecipitation is com-
pared. The NMS model shows better results for the skill
score measurements at both stations, most distinct at
Catskinner. At Pig Alley, the bias ratio is better with
the MC2 models; both MC2 grids have a perfect value
of 1. The bias ratio of the NMS model is also very close
to 1 (0.95). At Catskinner, the NMS model achieves a
similar high value (0.94), whereas the bias ratio of both
MC2 grids is much lower.

Between the two MC2 models, no improvement from
the 10-km grid to the 3.3-km grid can be seen. The 10-

km grid has better values in all statistics except for the
bias ratio at Pig Alley, which has a perfect value of 1
for both MC2 grids (see Figs. 8 and 9).

The false-alarm ratio (viz., when precipitation was
forecast but not observed; Table 5) is lowest (best) for
the NMS 10-km grid at both mountains. The MC2 grids
have a FAR about twice as high as the NMS model.
This implies that nonprecipitation events were forecast
as precipitation events from the MC2 model, which
agrees with the hit rate of these two grids. Because the
NMS model only slightly underforecasts precipitation
events (bias ratio 5 0.95) and the FAR is only 0.12,
this model shows no trend toward one event, but un-
derforecasts both categories.

At Catskinner, the values for the MC2 models, to-
gether with the hit rate, suggest that most of the non-
precipitation events were forecast as such, but precip-
itation events were not always predicted. The bias ratio
shows the same result. Since the NMS model has a low
false-alarm ratio and a bias ratio below one, but close
to one, this model predicts precipitation events better
than the MC2 model. It does not capture all nonprecip-
itation events as such, because the hit rate is not very
close to 1 (0.82).

Figures 10 and 11 show the bias ratio when the solid
precipitation rate is divided into four categories. At Pig
Alley, the MC2 model achieves a perfect forecast of 1
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FIG. 10. Bias ratio: Solid precipitation rate in four categories. Pig
Alley, Nov 1999–Apr 2000, 24-h forecasts. Dashed line shows a
perfect forecast.

TABLE 6. Wind speed categories (km h21) according to
CAA (1995).

Category Wind speed (km h21)

Calm
Light
Moderate
Strong
Extreme

0–1
1–25

25–40
40–60
.60

FIG. 11. Same as in Fig. 10 but for Catskinner.
FIG. 12. Wind speed distribution at Whistler Alpine, 24-h forecast,

Nov 1999–Jan 2000.

for no precipitation, but it performs poorly for light
precipitation [(1.25–2.5 mm 3h)21], which is highly un-
derforecast. Comparing the MC2 10-km grid with the
3.3-km grid shows improvement from the lower to the
higher resolution in all categories at Pig Alley. At Cat-
skinner, the MC2 3.3-km grid does a slightly better job
than the 10-km grid in certain categories [very light:
0–1.25 mm (3h)21 and moderate: 2.5–5 mm (3h)21].
The NMS model shows values very close to one for the
bias ratio in the categories very light [(0–1.25 mm
(3h)21] and light [(1.25–2.5 mm (3h)21] at Catskinner,
but performance drops off considerably for heavier pre-
cipitation rates. At Pig Alley, the NMS model has ac-
ceptable results for the first three categories, but per-
forms poorly for moderate precipitation [(2.5–5 mm
(3h)21].

The hit rate is highest for the MC2 10-km grid at

both stations. Values are given in Table 5. Pig Alley
shows lower values than Catskinner. Generally, H 5
0.72 and 0.65 is good, considering default (equi-like-
lihood; no skill) of 0.20 for this statistical measurement.

b. Wind speed

Wind speed was verified with categories according to
the Canadian Avalanche Association (CAA 1995), as
given in Table 6. Wind speed is generally underpredicted
at both study areas. For this variable, results from the
NMS model are not as good as from the MC2 model.
At Whistler/Blackcomb, hit rates are very high with 0.80
(NMS) to 0.88 (MC2) at Whistler Alpine, but much
lower at Horstman Hut (0.33–0.38 in 1999/2000 and
0.51–0.52 in 1998/99). For both stations, the higher grid
resolution (3.3 km) shows no significant improvement
compared to the next lower resolution (10 km). Figure
12 shows the wind speed distribution of the 24-h fore-
casts from the MC2 10-km, MC2 3.3-km, and NMS 10-
km grid at Whistler Alpine. Figure 13 shows the wind
speed distribution at Horstman Hut from the MC2 mod-
el, with both resolutions (3.3- and 10-km grid) segre-
gated into 0–24-h and 24–48-h forecast periods. All
models lack realistic variability. Only light and calm
winds are predicted. Light winds are highly overfore-
cast, whereas higher wind speeds are not captured at
all. Significant differences cannot be seen, either be-
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FIG. 13. Wind speed distribution at Horstman Hut, MC2 forecast,
Oct 1999–Jan 2000.

TABLE 7. Wind speed: H for Horstman Hut: Results from 1998/99
and 1999/2000. (Kalman correction was tested only for 1998/99 fore-
casts here.)

H

Horstman Hut
Feb–May 1999

24 h 48 h

Horstman Hut
Oct 1999–Jan 2000

24 h 48 h

MC2 10-km grid
Original
Kalman-corr.

MC2 3.3-km grid
Original
Kalman-corr.

0.52
0.59

0.52
0.62

0.52
0.60

0.51
0.61

0.36
—

0.33
—

0.38
—

0.35
—

FIG. 14. Wind speed distribution at Horstman Hut, MC2 original (O)
vs Kalman-predictor corrected (K) 24-h forecast, Feb–May 1999.

TABLE 8. Results for wind speed as continuous variable, Pearson
correlation coefficient r, MAE and ME in km h21. MC2 original (O)
vs Kalman-predictor-corrected (K) forecast, Horstman Hut, Feb–May
1999.

r

O K

MAE

O K

ME

O K

24 h
MC2 10-km grid
MC2 3.3-km grid

0.50
0.60

0.78
0.78

19.4
19.0

8.5
8.5

18.7
18.5

3.0
3.0

48 h
MC2 10-km grid
MC2 3.3-km grid

0.65
0.70

0.80
0.80

19.0
18.7

8.1
8.0

18.4
18.1

2.9
2.9

tween the two grid resolutions or between the two fore-
cast periods.

Good improvements can be seen with the Kalman-
predictor correction method. Figure 14 shows an ex-
ample of 24-h forecasts at Horstman Hut. Moderate,
strong, and extreme wind events are captured as well.
The overall improvement of hit rate with this automatic
postcorrection method is shown in Table 7. The H values
for verification of the Kalman-corrected forecasts range
between 0.59 and 0.62, compared to the results from
the original forecasts of 0.51–0.52. Table 8 shows error
reduction and higher correlation coefficients compared
to the original MC2 forecasts (wind speed analyzed as
continuous variable). The Pearson correlation coeffi-
cient is increased from 0.50 to 0.70 (original MC2 fore-
casts) to 0.78–0.80 (Kalman-predictor corrected fore-
casts). Mean absolute errors are reduced from 18.7 to
19.4 km h21 from the original forecast to 8.0–8.5 km
h21 from the corrected forecast. Even more significant
are the improvements of the mean error. Values between
18.1 and 18.7 km h21 from the original MC2 forecasts
are reduced to 2.9 and 3.0 km h21 with the Kalman-

predictor correction method. This shows that the Kal-
man-predictor correction method is of high value for
wind speeds.

Comparing the results of the 24-h forecast period with
results of the 48-h forecast period show slightly higher
correlation coefficients for the 48-h period. No real dif-
ference in MAE and ME can be seen.

The results from Kootenay Pass are discussed in de-
tail in Roeger et al. (2001). In summary, wind speed is
also underforecast at this study site. Figure 15 (Stagleap)
shows that the wind speed distribution is similar to
Whistler/Blackcomb; namely, there is also a lack of var-
iability, with prediction of only light and calm winds,
and overforecasts of light winds. However, the MC2 2-
km grid does significantly better than the MC2 10-km
grid for this location. The original MC2 forecasts are
also highly improved with the Kalman-predictor cor-
rection method, as shown in Fig. 16.

The results in Fig. 17 suggest that the topography
approximation plays an important role in model per-
formance. The plot gives median values of absolute er-
ror (AE; differences between observation and forecast)
and their spread (lower and upper quartile). The NMS
model performs worst at Stagleap, where the grid spac-
ing is 30 km. At Whistler Alpine, where the NMS model
has the 10-km grid, it has comparable results to the MC2
model (lower median absolute error but larger spread).
Both MC2 grids have evidently higher median errors at
Stagleap than at Whistler Alpine, where the anemometer
measurements are not as strongly influenced by local
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FIG. 15. Wind speed distribution at Stagleap, remote observations,
24-h forecast, Nov 1999–Jan 2000.

FIG. 17. Median values of absolute differences between observation
and forecast and their spread for Stagleap, Jan–Apr 2000, and Whis-
tler Alpine, Nov 1999–Jan 2000 and Feb–Apr 1999.

FIG. 16. Wind speed distribution at Stagleap, MC2 original vs
Kalman-predictor corrected 24-h forecast, Jan–Apr 2000.

FIG. 18. Wind rose for Whistler Alpine, MC2 24-h forecast, Feb–
Apr 1999.

terrain, that is, where the topography approximation of
the models is not as significant.

c. Wind direction

Wind direction has been verified with contingency
table analysis in eight categories (458 angle section: N,
NE, E, SE, S, SW, W, NW) or in four categories (908
angle section: N, E, S, W). The different models and
grids were compared with wind roses, which represent
the prevailing wind as a percentage of time/observations
that the wind blows from different directions, as well
as the bias ratio for each wind direction and the hit rate.

Figure 18 shows the wind rose for Whistler Alpine.
Prevailing winds are from the south. The bias ratio for
wind direction divided into the four main aspects as
well as the percentage of occurrence is given in Fig. 19
for Whistler Alpine. It can be seen that the 3.3-km grid

has better results than the 10-km grid for southerly and
westerly winds, which together make 69% of all ob-
servations. North winds are badly captured by both
model resolutions, but with 2% occurrence this result
is not meaningful. However, the 10-km grid is more
accurate because the overall H values are higher (0.57)
than from the 3.3-km grid (0.44; Table 9).

At Horstman Hut, the bias ratios do not show sig-
nificantly better performance from the 3.3-km grid
(Figs. 20 and 21). The H values suggest that the 10-km
grid performs better than the 3.3-km grid, because the
10-km grid has a higher hit rate overall (see Table 9).
Comparing the 24-h forecast period with the 48-h fore-
cast period (Fig. 20 vs Fig. 21, Table 9) shows subtle
differences for all aspects, with the 24-h forecast being
better than the 48-h forecast at Horstman Hut (48-h
forecasts for Whistler Alpine have not been verified
here).

These two figures also show an improvement for this
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FIG. 19. Bias for wind direction in four categories. Whistler Al-
pine, MC2 24-h forecast, Feb–Apr 1999. Perfect forecasts have a
bias of 1.

FIG. 20. Bias for wind direction in four categories. Horstman Hut,
MC2 original vs Kalman-predictor-corrected 24-h forecast, Feb–Apr
1999. Perfect forecasts have a value of 1.

TABLE 9. Wind direction: Results from contingency table analysis:
H for Whistler Alpine and Horstman Hut, Feb–Apr 1999.

H
Whistler
Alpine

Horstman Hut
original

Horstman Hut
Kalman-corr.

24 h
MC2 10-km grid
MC2 3.3-km gird

0.570
0.44

0.61
0.47

0.71
0.50

48 h
MC2 10-km grid
MC2 3.3–km grid

—
—

0.52
0.48

0.68
0.68

FIG. 21. Same as in Fig. 20 but for 24–48-h forecast period.

variable at Horstman Hut using the Kalman-predictor
correction method. Northerly and easterly winds are not
improved, but the bias ratio for southerly winds with
the highest percentage of occurrence (76%) is better.
Similarly, westerly winds are highly overpredicted by
the original forecasts, but refined to a large extent with
the Kalman prediction. However, westerly winds occur
only 4% or 5% of all times at this location. The wind
rose for Horstman Hut is given in Fig. 22. Improvement
for both grids can be seen for southerly and westerly
aspects.

At Stagleap (Kootenay Pass study site), prevailing
winds are generally from the west (SW: 25%, W: 27%,
and NW: 21%), which is mainly due to the general flow
pattern (midlatitudes in Northern Hemisphere) but may
also be partly influenced by the east–west alignment of
the ridge. The wind rose is given in Fig. 23. Figure 24
gives the bias ratio for the four aspects with percentage
of occurrence for the MC2 10-km and 2-km grid, and
with their equivalent Kalman-predictor correction. Im-
provement for both grids can be seen for all aspects
with the Kalman correction. The H values have also
increased: the MC2 10-km grid originally has H 5 0.55

versus 0.61 with the correction method; the 2-km grid
has 0.53 (original) versus 0.57 (corrected). More details
are published in Roeger et al. (2001).

d. Temperature

Temperature forecasts (for the specific hour) are gen-
erally very good. All models and grids achieve high
correlation between forecast and observation values.
Predicted temperature is generally too high with mean
absolute errors between 18 and 38C at Kootenay Pass
and 28–68C at Whistler/Blackcomb. Figures 25, 26, and
27 show MAE results from Whistler Alpine, Horstman
Hut, and Catskinner. The higher-resolution MC2 grid
performs better than its lower-resolution grid in all cas-
es. The NMS model has lower errors except for Cat-
skinner (with its remote observations). The temperature
MAE results of the 24-h forecast are better than those
of the 48-h forecast for all cases.

Correlation coefficients are graphically shown in
Figs. 28, 29, and 30. The highest correlation coefficient
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FIG. 22. Wind rose for Horstman Hut, MC2 original vs Kalman-
predictor-corrected 24-h forecast. Feb–Apr 1999.

FIG. 24. Bias for wind direction in four categories. Stagleap, MC2
original vs Kalman-predictor corrected 24-h forecast, Jan–Apr 2000.
Perfect forecasts have a value of one.

FIG. 23. Wind rose for Stagleap, MC2: Jan 2000; NMS: Nov
1999–Jan 2000.

FIG. 25. Mean absolute error for temperature at Whistler Alpine,
MC2: Feb–Apr 1999 and Nov 1999–Jan 2000, respectively; NMS:
Nov 1999–Mar 2000.

is achieved by the NMS model. It is above 0.8 in almost
all cases. The results of the MC2 model are similarly
high in some cases, but can be lower than 0.6 in other
cases. The 3.3-km grid has better results than the 10-
km grid except with observations from 1998/99.

For both years, the MC2 original forecasts at Cat-
skinner were automatically corrected with the Kalman
prediction. The correlation coefficient is significantly
improved, as illustrated in Fig. 31, which shows results
from 1999/2000. The mean absolute error is also sig-
nificantly reduced—in several cases by more than 40%.
Results from 1999/2000 are shown in Fig. 32.

Summarized results from Kootenay Pass (Roeger et
al. 2001) give correlation coefficients and mean absolute
errors that are in the same range as those for Whistler/
Blackcomb. Figure 33 shows the correlation coefficient
for temperature at Kootenay Pass. The NMS model per-
forms not as well as the MC2 model for this study site,

but results are still good. Again, Kalman-predictor cor-
rected MC2 forecasts are significantly better than their
original forecasts. Correlation coefficients are increased
and achieve values up to 0.97 (see Fig. 34). Mean ab-
solute errors show up to 50% error reduction by using
the Kalman corrector.

e. Results from time series analysis

Time series analysis could be done only for Kootenay
Pass since it is the only station with sufficient precip-
itation records during any one storm cycle. At Whistler/
Blackcomb, manual observations give values only twice
a day, which is not enough data for storms that last only
1–2 days. Temperature was chosen as a second variable
for time series analyses. These two are the most sig-
nificant variables for dry and wet avalanche forecasting
(as explained in section 1).

Eight storms have been chosen, according to their
precipitation patterns. Figure 35 shows the time series
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FIG. 26. Mean absolute errors for temperature at Horstman Hut,
MC2: Feb–Jun 1999 and Oct 1999–Jan 2000, respectively; NMS: Oct
1999–Mar 2000. FIG. 28. Correlation coefficient for temperature at Whistler Alpine,

MC2: Feb–Apr 1999 and Nov 1999–Jan 2000, respectively; NMS:
Nov 1999–Mar 2000.

FIG. 27. Mean absolute errors for temperature at Catskinner, MC2:
Feb–Apr 1999, Nov–Dec 1999 (remote) and Nov 1999–Jan 2000
(manual), respectively; NMS: Nov 1999–Mar 2000 (remote and man-
ual).

FIG. 29. Correlation coefficients for temperature at Horstman Hut,
MC2: Feb–Jun 1999, Oct 1999–Jan 2000, respectively; NMS: Oct
1999–Mar 2000.

for these eight storms, which are named accordingly to
their start date.

Cross-correlation analysis showed no obvious time
lag between any forecast model and any forecast period
with the observations for Kootenay Pass for both var-
iables. Almost every correlation that was significant was
for 0 time lag. For precipitation, only 6 out of 21 cases
were found with significant correlation at non-0 time
lags; 5 of them at time lag units of 21 or 11, only 1
of them at time lags 12 and 13 (where each lag unit
equals 3 h). For temperature, only 1 case (out of 28)
shows significant correlation at nonzero time lag. This

suggests that the timing between forecast and obser-
vation is correct for the analyzed eight storms.

The more descriptive time series analysis (not shown
here) confirmed that all forecasts underpredict precip-
itation amount, and most of them underpredict precip-
itation intensity. The NMS 24-h forecast and the original
MC2 10-km grid 24- and 48-h forecasts show extreme
values of 41%–50% for the difference in accumulated
precipitation. The Kalman-predictor correction method
improves precipitation amount for both MC2 forecast
grids. The corrected forecasts underpredict accumulated
precipitation by 13% and 21%, respectively. For the
NMS model, no time trend is obvious, unlike the MC2
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FIG. 30. Correlation coefficients for temperature at Catskinner,
MC2: Feb–Apr 1999, Nov–Dec 1999 (remote) and Nov 1999–Jan
2000 (manual), respectively; NMS: Nov 1999–Mar 2000 (remote and
manual).

FIG. 32. MAE for Kalman-predictor-corrected temperature (8C).
Catskinner, Nov–Dec 1999.

FIG. 31. Correlation coefficient for Kalman-predictor-corrected
temperature (8C). Catskinner, Nov–Dec 1999.

FIG. 33. Correlation coefficient for temperature, Kootenay Pass,
Nov 1999–Jan 2000.

model that starts storms too late, and continues them
too long.

The NMS model as well as the original forecast from
the MC2 model overforecast temperature magnitude.
The Kalman-corrected forecasts reduce this difference
but also indicate a reverse trend toward underforecast-
ing. These conclusions are valid for the analyzed eight
storms only. To justify those conclusions as a general
behavior of the models, more data are needed.

An obvious phase shift in forecasting maximum and
minimum temperature cannot be identified. For maxi-
mum temperature, all forecasts seem to predict it too
early. However, a similar statement cannot be made for

minimum temperature, and therefore no conclusions re-
garding the timing are possible.

5. Conclusions and outlook

Detailed verification of two high-resolution, real-
time, numerical weather prediction (NWP) models was
performed with case study observations from two win-
ters: 1998/99 and 1999/2000. The main goal of this
research project was to assess the accuracy and the bias
of the weather predicted by two models with regard to
potential applications such as avalanche forecasting.
Verification was against standard meteorological vari-
ables from surface observations. Two winters are a rel-
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FIG. 34. Correlation coefficient for Kalman-predictor-corrected
temperature (8C), Kootenay Pass, Nov 1999–Jan 2000.

FIG. 35. Three-hour precipitation for the eight chosen storms. Example shows observations and
NMS 24-h forecast.

atively short time period, and it should be kept in mind
that the interpretation of the results outlined here can
only represent the weather of these two winters.

While this project focused on detailed quantitative
verification, some possible explanations for the perfor-
mance of the two models are suggested here. Comparing
MC2 versus NMS, similarly good results were obtained
from both. Differences based on grid resolution can be
seen between the two study locations. At the Kootenay
Pass area, where the NMS has a low grid resolution of
30 km, it does not perform as well as the MC2 model
in wind speed (Stagleap) and temperature (Kootenay
Pass), whereas the differences are fairly subtle at the
latter station. At Whistler/Blackcomb, where the NMS
grid resolution is 10 km, its results are at least as good
as the results from the MC2 model. For temperature and

partly for precipitation rate, the NMS model performs
better than the MC2 model at this study area.

Comparing the two MC2 model resolutions shows
somewhat better results for precipitation rate from the
finer grid spacing at Kootenay Pass. At Whistler/Black-
comb, the 3.3-km grid has a higher hit rate but the 10-
km grid has better bias ratios. Overall, no significant
improvement can be seen from the lower to the higher
resolution for this parameter. For wind speed at Stagleap
and for temperature at Whistler/Blackcomb, the 2-km
or 3.3-km grid perform significantly better than the 10-
km grid. The results for wind direction show better bias
ratios from the 3.3-km grid at Whistler Alpine, but the
10-km grid is more accurate at this location.

The 24-h forecasts are overall more accurate than 48-
h forecasts for the events and locations studied here.
Results are slightly better for wind speed (correlation
coefficients) and wind direction, and significantly better
for temperature with the shorter forecast period, as men-
tioned earlier. No comparison could be done for pre-
cipitation (see section 2b).

Time series analysis showed that the timing between
forecast and observation is correct for the analyzed eight
storms (within the 3-h time resolution of the forecasts).
For more general conclusions about the models behav-
iors regarding correct timing, more storms from several
years as well as summer storms should be investigated.

The results also show that the Kalman-predictor cor-
rection method is highly suitable for all tested variables.
The verification results were improved at all study lo-
cations with this automated correction method. This
method is a very successful tool in improving the orig-
inal forecast and should be further developed to use in
real time.

In general, precipitation events are underforecast. The
results from Kootenay Pass and Catskinner show that
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most precipitation events that were forecast also oc-
curred, but on the other hand, additional precipitation
events also occurred that were not forecast. This, as well
as underpredicted precipitation intensity (results from
time series analysis) may be dangerous for the appli-
cation in avalanche forecasting because this may result
in an unexpected increase of avalanche risk. At Pig Al-
ley, the FAR values together with the hit rate suggest
that nonprecipitation events were forecast as precipi-
tation events from the MC2 model, which would at least
mean that avalanche forecasters are ‘‘on the safe side.’’
The NMS model, with a low false-alarm ratio and a bias
ratio below one, predicts precipitation events better than
the MC2 model at this location.

The difference in temperature mean absolute errors
between Kootenay Pass (18–38C) and Whistler/Black-
comb (28–68C) may be due to an incorrect elevation
approximation at Whistler/Blackcomb. The reason is
that although the forecast is made for the correct lon-
gitude and latitude, the elevation of the model could be
off because the model smooths the topography within
its grid resolution. This can have a large effect on the
temperature field in locations of steep topography. Bi-
ases of temperature at Kootenay Pass may also be in-
fluenced by poor integration of the model with conti-
nental air masses, but this idea has not been further
investigated. Temperatures are generally predicted as
too warm, but the small MAE values around 0.78C,
achieved with the Kalman-corrected MC2 forecast, sug-
gest that this forecast can be used in further applications,
such as avalanche forecasting.

The difference in hit rate of wind speed between
Whistler Alpine and Horstman Hut is due to the different
distribution of observed wind speeds. At Whistler Al-
pine, which shows significantly higher hit rates than
Horstman Hut, light winds were observed in 94% of all
cases, while predictions of the models vary between
86% and 93%. At Horstman Hut, the distribution of the
observed wind speeds is quite different: 3% calm, 37%
light, 30% moderate, 22% strong, and even 8% extreme.
The models, however, predict 94%–97% light winds.
Therefore, the models either have a systematic error of
not capturing wind speeds greater than light, or they
have similar topography approximations for the two sta-
tions that both differ from reality.

Underpredicted wind speeds at Stagleap may occur
because of the local topography. The weather station is
located on top of an east–west aligned ridge and there-
fore fairly wind-exposed. The topography approxima-
tion of the models might not capture this. In addition,
a systematic error is possible because the wind speed
is also underpredicted at Whistler Alpine.

Another reason why we think that the topography
approximation of the models plays an important role are
the results shown in Fig. 17. At Whistler Alpine, where
the anemometer measurements are not as strongly in-
fluenced by local terrain (i.e., where the topography
approximation of the models is not as significant), both
MC2 grids have lower median errors than at Stagleap.

This implies that the different topography approxi-
mations of the two models significantly affect the re-
sults. This effect is somewhat larger than the effect of
increased grid resolution with the MC2 model. A higher
resolution should improve the results because the to-
pography is captured more accurately. However, for
British Columbia, improved forecasts for all parameters
might not be realized for finer grids (i.e., for better
representations of topographic effects), because a lim-
iting factor is the dearth of weather observations up-
stream (west of ) BC. This ‘‘data void’’ over the NE
Pacific must be remedied before more accurate forecasts
are possible. Boundary effects (boundary value prob-
lems due to a closed domain in the numerical models)
might be another reason for the bias. A third factor might
be the numerical approximations made by the MC2 de-
velopers to improve execution speed.

It was shown that each model has different strengths
and weaknesses. Neither one of the models is best for
all variables. This indicates that, in general, a single
model should not be used for all variables. An ensemble
forecast that combines several models may do a better
job than only one, when all parameters are considered.

While this verification project focused on basic steps
in model verification, many more meteorological fea-
tures are yet to be verified with measurements. For ex-
ample, for snow avalanching it is of high importance
to have information about the extent, timing, and mag-
nitude of temperature inversions and cold frontal pas-
sages, both of which have a significant effect on snow-
pack stability. Therefore not only temperature but also
temperature change is very important and it is one of
the significant variables of numerical avalanche models.

Although not shown in this paper, Roeger et al. started
to take the next step by using this numerical forecast
output as input to a statistical avalanche threat model.
So far, the resulting 24-h forecasts of avalanche threat
seem to be as skillful as traditional 6–12-h avalanche
forecasts based only on weather observations.

Thus, we recommend that NWP forecasts be used to
increase the lead time for avalanche forecasts. By in-
creasing the advanced warning, avalanche and resource
managers can take mitigation action to better protect
lives and property, and reduce avalanche closures of
key transportation corridors.
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Yes No

Forecast
Yes
No

A
C

B
D
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APPENDIX A

Equations for Statistical Analysis

Pearson correlation coefficient r:
n

(x 2 x)(y 2 y)O i i
i51r 5 , (A1)

n n

2 2(x 2 x) (y 2 y)O Oi i!i51 i51

where xi are forecast data values, yi are observed data
values, : mean forecast value, : mean observed value,x y
and n: number of data pairs.

Mean error (ME):

ME 5 x 2 y, (A2)

mean absolute error (MAE):
n1

MAE 5 |x 2 y |, (A3)O k kn k51

mean-square error (MSE):
n1

2MSE 5 (x 2 y ) , (A4)O k kn k51

root-mean-square error (RMSE):

RMSE 5 ÏMSE. (A5)

Contingency table analysis equations for the 2 3 2
table of Table A1.

Range
Perfect
forecast

Hit rate H:

A 1 D
H 5

N
0 to 1 1 (A6)

Probability of detection (POD):

A
POD 5

A 1 C
0 to 1 1 (A7)

False-alarm rate (FAR):

B
FAR 5

A 1 B
0 to 1 0 (A8)

BIAS:

A 1 B
BIAS 5

A 1 C
0 to 1` 1 (A9)

Heidke skill score (HSS):

2(AD 2 BC)
HSS 5

(A 1 C)(C 1 D) 1 (A 1 B)(B 1 D)
21 to 11 1 (A10)

True skill score (TSS):

AD 2 BC A B
TSS 5 5 2

(A 1 C)(B 1 D) A 1 C B 1 D
21 to 11 1 (A11)

APPENDIX B

Kalman Filter Basics

Kalman filtering is used as an adaptive, recursive
method (Bozic 1979) to optimally estimate the bias and
reduce rms error between raw, noisy NWP forecasts and
noisy verification observations. It is recursive because
it carries only a filtered summary of the past input sig-
nals, into which it can incorporate new inputs to create
a modified filter. It is adaptive in the sense that any
changes in the stationarity of the input signals is quickly
incorporated into the modified filter, causing informa-
tion about the old filter to be gradually lost with suc-
ceeding time steps. These attributes are desirable be-
cause the filter adapts to changing climate, changing
seasons, or even changing NWP model versions without
requiring one to first accumulate a large database of
historical data.

Kalman (1960) and Kalman and Bucy (1961) showed
how this approach can also be used as a statistical pre-
dictor to estimate future forecast bias. This is particu-
larly useful for real-time weather forecasting, where the
raw NWP projection can be corrected with the Kalman-
estimated bias projection to create a corrected forecast.
We used this objective, linear approach during postpro-
cessing of each model forecast, in place of traditional
model-output statistics (MOS). This operation is fully
automated with no manual tweaking or bogusing.

Let ek be the bias between the forecast and the ver-
ifying observation valid today (for time step k), such as
for temperature [ek 5 Tk(fcst) 2 Tk(obs)] at one weather
station location. This ek is the signal that we would like
to predict (i.e., estimate) for tomorrow (at k 1 1). Kal-
man designed his filter/predictor for a first-order auto-
regressive system of the form ek11 5 aek 1 wk, where
wk is a Gausian-distributed random term of variance

. The meteorological interpretation of this ‘‘signal2s w

model’’ or ‘‘system model’’ is that a portion (a) of the
future bias of the weather forecast is successfully de-
scribed by persistence of the current bias, but with the
addition of a random term that is related to the funda-
mental deterioration of weather predictability with in-
creasing lead time. This system model applies not only
to the actual system, but to our estimate of the system.

Similarly, the input observations are assumed to be
noisy (with random error yk) that can be described by:
ek 5 cêk 1 yk, where the error variance is , factor c2sy

indicates the relationship between the filtered expected
value and the actual observation, and the hat indicates
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FIG. B1. Flow diagram for the Kalman predictor.

expected value. Meteorologically, the random error can
be due to subgrid terrain influences, spurious numerical
artifacts, inadequacies of the physical parameterizations,
and errors in the observations themselves.

Flow diagram Fig. B1 illustrates that the Kalman ap-
proach is basically an optimal predictor-corrector meth-
od. The prediction of tomorrow’s bias uses the bias from
today, which is assumed to persist with the loss of skill
associated with predictability. The difference between
today’s observed bias and the reliable (nonrandom) por-
tion of today’s bias that was estimated yesterday, when
weighted by a factor b called the Kalman gain so as to
project to tomorrow, gives the correction that was
‘‘learned’’ from previous errors. This correction is added
to the prediction, to give the final estimate of the bias
for tomorrow. We use this bias estimate to adjust our
raw numerical forecasts. Also, this bias estimate is saved
for one day (i.e., the time delay operator), to be recycled
into the Kalman algorithm to estimate the bias for the
subsequent day. This cycle repeats every day, as counted
by index k.

Combining the previous equations yields the resulting
predictor equation (Bozic 1979):

ê 5 aê 1 b [e 2 c · ê ],k11 | k k | k21 k k k | k21 (B1)

where the Kalman gain b is found from:

2 2 21b 5 acp [c p 1 s ] ,k k | k21 k | k21 y (B2)

and where p is the prediction mean-square-error from:

2 2p 5 a p 2 acb p 1 s .k11 | k k | k21 k k | k21 w (B3)

Subscripts such as k | k 2 1 indicate the value for today
(index k) as extimated from yesterday’s (k 2 1) value.
The parameters a and c are found from the covariance
matrices of bias, and the whole system is started on the
first day using a 0 initial-bias estimate. Within the first
several days of operation of this postprocessing system,
(B1) approaches the best estimate of forecast bias. This
approach is used separately for each weather station in
this study; namely, different parameters a, c, b, and p
can evolve for the different stations.
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