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ABSTRACT

An anisotropic surface analysis method based on the mother–daughter (MD) approach has been devel-
oped to spread valley station observations to grid points in circuitous steep valleys. In this paper, the MD
approach is further refined to allow spreading the mountain-top observations to grid points near neigh-
boring high ridges across valleys. Starting with a 3D first guess from a high-resolution mesoscale model
forecast, surface weather observations are assimilated into the boundary layer, and pseudo-upper-air data
(interpolated from the coarser-resolution analyses from major operational centers) are assimilated into the
free atmosphere. Incremental analysis updating is then used to incorporate the final analysis increments (the
difference between the final analysis and the first guess) into a high-resolution numerical weather prediction
model. The MD approaches (including one with shoreline refinement) are compared with other objective
analysis methods using case examples and daily mesoscale real-time forecast runs during November and
December 2004. This study further confirms that the MD approaches outperform the other methods, and
that the shoreline refinement achieves better analysis quality than the basic MD approach. The improve-
ment of mountain-top refinement over the basic MD approach increases with the percentage of mountain-
top stations, which is usually low. Higher skill in predicting near-surface potential temperature is found
when surface information is spread upward throughout the boundary layer instead of at only the bottom
model level. The results show improved near-surface forecasts of temperature and humidity that are directly
assimilated into the model, but poorer forecasts of near-surface winds and precipitation, which are not
assimilated into the model.

1. Introduction

This paper presents a method to fully incorporate
both dense local surface weather observations from
complex terrain and existing coarse-resolution 3D
analyses into a cost-efficient higher-resolution objective
analyses for local mesoscale modeling. The goal is to
reduce near-surface high-resolution numerical weather
prediction (NWP) errors in mountainous terrain.

Many parts of the world have complex mountain
ranges with valleys that are narrow and long with kinks
and twists. To tackle the analysis problems in such com-
plex terrain, Deng and Stull (2005, hereafter DS05) de-
veloped a mesoscale analysis method using a mother–

daughter (MD) approach to spread valley observations
along circuitous valleys. The MD approach is further
refined here for mountain-top observations, as will be
described in section 2.

Section 3 describes the NWP model and surface
weather observations used here. Surface observations
are valuable for mesoscale data analysis, assimilation,
and forecasting (Yee and Jackson 1988; Stauffer et al.
1991; Miller and Benjamin 1992; Ruggiero et al. 1996).
Ruggiero et al. (2000) demonstrated that a combination
of continuous assimilation of satellite imager data and
intermittent assimilation of hourly surface observations
led to a better depiction of circulations caused by cloud-
shading contrasts. Alapaty et al. (2001) found that as-
similating surface data into NWP models led to signifi-
cant reduction in atmospheric boundary layer (BL)
modeling errors, which is beneficial to subsequent air
pollution forecasts.

Methodology for assimilating surface observations
together with a coarse analysis into a high-resolution
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mesoscale model is detailed in section 4. The method is
tested with case studies and daily real-time runs in sec-
tions 5 and 6, respectively. A summary is provided in
section 7.

2. Mountain-top refinement

The MD approach in DS05 works well for surface
observations in valleys, but could be problematic for
mountain-top observations. The MD approach is not
able to spread observation information from one moun-
tain top to a neighboring one, because the deep valley
in between attenuates the information spread. The por-
tion of information spread is called sharing factor (SF)
ranging from 0 to 1. As explained in DS05, the spread-
ing of observation data from a mountain top to grid
points near other mountain tops is desirable for shallow
cold-air pooling events when the mountain tops are all
protruding into the same free atmosphere air, and for
deep BL events when the mountain tops are all in the
same BL air. Therefore, the MD approach is further
refined here to allow such spreading by treating moun-
tain-top observations differently than valley observa-
tions.

A modified SF for a mountain-top observation is pro-
posed as follows:

Soa
MT � So

MT�1 � � |Zo � Za |
zref2 �b� �1�

for |Zo � Za | � zref2; otherwise SMT
oa � 0. The super-

script MT indicates mountain-top observations; the
subscripts o and a represent an observation and an
analysis grid point (GP), respectively. Here SMT

o is the
SF at the mountain-top observation location, which is
1.0. Parameter b controls the analysis decorrelation
rate. The SF at any surrounding analysis GP (SMT

oa ) de-
pends upon the elevation (Z) difference between the
observation and GP, and upon the “level-top” BL
depth parameter zref2 (which was defined in DS05). No
iteration is needed.

To use this approach, one must be able to distinguish
a mountain-top observation from a valley observation.
To do this, we first smooth the model terrain heights by
the Barnes (1964) method. The shape factor (R�) of the
empirical Gaussian weights is taken as 90 km, which is
the same value as used for the horizontal correlation
length scale in the first pass of the Bratseth (1986) suc-
cessive-correction scheme used in the surface data
analysis. Second, the standard deviation (�Z) of the dif-
ference between the model terrain height and the
smoothed model terrain height is calculated within a
region of radius R� around each GP. If Zs is the
smoothed model terrain height, then a zeroth-order es-

timate of the height of valley BL top (ZBL) can be
approximated by

ZBL � Zs � max�0., zref2 � �Z �, �2�

where zref2 is the level-top BL depth parameter in (1).
The valley BL top here acts like a capping inversion
top, which is used to distinguish valley locations (below
the base of the free atmosphere) from mountain-top
locations (within the free atmosphere). The approxi-
mated valley BL top follows the smoothed model to-
pography, but with a positive displacement (zref2 �
�Z). Over complex terrain with varying ridges and val-
leys, �Z is larger and hence the displacement is smaller.
Over flat terrain, �Z is smaller and therefore the dis-
placement is larger. In the case of zero �Z, the displace-
ment equals the level-top BL depth parameter zref2
used in the SF equations [(1) in this paper and (5) in
DS05].

If the unsmoothed terrain height for any GP is above
ZBL, then that GP is assumed to be in the free atmo-
sphere, and is treated as a mountain-top location. The
approximation of ZBL is crude, but provides a simple
and effective way to distinguish mountain-top from val-
ley observations. As mentioned in DS05, for any station
not collocated with a model GP, the station is first ap-
proximated as being collocated at the nearest-
neighboring model GP having the least elevation dif-
ference between them. In such a case, the elevation of
the nearest-neighboring model GP is compared with
ZBL. Any surface weather station that is above ZBL is
treated as a mountain-top station, whereas any surface
station that is below ZBL is treated as a valley station.
The SF for a mountain-top station is obtained through
(1), whereas the SF for a valley station is calculated via
Eq. (5) in DS05.

To illustrate, Fig. 1 shows the model topography of
test domains of 3- and 2-km horizontal grid spacing in
south British Columbia (BC), Canada, where our as-
similation and forecast experiments are conducted.

Figure 2 shows cross sections of the model topogra-
phy, the highly smoothed model topography (Zs), the
approximated height of valley BL top (ZBL), and �Z.
The top (bottom) panel in Fig. 2 is along the projection
line in the top (bottom) panel of Fig. 1. Any surface
station or GP above the dot–dashed ZBL line will be
treated as a mountain-top station or GP.

To further illustrate, Fig. 3 shows terrain heights in
the Coast Mountains of BC, just north of Vancouver
[Lower Fraser Valley (LFV) in Fig. 1]. With the same
case example (7–8 March 2003) as in DS05, a virtual
mountain-top observation at o3 (Fig. 3) is extracted
from the “truth” model surface forecasts of “fraternal
twin” experiments (see DS05). The observation incre-
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ment (observation minus the first guess from the
“analysis” model forecasts) is �1.56 K. The analysis
increments (analysis minus the first guess) produced by
the observation o3 using the MD approach after moun-
tain-top refinement (method MD_MT) are shown in
Fig. 4. Method MD_MT successfully spreads the moun-
tain-top observation increment to other mountain tops,
while giving very small spread in the valleys.

In DS05, the MD approach was compared with two
other published methods: GAUSS is the generic Gauss-
ian spread built into the Advanced Regional Prediction
System (ARPS; Xue et al. 2000) Data Assimilation Sys-

tem (ADAS; Brewster 1996); and TERR_DIFF is the
terrain difference method of Miller and Benjamin
(1992). See DS05 for more details about GAUSS and
TERR_DIFF. Redoing that fraternal twin experiment
from DS05, but now including method MD_MT, yields
the analysis verification statistics in Tables 1 and 2.
When only the mountain-top observation at o3 is ana-
lyzed, Table 1 shows that MD_MT verifies second best

FIG. 1. The model topography (darker shading indicates higher
elevations) for (top) 3- and (bottom) 2-km grid spacing. The black
lines are the projection lines for the cross sections in Fig. 2. See
Fig. 5 for the geographic relationship between these two domains.
The cities of Vancouver and Victoria, British Columbia, are also
indicated with unlabeled circles, near the LFV and the southern
tip of Vancouver Island, respectively.

FIG. 2. Cross sections of the model topography (solid line), the
smoothed model topography (dashed line), the approximated
height of valley BL top (dot–dashed line) and the std dev of the
difference between the model topography and the smoothed
model topography (dotted line). (top) The cross section is along
49.0°N cutting through the 3-km domain (see the black line in the
top of Fig. 1). (bottom) The cross section is along 50.08°N cutting
through the 2-km domain (see the black line in the bottom of Fig.
1). Any surface station located above the dot–dashed line is
treated as a mountain-top station. The same is true for GPs;
namely, the regions where the solid line is above the dot–dashed
line are considered to be mountain-top locations.

MARCH 2007 D E N G A N D S T U L L 1039



(after MD) against valley stations only, and best when
verified against mountain stations only. When two val-
ley observations (o1 and o2 from Fig. 3) and one moun-
tain-top observation (o3) are analyzed, Table 2 shows
that MD_MT verifies best against all the other valley
and mountain stations combined.

To further test MD_MT, we next describe the NWP
model and methodology used for one case study (a for-
est fire event) and for 2 months of daily real-time runs
using real data.

3. The numerical model and data

a. The numerical model

The NWP model into which the surface data are as-
similated is the Mesoscale Compressible Community
(MC2) model (Laprise et al. 1997; Benoit et al. 1997)
version 4.9.1. It uses vertically stretched Gal–Chen ter-
rain-following coordinates to obtain greater resolution
near the surface.

MC2 is configured with five one-way self-nested grids
with horizontal grid spacings of 108, 36, 12, 4, and 2 or
3 km. The National Centers for Environmental Predic-
tion (NCEP) Eta Model1 analysis and forecasts from
the “104” grid (with a 90.7-km grid spacing true at
60°N) were used as the initial and boundary conditions
for the coarsest MC2 grid. The Eta forecasts were avail-
able every 3 h up to 84 h. We start from the 104-grid
output because this domain extends far enough west
over the Pacific to reduce upstream boundary errors,
and also because this output was continuously available
and timely accessible via the Internet.

The 4-, 2-, and 3-km meshes (Fig. 5) have 35 layers
(18 below 1500 m AGL) in the vertical, with the model
top at 23 km. The first “thermodynamic” (“momen-
tum”) level is located at 5.3 (10.6) m above the model
ground.

Objective analyses of surface potential temperature
and specific humidity are performed at the first ther-
modynamic level. A data assimilation (DA) experiment
for the case study is performed on the 3-km domain
(Fig. 5 and Fig. 1, top), centered at Vernon in south-

1 Effective 25 January 2005, the Eta Model has been renamed
the North American Mesoscale (NAM) model.

FIG. 4. The AIs (isopleths) from method MD_MT for potential
temperature at the lowest (terrain following) model level in re-
sponse to a single mountain-top observation at o3 (white
solid triangle). The contour interval is 0.2 K. Darker shading in-
dicates higher elevations (m). The observation increment at o3 is
�1.56 K.

FIG. 3. Virtual surface observation stations (solid triangles)
used in the analysis and verification. The stations are positioned at
the truth model terrain height in the Coast Mountains north of
Vancouver. Station o1 (50.326°N, 123.578°W) is near the mouth of
the Elaho River. Station o2 (50.3344°N, 122.767°W) is near the
town of Pemberton. Station o3 (50.3773°N, 123.2363°W) is over
the mountain top. Terrain elevations (m) are from the truth model
(MC2 2 km). Darker shading indicates higher elevations, with a
maximum elevation difference of 2055 m in this figure. The
dashed line in lower-left corner is a fjord (Jervis Inlet).

TABLE 1. The NRMSEs between the analyses and observations
for different sets of the verification stations. One set is the valley
observations (b1, b2, b3, and b4) from Fig. 3; the other is the
mountain-top observations (m1, m2, and m3). The analyses were
produced when only the single mountain-top observation o3 is
used. The observation stations are shown in Fig. 3. NRMSE is
RMSE for each method normalized by the RMSE of the FSTG.
Smaller NRMSE corresponds to better analyses. NRMSE close to
1.0 indicates that the observations contributed relatively little
value relative to the first guess.

Method
Verified against

b1, b2, b3, and b4
Verified against
m1, m2, and m3

FSTG 1.0 1.0
GAUSS 1.103 0.275
TERR_DIFF 1.406 0.214
MD 1.001 1.0
MD_MT 1.003 0.163
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central BC. Real-time DA runs are performed for the
2-km mesh (Fig. 5 and Fig. 1, bottom). For all DA runs
on 3- or 2-km meshes, five GPs are cut from each side
of the analysis domains shown in Fig. 5, to reduce the
effects of lateral boundary errors.

b. Data

Hourly surface weather observations are from the real-
time “Emergency Weather Net Canada” (EmWxNet)
database, which includes surface temperature, relative
humidity, wind speed/direction, and mean sea level
pressure (or surface pressure at some stations). Tem-
perature and humidity are used for both assimilation
and verification, while other variables are used for fore-
cast verification only.

Potential temperature varies smoothly over moun-
tainous terrain when the BL is relatively deep and well
mixed (Miller and Benjamin 1992); thus, it is chosen as
the temperature variable for analysis. It is also the tem-
perature variable analyzed in ADAS.

Specific humidity is chosen as the moisture variable
for analysis and assimilation into MC2 for two reasons:
1) MC2 uses specific humidity; and 2) specific humidity
is a continuous variable. Specific humidity is also the
moisture variable analyzed in ADAS. To derive spe-
cific humidity from relative humidity, the saturation
specific humidity is first calculated using the enhanced
Teten’s formula, as in ARPS. This calculation requires
surface temperature and station pressure as input.
There are few reports of station pressure from the
EmWxNet. In the case of missing station pressure,
mean sea level pressure is used to approximate station
pressure according to the altimeter equation (standard
atmosphere) for stations with elevations below 500 m.

4. Methodology

Assimilating surface weather observations into a
high-resolution NWP model in this study involves three

major components: horizontal spreading, vertical
spreading, and data insertion.

a. Horizontal spreading of surface observations

The isotropic assumption typically used in back-
ground error correlation models for horizontally
spreading observations is not valid for mountainous ter-
rain. Instead, surface observations are analyzed aniso-
tropically using MD_MT with ADAS to generate a sur-
face data analysis (see DS05). This is done by optimally
combining surface observations and a high-resolution
gridded first guess from the lowest terrain-following
level of a previous MC2 run. The parameters used in
each analysis method are the same as in DS05.

b. Vertical spreading of surface observations and
combination with pseudo-upper-air data

Surface observations are available at only one ter-
rain-following level. Meanwhile, major operational cen-
ters generate 3D meteorological analyses daily by as-
similating many types of measurements (rawinsondes,
aircraft, wind profilers, satellite and radar, etc). This
section describes how to spread surface information up-
ward, and to combine it with pseudo-upper-air data
interpolated from a coarser, 3D analysis from the major
operational centers.

FIG. 5. MC2 grid domains for 	x � 4, 3, and 2 km. MC2 4-km
output provides nesting files to initialize 2- and 3-km runs. MC2 at
3 or 2 km is run to provide first-guess fields for analysis, and also
for assimilation runs after analysis. Five grid points are cut from
each side of the analysis domain shown here, to reduce lateral
boundary effects in the assimilation. The forest fire location near
the town of McLure is indicated with the X.

TABLE 2. Same as in Table 1, but for all of the verification
stations (the valley stations b1, b2, b3, and b4, and the mountain-
top stations m1, m2, and m3 from Fig. 3). The analyses were
produced using two observations (o1 and o2) in different valleys
and one mountain-top observation o3.

Method
Verified against b1, b2, b3, b4,

m1, m2, and m3

FSTG 1.0
GAUSS 1.759
TERR_DIFF 1.967
MD 0.972
MD_MT 0.415
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To obtain pseudo-upper-air data on the terrain-
following MC2 3-km (or 2 km) model levels, MC2 is
utilized as an interpolation tool here. This is done by
integrating MC2 for only 1 h and self-nesting the coars-
est grid (108 km) successively down to 36, 12, 4, and
finally to the finest one (3 or 2 km). The resulting MC2
3-km (or 2 km) output on terrain-following levels at 0 h
are the desired pseudo-upper-air data. By assimilating
this interpolated Eta data, we effectively incorporate all
the satellite, radar, aircraft, and rawinsonde data that
were assimilated by NCEP.

At this stage, we have a surface data analysis,
pseudo-upper-air data, and the first guess from a pre-
vious MC2 3-km (or 2 km) forecast, all on the MC2
model levels and at every model grid column. In devis-
ing a profile (PROF) scheme to combine the three sets
of data, we adopt assumptions similar to the ones of
Yee and Jackson (1988): surface observations describe
atmospheric state in the BL, while coarser, 3D analyses
from major operational centers provide information
above the BL. In the PROF scheme, potential tempera-
ture and specific humidity analyses at the lowest model
level are applied to the whole BL. Above the BL top in
the free atmosphere, the final analysis FA is a weighted
average of the first guess FB and the pseudo-upper-air
data FUA:

FA�r, k� � 
1 � W�r, k��FB�r, k� � W�r, k�FUA�r, k�,

�3�

where indexes r and k correspond to horizontal position
and vertical level, respectively. Weights W(r, k) in (3)
depends on the ratio of error variances of the pseudo-
upper-air data and first guess:

W�r, k� �
1

1 � ��UA�r, k�

�B�r, k�
�2 . �4�

As the pseudo-upper-air data are obtained by inter-
polating the Eta analysis to the MC2 3-km (or 2 km)
model levels, the error variance of the pseudo-upper-
air data is assumed to be the same as that of the first
guess: �UA(r, k) � �B(r, k).

The BL height is diagnosed from a profile method
using a slab idealization of the mixed layer (Stull 2000),
where the potential temperature jump in the entrain-
ment zone is taken as 	� � 1.5 K. Namely, the analyzed
potential temperature at the lowest model level �SA (1)
is compared with the potential temperature profile of
the pseudo-upper-air data (�UA) at successively higher
grid points. When �SA(1) � �UA(1)  �1.5 K, the BL
depth Zi is the height (above the model ground) of

the model level k at which the criterion of �UA(k) �
�SA(1) � 1.5 K is first met. When �SA(1) � �UA(1) �

1.5 K, Zi is assumed to be not shallower than 300 m,
which represents nocturnal BLs or shallow BLs with
cold-air pooling. Figure 6 illustrates the relationship be-
tween the BL depth Zi and �SA(1) � �UA(1).

c. Insertion of analysis increments

The objective analysis procedures used in this work
(same as in DS05) do not provide mass and motion
fields that are in optimal balance to initiate NWP. This
study uses the incremental analysis updating (IAU;
Bloom et al. 1996), instead of an explicit initialization
procedure. In IAU, the analysis increments (AIs) are
gradually incorporated into the MC2 model. Because
MC2 uses a process-splitting method (Bergeron et al.
1994) for its different prognostic terms, it was conve-
nient to apply the AIs after the physical parameteriza-
tions in the vertical, but before the treatment of hori-
zontal diffusion and the Asselin–Robert time filter.

IAU is implemented in MC2 largely following the
existing ADAS IAU (Brewster 2003; Bloom et al.
1996). Parallelization of IAU uses the software archi-
tecture of MC2. In their applications of ADAS IAU
(Brewster 2003; Xue et al. 2002), the analysis incre-

FIG. 6. Schematic diagram illustrating the relationship of the BL
depth Zi and the difference between the analyzed potential tem-
perature and the interpolated Eta analysis at the bottom model
level [� SA (1) � � UA (1)]. The actual slope of the diagonal line
depends on the upper-air profile.
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ments for radar data were introduced to a storm-scale
numerical model employing a constant time weighting
over a 10-min period. In our work, the analysis incre-
ments are introduced into the model over a 1-h IAU
window using a constant time weighting (sections 5
and 6).

5. Case study results

Numerical experiments are performed for 29–30 July
2003 when a large forest fire occurred near McLure, BC
(see Fig. 5). During that time, fair weather associated
with a 50-kPa ridge over southern BC allowed BL pro-
cesses to dominate. The 3-km domain (Fig. 5) is used
for this assimilation case study.

The Eta Model analysis and forecasts, started at 0000
UTC 29 July 2003, are used to drive the 108-km grid,
which in turn drives the nests of finer grids (see Fig. 7).
The MC2 3-km control run (CTRL) is started at 1200
UTC 29 July 2003 from the MC2 4-km output, and
provides its 12-h output as the first guess for the analy-
sis at 0000 UTC 30 July 2003. Surface analyses are per-
formed for 0000 UTC 30 July 2003 by blending hourly
surface observations with the first guess at the lowest
terrain-following model level valid at the same time.
Those surface stations with a difference between their
actual elevation and model topography greater than
500 m are excluded from analysis and verification. Out
of the total 134 stations in the DA domain, 20 stations
were excluded for this reason.

Pseudo-upper-air data are obtained from the Eta
analysis valid at 0000 UTC 30 July 2003. A final high-
resolution analysis at 0000 UTC 30 July 2003 is pro-
duced by combining the surface analysis, pseudo-
upper-air data, and first guess using the PROF scheme.
A DA run at 3-km grid spacing is started at 0000 UTC
30 July 2003 from the final analysis via the IAU tech-
nique. Lateral boundary conditions for the DA runs
and for the CTRL run are the same, and are from the
MC2 4-km output. Verification of subsequent model
forecasts at the lowest model level against surface ob-
servations is performed during a 24-h forecast period
for the DA forecast run, and are compared with veri-
fication of the CTRL run during the 12–36-h forecast
period from 0000 UTC 30 July to 0000 UTC 31 July
2003. The verification of both the surface analysis and
forecast fields are presented next.

Note that the comparison against this CTRL run is
not strictly optimal, since this CTRL run starts earlier
than the DA runs. This suboptimal choice of CTRL
implies a probable favor in DA experiments compared
to CTRL. A much more appropriate CTRL run would
start from the analysis of an operational model valid at

the same initial time as that of all other experiments.
The purpose of this paper is not only to demonstrate
the usefulness of surface data but also to assess the
impact of data assimilation on real-time high-resolution
model runs that do not have DA module originally. In
this paper, we sacrifice the optimum, in order to verify
the assimilation strategy over a long time period in real
time without modifying the current daily real-time fore-
cast system. Nevertheless, one should keep this prob-
lem of suboptimal CTRL in mind when comparing the
result from one DA experiment against that from
CTRL. The problem with suboptimal CTRL is mini-
mized when comparing the results from two DA ex-
periments.

a. Analysis verification

Figure 8 shows all 118 surface stations within the
analysis domain. The domain for DA runs is smaller
than the analysis domain, leaving 114 stations within
the DA domain for verification. Among them, 65 sta-
tions (indicated by closed triangles) reported tempera-
ture observations at 0000 UTC 30 July 2003. Observa-
tions separated by 100 m or less in the horizontal and
vertical are averaged to create a smaller number of
“superobservations.” Because only a subset of these
stations also reported relative humidity and pressure,
there are only 16 stations for which specific humidity
could be calculated (Fig. 9).

Table 3 shows that all methods give improved poten-
tial temperature analyses compared to the first guess
(FSTG) as measured by bias, mean absolute error
(MAE), and normalized RMSE (NRMSE). Both MD
and MD_MT outperform GAUSS and TERR_DIFF;
MD produces the lowest bias and MAE, whereas

FIG. 7. Schematic diagram illustrating model time lines of the
MC2 self-nested grids including the 3-km CTRL and DA runs.
MC2 4-km provides boundary conditions for the 3-km CTRL run
and the 3-km DA runs. SFC indicates surface data.
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MD_MT has the lowest NRMSE. The improvement of
MD_MT over MD is not as large as that for the virtual
observation case in section 2. One reason is that only
5% of the stations (3 out of 65) are identified as moun-

tain-top observations in this case, while 33% (1 out of
3) were from mountain top for the virtual observation
case.

For specific humidity, Table 4 shows that MD and
MD_MT outperform GAUSS and TERR_DIFF. No
specific humidity observations are from the mountain-
top stations, therefore MD_MT � MD. The MD ap-
proach with shoreline refinement (MD_LSMG, see
DS05) is not studied here, because there are no stations
over water in this domain.

The results above confirm the conclusion from DS05:
the MD approach outperforms GAUSS and TERR_
DIFF in producing better surface analyses. The results
also show that the mountain-top refinement provides a
small improvement over the basic MD approach. In
section 5b, the impacts of assimilating surface weather
observations using MD_MT on subsequent near-sur-
face forecasts are examined.

b. Verification of MC2 forecasts

1) FORECAST EXPERIMENTS

Eight experiments are conducted: one control experi-
ment without assimilation (CTRL) and seven other ex-
periments, which assimilate various combinations of
the surface and pseudo-upper-air data, use different in-
sertion rates, or assimilate different meteorological
fields (see Table 5).

Experiment SURFDA assimilates the surface data
into only the lowest model level, and uses the first guess
at all higher model levels. Experiment SF_PROF uses
the surface analysis only, but the AIs at the lowest
model level are spread vertically by the PROF scheme
to the whole BL. Experiment PROFDA uses the sur-
face and pseudo-upper-air data combined by the PROF
scheme. By comparing SF_PROF and PROFDA, one
can see if the assimilation of surface data plays a dom-
inant role on subsequent near-surface forecasts. For the
above three experiments, the temperature AIs are in-
corporated all at once within a single time step (30 s)
window.

FIG. 9. Surface station locations (closed triangles) with suffi-
cient data to calculate specific humidity at the analysis time (0000
UTC 30 Jul 2003) and the model topography (m). Darker shading
indicates higher elevations.

TABLE 3. Verification of analyzed potential temperatures for all
reporting verification stations at the analysis time: 0000 UTC 30
Jul 2003. Here N equals the total number of observations. For all
these statistics, smaller is better.

Method N Bias (K) MAE (K) NRMSE

FSTG 64 �5.258 7.687 1.0
GAUSS 64 0.758 2.099 0.515
TERR_DIFF 64 0.712 2.324 0.546
MD 64 0.089 1.600 0.391
MD_MT 64 0.133 1.610 0.387

FIG. 8. Surface weather stations (triangles) are superposed on
the model topography (m) for the 3-km domain shown in Fig. 5.
Darker shading indicates higher elevations. Open triangles repre-
sent station locations with missing temperature observations at
the analysis time (0000 UTC 30 Jul 2003), whereas closed triangles
indicate station locations reporting temperatures at the analysis
time.
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Experiments TH1 (i.e., experiment PROFDA)
through TH6 assimilate surface and upper-air tempera-
ture fields employing different insertion rates over dif-
ferent IAU time windows. TH1 incorporates AIs all at
once within a single 30-s time step. Over a 1-h window,
experiments TH2, TH3, and TH6 incorporate AIs ev-
ery 30, 120, and 1200 s, respectively. The 1-h window is
selected because the BL responds to surface forcings
with a time scale of about 1 h or less (Stull 1988).

The settings for experiments ATQ and AQ are the
same as those for experiment TH6, except that ATQ
assimilates both temperature and specific humidity, and
AQ assimilates only specific humidity.

2) VERIFICATION RESULTS

Statistical assessments during the 1–12-h forecast pe-
riod in Table 6 suggest that different DA experiments
have variable success at predicting near-surface fields.
The seven DA experiments can be divided into three
groups. Comparisons are made below within each group.

For potential temperature forecasts, experiments
SURFDA, SF_PROF, and PROFDA outperform
CTRL. By assimilating surface temperature at only the
lowest model level, SURFDA produces very little im-
provement over CTRL. When surface potential tem-
perature analyses are spread throughout the whole BL
(viz. experiment SF_PROF), larger improvement for
predicting surface potential temperatures are achieved.
By combining surface and pseudo-upper-air data,

PROFDA gains only slightly larger improvement than
SF_PROF. Thus, assimilating surface data that were
spread vertically over the BL was valuable for this for-
est fire weather case.

Verification of mean sea level pressure (SLP) fore-
casts reveals similar performance. All experiments ex-
cept SURFDA outperform CTRL. Overall, improve-
ment of SLP forecasts is smaller than that of potential
temperature. This is reasonable as temperature, not
pressure, observations are directly assimilated into the
model. For wind forecasts, all three DA experiments
underperform CTRL in terms of normalized root-
mean-square vector error (NRMSVE) due to initial im-
balances between mass and wind fields caused by a
sudden change in temperature fields. SURFDA has the
smallest NRMSVE, probably because the assimilated
temperature information is lost soon after insertion.

The impact of varying insertion rate on potential
temperature forecasts is much larger than on SLP and
wind forecasts (cf. experiments TH1, TH2, TH3, and
TH6 in Table 6). The errors of potential temperature
decrease significantly from experiment TH1 to TH2 (or
TH3 and TH6). This implies that introducing the AIs
over a 1-h window helps the model to better retain the
assimilated information than adding the increments at
only the initial time. The differences between the error
measures of experiments TH2, TH3, and TH6 are
small. Comparatively, TH6 has the smallest errors for
potential temperature and vector wind.

The top panel of Fig. 10 shows NRMSE of potential
temperature versus forecast hour for experiments
CTRL, TH1, TH3, and TH6. The NRMSEs for the DA
experiments are much smaller than 1.0 (NRMSE of
CTRL) during the first 12 h (except at 4 h, see expla-
nation for the exception later in this section), and later
increase gradually. Finally the NRMSE becomes close
to 1.0. By applying the AIs over a 1-h window rather
than all at once, TH3 and TH6 produce much smaller
NRMSE than TH1 for the first 7 h (except 4 h) of
forecasts. Reducing the insertion rate at which the AIs

TABLE 5. Experimental design. Variable T is temperature and q is specific humidity.

Expt name Surface analysis UA analysis Vertical spreading DA window Insertion rate Variables assimilated

CTRL No
SURFDA Yes No No 30 s 30 s T
SF_PROF Yes No Yes 30 s 30 s T
PROFDA (TH1) Yes Yes Yes 30 s 30 s T
TH2 Yes Yes Yes 1 h 30 s T
TH3 Yes Yes Yes 1 h 120 s T
TH6 (AT) Yes Yes Yes 1 h 1200 s T
AQ Yes Yes Yes 1 h 1200 s q
ATQ Yes Yes Yes 1 h 1200 s T, q

TABLE 4. Same as in Table 3, but for verification of analyzed
specific humidity.

Method N
Bias (1.0 �

10�4 kg kg�1)
MAE (1.0 �

10�4 kg kg�1) NRMSE

FSTG 16 14.941 21.921 1.0
GAUSS 16 �3.595 7.878 0.621
TERR_DIFF 16 �4.480 9.440 0.665
MD 16 �3.181 6.770 0.594
MD_MT 16 �3.181 6.770 0.594
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are introduced decreases NRMSE mainly for the first 1
h of forecasts. Reducing the insertion rate over a 1-h
window implies a larger fraction of the AIs is applied at
each insertion step and thus experiences less diffusion
after 1 h.

The time series of NRMSVE for experiments CTRL,
TH1, TH3, and TH6 are shown in the bottom panel of
Fig. 10. By assimilating temperatures only, the model
produces poorer wind forecasts than CTRL during the
first 12 h due to initial imbalances between the mass
and wind fields. During the second 12 h, all DA experi-
ments and CTRL produce similar forecasts. This could
be because the assimilated information propagates out
of the domain. Another reason could be that the mass
and wind fields are adjusted to be in balance. By ap-
plying the temperature AIs over a 1-h window rather
than all at once (thus reducing initial imbalances), TH3
and TH6 decrease NRMSVE for the 1-h forecast com-
pared to TH1, but increase NRMSVE a little during the
2–8 h. Reducing the rate at which the AIs are intro-
duced further decreases NRMSVE for the 1-h forecast
while reducing the growth of NRMSVE later.

The summed total precipitation amounts over the en-
tire domain for experiments CTRL, TH1, TH2, TH3,
and TH6 are listed in Table 7. Actual observations (not
listed) show trace to very light precipitation only at
some stations during the simulation period. Compared
to CTRL, data assimilation experiments result in much
more precipitation during the first 3 forecast hours, and
slightly smaller precipitation afterward. By applying the
AIs over a 1-h IAU window rather than all at once,
TH2, TH3, and TH6 reduce excessive precipitation dur-
ing the first 3 forecast hours compared to TH1. But the
precipitation forecasts from the DA runs remain poorer
than from the CTRL run. This may imply that a better
initialization step is required when assimilating surface

data into the NWP model. Also, in steep mountainous
regions much of the precipitation is orographically
modified, so poor wind forecasts lead to poor precipi-
tation forecasts.

FIG. 10. Time series, for (top) NRMSE of surface potential
temperature and (bottom) NRMSVE of surface winds from ex-
periments CTRL, TH1, TH3, and TH6. Smaller NRMSE (or
NRMSVE) corresponds to better forecasts.

TABLE 6. Verification of surface potential temperature (�), vector wind (V), and MSLP forecasts in terms of bias during a 12-h
forecast period from 0100 to 1200 UTC 30 Jul 2003. NRMSE (NRMSVE) is RMSE (RMSVE) for each experiment normalized by the
RMSE (RMSVE) of the control run (CTRL). The DA experiments are defined in Table 5. For all these statistics, smaller (closer to
zero) is better.

1–12-h forecast

�(K) (N � 601) SLP (kPa) (N � 153) V (m s�1) (N � 506)

Expt Bias MAE RMSE NRMSE Bias MAE NRMSE RMSVE NRMSVE

CTRL �4.838 5.666 6.472 1.000 0.376 0.397 1.000 1.745 1.0
SURFDA �4.853 5.623 6.442 0.996 0.376 0.397 1.000 1.750 1.003
SF_PROF �4.328 5.288 6.089 0.941 0.321 0.365 0.951 1.968 1.128
PROFDA �4.163 5.179 5.979 0.924 0.301 0.357 0.935 1.996 1.144
TH2 �3.846 4.885 5.679 0.878 0.269 0.363 0.940 2.024 1.160
TH3 �3.871 4.910 5.700 0.881 0.270 0.362 0.939 2.023 1.160
TH6 (AT) �3.752 4.792 5.600 0.865 0.277 0.358 0.936 1.991 1.141
AQ �4.921 5.731 6.554 1.013 0.385 0.408 1.021 1.773 1.016
ATQ �3.688 4.742 5.548 0.857 0.275 0.357 0.924 2.033 1.166
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Now we look at the impact of assimilating different
meteorological fields on subsequent model forecasts.
For potential temperature and SLP forecasts, experi-
ment AQ (assimilating specific humidity only) pro-
duces poorer forecasts than CTRL (Table 6). The fore-
casts from experiments AT and ATQ are greatly im-
proved compared to the CTRL forecast. By
assimilating both temperature and specific humidity,
ATQ is improved compared to AT that assimilates
temperature only.

The DA experiments AT, AQ, and ATQ give poorer
wind forecasts than CTRL. In contrast to the error
measures of potential temperature and SLP, NRMSVE
for wind is the smallest from AQ, and the largest from
ATQ. Winds are more sensitive to temperature pertur-
bations than to moisture perturbations.

Verification statistics of specific humidity for experi-
ments AT, AQ, and ATQ are shown in Table 8. As-
similating only specific humidity (experiment AQ)
greatly decreases bias, MAE, and NRMSE in the fore-
casts of specific humidity compared to CTRL. ATQ has
smaller MAE and NRMSE than AT.

The impact of assimilating different meteorological
fields on the diurnal variation of surface temperature is
examined at three stations near McLure and three sta-
tions in the Okanagan Valley (Fig. 11). McLure and the
Okanagan Valley suffered extensive forest fires in the
past few years, for which improved forecasts could have
aided fire fighters in saving more homes. The diurnal

variations of surface temperature forecasts for experi-
ments AT and AQ are almost the same as experiments
ATQ and CTRL, respectively, and therefore not in-
cluded here.

Figure 12 compares near-surface temperature fore-
casts (at the lowest model level, which is 5.3 m above
model ground) from experiments CTRL and ATQ to
the observed surface temperatures at three stations
near McLure every 1 h during the 24-h forecast period.
The first guess (from CTRL) underforecasts surface
temperature at the analysis time (0000 UTC 30 July
2003). By assimilating local surface temperature obser-
vations, experiment ATQ produces improved forecasts.
The improvement decreases from 1- to 2-h forecast for
these three stations.

Time series of observed and forecasted surface tem-
peratures are also shown for three stations located in
the populated Okanagan Valley in Fig. 13, where simi-
lar conclusions can be drawn. However, the difference
in the magnitude between the observed and forecasted
surface temperature is obvious, caused partly by the
difference between actual and model elevation (Table
9) in steep terrain.

At 0400 UTC, Figs. 12 and 13 show either a large
drop in surface temperature at some stations or missing
reports at others. This helps explain the sudden jump
of NRMSE for surface potential temperature at 4 h in
Fig. 10.

FIG. 11. Three surface stations (closed triangles) near McLure
(a forest fire location indicated by a closed square) and three
others farther south in the Okanagan Valley. The model terrain
heights (m) are shown by shading. Darker shading corresponds to
higher elevations. The shaded region corresponds to the 3-km
domain in Fig. 5.

TABLE 8. Verification of surface specific humidity (q) for the
1–12-h forecast period from 0100 to 1200 UTC 30 Jul 2003. The
DA experiments differ in the variables assimilated into the model.

Expt

1–12-h forecast

q (1.0 � 10�4 kg kg�1) (N � 169)

Bias MAE RMSE NRMSE

CTRL 18.883 24.465 29.723 1.0
AT 17.605 24.051 28.801 0.969
AQ 14.082 19.810 24.249 0.816
ATQ 18.410 23.517 28.369 0.954

TABLE 7. The summed total precipitation amounts (mm) over
the entire domain from experiments CTRL, TH1, TH2, TH3, and
TH6.

Expt 0–3 h 3–6 h 6–9 h 9–12 h

CTRL 96.9 0.0 0.9 7.6
TH1 1095.6 0.0 0.5 5.0
TH2 651.4 0.0 0.5 4.3
TH3 653.4 0.0 0.5 4.3
TH6 592.3 0.0 0.4 4.1
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6. Daily real-time runs

This section further tests MD_MT and the assimila-
tion methodology for robustness over a longer period
by applying them in daily real-time forecast runs for 2
months.

a. Experimental setting

The real-time MC2 model at UBC has five one-way
self-nested grids with horizontal grid spacings of 108,
36, 12, 4, and 2 km. The DA run is performed daily for
only the 2-km grid. The model time lines are shown in

Fig. 14. In a real-time setting, the grids at 108, 36, 12,
and 4 km are actually run into the future at 1200 UTC
on day 3. Limited by computational resources, the pri-
mary real-time 2-km grid (hereafter the CTRL) driven

FIG. 12. Time series of observed surface temperature (dotted
line with closed triangles) and the forecast temperature at the
lowest model level from the control run (CTRL; dashed line with
open circles) and from experiment ATQ (solid line with closed
circles) for stations near McLure: (top) Kamloops ARPT,
(middle) Sparks Lake, and (bottom) East Barriere.

TABLE 9. The actual station elevations and the modeled station
elevations for the surface stations shown in Fig. 11.

Station
Actual

elev (m)
Modeled
elev (m)

Elev error of
model (m)

Kamloops ARPT 346.0 541.0 195.0
Sparks Lake 1036.0 1030.0 �6.0
East Barriere 671.0 912.0 241.0
Vernon 556.0 487.0 �69.0
Kelowna College 300.0 399.0 99.0
Penticton ARPT 344.0 569.0 225.0

FIG. 13. Same as in Fig. 12, but for stations in Okanagan Valley:
(top) Vernon, (middle) Kelowna College, and (bottom) Penticton
ARPT.
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by the 4-km output is run for only 27 h. This CTRL run
is started at model-time 1200 UTC on day 1 (Fig. 14),
and provides its 12-h output as a first guess for analyses
at 0000 UTC on day 2 for the parallel DA run.

The surface observations of potential temperature
and specific humidity at 0000 UTC on day 2 are ana-
lyzed using the ADAS Bratseth (1986) scheme (Brew-
ster 1996) modified to include the MD approach after
mountain-top refinement (MD_MT). The final analy-
ses are obtained by combining the first guess, surface,
and pseudo-upper-air data by using the PROF scheme.
Out of the total 305 surface stations in the DA domain,
22 stations were excluded from analysis and verification
because their actual and model elevation differed by
more than 500 m. Stencils of sharing factors at the
model grid points are generated for each of the remain-
ing 283 surface stations using MD_MT, so that there is
no need to recalculate the sharing factors during
each day’s analysis. These analyses are verified in sec-
tion 6b.

The 2-km DA parallel run is started at model time
0000 UTC on day 2 and is integrated forward 15 h.
Observation information are gradually incorporated
into MC2 every 1200 s over a 1-h window using the
IAU technique. Boundary conditions for both CTRL
and DA runs were from MC2 4-km output. Verifica-
tions of subsequent forecasts at the lowest model level
against surface observations are performed during the
15-h forecast period for the DA runs, and are compared
with verifications of the CTRL runs during the same
valid time. As discussed earlier in section 5, the CTRL
runs are not strictly optimal. The improvement of the
DA runs over the CTRL runs might be slightly over-
estimated.

Each day, the analysis obtains its first guess from the
12-h output of the 2-km CTRL run, not from the 2-km
DA run. This implies that the local surface observations
assimilated are not incorporated into the forecast cycle;
thus, each analysis and DA forecast are independent of
past local surface observations. This daily cold start is
good for independent tests of the robustness of the DA
module. Verification results for November and Decem-
ber 2004 forecasts are given in section 6c. Due to a
hardware failure of the supercomputer in December
2004, the sample size for December is smaller than for
November.

b. Analysis results

Figure 15 shows all 283 surface stations within the
Canadian portion of the analysis and DA domain. The
number of observations varied from day to day depend-
ing on the number of stations actually reporting. Be-
cause verification was performed 1 day later than analy-
sis (and some stations report late), the number of avail-
able reports for verification in November 2004 was
larger than that for analysis (Fig. 16). December was
similar (not shown).

Five analysis methods are compared: GAUSS,
TERR_DIFF, MD, MD_LSMG, and MD_MT. For
method MD_LSMG, which included shoreline refine-
ment (see DS05), 18 out of 283 surface weather stations
are identified to be stations over water, based on the
land–sea mask input data for the MC2 model at 2-km
grid spacing.

FIG. 14. Schematic diagram illustrating model time lines of the
real-time MC2 self-nested grids including the 2-km DA run. The
2-km CTRL run is the regular real-time 2-km run. MC2 4-km
provides boundary conditions for the 2-km CTRL run and the
parallel 2-km assimilation run. SFC indicates surface data.

FIG. 15. Surface weather stations (triangles) superposed on the
2-km MC2 model topography (m). Darker shading indicates
higher elevations. Open triangles represent station locations with
missing temperature observations at this one sample analysis time
0000 UTC 2 Nov 2004, while closed triangles indicate station lo-
cations with available temperature observations at that analysis
time.
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1) POTENTIAL TEMPERATURE ANALYSES

Table 10 summarizes the verification statistics for
November. The analyses from all methods have smaller
positive biases than the first guess (FSTG). The MAE
and NRMSE of each method are largely decreased
from those of the first guess. Even though TERR_
DIFF produces smaller bias than all other methods ex-
cept MD_LSMG, it has the largest MAE and NRMSE.
The MD approaches (MD, MD_MT, and MD_LSMG)
have smaller MAE and NRMSE than GAUSS and
TERR_DIFF, similar to the July 2003 case. The
MD_MT approach shows a minor increase of MAE and
NRMSE. This is different from the July 2003 case.
Comparatively, MD_LSMG has the smallest bias,
MAE, and NRMSE, which is similar to what was found
for the February 2003 case in DS05. But the improve-
ment of MD_LSMG over MD is smaller, compared to
the February 2003 case. The verification statistics for

December (not shown) show similar results to Novem-
ber, but with the first guess having small negative bias
and all analysis methods having smaller positive bias.

2) SPECIFIC HUMIDITY ANALYSES

The bias, MAE, and NRMSE of the specific humidity
analyses and first guess for November are presented in
Table 11. Each method gives largely reduced magni-
tude of bias, MAE, and NRMSE compared to the first
guess. The MD approaches (MD, MD_MT, and
MD_LSMG) produce better analyses with the smaller
negative bias magnitude, MAE, and NRMSE than
GAUSS and TERR_DIFF, similar to the July 2003 case
(Table 4). As there are no specific humidity observa-
tions from the few mountain-top stations, MD_MT is
equivalent to MD. MD_LSMG gives the smallest MAE
and NRMSE of the specific humidity analyses. Decem-
ber results are similar, but the magnitudes of bias,
MAE, and NRMSE of FSTG are smaller than in No-
vember. MD_LSMG slightly underperforms MD in
December.

c. Forecast results for MD_MT

1) VERIFICATION OVER THE FULL FORECAST

LENGTH

First, look at the verification summary for different
near-surface parameters over the full forecast length
from the initial 0–15-h forecast period, over all surface

TABLE 11. Same as in Table 10, but for verification of analyzed
specific humidity in Nov 2004.

Method N
Bias (1.0 �

10�4 kg kg�1)
MAE (1.0 �

10�4 kg kg�1) NRMSE

FSTG 1125 �5.987 7.800 1.0
GAUSS 1125 �0.451 1.892 0.292
TERR_DIFF 1125 �0.418 2.443 0.356
MD 1125 �0.169 1.687 0.270
MD_MT 1125 �0.169 1.687 0.270
MD_LSMG 1125 �0.464 1.553 0.247

FIG. 16. Number of stations that had reports of (a) potential
temperature and (b) specific humidity for each day of November
2004. Each day in the x axis corresponds to “day 1” in Fig. 14.
Hence, the number of available reports are actually for a date that
is 1 day later than the date shown in x axis. Those indicated by
triangles are the numbers of reports used in analyses; whereas
those marked by diamonds are the numbers of reports used in
verification.

TABLE 10. Verification of analyzed potential temperatures in
November 2004. For all these statistics, smaller magnitude is
better.

Method N Bias (K) MAE (K) NRMSE

FSTG 4537 0.293 2.238 1.0
GAUSS 4537 0.286 1.158 0.611
TERR_DIFF 4537 0.261 1.278 0.644
MD 4537 0.284 1.024 0.580
MD_MT 4537 0.284 1.031 0.582
MD_LSMG 4537 0.219 0.968 0.563
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stations that reported observations, and over the study
period of November and December 2004, respectively.

Table 12 summarizes the verification statistics for
November. For potential temperature forecasts, the
DA run presents slightly larger negative bias than the
CTRL run. The magnitude of the biases for both runs is
small. The MAE and NRMSE of the DA run are cor-
respondingly smaller than those of the CTRL run. The
monthly averaged improvement in potential tempera-
ture forecasts, as indicated by the value of NRMSE, is
smaller compared to the July 2003 case study (see ex-
periment ATQ in Table 6). A reduction in the improve-
ment of near-surface potential temperature forecasts
due to assimilation of surface observations implies that
surface thermal forcing in late fall may have been
smaller than in the summer.

Humidity forecasts from the DA run have improved
bias, MAE, and NRMSE compared to the CTRL run.
The improvement in humidity forecasts in November is
larger when compared to experiment ATQ for the July
2003 case study. The relatively dry July and wet No-
vember help explain the difference in humidity forecast
performance.

In contrast to the July 2003 case (see experiment

ATQ in Table 6), assimilating temperature and specific
humidity does not significantly improve the forecast
quality of mean SLP for November.

Assimilating temperature and specific humidity does
not disturb the wind fields very much. This finding is
different from the July 2003 case study, perhaps be-
cause performance is related to surface potential tem-
perature improvement. When the correction to surface
potential temperature is large (i.e., July 2003), the ini-
tial imbalances between mass and wind fields due to a
sudden change in temperature fields are also large and
cannot be removed by the IAU technique. However,
when the correction to surface potential temperature is
small, the initial imbalances are also small and can be
suppressed when the AIs are gradually introduced into
the model by the IAU technique.

Verification statistics for December (Table 13) show
that potential temperature improvement is slightly
larger than for November, but is smaller compared to
July 2003. The relative humidity forecasts from the DA
run are less improved in December than in November.
SLP and vector wind forecasts are neither improved
nor degraded much in the DA run compared to the
CTRL run.

TABLE 13. Same as in Table 12, but for the month of Dec.

Variable N

Bias MAE NRMSE

CTRL DA CTRL DA CTRL DA

� (K) 37 532 �1.230 �1.227 2.709 2.496 1.000 0.935
RH(%) 21 198 2.685 3.127 10.612 10.272 1.000 0.983
q (1.0 � 10�4 kg kg�1) 10 056 �4.053 �3.581 7.436 6.413 1.000 0.888
SLP (kPa) 10 878 �0.055 �0.055 0.336 0.334 1.000 1.002

RMSVE NRMSVE

Variable N CTRL DA CTRL DA

V (m s�1) 29 961 2.935 2.956 1.000 1.007

TABLE 12. Verification statistics of near-surface parameters produced by the MC2 control (CTRL) and MD_MT DA runs. The
statistics are calculated for all the observation–forecast pairs over all stations that reported, and over the 15-h forecast period for the
month of Nov. The units for each variable are included for bias and MAE (or RMSVE). The NRMSE or NRMSVE is unitless.

Variable N

Bias MAE NRMSE

CTRL DA CTRL DA CTRL DA

� (K) 55 230 �0.426 �0.524 2.286 2.160 1.000 0.959
RH(%) 31 954 �3.269 �0.718 10.827 9.645 1.000 0.912
q (1.0 � 10�4 kg kg�1) 13 290 �5.148 �3.475 7.460 6.390 1.000 0.886
SLP (kPa) 14 172 0.124 0.132 0.224 0.226 1.000 1.004

RMSVE NRMSVE

Variable N CTRL DA CTRL DA

V (m s�1) 43 823 2.696 2.693 1.000 0.999
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2) VERIFICATION BY FORECAST HOUR

Time series of monthly averaged NRMSE of surface
potential temperature for November are shown in Fig.
17a. An immediate improvement in NRMSE of the DA
run is apparent at 1-h forecast, as new observation in-
formation is introduced into the model within the 1-h
window. Then, the improvement diminishes with fore-
cast hour, but is still visible at 15 h. December (not
shown) shows the same pattern as for November, but
with smaller NRMSE. The gradual decrease in the im-
provement of the DA forecasts can be partly attributed
to the effects of lateral boundary conditions advecting
into the domain, and partly to model errors that return
after assimilating the observations.

The DA improvement of specific humidity in both
November (see Fig. 17b) and December (not shown)
behaves very similar to that of potential temperature.
However, by assimilating temperature and specific hu-
midity only, the model gives slightly degraded SLP and
wind forecasts during the first several forecast hours for
both November (see Figs. 17c,d) and December (not
shown). The deviation of the DA wind forecasts from
CTRL for November and December 2004 is much
smaller than for July 2003. Near the middle and end of
the forecast period, SLP and wind forecasts from the

DA run are very similar to those from CTRL, again
possibly due to the assimilated information propagating
out of the domain, and due to mass and wind fields
adjusted toward balance.

7. Summary

The MD method for analyzing complex terrain sur-
face weather observations into a high-resolution NWP
model (MC2) is tested with case studies and with 2
months of daily real-time runs. The MC2 first guess,
MD surface analysis, and pseudo-upper-air data (inter-
polated from coarser-resolution analyses) are com-
bined into a final 3D high-resolution analysis using a
profile method, which vertically spreads the surface
data throughout the BL. The final analysis increments
are incorporated into MC2 every 1200 s over a 1-h win-
dow. This incremental analysis updating (Bloom et al.
1996) exhibits better skill than instantaneous analysis
increment insertion.

Also, a new mountain-top refinement (MD_MT)
is proposed to the basic MD approach, and is tested
along with a previously suggested shoreline refine-
ment (MD_LSMG). These approaches are also com-
pared with Gaussian (GAUSS) and terrain difference

FIG. 17. Time series of monthly averaged NRMSE of surface parameter output from the CTRL and DA runs
in November 2004: (a) potential temperature, (b) specific humidity, (c) mean SLP, and (d) vector wind.
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(TERR_DIFF) methods for surface data analysis in com-
plex terrain. Verification against surface observations is
done both for the final analyses, and for the high-
resolution forecasts started from MD_MT analyses.

It is found that the MD approaches outperform
GAUSS and TERR_DIFF when tested in steep moun-
tainous regions of southern British Columbia, Canada.
The mountain-top refinement adds increasing value
over MD as more mountain-top stations are included.
The MD_LSMG shoreline refinement excels in coastal
mountainous regions.

Surface information assimilated at only the lowest
model level is soon lost at the beginning of the forecast
period. Larger improvement over the control (CTRL)
run is achieved when surface information is spread up-
ward throughout the BL. Combining the surface and
pseudo-upper-air data gives slightly larger improve-
ment over the CTRL forecast than assimilating only
surface data throughout the whole BL. This implies
that assimilation of surface data plays an important role
in reducing the model errors of near-surface weather
parameters, supporting the findings of Hacker and Sny-
der (2005) who used an ensemble Kalman filter
method.

By assimilating surface temperature and specific hu-
midity, the forecast quality of those parameters are bet-
ter than CTRL. The DA improvement is the largest at
1 h, and gradually decreases out to 15 h. The CTRL run
in this paper is initialized by an analysis including older
observations than the DA runs. This implies that the
DA improvement over CTRL might be slightly over-
estimated.

The DA run gives poorer forecasts of near-surface
winds and precipitation, which are not assimilated into
the model. This research addresses just a small part of
a much larger data assimilation need. Namely, it at-
tempts to improve only the potential temperature and
humidity analyses and forecasts by assimilating these
data. No attempt was made to improve precipitation or
wind forecasts in the mountains. While there is indeed
a critical need to improve forecasts of precipitation and
winds, those weather elements are much more difficult
to assimilate successfully at high resolution in the
mountains, and no attempt is made to do it here.

For these reasons, minimal discussion is given to pre-
cipitation. The only reason precipitation is mentioned
at all is so that the reader is aware what fields are and
are not improved by the assimilation of only potential
temperature and humidity.

Future work could be done to assimilate sequences of
hourly surface observations in order to achieve better
quality for a longer forecast. Future investigations
could include the analysis of surface winds (probably

through streamfunction and velocity potential) in com-
plex terrain and the incorporation of winds, together
with temperature and specific humidity, into an NWP
model. To get better precipitation forecasts while as-
similating surface data, the assimilation method could
be incorporated into a mesoscale three-dimensional
variational data assimilation (3DVAR) system, which
could also ease using an optimal CTRL.
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