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ABSTRACT

Recent advances in neural network modeling have led to the nonlinear generalization of classical multivariate
analysis techniques such as principal component analysis and canonical correlation analysis (CCA). The nonlinear
canonical correlation analysis (NLCCA) method is used to study the relationship between the tropical Pacific
sea level pressure (SLP) and sea surface temperature (SST) fields. The first mode extracted is a nonlinear El
Niño–Southern Oscillation (ENSO) mode, showing the asymmetry between the warm El Niño states and the
cool La Niña states. The nonlinearity of the first NLCCA mode is found to increase gradually with time. During
1950–75, the SLP showed no nonlinearity, while the SST revealed weak nonlinearity. During 1976–99, the SLP
displayed weak nonlinearity, while the weak nonlinearity in the SST was further enhanced. The second NLCCA
mode displays longer timescale fluctuations, again with weak, but noticeable, nonlinearity in the SST but not
in the SLP.

1. Introduction

Classical multivariate statistical methods, for exam-
ple, principal component analysis (PCA) and canonical
correlation analysis (CCA) are widely used for data
analysis in many fields, including meteorology and
oceanography (von Storch and Zwiers 1999). For a set
of variables {xi}, PCA (also known as empirical or-
thogonal function analysis) extracts the eigenmodes of
the data covariance matrix. It is used to (i) reduce the
dimensionality of the dataset and (ii) extract features
from the dataset. When there are two sets of variables
{xi} and {yj}, CCA finds the modes of maximum cor-
relation between {xi} and {yj}, rendering CCA a stan-
dard tool for discovering relations between two fields
(Barnett and Preisendorfer 1987).

Recent advances in neural network (NN) modeling
have led to the nonlinear generalization of PCA and CCA.
Nonlinear principal component analysis (NLPCA) using
NN was first introduced by Kramer (1991) in the chem-
ical engineering literature, and is now used in many
fields. Nonlinear canonical correlation analysis
(NLCCA) was recently introduced by Hsieh (2000) us-
ing an NN approach. While NLCCA has been dem-
onstrated with synthetic data, it has yet to be applied to
real data. This paper examines the problems encountered
when applying NLCCA to real data—the tropical Pacific
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sea level pressure (SLP) and sea surface temperature
(SST) fields—and extracts from the data the nonlinear
coupled modes, including the famous tropical Pacific
climate variability known as the El Niño–Southern Os-
cillation (ENSO). ENSO has warm El Niño states and
cool La Niña states, with changes found not only in the
SST but also in the SLP. The previous NN studies of
the tropical Pacific by our group used NN only for non-
linear regression (Tangang et al. 1997, 1998a; Tangang
et al. 1998b; Tang et al. 2000; Yuval 2000, Tang et al.
2001), and for NLPCA (Monahan 2001; Hsieh 2001).

This paper is organized as follows. The theory of
NLCCA is presented in section 2. While the theory
largely follows Hsieh (2000), there are several improve-
ments for working with real data, for example, scaling
of the input variables, normalization of the canonical
variates, and the addition of weight penalty terms to the
cost functions to avoid overfitting. The NLCCA is ap-
plied to the tropical Pacific SLP and SST fields to extract
the first mode in section 3, and the second mode in
section 4.

2. Theory of nonlinear canonical correlation
analysis

Consider two datasets {xi(t)} and {yj(t)}, where t is
the time, or simply a label of the particular sample.
Assume there is a total of N samples in t for each var-
iable xi(t) and yj(t). We group the {xi(t)} variables to
form the vector x(t), and {yj(t)} to y(t). CCA looks for
linear combinations
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FIG. 1. The three NNs used to perform NLCCA. The double-bar-
reled NN on the left maps from the inputs x and y to the canonical
variates u and y. Starting from the left, there are l1 input x variables
(‘‘neurons’’ in NN jargon), denoted by circles. The information is
then mapped to the next layer (to the right)—a ‘‘hidden’’ layer h (x)

(with l2 neurons). For input y, there are m1 neurons, followed by a
hidden layer h (y) (with m2 neurons). The mappings continued onto u
and y. The cost function J forces the correlation between u and y to
be maximized. On the right side, the top NN maps from u to a hidden
layer h (u) (with l2 neurons), followed by the output layer x9 (with l1

neurons). The cost function J1 minimizes the mean-square error (mse)
of x9 relative to x. The third NN maps from y to a hidden layer h (y)

(with m2 neurons), followed by the output layer y9 (with m1 neurons).
The cost function J2 minimizes the mse of y9 relative to y. When
applied to the tropical Pacific, the inputs x were the first 6 PCs of
the SLP field, and the inputs y, the first 6 PCs of the SST. For some
runs, instead of 6 pairs of PCs, only 3 pairs were used as inputs.

u(t) 5 a · x(t) and y (t) 5 b · y(t), (1)

where the canonical variates u and y have maximum
correlation, that is, the weight vectors a and b are chosen
such that cor(u, y), the Pearson correlation coefficient
between u and y, is maximized. CCA is widely used in
meterological/oceanographic studies (Barnett and Pre-
isendorfer 1987; Barnston and Ropelewski 1992; Shab-
bar and Barnston 1996).

In NLCCA, we follow the same procedure as in CCA,
except that the linear mappings in (1) are replaced by
nonlinear mapping functions using NNs. The mappings
from x to u and y to y are represented by the double-
barreled NN on the left-hand side of Fig. 1. The inputs
x and y are mapped to the neurons (i.e., variables) in
the hidden layer:

(x) (x) (x)h 5 tanh[(W x 1 b ) ],k k

(y) (y) (y)h 5 tanh[(W y 1 b ) ], (2)n n

where W (x) and W (y) are weight matrices; b (x) and b (y) ,
bias parameter vectors; and k, n, indices of the vector
elements (with the capital bold font reserved for ma-
trices and the small bold font for vectors). The hyper-
bolic tangent function is used as the transfer function
[see Bishop (1995) section 4.3 for a discussion on the
choice of transfer functions]. The dimensions of x, y,
h (x) , and h (y) are l1, m1, l2, and m2, respectively.

The canonical variate neurons u and y are calculated
from a linear combination of the hidden neurons h (x)

and h (y) , respectively, with
(x) (y)

(x) (x) (y) (y)u 5 w · h 1 b , y 5 w · h 1 b . (3)

These mappings are standard feedforward NNs and are
capable of representing any continuous functions map-
ping from x to u and from y to y to any given accuracy,
provided large enough l2 and m2 are used (Bishop 1995,
section 4.3; Cybenko 1989).

To maximize cor(u, y), the cost function J 5 2cor(u,
y) is minimized by finding the optimal values of W (x) ,
W (y) , b (x) , b (y) , w (x) , w (y) ,

(x)
, and

(y)
. Without loss ofb b

generality, u and y are required to have zero mean; then
(x)

and
(y)

are no longer free parameters, withb b
(x) (y)

(x) (x) (y) (y)b 5 2^w · h & and b 5 2^w · h &, (4)

where ^ & denotes the sample or time mean. We also
adopt the normalization conditions ^u2& 5 ^y 2& 5 1,
which are approximately satisfied by modifying the cost
function to

2 1/2 2 2 1/2 2J 5 2cor(u, y) 1 (^u & 2 1) 1 (^y & 2 1) .(5)

Incidentally, compared to (^u2&1/2 2 1)2, the simpler
normalization term (^u2& 2 1)2 is not always effective,
as it yielded very small values of ^u2& for some runs.
The gradient of the function f (u) 5 (u2 2 1)2, at u 5
0 is 0. In contrast, the gradient of (^u2&1/2 2 1)2 is non-
zero at u 5 0, thus forcing the solution to move away
from u 5 0.

There is a variant of CCA known as Singular Value
Decomposition (SVD) (Bretherton et al. 1992; Newman
and Sardeshmukh 1995). Noting that the name SVD is
used to denote both a statistical method and a matrix
decomposition method, von Storch and Zwiers (1999)
proposed using the less confusing name Maximum Co-
variance Analysis (MCA), for the statistical method.
The difference between MCA and CCA lies in the fact
that MCA maximizes the covariance cov(u, y), while
CCA maximizes the correlation. Using the cost function
J 5 2cov(u, y) yielded unbounded values for u and y,
as the network provided no constraints on the magni-
tudes of u and y when cov(u, y) was being maximized;
in contrast, J 5 2cor(u, y) was well behaved. With the
normalization terms added to the cost function in (5),
replacing cor(u, y) by cov(u, y) does not lead to sig-
nificantly different results. Thus, it does not seem pos-
sible to have a nonlinear MCA method distinctly dif-
ferent from NLCCA.

After the forward mapping with the double-barreled
NN has been solved, inverse mappings from the ca-
nonical variates to the original variables must then be
found. On the right-side of Fig. 1, the top NN (a standard
feedforward NN) maps from u to x9 in two steps:

(u) (u) (u)h 5 tanh[(w u 1 b ) ] andk k

(u)
(u) (u)x9 5 W h 1 b . (6)
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FIG. 2. The NLCCA mode 1 in the SLP PC-space (where only PC1, PC2, and PC3 of the 6
SLP PCs are shown). Four panels are used to show the (a) PC1–PC2 plane, (b) the PC1–PC3
plane, (c) the PC2–PC3 plane, and (d) the three-dimensional PC1–PC2–PC3 space. The data are
shown as dots, and the projection of the data onto the first NLCCA mode gives the string of small
(overlapping) circles. As the canonical variate u moves from its minimum to its maximum, the
SLP system moves from one end of the string to the other, that is, from La Niña to El Niño. In
(a), the La Niña states are to the left corner, and the El Niño states to the upper-right corner. The
CCA mode 1 is shown as the thin straight line.

The cost function J1 5 ^\x9 2 x\ 2& is minimized by
finding the optimal values of w (u) , b (u) , W (u) , and .

(u)
b

The mean-square error (mse) between the NN output x9
and the original data x is thus minimized.

Similarly, the bottom NN on the right-side of Fig. 1
maps from y to y9:

(y ) (y ) (y )h 5 tanh[(w y 1 b ) ] andn n

(y )
(y ) (y )y9 5 W h 1 b , (7)

with the cost function J2 5 ^\y9 2 y\ 2& minimized. The
total number of free parameters used by the NLCCA is
2(l1l2 1 m1m2) 1 4(l2 1 m2) 1 l1 1 m1. For most
datasets in meteorology and oceanography, a prefilter
of the datasets using PCA is needed, that is, the first
few principal component (PC) time series for x and the
first few PCs for y are used as inputs to the NLCCA.

The nonlinear optimizations for the three NNs were
all carried out by the function ‘‘fminu’’ in the MATLAB
Optimization Toolbox. An ensemble of 30 NNs mapping
from (x, y) to (u, y), using random initial parameters,
was run. The NN attaining the highest cor(u, y) was
selected as the solution. Next a random ensemble of 30
NNs (mapping from u to x9) was used to find the solution
with the smallest mse in x9. Finally, another ensemble
of 30 was used to find the NN yielding the smallest mse

in y9. For noisy data, overfitting can be avoided by
reserving some data as test data, and rejecting ensemble
members that perform poorer on the test data than on
the training data. After the first NLCCA mode has been
retrieved from the data, the method can be applied again
to the residual to extract the second mode, and so forth.

That the CCA is indeed a linear version of this
NLCCA can be readily seen by replacing the hyperbolic
tangent transfer functions in (2), (6), and (7) with the
identity function, thereby removing the nonlinear mod-
eling capability of the NLCCA. Then the forward maps
to u and y involve only a linear combination of the
original variables x and y, as in the CCA.

The nonlinear optimization algorithm is inaccurate if
the optimal parameters to be determined have a wide
range of magnitudes. Hsieh (2001) examined what
would happen to NLPCA if the input variables x were
scaled by a factor a. If the original weight parameters
are all of order 1, replacing x by ax would cause some
parameters to scale by a and some by a21, resulting in
an increase of a2 in the range of magnitudes. With
NLCCA, because separate networks are used for the
forward mapping and the inverse mappings, a similar
argument as in Hsieh (2001) would show that, if x and
y were replaced by ax and ay, there would only be an
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FIG. 3. Similar to Fig. 2, but for the SST data (where PC1, PC2, and PC3 of the 6 PCs are
shown). As the canonical variate y moves from its minimum to its maximum, the SST system
moves from one end of the string to the other, that is, from La Niña states at the upper-left corner
to El Niño states at the upper-right corner of (a). The CCA mode 1 is shown as the thin straight
line.

FIG. 4. The SLP field as the canonical variate u of the first NLCCA mode varies from (a) its minimum
(strong La Niña), to (b) half its minimum (weak La Niña), to (c) half its maximum (weak El Niño), and (d)
its maximum (strong El Niño). Contour interval is 0.5 mb.



2532 VOLUME 14J O U R N A L O F C L I M A T E

FIG. 5. Similar to Fig. 4 but for the SST field, as the canonical variate y varies from (a) its minimum (strong
La Niña), to (b) half its minimum (weak La Niña), to (c) half its maximum (weak El Niño), and (d) its
maximum (strong El Niño). Contour interval is 0.58C.

increase of a in the range of magnitudes during a net-
work optimization. Even though NLCCA is less sen-
sitive to scaling than NLPCA, it is nevertheless a good
idea to scale the input variables appropriately. One pos-
sibility is to standardize all the input variables, that is,
for each variable, remove its mean and divide by it
standard deviation. If the input variables are themselves
the leading principal component (PC) time series (i.e.,
PCA has been used to compact the dataset), then it
would be appropriate to normalize each input variable
xi by subtracting its mean and dividing by the standard
deviation of the first PC of x; and similarly for the yj

variables.
The use of excessive nonlinearity to arrive at an ‘‘ov-

erfitted’’ solution (i.e., a wiggly solution fitted to the
noise in the data) is a well-known problem in NN mod-
eling (Hsieh and Tang 1998). With three NNs in
NLCCA, overfitting can occur in any of the three net-
works. Regularization by adding weight penalty terms
to the cost function is a common way to prevent ov-
erfitting in NNs (Bishop 1995, section 5.4). The three
cost functions are modified to

2 1/2 2 2 1/2 2J 5 2cor(u, y) 1 (^u & 2 1) 1 (^y & 2 1)

(x) 2 (y) 21 p (W ) 1 (W ) , (8)O Oki nj[ ]ki nj

2 (u) 2J 5 ^\x9 2 x\ & 1 p (w ) , (9)O1 1 k
k

2 (y ) 2J 5 ^\y9 2 y\ & 1 p (w ) , (10)O2 2 n
n

where p, p1, and p2 are nonnegative weight penalty pa-
rameters. Since the nonlinearity of a network is con-
trolled by the weights in the hyperbolic tangent transfer
function, only those weights are penalized. The function
tanh has the property that given x in the interval [2L,
L], one can find a small enough weight w, so that
tanh(wx) ø wx, that is, an almost linear transfer function
results from using a small enough weight w. By in-
creasing the weight penalty parameter, one can suppress
the use of weights with large magnitudes, thereby pre-
venting excessively nonlinear solutions. Using a weight
penalty also reduces the sensitivity of the solution to
the number of hidden neurons—the reason is that with
a large number of hidden neurons, the abundant param-
eters lead to excessively nonlinear solutions, unless a
weight penalty suppresses the excessive nonlinear ca-
pability of the network.

3. First NLCCA mode for the tropical Pacific

The tropical Pacific monthly SLP data from Com-
prehensive Ocean-Atmosphere Data Set (COADS)
(Woodruff et al. 1987) for January 1950 to June 2000
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FIG. 6. The CCA mode 1 for (a) the SLP and (b) the SST. The
pattern in (a) is scaled by u1 5 [max(u) 2 min(u)]/2, and (b) by y1

5 [max(y) 2 min(y)]/2. Contour interval is 0.5 mb in (a) and 0.58C
in (b).

were used. The 28 3 28 resolution data were combined
into 48 latitude by 108 longitude gridded data, with cli-
matological seasonal cycle removed, and smoothed by
a 3-month running average. PCA of the data resulted
in the first six modes accounting for 29.5%, 16.5%,
4.8%, 3.4%, 2.5%, and 2.2%, respectively, of the total
variance.

The tropical Pacific monthly SST data from NOAA
(Smith et al. 1996) for the same period (where the orig-
inal 28 3 28 resolution data had been combined into 48
3 48 gridded data, with climatological seasonal cycle
removed, and smoothed by a 3-month running average)
were used. PCA resulted in the first six modes account-
ing for 51.8%, 10.1%, 7.3%, 4.3%, 3.5%, and 3.1%,
respectively, of the total SST variance.

For the NLCCA, the inputs x are the first six PCs of
the SLP field, while the inputs y are the first six PCs
of the SST field, that is, the NLCCA architecture has
l1 5 m1 5 6. For the number of hidden neurons, some
experimentation with l2 and m2 was needed. For l2 5
m2 5 1, the solutions were found to be essentially the
same as the linear CCA solutions. To get nonlinear so-
lutions, l2 and m2 both have to be at least 2. Following
the principle of parsimony, I chose l2 5 m2 5 2. The
penalty parameters are generally chosen to be as small
as possible while avoiding overfitting. The values p 5
p1 5 p2 5 0.1 were used.

The first NLCCA mode is shown in Fig. 2 for the
SLP and in Fig. 3 for the SST. For SLP, in the PC1-
PC2 plane (Fig. 2a), the El Niño states are in the upper-
right corner (high u values), while the La Niña states
are in the left corner (corresponding to low u values).
Figure 2d offers a full 3D view of the first NLCCA
mode in the PC1–PC2–PC3 space. For comparison, the
linear solution (CCA mode 1) is shown as a thin straight
line.

For the SST, in the PC1–PC2 plane (Fig. 3a), the first
NLCCA mode is a U-shaped curve linking the La Niña
states in the upper-left corner (low y values) to the El
Niño states in the upper-right corner (high y values). In
general, the nonlinearity is greater in the SST than in
the SLP, as the difference between the CCA mode and
the NLCCA mode is greater in Fig. 3a than in Fig. 2a.
The mse of the NLCCA divided by the mse of the CCA
is 0.951 for the SLP and 0.935 for the SST, confirming
that the mapping for the SST was more nonlinear than
that for the SLP.

For a given value of u, one can map from u to the 6
PCs of SLP. Each of the PCs can be multiplied by its
associated PCA (spatial) eigenvector (also known as the
empirical orthogonal function), and the six modes added
together to yield the spatial anomaly pattern for that
particular value of u. For the first NLCCA mode, as u
varies from its minimum value to its maximum value,
the SLP field varies from the strong La Niña phase of
the Southern Oscillation to the strong El Niño phase of
the Southern Oscillation (Fig. 4). The zero contour is
farther west during La Niña (Fig. 4a) than during strong

El Niño (Fig. 4d), though the eastward shift of the zero
contour mainly occurs between Fig. 4c and Fig. 4d, that
is, between weak El Niño and strong El Niño. Similarly,
as y varies from its minimum to its maximum, the SST
field varies from strong La Niña to strong El Niño (Fig.
5), revealing that the SST anomalies during La Niña are
centered farther west of the anomalies during El Niño.

For comparison, the CCA mode 1 spatial patterns for
the SLP and SST are shown in Fig. 6. The CCA first
mode is not capable of simulating the asymmetry be-
tween El Niño and La Niña, as the mode involves a
fixed pattern of SLP (Fig. 6a) multiplied by u(t) and a
fixed pattern of SST (Fig. 6b) multiplied by y(t).

The first mode canonical variate time series u and y,
for the NLCCA and for the CCA, reveal that they are
all rather similar (Fig. 7), in that El Niño events show
up as peaks and La Niña events, as troughs. The cor-
relation between u and y is 0.954 for the NLCCA versus
0.949 for the CCA.

Also shown in Fig. 7 are the u and y values of an
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TABLE 1. Ratios between the mse of the NLCCA and of the CCA
for various periods. A ratio around 1 means that the nonlinear solution
is almost identical to the linear solution, whereas a ratio much less
than 1 implies the nonlinear solution has improved on the linear
solution.

Period mse (SLP) mse (SST)

1950–75
1976–99
1950–59
1960–69
1970–79
1980–89
1990–99

1.027
0.879
1.012
1.028
1.011
0.857
0.862

0.847
0.759
0.987
0.923
0.846
0.948
0.613

FIG. 7. The canonical variates u and y plotted as a function of time from 1950 to 2000. The
top curve is u (for SLP) from the first NLCCA mode, with y for SST) immediately below it.
Next, u and y from the first CCA mode are shown, respectively, as the third and fourth curves
from the top. The results of the first mode from the NLCCA model with no weight penalty terms
is shown in the second curve from the bottom (u) and the bottom curve (y), illustrating serious
overfitting when no penalty terms were used. For better visualization, the curves have been shifted
by steps of 5 units from the bottom curve, with the dashed lines indicating the mean positions
of the curves.

NLCCA run with all the weight penalty parameters set
to zero. Serious overfitting is evident, in that u and y
only depart significantly from their bottom values for
three big El Niño events, while achieving an extremely
high correlation of 0.995 (cf 0.954 for the penalty case).
This superficially high correlation was costly, as the
inverse maps fared poorly, attaining a ratio of mse (rel-
ative to the CCA model) of 1.51 for SLP and 1.38 for
SST—that is, the NLCCA with no penalty did much
worse than the CCA model, due to severe overfitting in
the forward mapping from the inputs to the canonical
variates u and y. Hence, there is a need for weight

penalty terms in the cost functions to prevent the use
of excessively nonlinear mapping functions for datasets
with outliers.

Another run was made using only the first 3 PCs of
the SLP and the first 3 PCs of the SST as inputs (with
the number of hidden neurons unchanged). The ratios
between the mse of the NLCCA and of the CCA are
0.912 for SLP and 0.835 for SST. The mse ratios are
farther from 1 than in the previous run with six pairs
of PCs, indicating that the advantage of NLCCA over
CCA occurs mainly over the first three pairs of PCs,
than over the last 3 pairs. When Figs. 2–5 were redrawn
for the run with three pairs of input PCs, there were
only minor changes (not shown). Thus, in this case, the
NLCCA mode 1 can be adequately extracted with only
three pairs of PCs as inputs.

To see if there are gradual changes in the nonlinearity
of the data, we ran the NLCCA with 3 pairs of PCs as
inputs for two 25-yr periods—1950–75 and 1976–99—
with the results shown in Table 1. During 1950–75, SLP
was linear, while SST was weakly nonlinear. During
1976–99, SLP became weakly nonlinear, while the non-
linearity in the SST was enhanced from the previous
period. Calculations were repeated for individual de-
cades in Table 1. While a decade is a very short record,
the findings from the 25-yr period studies were sup-
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FIG. 8. The NLCCA mode 2 (circles) in the SLP PC-space (where PC1, PC2, and PC3 of the
6 SLP PCs are shown). The dots show the residual data after the NLCCA mode 1 has been
subtracted. The linear solution is shown as the thin straight line. (This linear solution to the dataset
after NLCCA mode 1 has been removed is not the same as CCA mode 2, which is the linear
solution to the dataset after CCA mode 1 has been removed.)

ported by the decadal studies. These results suggest that
the nonlinearity in the tropical Pacific climate system,
albeit weak, may be increasing gradually with time.

There are two caveats. (1) There is actually no proven
relation between the nonlinearity found in the data and
the nonlinearity in the governing dynamical equations.
In fact, even for linear systems, there are no established
relations between the linear dynamical modes and the
empirical PCA modes. (2) The poorer quality of the
earlier data, where missing data were interpolated by
principal component reconstructions, could have a lin-
earizing effect on the data (F. Zwiers 2000, personal
communication). On smaller spatial scales, this effect
can be major, but on a scale as large as ENSO, it is
unlikely that this effect alone can account for the marked
decline of nonlinearity in the data for the earlier decades.
The most probable explanation remains that nonlinear
processes may have become more important in the trop-
ical Pacific in recent decades.

4. Second NLCCA mode for the tropical Pacific

After the first NLCCA mode had been extracted, the
residual (i.e., the original data minus the first NLCCA
mode) was served as input to the NLCCA network (with
six pairs of input PCs) again to extract the second mode.
The second mode in the SLP PC-space (Fig. 8) shows
a nearly linear solution. In contrast, nonlinearity can be

seen in the SST PC-space (Fig. 9). The canonical var-
iates for NLCCA and CCA are plotted as a function of
time in Fig. 10, showing that mode 2 is ‘‘noisier’’ than
mode 1 (Fig. 7), but it also has longer timescale oscil-
lations than the ENSO oscillations in mode 1. The low
y state was found to last several years in the early 1950s,
and from the late 1990s to the present (Fig. 10). In fact,
from 1976 to 1997, the ocean was in a generally high
y state, with a sharp transition to the low y state in 1998,
resembling a ‘‘regime shift.’’

The spatial patterns of the SLP associated with the
NLCCA mode 2 (Fig. 11) confirms the almost linear
behavior found in Fig. 8. For instance, Fig. 11a (at
minimum u) is almost an exact mirror image of Fig.
11d (at maximum u). The spatial patterns of the SST
associated with the NLCCA mode 2 (Fig. 12) reveal
some differences between Fig. 12a (at minimum y) and
Fig. 12d (at maximum y)—in Fig. 12a, the cool anom-
alies in the central equatorial Pacific, the warm anom-
alies off Peru, and the warm anomalies around the north-
west corner of the picture, are all more intense than the
corresponding anomalies in Fig. 12d. While it is always
somewhat risky to infer the physics from empirical
modes (Newman and Sardeshmukh 1995), it seems
plausible that mode 2 at low u and y, corresponds to
an anomalous high pressure region centered north of the
equator (Fig. 11a), inducing easterly winds and up-
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FIG. 9. Similar to Fig. 8, but for the SST data (where PC1, PC2, and PC3 of the 6 SST PCs
are shown). The linear solution is shown as the thin straight line.

FIG. 10. The canonical variables u and y plotted as a function of time. The top curve is u (for
SLP) from the NLCCA mode 2, with y (for SST) immediately below it. Next, u and y from the
CCA mode 2 are shown, respectively, as the third and fourth curves from the top. For better
visualization, the curves have been shifted by steps of 5 units.
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FIG. 11. The SLP field as the canonical variate u of the NLCCA mode 2 varies from (a) its minimum, to
(b) half its minimum, to (c) half its maximum, and (d) its maximum. Contour interval is 0.2 mb.

FIG. 12. Similar to Fig. 11 but for the SST field, as the canonical variate y varies from (a) its minimum,
to (b) half its minimum, to (c) half its maximum, and (d) its maximum. Contour interval is 0.28C.
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FIG. 13. The CCA mode 2 for (a) the SLP and (b) the SST.
Contour interval is 0.2 mb in (a) and 0.28C in (b).

welling of cool waters along the equator (Fig. 12a). For
comparison, the CCA mode 2 is shown in Fig. 13.

When only three pairs of PCs were used as inputs,
the second NLCCA mode was quite different from that
using six pairs of PCs. In particular, the longer timescale
variability is much weaker. Thus it appears that the high-
er PC modes are needed to extract the NLCCA mode
2 correctly. Another run with eight pairs of PCs as input
was performed; the resulting NLCCA mode 2 did not
differ much from that obtained from six pairs of input
PCs, thereby confirming that six pairs of input PCs were
adequate for extracting the NLCCA mode 2.

5. Summary and discussion

In classical multivariate statistics, one has a hierarchy
of tools: 1) multiple linear regression, 2) PCA, and 3)
CCA. Neural network (NN) models have allowed the
nonlinear generalization of all three: The standard feed-
forward back-propagating model of Rumelhart et al.
(1986), which was largely responsible for the surge of
interest on neural networks in the late 1980s (Crick

1989), is a nonlinear regression model. PCA was non-
linearly generalized by the NLPCA model of Kramer
(1991), and CCA by the NLCCA model of Hsieh (2000).
(Codes for NLPCA and NLCCA are downloadable from
the Web site http://www.ocgy.ubc.ca/projects/clim.pred).

When dealing with data from the tropical Pacific, it
was found that the NLCCA needed proper scaling of
the input variables, and regularization by adding weight
penalty terms to the cost functions to prevent overfitting
(the use of excessively nonlinear mappings). In the trop-
ical Pacific, the NLCCA applied to the SLP and SST
fields found a nonlinear ENSO mode. The asymmetry
between the warm El Niño states and the cool La Niña
states was well modeled by the NLCCA first mode,
whereas the CCA first mode was incapable of modeling
the asymmetry. Interestingly, even though the nonlin-
earity in the equatorial region is quite weak relative to
the nonlinearity in the extratropical regions (Hoerling
et al. 1997), the NLCCA managed to detect the weak
nonlinearity and showed that the SST is slightly more
nonlinear than the SLP in the tropical Pacific. The non-
linearity of the first NLCCA mode was found to increase
gradually with time. The second NLCCA mode showed
longer timescale fluctuations, again with weak, but no-
ticeable, nonlinearity in the SST but not in the SLP.

As the nonlinearity in the tropical Pacific is weak, the
nonlinear power of the NLCCA and NLPCA is not very
well demonstrated. Hsieh (2000, 2001) provided ex-
amples with much stronger nonlinearity, and showed
that the NN methods handled them well. Comparing the
linear mappings used by PCA and CCA to the contin-
uous (nonlinear) mappings by NLPCA and NLCCA, it
is clear that NN techniques have considerably expanded
our ability to empirically model multivariate datasets.

There are two disadvantages with nonlinear NN meth-
ods. (i) The presence of multiple minima in the cost
functions. Even with an ensemble of optimization runs
starting from random initial parameters, there is no guar-
antee that the best solution in the ensemble is close to
the global minimum. However, this problem is greatly
alleviated with the use of weight penalty regularization,
which increases the concavity of the cost function, so
that in theory a global minimum can always be found,
provided a large enough weight penalty parameter is
used. Of course, excessively large penalty parameters
lead to linear solutions (and ultimately to constant so-
lutions where the penalized weights are all zero). (ii)
There are as yet no satisfactory ways to objectively
determine the number of hidden neurons (l2 and m2)
and the weight penalty parameters for the model. F.
Zwiers (2000, personal communication) pointed out the
potential of using Akaike Information Criterion (AIC)
(von Storch and Zwiers 1999) to choose the most ap-
propriate values of l2 and m2. With three pairs of PCs
as input to the NLCCA model, the AIC did choose l2

5 m2 5 2 for mode 1, but with six pairs of PCs as
input, AIC chose l2 5 m2 5 1, that is, an essentially
linear solution—even though the l2 5 m2 5 2 solution
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for six pairs of input PCs is very similar to that for three
pairs of PCs. The appropriate choice for the number of
input PCs to NLCCA is also not known, though from
PCA theory, there are some guidelines (Preisendorfer
1988). Hopefully, future research will provide more ob-
jective criteria for the network architecture.
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