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[1] The Kalman filter (KF) is a recursive algorithm to estimate a signal from noisy
measurements. In this study it is tested in predictor mode, to postprocess ozone
forecasts to remove systematic errors. The recent past forecasts and observations are used
by the KF to estimate the future bias. This bias correction is calculated separately for, and
applied to, 12 different air quality (AQ) forecasts for the period 11–15 August 2004,
over five monitoring stations in the Lower Fraser Valley, British Columbia, Canada, a
population center in a complex coastal mountain setting. The 12 AQ forecasts are obtained
by driving an AQ Model (CMAQ) with two mesoscale meteorological models (each
run at two resolutions) and for three emission scenarios (Delle Monache et al., 2006).
From the 12 KF AQ forecasts an ensemble mean is calculated (EK). This ensemble mean
is also KF bias corrected, resulting in a high-quality estimate (KEK) of the short-term
(1- to 2-day) ozone forecast. The Kalman filter predictor bias-corrected ensemble forecasts
have better forecast skill than the raw forecasts for the locations and days used here.
The corrected forecasts are improved for correlation, gross error, root mean square error,
and unpaired peak prediction accuracy. KEK is the best and EK is the second best
forecast overall when compared with the other 12 forecasts. The reason for the success of
EK and KEK is that both the systematic and unsystematic errors are reduced, the first by
Kalman filtering and the second by ensemble averaging.
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1. Introduction

[2] The first part of this study [Delle Monache et al.,
2006, hereinafter referred to as DM1] presented a new
Ozone Ensemble Forecast System (OEFS), composed of
12 forecasts created using four different meteorological
inputs and three different emission scenarios. The meteoro-
logical fields were obtained by running two mesoscale
numerical weather prediction (NWP) models over two
nested domains with 12 and 4 km horizontal grid spacing.
The emission scenarios were a control run, a run with
50% more NOx emissions, and a run with 50% less. The
12 combinations of the meteorological and emission fields
were used to drive the U.S. Environmental Protection
Agency (EPA) Models-3/Community Multiscale Air Quality

Model (CMAQ) Chemistry Transport Model (CTM) [Byun
and Ching, 1999].
[3] This OEFS has been tested for the period 11–

15 August 2004 using data from five stations across the
Lower Fraser Valley (LFV), British Columbia (BC), Canada,
a region where the ozone modeling is particular challenging
because the complex coastal mountain setting. The main
finding of DM1 is that, for the locations and days used to test
this new OEFS, the ensemble mean is the most skilful
forecast when tested against the observations, and compared
to any other ensemble member.
[4] The results in DM1 show that all the forecasts have

systematic errors (e.g., nighttime over prediction). This is a
problem common to all CTMs [Russell and Dennis, 2000].
In this paper the Kalman filter predictor (KFP) postprocess-
ing bias correction method [Bozic, 1994] has been applied
to each ozone forecast (the 12 ensemble members and the
ensemble mean) to improve the individual forecast skill for
all sites where ozone observations are available. The KFP
correction is an automatic postprocessing method that uses
the recent past observations and forecasts to estimate the
model bias in the future forecast, where bias here is defined
as the ‘‘difference of the central location of the forecasts and
the observations’’ [Jolliffe and Stephenson, 2003]. This
estimate can then be used to correct the raw model predic-
tion. It is a recursive, adaptive method that takes into
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account the time variation of forecast error at a specific
location.
[5] Details of the Kalman algorithm are given in section 2.

Section 3 describes the experiment and methodology. In
section 4, the performance of the raw (i.e., not corrected),
the KFP bias-corrected forecasts, the ensemble mean of the
KFP bias-corrected forecasts (EK, is a linear average of the
KFP bias-corrected ensemble member predicted hourly
concentrations), and the KFP bias-corrected EK (KEK)
are compared using the same data set and statistical
parameters as in DM1. Moreover, EK and KEK perform-
ances are compared with two other bias-correction methods;
namely, the additive and multiplicative methods (section 5).
In section 6 those results are discussed and conclusions are
drawn.

2. Kalman Filter Predictor Bias Correction

[6] The Kalman filter (KF) is a recursive algorithm to
estimate a signal from noisy measurements. It has been
mainly used in data assimilation schemes to improve the
accuracy of the initial conditions for both NWP [e.g.,
Burgers et al., 1998; Hamill and Snyder, 2000; Houtekamer
and Mitchell, 2001; Houtekamer et al., 2005] and air quality
(AQ) forecasts [e.g., van Loon et al., 2000; Segers et al.,
2005]. The KF has also been used for NWP model forecasts
as a predictor bias correction method during postprocessing
of short-term weather forecasts [Homleid, 1995; Roeger et
al., 2003], an approach that is extended here for AQ
forecasts (i.e., ozone).
[7] In a postprocessing predictor bias correction method,

the information (i.e., recent past forecasts and observations)
is used to revise the estimate of the current raw forecast.
Previous bias values are used as input to KF. The filter
estimates the systematic component of the forecast errors, or
bias, which is often present in AQ forecasts as shown in
DM1 and as reported in the literature [e.g., Russell and
Dennis, 2000]. Once the future bias has been estimated, it
can be removed from the forecast to produce an improved

forecast. Such a corrected forecast should be statistically
more accurate in a least-squares sense.
[8] The KF models the true (unknown) forecast bias xt at

time t, by the previous true bias plus a white noise h term
[Bozic, 1994]:

xtjt�Dt ¼ xt�Dtjt�2Dt þ ht�Dt ð1Þ

where ht�Dt is assumed uncorrelated in time, and is
normally distributed with zero-mean and variance sh

2, Dt
is a time lag (see Figure 1), and tjt � Dt means that the value
of the variable at time t depends on values at time t � Dt.
Because of unresolved terrain features, numerical noise,
lack of accuracy in the physical parameterizations, and
errors in the observations themselves, the KF approach
further assumes that the forecast error yt (forecast minus
observation at time t) is corrupted from truth by a random
error term et:

yt ¼ xt þ et ¼ xt�Dt þ ht�Dt þ et ð2Þ

where et is assumed uncorrelated in time and normally
distributed with zero-mean and variance se

2. Thus yt
includes both the systematic bias plus random errors.
[9] Kalman [1960] showed that the optimal recursive

predictor of xt (derived by minimizing the expected mean
square error) can be written as a combination of the
previous bias estimate and the previous forecast error:

x̂tþDtjt ¼ x̂tjt�Dt þ btjt�Dt yt � x̂tjt�Dt

� �
ð3Þ

where the hat (^) indicates the estimate.
[10] The weighting factor b, called Kalman gain, can be

calculated from:

btjt�Dt ¼
pt�Dtjt�2Dt þ s2h

pt�Dtjt�2Dt þ s2h þ s2e
� � ð4Þ

Figure 1. Flow diagram of the Kalman filter bias estimator. It uses a predictor corrector approach,
starting with the previous estimate of the bias (x̂tjt�Dt) and correcting it by a fraction (b) of difference
between the previous bias estimate and previous observed forecast error (yt) to estimate the future bias
(x̂t+Dtjt).

D05308 DELLE MONACHE ET AL.: KALMAN FILTER PREDICTOR BIAS CORRECTION

2 of 15

D05308



where p is the expected mean square error, which can be
computed as follows:

ptjt�Dt ¼ pt�Dtjt�2Dt þ s2h
� �

1� btjt�Dt

� �
ð5Þ

[11] It can be shown [Dempster et al., 1977] that the time
series

zt ¼ ytþDt � yt ¼ ht þ etþDt � et ð6Þ

has variance

s2z ¼ s2h þ 2s2e ð7Þ

Assuming r = sh
2/se

2, (7) become:

s2z ¼ rs2e þ 2s2e ¼ 2þ rð Þs2e ð8Þ

[12] se
2 (which is a time-varying quantity) can be

estimated with the Kalman algorithm itself (i.e., by
substituting x̂ with se

2 in equation (3)) in combination with
(8). Further details on the filter implementation are given in
Appendix A.
[13] Since here a time lag of Dt = 24 hours is used, today’s

forecast bias is estimated using yesterday’s bias, which in
turn was estimated using the day-before-yesterday’s bias,
and so on. Figure 1 shows the flow diagram of the KF
algorithm. The difference between today’s forecast error (yt)
and the portion of today’s bias that was estimated yesterday
(x̂tjt�Dt), is weighted by the Kalman gain to give the
correction that was ‘‘learned’’ from previous errors. This
correction is applied to yesterday’s estimate of today’s bias
(x̂tjt�Dt) to produce today’s estimate of the bias for tomorrow
(x̂t+Dtjt). Thus real-time AQ forecasts are possible by taking
the raw forecast from a model such as CMAQ, and correct-
ing it with the bias forecast from KF.
[14] The KF algorithm will quickly and optimally con-

verge (after few time step (Dt) iterations) for any reasonable
initial estimate of p0 and b0. However, the filter performance
is sensitive to the ratio sh

2/se
2. If the ratio is too high, the

filter will put excessive confidence on the past forecasts,
and will therefore fail to remove any error. On the other
hand, if the ratio is too low, the filter will be unable to
respond to changes in bias. Thus there exists an optimal
value for the ratio that is given by the climatology of the
forecast region, which can be estimated by evaluating the
filter performance in different situations with different
meteorology and different AQ scenarios (not only for AQ
episodes).
[15] The data set presented in this study is not extended

enough to compute an optimal ratio value that can also be
used for a wide range of AQ scenarios (i.e., nonepisodic). A
ratio value of 0.01 is used in this study. This is the value
from previous studies where the KF was used to bias-correct
weather forecasts in the steep mountains of BC, Canada
[Roeger et al., 2003], and close to the optimal value of 0.06
found by Homleid [1995]. With the availability of a longer
data set (a full month or season), including both ozone
forecasts and observations with a broader variability than
just the AQ episode presented here, a different optimal
value may result.

[16] A period of 2 days (9–10 August 2004) is used here
in order to train the Kalman gain coefficients. Kalman
corrections are then applied to the data for the subsequent
5 days (11–15 August 2004), during which time the KF
continues training itself. Also, the filter algorithm is run on
data for each hour of the day, using only values from
previous days at the same hour of the day (corresponding
to a Dt = 24 hours time delay in Figure 1). In this way, a
given hour is corrected using only the past forecasts and
observations at that same hour. This is to take into account
the time-varying behavior the bias may have at different
times of the day (e.g., different ozone reactions during
daytime versus nighttime). Thus we compute and save
different Kalman coefficients and variances for each hour
of the day.
[17] When observations are missing for an hour, the filter

uses the last known bias for that same hour from an earlier
day. In some cases, however, the true bias changes consid-
erably in such a time period, causing the algorithm to use
incorrect, old values. This creates spikes in the Kalman
coefficients that can be smoothed by applying the following
low-pass filter twice:

xt ¼
1

2
x̂t þ

1

4
x̂t�1 þ x̂tþ1½ � ð9Þ

Since the bias correction is additive, the Kalman-filtered
ozone concentrations were given a lower bound of 0 ppbv,
in order to avoid negative forecast values.
[18] In summary, the Kalman filter predictor corrector

approach is (1) linear, (2) adaptive, (3) recursive, and
(4) optimal. Namely, it predicts the future bias as equal to
the old bias plus uncertainty, but corrected by a linear
function of the difference between the previous prediction
and the verifying bias. Contrast this to a neural network
approach, which is nonlinear [e.g., Cannon and Lord,
2000].
[19] Contrary to a neural network approach that requires

a long training period and then behaves in a static manner,
the KF approach adapts its coefficients during each time
step. Advantages are a much shorter training period, and an
ability to adapt to changing synoptic conditions, changing
seasons, and even changing weather forecast models or AQ
models. A disadvantage is that it is less likely to predict
extreme bias events; namely, it is unable to anticipate a
large bias when all biases for the past few days have been
smaller.
[20] It is recursive because values of the KF coefficients

at any one time step depend on the values at the previous
time step. It is optimal in a least-square sense. Finally it is
easy to implement and fast running on the computer,
requiring storage of a handful of the KF coefficients for
each AQ site for each forecast hour.

3. Method

3.1. Experiments

[21] Because each AQ ensemble member is a forecast
based on a different meteorological model, different grid
resolution, or different initial chemistry, it is anticipated
that each forecast will have a different bias. Some of these
biases could be quite large. Also, this bias could vary
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depending on the hour of the day. To correct the individual
AQ forecasts, we apply a separate Kalman filter for each
ensemble member, for each hour. Individual Kalman-
corrected AQ forecasts are denoted by K.
[22] Next, if we ensemble (E) average all of the Kalman-

corrected (K) forecasts for any hour, then the result is
denoted by EK. This ensemble average could have a small
residual bias, because the bias corrections that were applied
to the individual members were only estimates of future
biases (as is the case for true AQ forecasts, not for ex-post-
facto calculations of actual biases). Hence, as a final fine
tuning, one can Kalman filter (K) the ensemble average
(EK), with the result denoted by KEK.
[23] Experiments are performed here for the same suite

of case study days, NWP models, and initial chemistry, as
are described in DM1, but this study tests and compares
the performance of the raw, K, EK, and KEK forecasts.
During the 5-day period of 11–15 August 2004 used in
this case study, there were typical conditions that lead to
high ground-level ozone concentrations in the LVF. Those
conditions are associated with a northward progressing
low-level thermal trough from Washington State, associ-
ated with a stationary upper-level ridge situated across
southern British Columbia, as described by McKendry
[1994].
[24] The five AQ measurements sites for this study are in

the complex terrain of the LFV, which is widest at its west
terminus at the Georgia Strait. In the LFV sea breeze
circulations, valley and slope flows exist, and with the
addition of the photochemistry, ozone modeling becomes
quite challenging in this area [McKendry and Lundgren,
2000].
[25] Roughly two million people in greater Vancouver

live in this valley, causing significant anthropogenic emis-
sions of NOx that can mix with the volatile organic
emissions from both anthropogenic sources and the sur-
roundings evergreen forest. The Vancouver International
Airport (CYVR) ozone monitoring site is at this western
edge. The north and south walls of the valley are the steep
Coast Range and Cascade Mountains. The valley width
decreases considerably toward east, where the ozone site at
the town of Hope is located in a very narrow, deep valley.
See DM1 for a map and site details. KF postprocessing is
particularly valuable at complex locations such as these,
where both the NWP model and the AQ model can have
difficulty.

3.2. Verification Statistics

[26] The skill of the 14 forecasts (12 ensemble members
plus EK and KEK) have been measured using the same
statistical parameters as defined in DM1: (1) Pearson
product-moment coefficient of linear correlation (herein
‘‘correlation’’):

correlation stationð Þ ¼

	

XNhour

t¼1

ðCo t; stationð Þ � Co stationð Þ
h i

Cp t; stationð Þ � Cp stationð Þ
h in o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNhour

t¼1

ðCo t; stationð Þ � Co stationð Þ
h i2XNhour

t¼1

ðCp t; stationð Þ � Cp stationð Þ
h i2vuut

ð10Þ

(2) gross error (for hourly observed values of O3 > 30
ppbv):

gross error stationð Þ ¼ 1

Nhour

XNhour

t¼1

Cp t; stationð Þ � Co t; stationð Þ
�� ��

Co t; stationð Þ
ð11Þ

(3) root mean square error (RMSE):

RMSE stationð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nhour

XNhour

t¼1

Cp t; stationð Þ � Co t; stationð Þ
� �2

vuut
ð12Þ

and (4) unpaired peak prediction accuracy (UPPA):

UPPA stationð Þ ¼ 1

Nday

XNday

day¼1

	
Cp day; stationð Þmax�Co day; stationð Þmax

�� ��
Co day; stationð Þmax

ð13Þ

where Nhour is the number of 1-hour average concentrations
over the 5-day period, Nday is the number of days, Co(t,
station) is the 1-hour average observed concentration at a
monitoring station for hour t, Cp(t, station) is the 1-hour
average predicted concentration at a monitoring station for
hour t, Co stationð Þ is the average of 1-hour average
observed concentrations at a monitoring station over the
5-day period, Cp stationð Þ is the average of 1-hour average
predicted concentrations at a monitoring station over the
5-day period, Co(day, station)max is the maximum 1-hour
average observed concentration at a monitoring station
over 1 day, and Cp(day, station)max is the maximum 1-hour
average predicted concentration at a monitoring station
over 1 day. Predicted values also include EK and KEK.
[27] The gross error and UPPA are included in the U.S.

EPA guidelines [U. S. Environmental Protection Agency
(U. S. EPA), 1991] to analyze historical ozone episodes
using photochemical grid models. The EPA acceptable
performance upper limit values are 35% for gross error,
and ±20% for unpaired peak prediction accuracy. UPPA is
computed here as an average (over the 5 days available) of
the absolute value of the normalized difference between
the predicted and observed maximum at each station
(equation (13)). Thus UPPA is nonnegative; hence only
the +20% acceptance performance upper limit is used in
the next sections.
[28] The reasons for utilizing this set of statistics are as

follows. We choose correlation to obtain an indirect indi-
cation of the phase differences between the predicted and
measured ozone time series at a specific location. The closer
the correlation is to one, the better is the correspondence of
timing of ozone maxima and minima between the two
signals.
[29] RMSE (measured in ppbv) gives important infor-

mation about the skill in predicting the magnitude of
ozone concentration, even though alone it does not draw
a complete picture of a forecast value. It is very useful
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also for understanding the filter behavior, because it can be
decomposed into systematic and unsystematic components
as discussed in detail in section 4.3.
[30] The gross error statistic has been considered in this

analysis because it is included in the U.S. EPA guidelines
[U. S. EPA, 1991]. Also, being computed for hourly
observed values of O3 > 30 ppbv, it gives useful information
about the forecast skill for higher concentration values,
which are important for health-related issues. It gives
information about the error magnitude (as RMSE), but as
a portion of the observed ozone concentration (i.e., is
measured in %).
[31] UPPA (%) is also used because it measures the

ability of the forecasts to predict the ozone peak maximum
on a given day. Traditionally, peak concentrations have been
the main concern for the public health. However, in recent
years over midlatitudes of the Northern Hemisphere, a
rising trend for background ozone concentrations has
been observed, while peak values have been steadily
decreasing [Vingarzan, 2004].

4. Results

[32] Figure 2 shows a typical example of the KFP bias
correction behavior. In Figure 2 (top), the time series
include the observations (circles), the ensemble mean of
the raw forecasts (solid line), EK (dashed line), and KEK

(dotted line), for the 7-day period of 9–15 August 2004, at
Abbotsford. The first 2 days on the left side of the vertical
dashed line represent the training period, when the coef-
ficients start to be computed, but no correction is applied to
the forecast.
[33] Even though the CMAQ model has been spun-up the

4 days before the start of training (i.e., in the period 5–
8 August 2004), first day (9 August) still shows evidence
that the forecast did not yet recover from the cold start.
Therefore a longer CMAQ spin-up period would improve
the filter performance as well.
[34] Nevertheless, KFP preserves the good performance

of the raw ensemble mean for the peak concentration,
except for the first day. The underestimated peak the
first day is not adequately corrected by the KFP because
the bias was much smaller for the previous (training)
day. The overnight over prediction (that is indeed
common to all the forecasts and the raw ensemble
mean) is improved, with KEK closer to the observations
than EK.
[35] Figure 2 (bottom) shows the behavior of the Frac-

tional Relative Improvement (FRI), defined as follows:

FRI ¼ RawFcsts� KEKj j
RawFcsts� Obsj j ð14Þ

Figure 2. (top) Ozone ensemble mean forecasts and observations at Abbotsford for the 7-day period 9–
15 August 2004. Continuous line is the raw ensemble mean, the dashed line represents the ensemble
mean of the KFP bias-corrected forecasts (EK), and the dotted line represents the KFP bias-corrected EK
(KEK). The circles are the observations. The vertical dashed line separates the training period (2 days,
left) from the filter application (5 days, right). (bottom) Fractional Relative Improvement (FRI) at
4:00 am for each day. Vertical dashed line is as Figure 2 (top), and the dash-dotted line represents the
optimal FRI value (one). Local Pacific Daylight Time (PDT) is UTC – 7 hours.
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where RawFcsts is the ensemble mean of the raw forecasts,
and Obs is the observation. FRI is computed in Figure 2
each day at 4:00 am (PDT), when the nighttime over
prediction is more evident. The fact that FRI, after the
training period, almost steadily increases toward its optimal
value (FRI = 1; i.e., when KEK = Obs) means that the
filter, day after day, keeps learning about the over
prediction at that hour, and progressively improves its
performance. This also confirms what said in section 2, that
the filter quickly and optimally converge after few time
step iterations. It also means that, with a slightly longer
training period, the results presented here could be
improved, particularly for statistical parameters such as
gross error and RMSE. The following subsections present
and discuss the results by looking at correlation, gross
error, RMSE, and UPPA.

4.1. Correlation

[36] Figure 3 shows the correlation results for the KFP
bias-corrected 12 ensemble members and the ensemble
mean for the 5-day period of 11–15 August 2004, at the
five stations (CYVR, Langley, Abbotsford, Chilliwack and
Hope). The solid bars are the values for the raw forecasts
and raw ensemble-mean (as in Figure 6 of DM1), the
shaded bars are the values for the KFP bias-corrected

forecasts and EK, while the open bars in the last column
represent the KEK correlation values. There are improve-
ments (higher correlation between forecast and observa-
tions) in most of the cases, except at CYVR where forecasts
10, 11 and 12 (MM5, 4 km) have slightly lower correlation
after the KF. The EK improvements are up to a factor of six
and they are larger for correlation values below 0.5. At
Hope, six ensemble members have negative correlation
before the KF bias correction, but have positive correlation
(with values between 0.3 and 0.5) after the correction.
[37] The EK correlation is slightly worse (lower) than the

raw ensemble mean at CYVR, slightly better at Abbotsford
and Langley, better at Chilliwack, and significantly
improved at Hope. The KEK correlation values are slightly
worse than the EK values at CYVR and Abbotsford (but
still very high correlation there), while they are better at
the other stations. Notably, after the KFP bias correction,
the correlation values of the forecasts are much more
similar, meaning that the filter brings all of them closer
to the same point — the observations.
[38] Table 1 shows for each station the ranking (from 1 to

14) of each ensemble member, EK, and KEK, where the
best (highest) correlation value has a ranking of 1, and the
worst (lowest) has 14. Forecast 08 has similar rankings
when compared to EK, while forecasts 08 and 09 (MC2,

Figure 3. Correlation values between observed and predicted ozone 1-hour average concentrations are
plotted for the 12-member Ozone Ensemble Forecast System (01, 02,..., 12) and the ensemble mean
(E-mean). The solid bars are the values for the raw forecasts and raw ensemble mean, the shaded bars
are the values for the Kalman filter predictor (KFP) bias-corrected forecasts and their ensemble mean
(EK), and the open bar represents the KFP bias-corrected ensemble of the KFP members (KEK).
Results are plotted at five stations (Vancouver International Airport (CYVR), Langley, Abbotsford,
Chilliwack, and Hope), for the 5-day period 11–15 August 2004. Values are within the interval
[�1, 1], with correlation = 1 being the best possible value.
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4 km) have a slightly worse performance. KEK rankings
are the best when compared to any other forecast.

4.2. Gross Error

[39] The KFP bias-corrected forecasts have better (lower)
gross error values than the raw forecasts, except at CYVR
for forecasts 01 and 06 (Figure 4), with improvements
roughly between 10 and 20%. KEK is always better than
EK, which in turn is always better than the raw ensemble
mean. The gross error computation (equation (11)) has a
lower ozone concentration limit (observed 30 ppbv). Those
improved gross error values after the KF correction
means that the KFP bias correction is improving not only
the forecast nighttime overprediction, but also efficiently
remove bias throughout the time series, regardless the
time of the day.
[40] Table 1 summarizes the rankings computed by look-

ing at the gross error. KEK is clearly the best, while EK is
the best when compared to the single deterministic fore-
casts. Here, as well as for the correlation (Table 1), the KFP
forecast shows the same problem as the raw ones at CYVR,
but not at Hope. The overall poor skill of the raw forecasts
at CYVR and Hope are due to the fact that both stations are
located in areas where all the individual ensemble members
have difficulties, as explained in section 4.2 of DM1. The
KFP is able to considerably improve the raw ensemble
mean at Hope (where it was 4th), with EK being 2nd and
KEK 1st. Moreover, both EK and KEK gross error are
always well within the EPA acceptance limit (+35%).

4.3. RMSE

[41] The RMSE results are shown in Figure 5. With this
parameter there is an improvement after the KFP bias

correction for all the forecasts, with values improved
(decreased) up to 20–25%. The raw ensemble mean RMSE
is considerably improved at each location, with further
improvements (decreases) between 17 and 21% with EK,
and between 29 and 36% with KEK. Table 1 shows the
RMSE rankings. KEK is always the best except at CYVR
where it is 3rd. EK is 3rd at Langley and Chilliwack, and
second at Abbotsford, therefore it is the second best forecast
when compared with the other 13.
[42] RMSE can be separated in different components.

One decomposition was proposed by Willmott [1981]. First,
an estimate of concentration C*(t, station) is defined as
follows:

C* t; stationð Þ ¼ aþ bCo t; stationð Þ ð15Þ

where a and b are the least-square regression coefficients of
Cp(t, station) and Co(t, station) (the predicted and observed
ozone concentrations, respectively, as defined in section 3.2).
Then the following two quantities can be defined:

RMSEs stationð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nhour

XNhour

t¼1

C* t; stationð Þ � Co t; stationð Þ½ �2
vuut

ð16Þ

RMSEu stationð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nhour

XNhour

t¼1

C* t; stationð Þ � Cp t; stationð Þ
� �2

vuut
ð17Þ

Table 1. Ranking of KFP Bias-Corrected 12 Ensemble Members (01, 02, . . ., 12), the Ensemble Mean of the KFP Bias-Corrected

Forecasts (EK), and the KFP Bias-Corrected EK (KEK) at the Vancouver International Airport (CYVR), Langley, Abbotsford, Chilliwack

and Hope Stations Tabulated for Correlation, Gross Error, Root Mean Square Error (RMSE), and Unpaired Peak Prediction Accuracy

(UPPA)

01 02 03 04 05 06 07 08 09 10 11 12 EK KEK

Correlation
CYVR 6 11 7 12 13 14 3 1 2 9 8 10 4 5
Langley 4 12 13 6 10 14 9 11 3 7 8 5 2 1
Abbotsford 9 12 13 4 6 14 3 5 7 10 8 11 1 2
Chilliwack 6 9 10 8 5 14 4 2 7 13 12 11 3 1
Hope 13 10 14 11 8 12 2 1 4 7 9 6 5 3

Gross Error
CYVR 1 9 2 6 10 4 14 13 12 8 11 3 7 5
Langley 4 10 11 6 5 8 14 13 12 7 9 3 1 2
Abbotsford 4 6 12 3 5 11 13 14 10 7 9 8 2 1
Chilliwack 10 7 2 5 8 13 12 14 11 6 9 4 3 1
Hope 12 13 10 5 8 14 3 7 11 6 4 9 2 1

RMSE
CYVR 2 7 1 9 11 4 14 12 13 8 10 6 5 3
Langley 2 11 6 8 9 4 14 12 13 7 10 5 3 1
Abbotsford 4 11 7 6 5 8 13 14 12 9 10 3 2 1
Chilliwack 14 6 9 7 2 10 8 13 4 11 12 5 3 1
Hope 12 7 13 14 9 10 3 4 2 8 11 6 5 1

UPPA
CYVR 3 10 1 5 9 2 14 13 12 8 11 4 7 6
Langley 8 4 12 3 5 11 14 10 13 2 1 9 7 6
Abbotsford 8 10 13 2 4 11 12 14 9 5 6 7 1 3
Chilliwack 10 13 11 2 9 14 5 3 12 4 1 8 6 7
Hope 10 13 11 5 6 14 3 2 12 4 1 8 9 7
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Figure 4. Similar to Figure 3 but for gross error values (%). The solid line is the EPA acceptance value
(+35%). Values are within the interval [0, +1), with a perfect forecast having gross error = 0.

Figure 5. Similar to Figure 3 but for root mean square error (RMSE) values (ppbv). Values are within
the interval [0, +1), with a perfect forecast when RMSE = 0.
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where RMSEs(station) is the RMSE systematic component,
while RMSEu(station) is the unsystematic one. RMSEs

indicates the portion of error that depends on errors in the
model, while RMSEu depends on random errors, on errors
resulting by a model skill deficiency in predicting a specific
situation, and on initial condition errors. The following is an
interesting relationship between RMSE and its components:

RMSE2 ¼ RMSE2
s þ RMSE2

u ð18Þ

[43] The KF is expected to correct some of the systematic
components of the errors (i.e., RMSEs), while the unsys-
tematic component (RMSEu) on average (over the different
forecasts) should be affected little by the filter correction. In
fact, if RMSEu reflects errors introduced by model imper-
fections and initial condition errors, then it cannot be
removed except by fundamental model improvements or
improvements in initial conditions.
[44] Figure 6 shows the results for RMSEs. The filter is

correcting some of the forecast systematic errors, as
expected, meaning that the algorithm is properly designed.
There is an improvement even when the filter is applied
twice (with KEK), meaning that successive applications of
the filter correction will decrease further the systematic
errors of all the forecasts.
[45] The 12-km runs (forecasts 01–06) have their highest

systematic error at Hope. All these forecasts poorly repro-
duce the real topography at this location, and this leads to
systematic misrepresentations of ozone temporal and spatial
distribution. Conversely, the 4-km runs have their highest

systematic error at CYVR (in particular for MC2 driven
runs, forecasts 07–09), where their ability to capture
complex terrain more accurately than the 12–km runs is
not an advantage, since at CYVR the terrain is flat.
[46] The results for RMSEu are shown in Figure 7. The

filter does not decrease the unsystematic errors, and often
increases them for this AQ episode. CYVR shows among
the highest RMSEu values (particularly for MC2 driven
runs, forecasts 01–03 and 07–09), indicating an intrinsic
lack of predictive skill at this location. Martilli and Steyn
[2004] discuss the effects of the superimposed valley, slope,
and thermal flows over the LFV. Often the pollution plume
is transported during night over the Georgia Strait waters, as
a result of the combination of several transport processes.
This makes it very challenging for the models to accurately
predict the spatial and temporal evolution of ozone concen-
tration near water locations, such as CYVR, where the
overstrait pool of pollutants can be readvected over land
during daytime sea breeze.
[47] For the ensemble mean, RMSEu keeps growing after

successive filter applications, the opposite of what is ob-
served for RMSEs. This means that there is a finite upper
limit on the number of useful corrections that can be
obtained by successive KF applications. Here, for the
ensemble mean, RMSE decreased until the fourth iteration,
and considerably grew afterward (not shown).

4.4. UPPA

[48] Figure 8 shows the results for UPPA. There are
improvements (values closer to zero) in the majority of

Figure 6. Similar to Figure 5 but for root mean square error (RMSE) systematic component values
(ppbv). Values are within the interval [0, +1), with a perfect forecast when RMSE = 0.
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Figure 7. Similar to Figure 5 but for root mean square error (RMSE) unsystematic component values
(ppbv). Values are within the interval [0, +1), with a perfect forecast when RMSE = 0.

Figure 8. Similar to Figure 3 but for unpaired peak prediction accuracy (UPPA) values. The solid lines
are the EPA acceptance values (+20%). Values are within the interval [0, +1), with a perfect peak
forecast when UPPA = 0.

D05308 DELLE MONACHE ET AL.: KALMAN FILTER PREDICTOR BIAS CORRECTION

10 of 15

D05308



cases; however, in one, three, six, five and three cases out of
14 at CYVR, Langley, Abbotsford, Chilliwack and Hope,
respectively, there is no improvement or the KF forecasts
are slightly worse. The improvements of the UPPA KFP
forecasts with respect to the raw forecasts are modest if
compared with the improvements shown with the previous
statistical parameters. EK is always better than the raw
ensemble mean, except at Chilliwack, where it is slightly
worse. The same can be said for KEK when compared to
EK, with the larger improvements for both EK and KEK at
Hope. EK and KEK have UPPA values within the EPA
acceptance limit (+ 20%) at Langley, Abbotsford and Chill-
iwack, while it is close to this limit at Hope and above 30%
at CYVR.
[49] UPPA is the only parameter where the ensemble

mean does not have the best overall ranking, even after
the forecasts are KFP bias corrected. Both EK and KEK
have an average performance for UPPA, when compared
with the other forecasts (Table 1).

5. Comparison With Other Bias Correction
Methods

[50] Figure 9 shows the ensemble mean RMSE values for
the five stations (CYVR, Langley, Abbotsford, Chilliwack
and Hope), for the 5-day period 11–15 August 2004. On the

abscissa are KEK, EK, the additive bias correction (AC), the
multiplicative bias correction (MC), and the raw ensemble
mean for comparison purposes.
[51] The additive bias-corrected concentration is com-

puted as follows:

CAC t; stationð Þ ¼ Cp t; stationð Þ

� 1

Nhour

XNhour

t¼1

Cp t; stationð Þ � Co t; stationð Þ
� �

ð19Þ

whereas the multiplicative bias-corrected concentration is
given by

CMC t; stationð Þ ¼

XNhour

t¼1

Co t; stationð Þ

XNhour

t¼1

Cp t; stationð Þ
Cp t; stationð Þ ð20Þ

[52] Both AC and MC use observations throughout the
experiment period, so the ozone time series corrected with
these methods cannot be considered forecasts, since they
cannot be computed in a predictor mode. Contrast this with
both KEK and EK that are predictor postprocessing proce-
dures of the forecasts, which use only observations available

Figure 9. Root mean square error (RMSE) values (ppbv) are shown for four different bias correction
methods applied to the ensemble mean. These methods are the Kalman filter predictor (KFP) bias-
corrected ensemble mean of the KFP bias-corrected forecasts (KEK), the ensemble mean of the KFP bias-
corrected forecasts (EK), the additive correction (AC), and the multiplicative correction (MC). The last
values on the abscissa are for the raw ensemble mean with no corrections. Results are plotted at five
stations (Vancouver International Airport (CYVR), Langley, Abbotsford, Chilliwack, and Hope), for the
5-day period 11–15 August 2004. Smaller values are better.
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before the time for which the forecast verify. In this sense,
this is a stringent test for the KFP bias correction.
[53] Nevertheless, at every station (except CYVR) KEK

is the best, while EK in general is better than MC, but has
higher (worse) RMSE values than AC (except at Hope).
Finally, at CYVR, KEK is third while EK is better only than
the raw ensemble mean.

6. Discussion and Conclusions

[54] In summary, the Kalman filter predictor (KFP)
bias-corrected forecasts and their ensemble mean have
better forecast skill than the raw forecasts, for the
locations and days used here to test their performance.
The corrected forecasts are improved for correlation,
gross error, root mean square error (RMSE), and un-
paired peak prediction accuracy (UPPA), the latter being
the statistical parameter showing the least pronounced
improvement after the KFP bias correction. In general,
the ensemble mean forecast benefits from the improve-
ment of each single Kalman-corrected ensemble member.
In fact, the ensemble mean of the KFP bias-corrected
forecasts (EK) and the KFP bias-corrected EK (KEK) are
the second best and the best forecasts overall when
compared with the other 12 individual forecasts members
and their raw ensemble mean. The results in section 4.3
showed also that only a limited number of successive KF
application to the same forecast would result in an
improvement.
[55] Those results indicate that the filter is improving the

forecast timing of maxima and minima concentrations with

respect to the observations, because the correlation is closer
to one. From the improved (decreased) RMSE and gross
error values, we infer that the KF is improving the forecast
accuracy in reproducing the magnitude of ozone concen-
trations. Better (closer to zero) UPPA and gross error values
indicate that the filter is improving the forecast ability to
capture rare (but important for health-related issues) events,
such as the occurrence of ozone concentration peaks.
Moreover, the KF reduced systematic errors such as can
be induced by model error, as for example the poor
representation of topographic complexity. Ensemble aver-
aging tended to remove the unsystematic errors, as showed
in DM1. This is why the combination of Kalman filtering
and ensemble averaging results in the best forecasts; i.e., EK
and KEK.
[56] EK and KEK performances have been compared also

with the performances of two other bias correction (not in
predictor mode) techniques, the additive bias correction
(AC), the multiplicative bias correction (MC). At every
station (except CYVR) KEK is the best, while EK is better
than MC, but has higher (worse) RMSE values than AC
(except at Hope). Finally, at CYVR, KEK is third while EK
is better only than the raw ensemble mean.
[57] A concise way to summarize the results from

section 4 is given in Figures 10–14. A Taylor’s diagram
[Taylor, 2001] is used to create a multistatistics plot of
correlation, centered RMSE (CRMSE: RMSE computed
after the overall bias is removed), and standard deviation.
CRMSE is the distance on the diagram between the point
representing the forecast and the one representing the obser-
vations. For each forecast (smaller arrows) and for EK and

Figure 10. Taylor’s diagram plotted for Vancouver International Airport (CYVR). The azimuthal
position gives the correlation, while the radial distance from the origin is proportional to the standard
deviation (ppbv). The smaller arrows represent the 12 ensemble members, and the bigger arrows (with
different arrowhead) represent the ensemble mean of the Kalman filter predictor (KFP) bias-corrected
forecasts (EK) and the KFP bias-corrected EK (KEK). Each arrow tail represents the forecast statistics of
a raw forecast, and the arrowhead indicates KFP-corrected values. If the arrow points closer to the
observation point (tiny circle) it means that the KFP is correcting the forecast in the right direction. The
arrows representing EK and KEK are consecutive; that is, the EK arrowhead is also the KEK arrow tail,
because EK is the raw version of KEK. The distance between the observation and a given point is
proportional to the centered root mean square error (CRMSE) between the observation and the forecast.
The three concentric lines centered over the point representing the observation indicate the CRMSE for
the raw ensemble mean (dotted line), EK (thick dashed line), and KEK (thick solid line). If the line
passing through the arrowhead is closer to the observation than the one passing through the tail, it means
that the KFP is improving (reducing) the CRMSE.
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KEK (bigger arrows, with different arrowhead), the arrow
tail gives the standard deviation and the correlation of a raw
forecast, while the arrowhead represents the same values for
the KFP bias-corrected version of the same forecast. If the
arrow points toward to the observation (tiny circle) it
means that the KFP is correcting the forecast statistically
in the right direction. The arrows representing EK and
KEK are consecutive; i.e., the EK arrowhead is also the
KEK arrow tail, because EK is the raw version of KEK.
The three concentric lines centered over the point repre-
senting the observation indicate the CRMSE for the raw
ensemble mean (dotted line), EK (thick dashed line), and
KEK (thick continuous line).
[58] At CYVR (Figure 10) the majority of arrows point

away from the observation (including the arrows with
different arrowhead for EK and KEK), indicating that the
KFP in those cases degraded the raw forecasts. This is
caused by the dominance of unsystematic errors at this
location (as discussed in section 4.3), that prevent the filter
to being able to do a successful correction.
[59] At Langley (Figure 11) the forecasts tend to be

improved, as indicated by the arrows pointing closer to
the observation. EK is better than the raw ensemble mean
(which in turn is better than all the individual deterministic
forecasts), since the thick dashed line passing through its

arrowhead is closer to the observations than the dotted line
passing through the tail. KEK is the best being the closest to
the observations (thick continuous line).
[60] The same conclusions can be drawn for Abbotsford

(Figure 12), with even larger improvements after the cor-
rection. At this location, the forecast standard deviations
after the correction are much more similar to the observation
standard deviations (but the same can be said also at the
other stations).
[61] Figure 13 shows the same diagram for Chilliwack.

The forecasts are improved, since the arrows point toward
the observations. At this location, EK is fourth best, while
KEK is still the best.
[62] The results for Hope are shown in Figure 14. All the

forecasts are improved, with EK and KEK being the third
and fifth best, respectively. In this case (as well as for
Chilliwack) the benefit of applying the KFP bias correction
is even higher than at the other locations, demonstrating that
the KF correction is particularly efficient if the raw forecast
shows high systematic errors, as discussed in section 4.3.
This is evident since the arrows are on average longer than at
the other locations. At Hope, forecasts 07 and 08 are the first
and second best forecasts (by comparison with Figure 19 in
DM1), while they were among the worst at other locations,
particularly at CYVR, Langley at Abbotsford.

Figure 11. Taylor’s diagram for Langley (similar to Figure 8).

Figure 12. Taylor’s diagram for Abbotsford (similar to Figure 8).
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[63] The KFP bias correction approach for the locations
and days used in this study successfully remove the forecast
bias. The filter is able to recognize systematic errors in the
forecast, as for example the nighttime overprediction of
ozone concentration induced by a poor representation of the
nighttime boundary layer, or the errors at Chilliwack and
Hope induced by the systematic misrepresentation of topo-
graphic complexity in the model. As a consequence of the
improved nighttime over prediction, the ozone distribution
low-concentration tail is better represented after the KF
correction, resulting in forecasts having a variance that
resembles more closely the observed variance, as discussed
above.
[64] The experiments performed in this study suggest

that better forecasts can be made with a longer KF training
period (such as 5 days), and with a longer CMAQ model
spin-up. Moreover, with the availability of a longer data
set (a full month or season), including ozone forecasts and
observations with a broader variability of low- and high-
ozone events, an optimal value for the sigma ratio (as
discussed in section 2) could be found.
[65] KEK, which combines the beneficial effects of

ensemble averaging and KFP postprocessing, is overall
the most skilful forecast for the locations and days tested
here, where the ozone modeling is particular challenging
because the complex coastal mountain setting. For this

reason the approach used here to improve ozone forecasts
it might be equally successful when implemented in other
regions with similar or less complex topographical settings.
[66] Finally, ensemble weather forecasts often provide

information on the reliability of the forecast: if the ensemble
members have a large spread (defined as the standard
deviation of the ensemble members about the ensemble
mean), this implies less confidence in the forecast. Perhaps
a similar spread-skill relationship exists for air quality
forecasts. However, in DM1, neither a correlation nor a
relationship between the raw ensemble spread and the raw
forecast error has been found. Similarly, a spread-skill
relationship has not been found for the Kalman-filtered
AQ forecasts in this study.

Appendix A

[67] Here a step-by-step description of the filter imple-
mentation is given. First, se

2 is estimated via the Kalman
filter algorithm as follows (by applying equation (5)):

p
s2e
tjt�Dt

¼ p
s2e
t�Dtjt�2Dt

þ s2sh2
� �

1� bs
2
e

tjt�Dt

� �

where ps
2
e is the expected mean square error in the se

2

estimate, ss2h
2 is the variance of sh

2, and bs
2
e is the Kalman

Figure 13. Taylor’s diagram for Chilliwack (similar to Figure 8).

Figure 14. Taylor’s diagram for Hope (similar to Figure 8).
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gain when the filter is used to estimate se
2. Next, the new

Kalman gain can be computed, similarly to equation (4):

bs
2
e

tþDtjt ¼
p
s2e
tjt�Dt

þ s2s2h

p
s2e
tjt�Dt

þ s2sh2 þ s2se2
� �

where ss2e
2 is the variance of se

2. Finally, se
2 can be estimated

by combining equations (3) and (8):

s2e;tþDtjt ¼ s2e;tjt�Dt þ bs
2
e

tjt�Dt

yt � yt�Dtð Þ2

2þ r
� s2e;tjt�Dt

" #

ss2e
2 and ss2h

2 are assumed constant, with values of 1 and
0.0005, respectively, as determined from previous works
[e.g., Roeger et al., 2003].
[68] Once se

2 is estimated, sh
2 can be computed as sh

2 =
rse

2. Then, equations (5), (4) and (3) can be applied in
sequence, resulting in the final estimate of the bias (x̂). This
process is iterated trough different Dt, and for the first step,
given initial values are used as discussed in section 2.

[69] Acknowledgments. We thank Miranda Holmes for the early
development of the Kalman filter bias-corrected weather forecasts at the
University of British Columbia that led to the tests here of the same
approach to air quality forecasts. We also thank George Hicks, Henryk
Modzelewski and Trina Cannon for maintaining the computing system used
to perform the simulations presented here. Moreover, we thank Todd Plessel
(of EPA) for providing very useful tools to handle Models-3 formatted data.
We are grateful to RWDI for providing the emission inventory and the
scripts to run SMOKE. Ken Stubbs and John Swalby (of the Greater
Vancouver Regional District) graciously provided the ozone observation
data. We are thankful to Bruce Thomson for carefully reviewing the paper.
Grant support came from the Canadian Natural Science and Engineering
Research Council, the BC Forest Investment Account, the British Columbia
Ministry of Water Land and Air Protection, Environment Canada (Colin di
Cenzo), and the Canadian Foundation for Climate and Atmospheric
Science. Geophysical Disaster Computational Fluid Dynamics Center
computers were used, funded by the Canadian Foundation for Innovation,
the BC Knowledge Development Fund, and the University of British
Columbia. Thanks are also due to two anonymous reviewers for their
valuable comments and suggestions.

References
Bozic, S. M. (1994), Digital and Kalman Filtering, 2nd ed., 160 pp., John
Wiley, Hoboken, N. J.

Burgers, G., P. J. van Leeuwen, and G. Evensen (1998), Analysis
scheme in the ensemble Kalman filter, Mon. Weather Rev., 126,
1719–1724.

Byun, D. W., and J. K. S. Ching (Eds.) (1999), Science algorithms of the
EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling
system, EPA/600/R-99/030, Off. of Res. and Dev., U.S. Environ. Prot.
Agency, Washington, D. C.

Cannon, A. J., and E. R. Lord (2000), Forecasting summertime surface
level ozone concentrations in the Lower Fraser Valley of British Colum-
bia: An ensemble neural network approach, J. Air Waste Manage. Assoc.,
50, 322–339.

Delle Monache, L., X. Deng, Y. Zhou, and R. Stull (2006), Ozone ensemble
forecasts: 1. A new ensemble design, J. Geophys. Res., 111, D05307,
doi:10.1029/2005JD006310.

Dempster, A., N. Laird, and D. Rubin (1977), Maximum likelihood from
incomplete data via the EM algorithm, J. R. Stat. Soc., 39, 1–38.

Hamill, T. M., and C. Snyder (2000), A hybrid ensemble Kalman filter-3D
variational analysis scheme, Mon. Weather Rev., 128, 2905–2919.

Homleid, M. (1995), Diurnal corrections of short-term surface temperature
forecasts using Kalman filter, Weather Forecasting, 10, 689–707.

Houtekamer, P. L., and H. L. Mitchell (2001), A sequential ensemble
Kalman filter for atmospheric data assimilation, Mon. Weather Rev.,
129, 123–137.

Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron,
L. Spacek, and B. Hansen (2005), Atmospheric data assimilation with
an Ensemble Kalman Filter: Results with real observations, Mon.
Weather Rev., 133, 604–620.

Jolliffe, I. T., and D. B. Stephenson (2003), Forecast Verification: A
Practitioner’s Guide in Atmospheric Science, 240 pp., John Wiley,
Hoboken, N. J.

Kalman, R. E. (1960), A new approach to linear filtering and prediction
problems, J. Basic Eng., 82, 35–45.

Martilli, A., and D. G. Steyn (2004), A numerical study of recirculation
processes in the Lower Fraser Valley (British Columbia, Canada), paper
presented at 27th NATO/CCMS Conference on Air Pollution Modeling
2004, NATO, Banff, Alberta, Canada.

McKendry, I. G. (1994), Synoptic circulation and summertime ground-level
ozone concentrations at Vancouver, British Columbia, J. Appl. Meteorol.,
33, 627–641.

McKendry, I. G., and J. Lundgren (2000), Tropospheric layering of ozone
in regions of urbanized complex and/or coastal terrain: A review, Prog.
Phys. Geogr., 24, 329–354.

Roeger, C., R. B. Stull, D. McClung, J. Hacker, X. Deng, and
H. Modzelewski (2003), Verification of mesoscale numerical weather
forecast in mountainous terrain for application to avalanche prediction,
Weather Forecasting, 18, 1140–1160.

Russell, A., and R. Dennis (2000), NARSTO critical review of photoche-
mical models and modeling, Atmos. Environ., 34, 2283–2324.

Segers, A. J., H. J. Eskes, R. J. van der A, R. F. van Oss, and P. F. J. van
Velthoven (2005), Assimilation of GOME ozone profiles and a global
chemistry-transport model using a Kalman filter with anisotropic covar-
iance, Q. J. R. Meteorol. Soc., 131, 477–502.

Taylor, K. E. (2001), Summarizing multiple aspects of model performance
in a single diagram, J. Geophys. Res., 106, 7183–7192.

U. S. Environmental Protection Agency (1991), Guideline for regulatory
application of the Urban Airshed Model, USEPA Rep. EPA-450/4-91-013,
Off. of Air Qual. Plann. and Stand., U. S. Environ. Prot. Agency,
Research Triangle Park, N. C.

van Loon, M., P. J. H. Builtjes, and A. J. Segers (2000), Data assimilation
applied to LOTOS: First experiences, Environ. Model. Software, 15,
603–609.

Vingarzan, R. (2004), A review of surface ozone background levels and
trends, Atmos. Environ., 38, 3431–3442.

Willmott, C. J. (1981), On the validation of models, Phys. Geogr., 2,
184–194.

�����������������������
L. Delle Monache, Lawrence Livermore National Laboratory, L-103,

Livermore, CA 94550, USA. (ldm@llnl.gov)
X. Deng, Meteorological Service of Canada, Environment Canada,

Montreal, Quebec, Canada.
T. Nipen and R. Stull, Department of Earth and Ocean Science,

University of British Columbia, 6339 Stores Road, Vancouver, BC, Canada
V6T 1Z4.
Y. Zhou, Meteorological Service of Canada, Environment Canada,

Edmonton, Alberta, Canada.

D05308 DELLE MONACHE ET AL.: KALMAN FILTER PREDICTOR BIAS CORRECTION

15 of 15

D05308


