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ABSTRACT

Direct calculations of the entrainment and detrainment of air into and out of clouds require knowledge of

the relative velocity difference between the air and the cloud surface. However, a discrete numerical model

grid forces the distance moved by a cloud surface over a time step to be either zero or the width of a model grid

cell. Here a method for the subgrid interpolation of a cloud surface on a discrete numerical model grid is

presented. This method is used to calculate entrainment and detrainment rates for a large-eddy simulation

(LES) model, which are compared with rates calculated via the direct flux method of Romps. The comparison

shows good agreement between the two methods as long as the model clouds are well resolved by the model

grid spacing. This limitation of this technique is offset by the ability to resolve fluxes on much finer temporal

and spatial scales, making it suitable for calculating entrainment and detrainment profiles for individual clouds.

1. Introduction

The largest uncertainties in climate sensitivity estimates

from general circulation model (GCM) simulations come

from the subgrid-scale parameterization of low clouds

(Colman 2003; Bony and Dufresne 2005; Webb et al.

2006). Specifically, stratocumulus clouds and the transi-

tion regime from stratocumulus to trade cumulus are the

dominant source of variance between models in the esti-

mation of the cloud radiative response to changing cli-

mate (Williams and Webb 2009).

Proper simulation of the subgrid-scale effect of cumulus

clouds in GCMs requires understanding the rates at which

air is entrained into and detrained from the clouds. Cloud

entrainment and detrainment rates exert influences on

profiles of cloud properties, the height of the cloud tops,

the amount of heat and moisture the clouds transport

upward, and the heights at which the clouds deposit that

heat and moisture. They also have effects on the vertical

transport of aerosols out of the boundary layer and the

rate at which chemical reactions can occur in those

aerosols (Barahona and Nenes 2007; Andrejczuk et al.

2008).

Large-eddy simulation (LES) is an important tool used

in the study of cloud entrainment and detrainment. LES

models apply grid resolutions on the order of 10–100 m,

well within the domain of the Kolmagorov 25/3 turbu-

lence spectrum. This allows for a relatively simple turbu-

lence model that captures the important statistics of the

subgrid-scale eddy fluxes and thus, an accurate represen-

tation of the atmospheric physics in a domain ’10 km2,

which is large enough to simulate a field of shallow clouds.

LES can be assessed against results taken from field sur-

veys such as the Barbados Oceanographic and Meteoro-

logical Experiment (BOMEX; Holland and Rasmusson

1973) or the Atmospheric Radiation Measurement Pro-

gram (ARM; Brown et al. 2002), and such comparisons

show good agreement between LES and data.

Several recent studies have looked at the life cycle of

individual clouds taken from LESs, trying to break the

cloud field into its component parts (Zhao and Austin

2005a,b; Heus et al. 2009). Estimates of entrainment and

detrainment rates for individual clouds would be quite

useful in these studies, but are difficult to achieve. En-

trainment and detrainment rates for nonprecipitating

clouds are typically calculated in LES by recording bud-

gets of bulk conserved tracer variables, such as the total

humidity or the liquid water moist static energy, and in-

ferring the amount of fluid exchange between cloud and

clear air that is needed to explain the rate at which that

tracer is being vertically advected within the cloud field

Corresponding author address: Jordan T. Dawe, Department of

Earth and Ocean Sciences, University of British Columbia, 6339

Stores Rd., Vancouver, BC V6T 1Z4, Canada.

E-mail: jdawe@eos.ubc.ca

444 M O N T H L Y W E A T H E R R E V I E W VOLUME 139

DOI: 10.1175/2010MWR3473.1

� 2011 American Meteorological Society



(Siebesma and Cuijpers 1995). These budgets typically as-

sume the clouds and the cloud environment are horizontally

homogeneous slabs; this is a much less accurate assumption

on the level of an individual cloud, and this variability

makes bulk tracer calculations on this scale problematic.

Alternatively, entrainment and detrainment could sim-

ply be calculated directly from the LES velocity, pressure,

humidity, and temperature fields. Siebesma (1998) defines

entrainment and detrainment as
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where E and D are the entrainment and detrainment rates

(in kg m23 s21), r is the density of air (in kg m23 s21), u is

the velocity of the air (in m s21), ui is the velocity of the

cloud surface (in m s21), A is the area of the cloud (in m),

n̂ is a unit vector directed out the cloud surface, and the

path integral is taken around the cloud surface at a con-

stant vertical level. However, the accuracy of this method

applied to LES suffers from the need to calculate the

velocity of the air relative to the cloud surface. In reality

these velocities are very nearly identical, ;1–2 m s21, but

the discrete nature of the LES model grid forces the mod-

eled surface velocity to be either 0 m s21 or Dx/Dt ’ 15–

30 m s21, where Dx is the model grid spacing and Dt is the

model time step. The surface of the cloud only moves when

a grid cell’s humidity reaches saturation, and when it does,

an entire gridcell worth of fluid leaves or enters the cloud.

Romps (2010) recently overcame this problem by av-

eraging the cloud surface fluxes over the time needed for

an entire grid cell to entrain or detrain. This is done by

summing the ‘‘activity source’’ at the cloud boundary,

›

›t
(rA) 1 $ � (ruA), (3)

over the period in which the cloud surface is adjacent to

a grid cell. HereA is the ‘‘activity’’ of the air, a scalar field

that is 1 inside the cloud and 0 outside. The activity can

be easily redefined to determine entrainment and de-

trainment for any material surface in a numerical model;

Romps used a definition similar to Siebesma and Cuijpers

(1995)’s cloud core criteria (fluid with condensed liquid

water, positive buoyancy, and upward velocity) in his cal-

culations. Once a grid cell is no longer adjacent to the

boundary between active and inactive air, the sign of the

summed activity source is evaluated. If the summed ac-

tivity source is positive, more mass has been entering the

region of active air than has been leaving, and the summed

activity source is considered to be entrainment. Con-

versely, a negative sum is considered to be detrainment.

(In this paper, we shall refer to this method of summing

the activity source to determine entrainment and detrain-

ment as the ‘‘Romps method.’’) Romps found entrain-

ment and detrainment values resulting from this method

were approximately twice as large as those from previous

bulk tracer calculations, suggesting bulk tracer calcula-

tions contain significant biases. However, fine temporal

and spatial resolution of entrainment and detrainment

variability is difficult to achieve with this method because

of the long temporal averages needed.

Here we present a method for calculation of the cloud

entrainment and detrainment rates that relies on inter-

polation of the subgrid location of the cloud surface. This

method can be used to produce accurate estimates of

the cloud entrainment and detrainment rates for indivi-

dual LES clouds. In section 2 we describe this method, in

section 3 we describe the model configuration we used to

test this method, in section 4 we compare this calculation

with entrainment and detrainment rates calculated using

Romps (2010) direct flux calculation, and in section 5 we

discuss our results and present our conclusions.

2. Method

Here we derive a method for the calculation of en-

trainment and detrainment fluxes through the surface of

an arbitrary volume in a numerical model. In our work

this is used to calculate the mass exchange between

cloud and environment, but this method could be used

to calculate mass flux into and out of any volume of in-

terest. To maintain generality we do not yet specify how

the location of this cloud surface is determined.

Consider a numerical model grid cell containing a cloud

surface with normal vector C, where C points outward

from the surface and has units of meters squared (Fig. 1).

This surface, combined with W, the portion of the grid cell

walls that lie within the cloud (in m2), encloses a cloud

volume V that has units of meters cubed. Siebesma (1998)

gives the net entrainment and detrainment over the cloud

surface to be

E�D 5

ð
C

r(u
i
� u) � dC, (4)

where r is the air density (in kg m23), u is the velocity of the

air (in m s21), and ui is the velocity of the cloud interface

(in m s21). Calculating this integral requires knowledge of

the velocity field over the surface of C and the time

evolution of C, neither of which is easily calculated in a

numerical model. Instead, we seek a simplified but equiv-

alent calculation.
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To calculate the velocity of the cloud surface, we

make use of the Leibnitz theorem:

d
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Since the walls of the grid cell do not move, ui is 0 over

W. If we also assume ›r/›t ’ 0, we get
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We then combine (4) and (6) to give
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Next we apply the divergence theorem to simplify the

flux integral through C:
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Substituting this into (7) results in
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Following Romps (2010), if (10) is positive, the result

of this calculation is assumed to all be E, and if nega-

tive, D is
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Therefore, we can find the entrainment and detrainment

by calculating the rate of change of the cloud volume

inside the grid cell and the mass flux through the cloudy

portion of the gridcell walls.

We assume the mass flux is constant over the gridcell

wall; this makes calculating mass fluxes trivial for a

model using an Arakawa C-grid, while interpolation can

give fluxes for other grid configurations. Expanding the

terms in (10) for an Arakawa C-grid-type model with a

horizontally uniform density gives
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There are a multitude of interpolation schemes that can

be used to determine the cloud volume and cloudy grid

wall area in a numerical model. The simplest would be

to assume that cloudy grid cells are completely filled

with cloud, and otherwise grid cells contain no cloud

at all. We refer to this as the ‘‘no interpolation’’ method.

Since the cloud surface only moves when a whole grid

cell undergoes condensation or evaporation this will

result in poor estimates of dV/dt, C, and W, which will

result in an overestimate of the entrainment and de-

trainment. To reduce this overestimate, we interpolate

the location of the cloud surface at each time step. Next

we describe the interpolation scheme we use for this

purpose.

FIG. 1. Gridcell schematic showing geometry for the derivation

of direct entrainment and detrainment fluxes using a subgrid-scale

interpolation of the cloud surface location. Vector C is normal to

the arbitrary cloud surface, shown by the thick line. Vector W is

normal to the portion of the gridcell walls occupied by cloud, shown

by the dotted lines; Wx is used to denote the x direction grid cell

surfaces; and Wy denotes the y direction surfaces. These surfaces

enclose a volume V, shown by the shaded area. The u and y vectors

represent the locations of the horizontal velocities in the x and y

directions, respectively, for an Arakawa C-grid.
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Cloud surface interpolation

Several standard techniques exist for subgrid isosur-

face interpolation in the field of computer visualization,

such as the Marching Cubes algorithm (Lorensen and

Cline 1987). In the spirit of these techniques, we have

implemented a scheme that relies on subdividing the

grid cells into regular subcells, finding the location of the

cloud surface within these subcells, and then reassem-

bling the cells to construct the location of the cloud

surface. Our interpolation scheme, which we refer to as

‘‘tetrahedral interpolation,’’ splits the cubic grid cell into

six pyramids, then splits each pyramid into eight tetra-

hedrons (Fig. 2, left panel). This results in 48 tetrahe-

drons, each composed of 4 vertices located at the gridcell

center, the center of a gridcell wall, the center of a

gridcell edge, and a gridcell corner.

Generally, model scalar quantities will be defined on

only one of these vertices, and so we must interpolate

the surrounding grid to determine values at the other

three points. On an Arakawa C-grid, humidity is defined

at the grid centers, and so we must interpolate to find the

values at three of the tetrahedron vertices. To find values

at the center of the gridcell wall, we average the two

values on opposite sides of the wall; at the gridcell edge,

we average the four values around the edge; and at the

corners, we average the values of the eight cells sur-

rounding each corner.

The cloud surface itself is defined in a similar way to

the Marching Cubes algorithm (Lorensen and Cline

1987). Each tetrahedron has four vertices, which can

either be inside or outside of the cloud. This results in

16 possible combinations of vertex values that must be

considered. Many of these cases share symmetries, re-

ducing the number of independent cases to three classes.

If only one of the tetrahedron vertices is cloudy (or con-

versely, only one is clear) than that corner of the tetra-

hedron is cut by a triangle representing the cloud surface

(Fig. 2, center panel, upper left); this accounts for eight

of the cases. If two vertices are cloudy and two vertices

are clear, this results in the tetrahedron being cut by two

triangles that share a common edge (Fig. 2, middle panel,

top right); this accounts for six of the cases. Finally, if the

vertices of a tetrahedron are all cloudy or clear, the sur-

face does not pass through the tetrahedron (Fig. 2, middle

panel, bottom); this accounts for the remaining two cases.

The locations of the vertices of the triangles that cut the

tetrahedron are found by linear interpolation between

cloudy and clear tetrahedron vertices. Repeated appli-

cation of this algorithm to each grid cell results in a con-

tinuous surface that approximates the subgrid location

of the cloud surface (Fig. 2, right panel).

Once the geometry of the case is determined, the area

of the cloudy portion of the model gridcell wall can be

calculated by dividing the cloudy area into triangles and

summing the triangle areas using the well known cross-

product area formula:

A 5
(b� c) 3 (a� c)j j

2
, (14)

where a, b, and c are the position vectors of the vertices of

the triangles. Similarly, the volume of the cut tetrahedron

is calculated by subdividing it into smaller tetrahedrons,

and summing the volumes of the subtetrahedrons using the

triple-product volume formula (Harris and Stocker 1998):

FIG. 2. Schematic representation of the tetrahedral interpolation method. (left) The subdivision of the model grid

cell into 48 tetrahedrons. (middle) The three cases for interpolation of the cloud surface within a subtetrahedron

between points at the four vertices of the tetrahedron; all other tetrahedron interpolation cases are variations on

these three. Black dots represent cloudy tetrahedron points, white dots represent clear tetrahedron points, and gray

dots represent the interpolated cloud position between cloudy–clear tetrahedron point pairs. (right) A horizontal slice

through the model’s Arakawa C-grid. Rightward-pointing triangles represent u-velocity points, upward-pointing

triangles represent y-velocity points, circles represent bulk tracer quantities such as temperature or humidity, and

x represents the location of the cloud surface interpolation points. Dotted lines show the boundaries of the tet-

rahedral subdivision of the grid, and shading represents cloud volume.
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V 5
(a� d) � [(b� d) 3 (c� d)]j j

6
, (15)

where a, b, c, and d are the position vectors of the vertices

of the subtetrahedrons. This results in all the informa-

tion needed to measure entrainment and detrainment

via (10).

3. Model description

We have implemented both our tetrahedral surface

interpolation scheme and the time averaging scheme of

Romps (2010) in the System for Atmospheric Modeling

(SAM; Khairoutdinov and Randall 2003), allowing the

model to calculate entrainment and detrainment via

these two methods simultaneously. In this paper we per-

form these calculations for the cloud core, which we define

following Siebesma and Cuijpers (1995) as fluid having

condensed liquid water, upward velocity, and positive

buoyancy relative to the horizontal mean. The cloud

core surface then is located where the total humidity

equals the saturated humidity, Ty is equal to the hori-

zontal mean of Ty, and the vertical velocity is zero.

In the tetrahedral method, finding the location where

qt equals qsat (T, p) is complicated by the nonlinearity

of qsat (T, p). For simplicity, we define a variable qdiff 5

qt 2 qsat (T, p), where qt is the total specific water content

and qsat (T, p) is the saturated specific humidity, all in

FIG. 3. Comparison of mean model profiles of core (a) entrainment and (b) detrainment calculated using the

tetrahedral interpolation method (black line), the Romps method with upwind advection (dotted line), and the

Romps method with MPDATA advection (gray line). (d),(e) As in (a),(b), but for the fractional entrainment and

detrainment rates.
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kilograms of water per kilograms of moist air. Here qdiff

can be thought of as the moisture excess or deficiency

relative to the saturated humidity and qdiff 5 0 is the lo-

cation where the total humidity equals the saturated hu-

midity. Similarly, we calculate DTy 5 Ty � Ty , where the

bar represents the horizontal mean, and Ty is the virtual

temperature in kelvin, to represent buoyancy excess or

deficiency. Vertical velocity w requires no new variable to

be calculated, but as SAM is an Arakawa C-grid model, it

is defined at the center of the top and bottom of the grid

cell instead of at its center. Therefore, we first interpolate

w to the center of the grid cell for consistency with lo-

cation of the specific humidity and virtual temperature.

To find the location of the cloud core between a point that

is in the core and a point that is outside the core, the lo-

cations between these points where qdiff, DTy, and w are

0 are calculated, and the value that is closest to the cloud

core point is selected as the start of the region where all

the cloud core criteria are satisfied.

Since the Romps scheme relies on calculating the ad-

vection of active (i.e., cloud core) air, there are actually

several ways this calculation can be performed. Romps

(2010) used a simple first-order upwind advection scheme;

we have implemented both this scheme and one based

upon SAM’s second-order Multidimensional Positive

Definite Advection Transport Algorithm (MPDATA)

routine (Smolarkiewicz and Grabowski 1990).

We have run these schemes in a standard Global En-

ergy and Water Cycle Experiment Cloud System Study

BOMEX LES (Holland and Rasmusson 1973; Siebesma

et al. 2003). The model was run with a domain extent of

6.4 km 3 6.4 km in the horizontal and 3.2 km in the

vertical. Model cloud area, vertical velocity, and cloud

core entrainment diagnosed from bulk conserved tracer

budgets agree well with the results presented in Siebesma

et al. (2003) (not shown).

To examine the resolution dependence of our scheme,

we ran three models: one at 25-m grid spacing in all di-

rections with a 1.5-s time step, one at 50-m grid spacing

with a 3-s time step, and one at 100-m grid spacing with

a 6-s time step. For most of the results we present here

we rely on the 25-m resolution model. The models were

each run for 6 h, and the first 3 h of the simulation were

discarded as the model was still approaching the steady

state. The 15-min averages were output for the terms of

each of our calculations. Running the 25-m resolution

model with the tetrahedral surface interpolation scheme

resulted in a 13% model slow down.

4. Comparison with Romps

Here we compare our tetrahedral interpolation method

with the Romps method calculated using upwind advection

and MPDATA advection. Comparison of the average

values produced by the tetrahedral interpolation method

and the Romps method with MPDATA advection over

3 h of model time (Fig. 3) shows good agreement in the

vertical profiles of both E and D; however, the magnitude

of the tetrahedral entrainment and detrainment values

are about 15% higher than the Romps MPDATA value.

The Romps method with upwind advection, however,

gives results that are about 50% larger than the tetrahe-

dral method. This difference is likely the result of larger

numerical errors in the first-order upwind scheme com-

pared with the MPDATA scheme, and is therefore an

estimate of the influence of the numerical method used

on the values of E and D. In either case, the tetrahedral

scheme is vastly superior to using no interpolation, which

results in entrainment and detrainment values four times

larger than the Romps MPDATA value (not shown).

There are similar levels of agreement between �5 E/M

and d 5 D/M, the fraction entrainment and detrainment

rates, where M is the total vertical mass flux within the

cloud core (in kg m22 s21) and � and d have units of per

meters. Since the tetrahedral method interpolation re-

defines the extent of the cloud core, we calculate separate

values of M for the Romps method and the tetrahedral

method. This results in slightly smaller M values for the

tetrahedral calculation. Both � and d show large devia-

tions between the tetrahedral and Romps calculations

FIG. 4. Average profiles of entrainment minus detrainment cal-

culated using the continuity equation (dotted line), direct fluxes

with no surface interpolation (gray line), the tetrahedral interpo-

lation method (thick black line), and the Romps method using

upwind advection (thin black line).
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near the cloud base and top. These deviations likely result

from the small cloud fractions at these heights, which

both makes the statistical sampling less robust and allows

small differences between E and D to be magnified by

small values of M.

a. Agreement with the continuity equation

While E and D are important for calculating changes

in cloud properties such as temperature and humidity,

the vertical profile of cloud fraction is controlled by their

difference, E 2 D. For comparison with these direct flux

methods, we also calculate E 2 D from the continuity

equation for a turbulent plume:

r
›a

›t
1

›M

›z
5 E�D, (16)

where r is the density of air (in kg m23), a is the cloud

fraction, and M is the fractional vertical mass flux (in

kg m22 s21). To satisfy continuity, the difference be-

tween the amount of fluid entrained and detrained by

the clouds at a given height must equal the vertical

gradient in cloud mass flux plus the rate in change of the

cloud area. We calculate the vertical gradient of mass

flux in (16) by interpolating vertical velocities from the

edges to the center of each grid cell, then averaging total

mass flux within the clouds using these interpolated

velocities. The 15-min-average values of mass flux were

output and the vertical derivative taken via centered dif-

ferencing. Also, the 15-min-average values of ›a/›t are

calculated within the model.

Comparison of the tetrahedral values of E 2 D that we

have calculated with the Romps and no-interpolation

methods shows reasonable agreement (Fig. 4). Of these

three calculations, the no-interpolation method is the

most accurate measurement of E 2 D, as we calculate its

values directly from the model’s velocity field without any

modification of the cloud surface. This is confirmed by the

close agreement between the no-interpolation method

and the continuity equation. Our direct flux calculations

also agree with the continuity equation fairly well (Fig. 4),

but diverge between cloud base and 1-km height. The

tetrahedral interpolation method is biased low by

the method’s redefinition of the cloud volume, while the

FIG. 5. Profiles of the correlation between the Romps method and the tetrahedral interpolation method for (a) �

and (b) d. Black lines show the correlation using upwind advection in the Romps method and gray lines show the

correlation using MPDATA advection. The dotted line shows the 99% confidence level for a significant correlation.
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Romps method’s averaging redefines the time at which

entrainment and detrainment events take place. Both these

schemes result in a less negative E 2 D value than the no-

interpolation scheme, with the tetrahedral interpolation

having slightly more bias. Finally, we note that the E 2 D,

which results from the Romps MPDATA calculation

(not shown), is essentially identical to the Romps up-

wind calculation.

b. Correlation between Romps and tetrahedral
methods

So far we have shown that our tetrahedral interpola-

tion produces entrainment and detrainment values that

agree reasonably well with those produced by the Romps

method. However, this does not ensure that the same

variability is displayed by the two calculations. To analyze

the variability, we take the correlation of the 15-min-

averaged � and d values calculated via the two methods over

the 3-h model run at each height to generate correlation

profiles. We do these calculations for both Romps using

upwind advection and Romps with MPDATA advection.

We use �5 E/M and d 5 D/M to analyze the variability as

E and D are both strongly correlated with cloud volume;

more cloud volume with the same entrainment velocity

results in larger entrainment. Dividing by the mass flux

removes this area dependence. Separate M values are

calculated for the tetrahedral and Romps methods to take

into account the volume redefinition that occurs in the

tetrahedral method. Heights at which the model does not

have clouds for the entire 3-h period are excluded from

the calculation.

Correlations between the Romps method, using both

upwind and MPDATA advection, and the tetrahedral

interpolation method for both � and d are significant at

the 95% confidence level over most of the cloud layer

(Fig. 5). The d shows nearly perfect correlation, while �

is weaker but still significant. Values near the cloud base

and top show no correlation, which we would expect

FIG. 6. Time variability of (a),(c) entrainment and (b),(d) detrainment horizontally averaged over the model

domain at a height of 1 km calculated via (a),(b) the tetrahedral interpolation method and (c),(d) the Romps method

using upwind advection.
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given the poor agreement between the average values of

� and d between the two methods in these regions (Figs.

3c,d). We take these results to show general good agree-

ment between our tetrahedral interpolation scheme and

the time averaging scheme of Romps over relatively large

time and space averages.

c. Behavior over different time and space scales

The Romps method relies on averaging over suffi-

ciently long time scales for several grid cells to complete

an entrainment or detrainment cycle. The tetrahedral in-

terpolation scheme, on the other hand, has no such lim-

itation. For example, the tetrahedral interpolation values

horizontally averaged over the whole model domain at

a given height show little change in variability between

instantaneous values, 1-min-average values, and 5-min-

average values (Fig. 6). The Romps method, on the other

hand, shows jumps on the order of 50% of the mean from

time step to time step. Over 1-min averages, the Romps

method has variability similar to that shown by the tet-

rahedral interpolation method without any averaging, and

FIG. 7. Vertical cross section of a model cloud showing 1-min-averaged (a),(c) entrainment and (b),(d) detrainment

calculated using the (a),(b) tetrahedral interpolation method and (c),(d) the Romps method using upwind advection.

Grayscale indicates amount of entrainment or detrainment and lines show the region where condensed liquid water

exists.
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does not settle down to a stable value until 5-min averages

are taken.

When the spatial variability of the two schemes is

examined, the Romps method shows sparse measure-

ment coverage, even when 1-min-average values are taken

(Fig. 7). Tetrahedral interpolation values show a relatively

smooth spatial distribution at the scale of an individual

cloud, and tend to be smaller than the Romps method

values. This is the primary advantage of the tetrahedral

interpolation method: it allows instantaneous measure-

ments of entrainment and detrainment rates at the in-

dividual cloud level.

d. Dependence on model resolution

Both the Romps and tetrahedral methods display rel-

atively strong dependence on model resolution, with E

and D decreasing as grid resolution becomes coarser

(Fig. 8). Furthermore, while E and D calculated via the

two direct methods show good agreement at 25-m res-

olution, the tetrahedral interpolation method systemat-

ically underestimates the values calculated by the Romps

method as grid spacing becomes coarser; at 100-m reso-

lution, the difference in the values exceeds 50%. Since

poor estimation of motion of the cloud surface relative to

the air should on average result in an overprediction of E

and D, a different error must be dominating the tetra-

hedral calculation.

This error is likely related to a systematic under-

estimate of the cloud volume as calculated by the tetra-

hedral interpolation method when estimating the volume

of a cloud that occupies a single model grid cell. Consider

such an isolated cloud cell, surrounded by clear grid cells

in the 2D plane (Fig. 9). For simplicity, instead of con-

sidering the full cloud core calculation, let us consider

simply the condensed water. Assume the cloud cell has

a qdiff value of 1 g kg21, and the clear cells, 21 g kg21.

The Romps calculation, in agreement with the model

assumptions, will treat this entire grid cell as containing

cloud.

The tetrahedral calculation, on the other hand, will un-

derestimate the cloud volume. At the cell edge points, the

qdiff value will be averaged between adjacent cells, giving

qdiff 5 0 and placing the cloud surface at the gridcell wall,

exactly as expected. At the cell corners, however, the four

surrounding qdiff values average to give qdiff 5 20.5 g kg21,

and interpolation of this value between the corner and

FIG. 8. Mean (top) entrainment and (bottom) detrainment calculated at (left) 25-, (middle) 50-, and (right) 100-m grid spacing using

the Romps method with upwind advection (gray line) and the tetrahedral interpolation method (black line).
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the cell center puts the cloud surface at 2/3 the distance

between the center and the corner. This effect will occur

any time a single cloud cell is present and multiple clear

cells are averaged to form interpolation values.

Since the interpolation results in less cloud volume,

less entrainment and detrainment is measured, since

there is less cloud volume with which to entrain or de-

train. However, this effect only becomes an issue when

a significant fraction of the cloud field has a spatial scale

on the order of the model grid spacing. This can be seen

by comparing vertical profiles of the total cloud core

fraction for the three model resolutions (Fig. 10). The

25-m grid spacing model tetrahedral interpolation vol-

ume shows very little underestimate compared to the

no-interpolation cloud core fraction, but the 100-m model-

interpolated volume is reduced in size by 50% of the un-

interpolated value.

This underestimate of the volume of isolated cloud

cells is an inherent feature of surface interpolation, since

as a cloud evaporates, the interpolated volume should

decrease smoothly to zero. Thus, clouds with a volume on

the order of the volume of a single model grid cell will

always have their volume underestimated by interpola-

tion. We have not been able to find a simple way to correct

for this, as the effect is nonlinear and is not corrected

simply by scaling the entrainment values by the ratio of

the interpolated to noninterpolated cloud volumes. There-

fore, the tetrahedral interpolation method must rely on

having sufficient grid resolution to minimize this effect.

5. Discussion and conclusions

The good agreement between our technique and the

Romps method at fine grid spacing gives us confidence

that our calculation is a valid representation of the flux

through the cloud surface. However, as our tetrahedral

interpolation redefines the cloud volume, there are in-

terpretation issues when comparing the fluxes calculated

by the two methods. We believe effects like this explain

why the tetrahedral interpolation method estimates E

FIG. 9. Schematic showing bias in the tetrahedral interpolation

method, which leads to underestimation of cloud volume. Rightward-

pointing triangles represent u-velocity points, upward-pointing tri-

angles represent y-velocity points, and circles represent bulk tracer

quantity points. Black circles indicate cloudy points with total spe-

cific water 1 g kg21 above the saturated specific humidity and white

circles indicate clear points with total specific water 1 g kg21 below

the saturated specific humidity. The gray area indicates the resulting

tetrahedral interpolation cloud surface.

FIG. 10. Profiles of cloud core fraction calculated without interpolation (gray line) and with tetrahedral interpolation (black line) at 25-,

50-, and 100-m grid spacings.

454 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



and D values that are smaller than those estimated via

the Romps method at coarse grid resolution.

Calculations of E and D with the Romps method using

first-order upwind advection results in significantly larger

values than when using second-order MPDATA advec-

tion. We take this to be the result of larger numerical

diffusion in the upwind advection scheme. This difference

is quite large, with the upwind advection giving values on

the order of 50% higher than the MPDATA advection.

Thus suggests that the E and D values calculated by the

Romps method are very sensitive to the numerics used.

Romps (2010) found that values of direct entrainment

and detrainment were significantly higher than values

calculated via bulk tracer budgets: our method supports

this conclusion (at least at high enough grid resolution).

Romps interpreted the smaller tracer budget values to

be the result of assuming all entrainment and detrain-

ment occurs with fluid having the mean properties of the

environment or the cloud core, respectively. This dif-

ference between the bulk tracer and direct entrainment

calculations suggests that significant recirculation occurs

around the clouds, with an average air parcel entering

and leaving the cloud more than once.

Furthermore, Brown (1999) found entrainment and

detrainment calculated via bulk tracer budgets depended

on LES model resolution surprisingly little, in contrast

to the strong resolution dependence shown by the direct

fluxes. This suggests that changes in this recycling of cloudy

air with model resolution compensate the mass flux

changes resulting in little apparent E and D variability in

the tracer budgets. Both these effects suggest an under-

standing of the dynamics of the moistened environment

immediately outside the clouds, which may be impor-

tant for accurate parameterization of cloud property

exchanges.

We have shown that by interpolating the location of

cloud surfaces in an LES model we have been able to

calculate reasonable entrainment and detrainment rates

directly from model mass fluxes. These fluxes agree

well with the direct entrainment method of Romps, with

the caveat that the clouds must be well resolved by the

model grid spacing so as to minimize underestimate

of the cloud volume by the interpolation scheme. This

tetrahedral interpolation scheme gives significant ben-

efits over the Romps method over short time and small

spatial scales, generating statistically well-behaved re-

sults suitable for use in examining entrainment and de-

trainment variability over the life cycle of an individual

cloud.

Finally, we reiterate that nothing in our technique is

dependent on the shallow cumulus cloud regime, or indeed

on clouds at all; it should be equally useful in calculat-

ing entrainment and detrainment through any material

surface in a numerical model, subject to the caveats we

have mentioned.
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