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[1] A new Ozone Ensemble Forecast System (OEFS) is tested as a technique to improve
the accuracy of real-time photochemical air quality modeling. The performance of 12
different forecasts along with their ensemble mean is tested against the observations
during 11–15 August 2004, over five monitoring stations in the Lower Fraser Valley,
British Columbia, Canada, a population center in a complex coastal mountain setting. The
12 ensemble members are obtained by driving the U.S. Environmental Protection Agency
(EPA) Models-3/Community Multiscale Air Quality Model (CMAQ) with two mesoscale
meteorological models, each run at two resolutions (12- and 4-km): the Mesoscale
Compressible Community (MC2) model and the Penn State/NCAR mesoscale (MM5)
model. Moreover, CMAQ is run for three emission scenarios: a control run, a run with
50% more NOx emissions, and a run with 50% fewer. For the locations and days used to
test this new OEFS, the ensemble mean is the best forecast if ranked using correlation,
gross error, and root mean square error and has average performance when evaluated with
the unpaired peak prediction accuracy. Ensemble averaging removes part of the
unpredictable components of the physical and chemical processes involved in the ozone
fate, resulting in a more skilful forecast when compared to any deterministic ensemble
member. There is not one of the 12 individual forecasts that clearly outperforms the others
on the basis of the four statistical parameters considered here. A lagged-averaged OEFS is
also tested as follows. The 12-member OEFS is expanded to an 18-member OEFS by
adding the second day from the six 12-km ‘‘yesterday’’ forecasts to the ‘‘today’’ ensemble
forecast. The 18-member ensemble does not improve the ensemble mean forecast skill.
Neither correlation nor a relationship between ensemble spread and forecast error is
evident.
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1. Introduction

[2] The harmful effects of tropospheric ozone on humans
[Horvath and McKee, 1994; Brauer and Brook, 1995],
vegetation [Runeckles, 2002] and materials [Brown et al.,
2001] motivate the issuance of air quality (AQ) forecasts, and
the need to limit and control anthropogenic emissions. To
alert the population about impending AQ degradation,
Dabberdt and Miller [2000] discussed the need for an
operational AQ forecast system. The first experiences
with these numerical forecast systems are described by Delle

Monache et al. [2004],McHenry et al. [2004] andVaughan et
al. [2004]. A probabilistic approach to AQ forecasting is
recommended by the U.S. Weather Research Program and its
Prospectus Development Team on Air Quality Forecasting
[Dabberdt et al., 2003] because of the chaotic nature of the
atmosphere and chemistry nonlinearity.
[3] Dynamical systems are called chaotic if they show

divergent behavior, meaning that two different solutions
starting from similar but not identical initial states would
eventually diverge nonlinearly in solution space [Lorenz,
1963]. In such cases we do not know a priori which of the
two solutions is closest to the true evolution of the system.
[4] The atmosphere exhibits this behavior, and is thus a

chaotic system. We are not able to accurately measure the
initial state of the atmosphere, because of instrumentation
errors and large gaps between observation sites. Moreover,
we are able to solve only a simplified version of the
equations describing the atmosphere, and those solutions
are usually numerical approximations; that is, they are
sources of error as well. As a consequence, there is an
upper limit in time on the predictive skill of weather
forecasts. The ensemble approach is one method to repre-
sent the time evolution of the probability density function
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(PDF) describing the atmosphere’s initial state and its
uncertainty. Practically, the PDF can be represented by a
limited set of points [e.g., Leith, 1974]. The evolution of
each of those points would be a member of the ensemble.
Each of those members should ideally represent an equally
likely evolution of the dynamical system.
[5] It has been found for numerical weather prediction

(NWP) that the ensemble mean is more accurate that an
individual model realization, when verified for many cases.
NWP ensembles have been created using different model
initial conditions [Toth and Kalnay, 1993, 1997; Molteni
et al., 1996], different parameterizations within a single
model [Stensrud et al., 1998], different numerical schemes
[Thomas et al., 2002], and different models [Hou et al.,
2001; Wandishin et al., 2001]. This allows the ensemble to
take into account different sources of uncertainty.
[6] The ensemble technique can yield similar benefits to

real-time AQ prediction, because there are similar model
complexities and constraints. Different AQ models can be
better for different air pollution episodes, in ways that
cannot always be anticipated. Similar to NWP ensembles,
AQ ensemble members can be created with different mete-
orological and/or emission inputs, different parameteriza-
tions within a single model, different numerics within a
single model, and different models.
[7] For NWP ensembles, errors typically grow linearly at

first, and nonlinearly later [Kalnay, 2003]. However, the
linear period might be reduced in AQ ensembles because of
the strongly nonlinear nature of many chemical reactions.
For this reason, the differences among AQ ensemble mem-
bers may account for the uncertainties associated with each
component of the AQ process more rapidly than what is
observed for NWP ensembles.
[8] Delle Monache and Stull [2003] discussed the benefit

of the ensemble approach in studies involving not only
pollutant transport, but also the associated photochemical
reactions. Their ensemble was composed of four Chemistry
Transport Models (CTMs), and was tested for a 6-day
summer period over five monitoring stations in northwest-
ern and central Europe. The ensemble approach presented in
that study showed promising results, performing better than
the models individually, including good performance for
ozone peak value prediction.
[9] Another successful implementation of the ensemble

approach is given by Galmarini et al. [2004b], where the
authors describe an application to long-range transport and
dispersion studies. They used the data collected during the
ETEX experiment [Nodop et al., 1998] to quantitatively
estimate the concepts and parameters introduced in part I of
their coupled papers [Galmarini et al., 2004a]. They tested a
multimodel ensemble dispersion system by considering
several operational long-range transport and dispersion
models used to support decision making in case of acci-
dental releases. The median member of the forecast ensem-
ble exhibited the best forecast skill.
[10] McKeen et al. [2005] present results for a multimodel

(i.e., seven CTMs) OEFS, statistically evaluated for 53 days
(summer 2004), against 340 monitoring stations over east-
ern U.S. and southern Canada. The high correlation coef-
ficients and low root mean square error (RMSE) points to
the ensemble mean as the preferred forecast when compared
to any individual model.

[11] Recently, O’Neill and Lamb [2005] presented an
interesting intercomparison of the U.S. Environmental Pro-
tection Agency (EPA) Models-3/Community Multiscale Air
Quality Model (CMAQ) [Byun and Ching, 1999] with
the California Photochemical Grid Model (CALGRID)
[Carmichael et al., 1992]. They tested an ensemble-
averaged prediction based on the two CTM models
run with different meteorology and chemical mechanisms.
They found the ensemble skillful for the 8-hour averaged
forecasts, while with the 1-hour predictions the ensemble
mean did not necessarily show more skill than the single
deterministic runs. However, the standard deviation about
the 1-hour mean forecast provides a useful measure of
overall model uncertainty.
[12] A new OEFS is presented here using predicted ozone

concentrations from 12 different ensemble members. An
ensemble mean is computed (as a linear average of
the ensemble member predicted hourly concentrations) and
tested against the observations from five different stations
over the Lower Fraser Valley (LFV), British Columbia (BC),
Canada (see Figure 1). This is a region where ozonemodeling
is particularly challenging, because of the complex coastal
mountain setting [McKendry and Lundgren, 2000]. OEFS
performance is comparedwith the performance of each single
forecast for a 5-day period (11–15 August 2004).
[13] Galmarini et al. [2004b] showed that the ensemble

median (the median of the ensemble member predicted
hourly concentrations) has better forecast skill than the
ensemble mean. For ensembles with many members that
all capture likely forecast outcomes, one would expect
statistically that the ensemble mean and median member
should be nearly identical. However, if some ensemble
members are distant outliers because of any number of
model or initial condition errors, then they would not
contribute to a realistic estimate of the probability distribu-
tion of realistic forecast outcomes. This is a particular
problem if there is a cluster of outliers. For such cases the
ensemble average is unduly biased by the outliers, allowing
the one median ensemble member to give the best forecast.
In this study the ensemble mean resulted in a more skillful
forecast than the ensemble median, implying that we did not
have a problem with unphysical or unrepresentative outliers.
[14] For situations where ensemble outliers might be

problem, there are some solutions. One is to build a record
of error variances for each members based on past forecasts,
and then weight each member inversely with its error to
compute a weighted ensemble mean (similarly to what is
presented by Pagowski et al. [2005]). Another is to reduce
their systematic errors, and then combine these corrected
forecasts into an uniformly weighted average. This is the
approach used in the companion paper [Delle Monache et
al., 2006, hereinafter referred to as DM2].
[15] Section 2 describes the case study and the data, while

a detailed description of the OEFS is given in section 3.
Section 4 presents the results and their analysis, and a
discussion followed by a summary and conclusions can be
found in sections 5 and 6, respectively.

2. Case Study and Data

[16] The LFV lies across the western edge of the Canada/
United States border (Figure 1). The main metropolitan area
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is located at the northwest end of the Valley, where the
Greater Vancouver region is located, with a population
slightly greater than two million. The Valley is triangular-
shaped, oriented approximately west-to-east, with the Strait
of Georgia on the west side, the Coast Mountains to the
north, and the Cascade Mountain Range limiting the
Valley’s southeastern side.
[17] The synoptic conditions observed during the period

11–15 August 2004 were typical of conditions that lead to
high ground-level ozone concentrations in the LFV, as
described by McKendry [1994]. Those conditions are asso-
ciated with a northward progressing low-level thermal
trough, extending from California northward through Ore-
gon and Washington State reaching the southern part of BC.
An associated stationary upper level ridge was situated
across southern BC. The upper level ridge started to weaken
on 14 August, allowing clouds to spread over the LFVon 15
August, leading to lower observed ozone concentrations at
four stations out of five. Over the LFV, sea breeze circu-
lations combine with valley and slope flows to make ozone
modeling (that includes photochemistry) quite challenging
[McKendry and Lundgren, 2000].
[18] This study uses hourly observed ozone concentra-

tions from five stations across the LFV: Vancouver Interna-
tional Airport (CYVR) (urban), Langley (suburban),
Abbotsford (urban), Chilliwack (suburban), and Hope (ru-
ral) (Figure 1). These stations span the LFV from west to
east, and being apart one from each other more than 12 km,
they fall in different grid cells for all the forecasts. The
observed ozone hourly concentrations for the period 11–15
August 2004 vary considerably from west to east. This
reflects the easterly advection of ozone and its precursors by
the sea breeze circulation, leading to higher concentrations
further inland. Thus, at CYVR the values are low (peak
value always below 50 ppbv) and close to typical back-
ground summer values, because of its proximity to the
coast. At Langley (further inland), the observed maxima
for the 5-day period are between 60 and 70 ppbv, with the

lower peak value observed on 15 August. Ozone maximum
values between 60 and 80 ppbv are observed at Abbotsford,
while at Chilliwack the observed peak is above 70 ppbv
except on 15 August. The ozone concentrations at Hope
(furthest inland) exceed 82 ppbv (the Canadian National
Ambient Air Quality Objective for maximum 1-hour aver-
age concentration) during the first 4 days (with values
between 85 and 90 ppbv). At all five stations, the nighttime
values are very low (<15 ppbv). Secondary nocturnal
maxima ozone concentrations are observed at all stations
as discussed by Salmond and McKendry [2002].
[19] Studies of ozone photochemistry with a scaling-level

model in the LFV [Ainslie, 2004] show that the present and
projected AQ is in a regime affected roughly equally by
NOx and VOC emissions (Figure 2). Namely, in a maxi-
mum-ozone-concentration isopleth plot as a function of
NOx and VOC emissions, the state of the LFV is above
the ridgeline of ozone relative maxima. Those results
(specific to the LFV) are considered in building the ensem-
ble design presented in the next session.

3. Ensemble Design

[20] At the University of British Columbia (UBC), the
Mesoscale Compressible Community (MC2) NWP model
[Benoit et al., 1997] and the Penn State/NCAR mesoscale
(MM5) model [Grell et al., 1994] have been running daily
for several years (http://weather.eos.ubc.ca/wxfcst/). MC2 is
a fully compressible, nonhydrostatic model using semi-
implicit semi-Lagrangian techniques. The model is initial-
ized using the National Centers for Environmental
Prediction (NCEP) North American Mesoscale (NAM)
model at 108-km grid spacing. One-way nesting is applied
to produce model output at horizontal grid spacing of 108,
36, 12, 4, and 2 km. MM5 is a fully compressible, non-
hydrostatic, primitive equation meteorological model that
uses a terrain-following sigma (nondimensionalized pres-
sure) vertical coordinate. The MM5 model is initialized

Figure 1. Lower Fraser Valley, which is the floodplain region spanning the stations of Vancouver
International Airport (CYVR), Langley, Abbotsford, Chilliwack, and Hope. Shading (vertical bar at right)
indicates terrain elevation above sea level.
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from the same analysis and for the same five nested grids as
MC2, but with 2-way nesting.
[21] Both MC2 and MM5 produce meteorological fields

that are used in this study to drive the CMAQ Chemistry
Transport Model (CTM) [Byun and Ching, 1999]. CMAQ
has been run at UBC daily real time for 3 years [Delle
Monache et al., 2004]. The CBM-IV chemical mechanism
[Gery et al., 1989], and the Modified Euler Backward
Iterative (MEBI) chemistry solver [Huang and Chang,

2001] are used. CMAQ emissions are prepared using the
Sparse Matrix Operator Kernel Emission (SMOKE) system
[Coats, 1996]. The boundary conditions are a time-invariant
vertical concentration profile for the coarser domain (based
on typical LFV summertime background ozone concentra-
tions), while the finer grids are initialized each day with the
previous day’s prediction.
[22] Ideally, for the ensemble to be a skillful forecast, the

ensemble members should span all the uncertainties asso-
ciated with different phases of the modeling process: initial
and boundary conditions, meteorological and emission
fields, numerical schemes, chemical mechanisms, etc. Un-
fortunately, to consider all those modeling aspects would
require an ensemble with an unfeasibly large number of
members. For this reason, we present an OEFS that con-
siders only the uncertainties associated with the meteoro-
logical and emission fields. These fields are considered to
cause the main uncertainties in photochemical modeling
[Russell and Dennis, 2000]. For example, NOx emission
estimates can be in error by a factor of two or more [Hanna
et al., 2001].
[23] A related question is what ensemble size and per-

turbed attributes are necessary for capturing most of the
forecast uncertainty, on the basis of ensemble mean metrics.
We demonstrate here that a limited size ensemble with only
meteorology and emission perturbations can indeed yield an
ensemble average that is better than individual members, on
average.
[24] A flowchart of the OEFS tested in this paper is

shown in Figure 3. CMAQ is run with a 12-km horizontal
resolution domain covering southern BC, Washington State,
and the northern portion of Oregon, with a nested 4-km
resolution domain covering southwestern BC and north-
western Washington State. Both domains are centered over
the LFV. MC2 and MM5 provide the meteorological inputs

Figure 3. Twelve-member (01, 02, .., 12) Ozone Ensemble Forecast System. It is formed with four
different meteorological fields (MC2 at 4 and 12 km and MM5 at 4 and 12 km) and three different
emission scenarios: a control run (CTRL), a run with plus 50% NOx (NOXP), and a run with minus 50%
NOx (NOXN).

Figure 2. Isopleths of maximum ozone concentration
(ppbv) given as a function of year 2000 VOC and NOx

emissions over the Lower Fraser Valley (adapted from
Ainslie [2004]). The total annual VOC and NOx emissions
are 111,196 and 99,897 tonnes, respectively [Greater
Vancouver Regional District, 2002]. The vertical bar shows
the ±50% NOx used for the ensemble perturbations.
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for CMAQ, for the 12- and 4-km domains. Moreover, for
each of the four possible meteorological input combina-
tions, CMAQ is run with three emission scenarios: a control
run (CTRL), a run with 50% more NOx (NOXP), and a run
with 50% less NOx (NOXN) (also see Figure 2). These
scenarios were chosen because NOx emissions are mainly
anthropogenic [Jacobson, 1998] and strongly influence
ground-level ozone concentrations [Steyn et al., 1997]. This
leads to a system with 12 ensemble members (01, 02, . . .,

12), as shown in Figure 3. An example (Abbotsford, 11–15
August) of the ensemble members (solid lines) and their
ensemble mean (thick solid line) temporal evolution, com-
pared with the observed ozone concentrations (circles), can
be found in Figure 4.
[25] Since the six 12-km resolution ensemble members

are run for 48 hours, the second half of the (N � 1)th
forecast day can be added to the Nth forecast day ensemble
forecast. Figure 5 depicts the resulting 18-member OEFS

Figure 4. Twelve ensemble members (solid lines) and the ensemble mean (thick solid line) predictions
along with the observations (circles), at Abbotsford, 11–15 August 2004.

Figure 5. Eighteen-member Ozone Ensemble Forecast System (OEFS). The six 12-km resolution
ensemble members are run for 48 hours. The second half of the (N � 1)th forecast day can be added the
Nth day 12-member OEFS to form a lagged averaged ozone 18-member ensemble.
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tested in this study, built as a lagged-averaged ozone
ensemble (see section 4.4).

4. Results and Analysis

4.1. Verification Statistics

[26] The forecast skill of each ensemble member and the
ensemble mean has been evaluated using the following
statistical parameters: (1) Pearson product-moment coeffi-
cient of linear correlation (herein ‘‘correlation’’):

correlation stationð Þ ¼
PNhour

t¼1

Co t; stationð Þð � Co stationð Þ
h i

Cp t; stationð Þ � Cp stationð Þ
h in o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNhour

t¼1

Co t; stationð Þð � Co stationð Þ
h i2 PNhour

t¼1

Cp t; stationð Þ
�

� Cp stationð Þ
h i2s

ð1Þ

(2) gross error (for hourly observed values of O3 >
30 ppbv):

gross error stationð Þ ¼ 1

Nhour

XNhour

t¼1

Cp t; stationð Þ � Co t; stationð Þ


 



Co t; stationð Þ
ð2Þ

(3) root mean square error (RMSE):

RMSE stationð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nhour

XNhour

t¼1

Cp t; stationð Þ � Co t; stationð Þ
� �2

vuut
ð3Þ

and (4) unpaired peak prediction accuracy (UPPA):

UPPA stationð Þ ¼ 1

Nday

XNday

day¼1

�
Cp day; stationð Þmax � Co day; stationð Þmax



 


Co day; stationð Þmax

ð4Þ

where Nhour is the number of 1-hour average concentrations
over the 5-day period, Nday is the number of days,
Co(t,station) is the 1-hour average observed concentration
at a monitoring station for hour t, Cp(t,station) is the 1-hour
average predicted concentration at a monitoring station for
hour t, Co stationð Þ is the average of 1-hour average
observed concentrations at a monitoring station over the
5-day period, Cp stationð Þ is the average of 1-hour average
predicted concentrations at a monitoring station over the
5-day period, Co(day,station)max is the maximum 1-hour
average observed concentration at a monitoring station
over 1 day and Cp(day,station)max is the maximum 1-hour
average predicted concentration at a monitoring station
over 1 day.
[27] The gross error and UPPA are included in the U.S.

EPA guidelines [U.S. Environmental Protection Agency
(EPA), 1991] to analyze historical ozone episodes using
photochemical grid models. The EPA acceptable perfor-
mance upper limit values are +35% for gross error, and
±20% for unpaired peak prediction accuracy. UPPA is
computed here as an average (over the 5 days available)

of the absolute value of the normalized difference between
the predicted and observed maximum at each station
(equation (4)). Thus UPPA is nonnegative; hence only
the +20% acceptance performance upper limit is used in
the next sections.
[28] We selected this set of statistics for the following

reasons. We choose correlation to obtain an indirect indi-
cation of the differences between the predicted and mea-
sured ozone time series at a specific location. The closer the
correlation is to one, the better is the correspondence of
timing of ozone maxima and minima between the two
signals.
[29] RMSE (measured in ppbv) gives important informa-

tion about the skill in predicting the magnitude of ozone
concentration, even though alone it does not draw a com-
plete picture of a forecast value. It is very useful also for
understanding ensemble-averaging effects, because it can be
decomposed into systematic and unsystematic components
as discussed in detail in section 4.2.3.
[30] The gross error statistic has been considered in this

analysis because it is included in the U.S. EPA guidelines
[EPA, 1991]. Also, being computed for hourly observed
values of O3 > 30 ppbv, it gives useful information about
the forecast skill for higher concentration values, which are
important for health-related issues. It gives information
about the error magnitude (as RMSE), but as a portion of
the observed ozone concentration (i.e., is measured in %).
[31] UPPA (%) is also used because it measures the

ability of the forecasts to predict the ozone peak maximum
on a given day. Traditionally, peak concentrations have been
the main concern for the public health. However, in recent
years over midlatitudes of the Northern Hemisphere, a
rising trend for background ozone concentrations has
been observed, while peak values have been steadily
decreasing [Vingarzan, 2004].

4.2. Twelve-Member OEFS Results

[32] The performance of the OEFS presented in section 3
has been tested by computing the statistical parameters
introduced in section 4.1, using the data described in
section 2.
4.2.1. Correlation
[33] Figure 6 shows the results for the correlation be-

tween the observed hourly ozone concentration and the
predicted concentrations from the 12 ensemble members
and the ensemble mean. Those values are computed for the
5-day period from 11 to 15 August 2004, and at five
different stations: CYVR, Langley, Abbotsford, Chilliwack
and Hope.
[34] Generally, correlation values tend to be lower mov-

ing toward the east side of the LFV, with all the forecasts
having their poorest performance at Hope. Indeed Hope is
located in a very steep narrow valley (less than 4 km wide),
which none of the models are able to resolve. Because the
12 km runs do not ‘‘see’’ this valley, in the afternoon the
ozone plume is advected past Hope (instead of being
trapped there), resulting in decreasing values (after the
plume passage) while in reality the concentration is increas-
ing. Also, during the night a returning flow (going back
westward) is established, causing the 12 km run to bring
back the plume, and resulting in increasing predicted con-
centrations when the observed ozone is decreasing. This
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causes negative correlation values for the 12 km runs, as
shown in Figure 6. Thus the ensembles using finer resolu-
tion runs have better correlation values at Hope and Chill-
iwack (particularly with MC2; i.e., forecasts 07, 08 and 09),
where the topography is most complex. Spatial resolutions
even finer than 4 km would be needed to better capture
these topographic effects.
[35] CYVR is located adjacent to the water in the Georgia

Strait, and the meteorological models have difficulty cap-
turing accurately the thermally driven sea breeze flows
generated by the water/land discontinuity. At this location
the finer resolution runs tends to have better correlation with
the observation (again, particularly with MC2), probably
because they better represent the complex coastline and the
associated land use data. The ensemble mean has the best
performance at Langley and Abbotsford, and is second best
at Chilliwack.
[36] Table 1 shows for each station the ranking (from 1 to

13) of each ensemble member and the ensemble mean, where
the best (highest) correlation value has a ranking of 1, and the
worst (lowest) has 13. Overall the ensemblemean has the best
ranking as measured by the lowest sum of rankings. The only
ensemble members with similar (but worse) skill are 07, 08,
and 09, with member 08 having a number of first rankings.
[37] The ensemble mean has mediocre skill at CYVR and

Hope because both stations are located in areas where all the
individual ensemble members have difficulties, as explained
above. The correlation values are significantly improved
(closer to one) with Kalman filter (KF) postprocessing, as
shown in DM2.
4.2.2. Gross Error
[38] The gross error results are shown in Figure 7, and the

rankings are summarized in Table 1. Overall the ensemble

Figure 6. Correlation values between observed and predicted ozone 1-hour average concentrations
plotted at five stations (Vancouver International Airport (CYVR), Langley, Abbotsford, Chilliwack, and
Hope) for the 12-member Ozone Ensemble Forecast System (01, 02, .., 12) and the ensemble mean (E-
mean) for the 5-day period 11–15 August 2004. Values are within the interval [�1, 1], with correlation =
1 being the best possible value.

Table 1. Ranking of the 12 Ensemble Members (01, 02, . . ., 12)
and the Ensemble Mean (E-Mean) at the Vancouver International

Airport (CYVR), Langley, Abbotsford, Chilliwack and Hope

Stations Tabulated for Correlation, Gross Error, Root Mean Square

Error (RMSE), and Unpaired Peak Prediction Accuracy (UPPA)a

01 02 03 04 05 06 07 08 09 10 11 12 E-Mean

Correlation
CYVR 5 10 6 12 11 13 3 1 2 8 7 9 4
Langley 4 12 11 6 8 13 5 9 2 7 3 10 1
Abbotsford 10 11 12 2 6 13 3 5 7 8 4 9 1
Chilliwack 11 13 10 8 6 12 3 1 4 7 5 9 2
Hope 13 12 11 10 8 9 2 1 3 6 5 7 4
Ranking sum 33 58 50 38 39 60 16 17 18 36 24 44 12

Gross Error
CYVR 1 5 4 6 9 2 13 11 12 7 10 3 8
Langley 2 7 12 5 4 8 13 11 10 6 9 3 1
Abbotsford 2 5 11 3 4 10 13 12 9 6 8 7 1
Chilliwack 9 8 1 5 7 11 12 13 10 4 6 3 2
Hope 11 12 10 6 7 13 1 2 9 5 3 8 4
Ranking sum 25 37 38 25 31 44 52 49 50 28 36 24 16

RMSE
CYVR 2 5 1 9 11 3 13 8 12 7 10 6 4
Langley 1 10 4 6 7 3 13 11 12 8 9 5 2
Abbotsford 4 11 1 7 6 3 13 12 10 8 9 5 2
Chilliwack 13 10 6 9 2 7 5 8 1 11 12 4 3
Hope 12 8 11 13 9 7 2 3 1 6 10 4 5
Ranking sum 32 44 23 44 35 23 46 42 36 40 50 24 16

UPPA
CYVR 3 9 2 5 7 1 13 12 11 8 10 4 6
Langley 7 3 12 5 4 10 13 9 11 1 2 8 6
Abbotsford 6 9 10 3 2 11 12 13 8 4 5 7 1
Chilliwack 9 11 12 2 8 13 6 4 10 3 1 7 5
Hope 6 10 8 5 7 13 4 1 12 3 2 9 11
Ranking sum 31 42 44 20 28 48 48 39 52 19 20 35 29

aThe lowest sum of rankings indicates the best overall performance.
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mean is the best for these cases when compared to each
ensemble member, as indicated by the ranking sum. Fore-
cast 08 for the correlation has similar performances to the
ensemble mean, but has large gross error (very poor skill),
except at Hope where it ranks second. Note that the 4-km
MC2-driven ensemble members (07, 08 and 09) at CYVR,
Langley and Abbotsford have relatively poor skill using the
gross error metric, but have much better performance using
the correlation metric.
[39] The ensemble mean is well within the 35% EPA

acceptance value at Langley, Abbotsford, Chilliwack and
Hope. At CYVR the ensemble mean has the highest gross
error values, confirming the difficulties for all the ensemble
members at this location. In DM2 it is shown that applica-
tion of the KF postprocessing improves (brings closer to
zero) the gross error performance of most forecasts, with an
improvement up to 20%.
4.2.3. RMSE
[40] The RMSE results are shown in Figure 8 and sum-

marized in Table 1. In general, the values of this statistical
parameter are between 20 and 30 ppbv. However, the KF
correction presented in DM2 shows substantial improve-
ments up to 20–25%, with values often between 10 and
20 ppbv. Nevertheless, the ensemble mean is the best.
Forecast 03 ranks first at CYVR and Abbotsford, but still
is worse than the ensemble mean at three stations (Langley,
Chilliwack and Hope). Forecast 03 is one of the worst for
the correlation metric, and worse than average for gross
error. Again, the ranking sum shows that the ensemble
mean is the best.
[41] RMSE can be separated in different components. One

decomposition was proposed by Willmott [1981]. First, an
estimate of concentration C*(t,station) is defined as follows:

C* t; stationð Þ ¼ aþ bCo t; stationð Þ ð5Þ

where a and b are the least squares regression coefficients
of Cp(t, station) and Co(t, station) (the predicted and
observed ozone concentrations, respectively, as defined in
section 4.1). Then the following two quantities can be
defined:

RMSEs stationð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nhour

XNhour

t¼1

C* t; stationð Þ � Co t; stationð Þ½ �2
vuut

ð6Þ

RMSEu stationð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nhour

XNhour

t¼1

C* t; stationð Þ � Cp t; stationð Þ
� �2

vuut
ð7Þ

where RMSEs(station) is the RMSE systematic compo-
nent, while RMSEu(station) is the unsystematic one.
RMSEs indicates the portion of error that depends on
errors in the model, while RMSEu depends on random
errors, on errors resulting by a model skill deficiency in
predicting a specific situation, and on initial condition
errors. The following relates RMSE to its components:

RMSE2 ¼ RMSE2
s þ RMSE2

u ð8Þ

[42] Ensemble averaging is expected to reduce some of
the unsystematic component of the error (i.e., RMSEu),
while the systematic component (RMSEs) should be affected
little by the averaging process. In fact, since RMSEs reflects
errors in the model affecting each individual forecast
similarly, it should not be reduced (when compared with
the ensemble members) for the ensemble mean.

Figure 7. Similar to Figure 6 but for gross error (%). The solid horizontal line is the EPA acceptance
value (+35%). Values are within the interval [0, +1), with a perfect forecast having gross error = 0.

D05307 DELLE MONACHE ET AL.: OZONE ENSEMBLE FORECASTS

8 of 18

D05307



[43] Figure 9 shows the RMSE systematic (bottom bar)
and unsystematic components (top bar). CYVR (and to a
lesser extent Langley) shows among the highest RMSEu

values, indicating an intrinsic lack of predictive skill at this
location, as already discussed in section 4.2.1. Martilli and
Steyn [2004] discuss the effects of the superimposed valley,
slope, and thermal flows over the LFV. Often the pollution

plume is transported during night over the Georgia Strait
waters as a result of the combination of several transport
processes. This makes it very challenging for the models to
accurately predict the spatial and temporal evolution of
ozone concentration in near-water locations, such as CYVR,
where the overstrait pool of pollutants can be readvected
over land by the daytime sea breeze.

Figure 9. Similar to Figure 8 but segregating the root mean square error into its systematic (bottom bar)
and unsystematic components (top bar).

Figure 8. Similar to Figure 6 but for root mean square error (RMSE) (ppbv). Values are within the
interval [0, +1), with a perfect forecast when RMSE = 0.
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[44] The 12-km runs (forecasts 01–06) have their highest
systematic error at Hope. All these forecasts poorly repro-
duce the real topography at this location, and this leads to
systematic misrepresentations of ozone temporal and spatial
distributions. Conversely, the 4-km runs have their highest
systematic error at CYVR (in particular for MC2 driven
runs; ensemble members 07–09), where their ability to
capture complex terrain more accurately than the 12–km
runs is not an advantage, since at CYVR the terrain is flat.
[45] Overall, the ensemble mean has among the lowest

RMSEu when compared with the other forecasts, being the
second best after forecast 12 (MM5, at 4 km, with NOXN)
and before forecast 04 (MM5, at 12 km, NOXP). The
ensemble mean has the lowest RMSEu at Hope, the second
best at Abbotsford, the third at Chilliwack, the fourth at
Langley and the sixth at CYVR. Conversely, the ensemble
mean RMSEs is never the lowest and is always close to the
average RMSEs of the individual forecasts. This confirms
the usefulness of ensemble averaging: it is able to remove
part of the unpredictable components of the physical and
chemical processes involved in the ozone fate, resulting in a
more skilful forecast when compared to any deterministic
ensemble member.
4.2.4. UPPA
[46] Figure 10 shows the UPPA results. At CYVR,

forecasts 07, 08 and 09 largely overestimate the observed
ozone peak concentration, even though at this station they
have a good correlation value (close to 0.8). The UPPA
rankings in Table 1 are computed using absolute values, so
that under and overprediction of the observed peak concen-
trations have the same weight when the ranking is com-
puted. For this parameter the ensemble mean is the best
only at Abbotsford when compared with the 12 individual
ensemble members. It has a slightly better than average

performance at CYVR, Langley at Chilliwack, and it has
poor performance at Hope. A possible reason for the poor
average performance (i.e., low ranking sum) of the en-
semble mean with UPPA (observed in this study), is that
ensemble averaging might lead to excessive smoothing of
the peak values.
[47] Except at CYVR, forecasts 10 and 11 (MM5, at

4 km, with CTRL and NOXP) have good forecast skill for
UPPA, while for all other statistical parameters they are
average or worse than average. In DM2 is shown that
application of the KF postprocessing modestly improves
(brings closer to zero) the UPPA performance.

4.3. Eleven-Member OEFS Results

[48] Since the previous analysis shows that different
ensemble members contribute differently to the ensemble
mean performance, we eliminate each individual member in
turn from the 12-member ensemble, and recompute the four
statistical parameters for the 5-day period and five stations,
for the resulting 11-member ensemble. This way, one can
gauge the effect of each single ensemble member on the
ensemble mean.
[49] Figure 11 shows the median (over the five stations)

of the correlation of the 11-member ensemble mean, where
each bar represents the correlation value for the ensemble
mean without the one corresponding ensemble member
indicated in the label below the bar. Superimposed as a
dashed line is the correlation value for the full 12-member
ensemble. If the value shown is below the dashed line, it
implies that the ensemble mean without that specific mem-
ber has worse performance, and vice versa.
[50] First, all the correlation values are between 0.7 and

0.8, regardless of which forecast is removed from the
ensemble. The forecasts with MC2 at 4 km (07, 08 and

Figure 10. Similar to Figure 6 but for unpaired peak prediction accuracy (UPPA) (%). The solid
horizontal lines are the EPA acceptance values (+20%). Values are within the interval [0, +1), with a
perfect peak forecast when UPPA = 0.
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09) removed give generally worse correlation values, while
the contrary is true for the runs with MM5 at 4 km (10, 11,
and 12). In other words, the ensemble average is better if
MC2 at 4 km is included. Also, all the runs without MM5 at
12 km give better correlation, while the runs with MC2 at
12 km improve the correlation two times out of three.

[51] Figure 12 shows a similar analysis, but for the gross
error. All the values are close to 19 ppbv without any
evident trend, except that for all the runs at 12 km, NOXN is
better than NOXP, which are both better than the CTRL run.
[52] Similar results for RMSE are shown in Figure 13. If

the value is below the dashed line, it implies that the

Figure 11. Median (over the five stations) of the correlation of the 11-member ensemble mean, given
for the 5-day period 11–15 August 2004. Each bar represents the correlation value for the ensemble mean
without the corresponding ensemble member (the label below the bar). The dashed line is the correlation
value for the full 12-member ensemble, and the better-worse designation at right is relative to this full
ensemble. Values are within the interval [�1, 1], with correlation = 1 being the best possible value.

Figure 12. Similar to Figure 11 but for gross error (%). Values are within the interval [0, +1), with
perfect forecast when gross error = 0.
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ensemble mean without that specific member has better
performance. Here the differences are more pronounced,
with maximum difference (of about 10%) between the value
of the ensemble mean without forecast 03 and the one
without forecast 05. The only ensemble members that
positively contribute to the RMSE ensemble mean value
(i.e., increasing RMSE when removed, which is equivalent
to reducing errors when included in the ensemble) are
forecasts 01, 03, 06, and barely 08, while removing the
others from the ensemble results in a better RMSE ensemble
mean.

[53] UPPA results are shown in Figure 14. The values are
between 19.5 and 22.5%, meaning that none of the models
change dramatically this statistical parameter when excluded
from the ensemble. Notably, when the 4-km runs (for both
MM5 and MC2) with the CTRL and NOXP emission run
(forecasts 07, 08, 10, and 11) are removed separately from
the ensemble, the UPPA gets worse. The only other forecast
that makes UPPA better (i.e., UPPA is worse if removed) is
forecast 04 (MM5, 12-km, CTRL run). All the other fore-
casts make this statistical parameter worse when they are
retained, when they contribute to the ensemble.

Figure 13. Similar to Figure 11 but for the root mean square error (RMSE) (ppbv). Values are within
the interval [0, +1), with a perfect forecast when RMSE = 0.

Figure 14. Similar to Figure 11 but for the unpaired peak prediction accuracy (UPPA) (%). Values are
within the interval [0, +1), with a perfect peak forecast when UPPA = 0.
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4.4. Eighteen-Member OEFS Results

[54] Hoffman and Kalnay [1983] introduced the lagged
average weather forecast. The forecasts initialized at the
current initial time, t = 0, as well as forecast from the
previous times, t = �t, �2t, . . ., � (N � 1)t are combined
at a common valid time to form an ensemble. They tested
this approach using a primitive equation NWP model to
represent the true atmospheric evolution, and a quasi-
geostrophic NWP model as the forecast. They found the
lagged average forecast to be slightly better than a Monte
Carlo forecast (introduced assuming a perfect model by
Leith [1974]), and they found higher correlation between
error growth and ensemble spread in their approach. These
improvements were obtained because the lagged average
forecast perturbations are not randomly chosen, but better
capture the ‘‘error of the day.’’ Other applications of this
ensemble approach can be found in the literature, as for
example in the work by Dalcher et al. [1988].
[55] In our study, we tested a lagged averaged ozone

ensemble. Each of the six 12-km resolution ensemble
members is run for more than 48 hours. This allows the
expansion of the 12-member OEFS to an 18-member OEFS,
by adding the second half of the six 12-km ‘‘yesterday’’
forecasts to the ‘‘today’’ ensemble forecast, as shown in
Figure 5.
[56] Table 2 shows the results of the 12-member and

18-member OEFS, for the same statistical parameters as in
the previous subsections, and for the same 5-day period and
the same stations. Only in few occasions is the 18-member
OEFS slightly better than the 12-member one, as for
example for the gross error and UPPA at CYVR. In general
the two ensemble systems have very similar forecast skill,
meaning that the computation effort of adding six lagged
members to the original system does not provide valuable
results.
[57] Ideally, each ensemble member should give an

equally likely time evolution and space distribution of the
ozone concentration, and they should all give equally good
estimates of truth. The ensemble members should thus be
‘‘independent,’’ in the sense that none of them should rely
on other members for their realizations. This is not the case
when nested grids are used, as for 12-member OEFS
presented in this study. Namely, CMAQ domains are linked
using a one-way nesting approach (similarly for MC2, but
MM5 runs are implemented with two-way nesting), all the
4 km runs cannot be considered independent of the runs
where the driving meteorology and chemistry is their 12 km
coarser domain. Moreover, the fact that the addition of six
lagged members leave the OEFS performances substantially
unvaried, suggests that no independent information on
errors is added with those members.

5. Discussion

5.1. Taylor Diagrams

[58] A concise way to display and study these results is to
use a Taylor diagram [Taylor, 2001]. It can be used to create
a multistatistics plot of correlation, centered RMSE
(CRMSE: RMSE computed after the average is removed
from the time series), and standard deviation. This is done
for each forecast, for the ensemble mean, and for the
observations. CRMSE is the distance on the diagram

between the point representing the forecast and the one
representing the observations.
[59] At the Vancouver International Airport (CYVR)

(Figure 15), the ensemble has the best performance, as
indicated by being closest to the observations. Forecasts
07, 08, and 09 (MC2, 4-km) are the worst, being the
farthest. At Langley (Figure 16) the ensemble mean is the
closest, while forecasts 07 and 08 are the worst, and 09 has
an average performance. At Abbotsford (Figure 17) 07 is
the best, with 09 and the ensemble mean having similar
distance from the observations and being the second closest.
At Chilliwack (Figure 18) the ensemble mean and 09 have
again the same distance from the observations, and 08 and
07 are closest and the second closest, respectively. Finally at
Hope (Figure 19) forecasts 07, 08, and 09 are all closer to
the observations than the ensemble mean.
[60] The ensemble mean forecast is not the best at every

location and for any given observed ozone concentration.
However, overall it is indeed the most skilful forecast when
tested against the observations, and compared to any other
individual ensemble member. The key point in favor of the
ensemble mean is that is not possible to establish a priori
which specific ensemble member will outperform the en-
semble mean in any specific situation.

5.2. Meteorology Versus Emission Perturbations

[61] Ensemble members 01, 04, 07 and 10 (MC2 and
MM5 control runs at 12 km, and MC2 and MM5 control
runs at 4 km) are the control runs, where the nonperturbed
emission data are used. Namely, only the meteorology is
perturbed. Any one of those control runs can be compared
with runs driven by the same meteorological field but with
an emission perturbation (plus or minus 50% NOx). This
means comparing ensemble member 01 with 02 and 03, 04
with 05 and 06, 07 with 08 and 09, and 10 with 11 and 12.
This methodology allows one to infer information about the
utility of meteorology versus emission perturbations.
[62] The control runs have good correlation statistics

relative to the runs driven by the same meteorology but
with emission perturbations. This could reflect the impor-
tance of meteorology perturbations in capturing the ozone
temporal and spatial distributions. However, by looking at
RMSE, the emission perturbation runs seem to produce
better (i.e., lower) RMSE values overall when compared
with the control runs. Thus emission perturbations appear
to be necessary to better predict ozone concentration
magnitude.

Table 2. Correlation, Gross Error (%), Root Mean Square Error

(RMSE) (ppbv), and Unpaired Peak Prediction Accuracy (UPPA)

(%) for a 12-Member (12-ens) and an 18-Member (18-ens) Ozone

Ensemble Forecast System Listed at Five Stations (Vancouver

International Airport (CYVR), Langley, Abbotsford, Chilliwack,

and Hope), for the 5-Day Period 11–15 August 2004

Correlation
Gross Error,

% RMSE, ppbv UPPA, %

12-ens 18-ens 12-ens 18-ens 12-ens 18-ens 12-ens 18-ens

CYVR 0.74 0.72 44 37 24 23 39 35
Langley 0.84 0.85 15 15 17 17 13 13
Abbotsford 0.91 0.90 12 11 19 19 11 13
Chilliwack 0.71 0.72 18 19 25 26 20 21
Hope 0.23 0.06 24 25 28 29 29 31
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[63] The analysis above suggests that both perturbations
are needed to have a skilful forecast. This is another reason
why the ensemble average is the best. However, further
investigations using other case studies could help to validate
this hypothesis.

5.3. Spread Versus Skill

[64] The standard deviation of the ensemble members
about the ensemble mean is called spread. The relationship
between ensemble spread and forecast error is not yet well
defined [Kalnay, 2003]. Nevertheless, it often provides very
useful information about ensemble skill. Ensemble weather
forecasts often provide information on the reliability of the
forecast: if the ensemble members have large spread, this
implies less confidence in the forecast.
[65] In this study no correlation or relationship between

ozone ensemble spread and forecast error has been found.
This could be caused by a lack of accuracy of one or more
aspects of the modeling process, which creates similar

errors in the forecasts for specific circumstances (e.g.,
overnight (see Figure 4)). This could cause most of the
forecasts to be close to each other, resulting in a small
spread. At the same time those forecasts might be far from
the observations, and this could result in an ensemble where
there is small spread with large errors. In this case, the
correlation that the ensemble skill and spread may have in
other occasions would be at least partially mitigated by what
occurs in those specific circumstances.

6. Summary and Conclusions

[66] A new Ozone Ensemble Forecast System (OEFS)
has been tested as a technique to improve the accuracy of
real-time air quality forecasts. Twelve ensemble members
are obtained by driving U.S. Environmental Protection
Agency (EPA) Models-3/Community Multiscale Air Qual-
ity Model (CMAQ) with two mesoscale models, the Meso-
scale Compressible Community (MC2) model and the Penn

Figure 15. Taylor diagram plotted for Vancouver International Airport (CYVR). The azimuthal position
gives the correlation, while the radial distance from the origin is proportional to the standard deviation
(ppbv). The circle represents the observations, and the square is the ensemble mean. The numbers
correspond to the ensemble member indices. The distance between the observation and a given point is
proportional to the centered root mean square error (CRMSE) between the observations and the forecast
having the correlation and standard deviation of the given point. The dashed line indicates the ensemble
mean CRMSE centered over the point representing the observations.

Figure 16. Taylor diagram for Langley (similar to Figure 15).
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State/NCAR mesoscale (MM5) model, each run at two
resolutions, 12- and 4-km. CMAQ is run for three emission
scenarios for each of the four available meteorological
fields: a control run, 50% more NOx, and 50% less NOx.
[67] The performance of the ensemble mean and 12

different forecasts is compared with the individual forecasts
and tested against the observations for a 5-day period (11–
15 August 2004), over five monitoring stations in the Lower
Fraser Valley (LFV), British Columbia (BC). In summary,
for the locations and days used to test this new OEFS, one
finds strong evidence for the following:
[68] 1. The ensemble mean is usually the best ozone

forecast if ranked using correlation, gross error, or root
mean square error (RMSE).
[69] 2. The ensemble mean has an average performance

with the unpaired peak prediction accuracy (UPPA). One
possible reason could be that ensemble averaging could
cause excessive smoothing of the peak values.
[70] 3. The ensemble mean forecast is not the best at

every location and for any given observed ozone concen-
tration. However, it is indeed the most skilful forecast when
tested against the observations, and compared to any other
ensemble member, since it is able to remove part of the
unpredictable components of the individual deterministic
forecasts.

[71] 4. The ranking sum is useful for comparing overall
performance.
[72] 5. Sporadically (in space and time) there are few

ensemble members that have better performance than the
ensemble mean when the forecasts are ranked on the basis
of a particular statistical parameter. The key point in favor
of the ensemble mean is that is not possible to establish a
priori which specific ensemble member will outperform the
ensemble mean in any specific situation.
[73] 6. Meteorology perturbations could be important to

better capture the ozone temporal and spatial distributions,
while emission perturbations could be necessary to better
predict the ozone concentration magnitude. If this is the
case, then both perturbations are useful for maximizing the
skill of ozone forecasts, but further investigations are
needed to validate this hypothesis.
[74] 7. The 11-member ensembles, given by removing

each of the 12-members in turn from the original ensemble,
show results close to the 12-member system for correlation,
gross error, RMSE and UPPA. In general, no particular 11-
member ensemble consistently outperforms the other pos-
sible 11-member combinations. This reflects the fact that
there is not one of the 12 forecasts that clearly outperform
the others, on the basis of the four statistical parameters
considered here.

Figure 18. Taylor diagram for Chilliwack (similar to Figure 15).

Figure 17. Taylor diagram for Abbotsford (similar to Figure 15).
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[75] 8. The 18-member ensemble did not improve the
ensemble mean forecast skill. This is probably because the
added six lagged forecasts did not span more uncertainty
than the original 12-member ensemble, and that no inde-
pendent information on errors is added with those members.
[76] These results indicate that ensemble averaging

improves the forecast timing of maxima and minima con-
centrations with respect to the observations, because the
correlation is closer to one. From the improved (decreased)
RMSE and gross error values, we infer that ensemble
averaging does improve the forecast accuracy by reproduc-
ing the magnitude of ozone concentrations. The ensemble
mean has an average performance in predicting the daily
ozone maximum, as shown with the UPPA results.
[77] The results presented in this study suggest that an air

quality (AQ) ensemble design built on meteorological and
emission field perturbations is a promising approach. For
NWP ensembles, the multimodel approach is the more
promising approach, especially for short-range forecasts
[Hou et al., 2001; Wandishin et al., 2001]. So, even if only
two different NWP models are used (each with two different
resolutions), the results found here indicate that the multi-
model approach is an efficient way to perturb the meteoro-
logical input in an AQ ensemble design as well.
[78] Furthermore, the emission errors are expected to

behave in a more systematic fashion than the errors in the
initial conditions. They should depend much less on tem-
poral variations of the atmosphere. So the issue of capturing
the ‘‘error of the day,’’ which each NWP ensemble system
strives for [Kalnay, 2003, and references therein], should be
less pronounced for emission perturbations within an AQ
ensemble design. This could be a reason why the simple
emission perturbation tested here (combined with the mul-
tiNWP model perturbation) gives good results. Further
investigation is needed to clarify this point.
[79] A refinement of the system could focus on the

emission perturbations. Ideally, a multimodel approach,
using the Sparse Matrix Operator Kernel Emission
(SMOKE) model and other state-of-the-art emission pre-
processors, would take into account many of the uncertain-
ties generated by the several approximations embedded in
the emission data gathering and computation processes. An
alternative way could be to run the same emission prepro-
cessor (e.g., SMOKE) with different configurations, and

starting from different emission inventories to generate
different (but equally likely) emission fields.
[80] Future work could focus also on a VOC-based

perturbation OEFS, and the comparison with this study
should help to understand the effects of different emission
perturbations (NOx or VOC) when combined with meteo-
rology perturbations. Moreover, interesting experiments
could result by generating ensemble members by also
perturbing other phases of the AQ modeling process, such
as the chemistry. For instance, Hanna et al. [2001, p. 899]
found the NO2 photolysis rate to be ‘‘the variable whose
uncertainties are most strongly correlated to the uncertain-
ties in predictions of maximum hourly averaged ozone
concentrations.’’ This would make it a strong candidate as
a parameter to be perturbed. Perturbing the chemistry likely
would be more important in predicting particulate matter
rather than ozone, because of the higher uncertainties on
how the models represent heterogeneous chemistry when
compared to gas-phase chemistry.
[81] Also, the perturbations of the meteorological field

presented here are not spatially independent, because two
NWP models are used to produce forecasts over four
domains. A likely improvement could be obtained by using
different NWP models for each domain.
[82] Finally, ensemble averaging is able to remove part of

the unpredictable components of the physical and chemical
processes involved in the ozone fate, resulting in a more
skilful forecast when compared to any deterministic ensem-
ble member. In the companion paper [Delle Monache et al.,
2006], it is shown how a Kalman filter can be used to
reduce systematic errors. Thus, using both ensemble aver-
aging and Kalman filtering, significantly improved real-time
AQ forecasts are possible even in complex coastal mountain
setting as in the LFV. There are no intrinsic limitations to
these methods that would prevent their application in real
time to other pollutants in other geographic settings.
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Figure 19. Taylor diagram for Hope (similar to Figure 15).
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