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[1] The nonlinear principal component analysis, a neural network technique, is applied
to the observed upper ocean heat content anomalies (HCA) in the Pacific basin from
1961 to 2000. By applying the analysis to high-passed and low-passed data,
nonlinear interannual and decadal modes are extracted separately. The first nonlinear
interannual mode is mainly characterized by the El Niño-Southern Oscillation (ENSO)
structure in the tropical Pacific, with considerable asymmetry between warm El Niño and
cool La Niña episodes; for example, during strong El Niño, the negative HCA in the
western tropical Pacific is much stronger than the corresponding positive HCA during
strong La Niña. The first nonlinear decadal mode goes through several notable phases. Two
of the phases are related to decadal changes in the La Niña and El Niño characteristics,
revealing that the decadal changes for La Niña episodes are much weaker than the changes
for El Niño episodes. Other phases of the decadal mode show a possible anomaly link
from the middle latitudes to the western tropical Pacific via the subtropical gyre. The
decadal changes in the HCA around 1980 and around 1990 were compared and
contrasted. INDEX TERMS: 3339 Meteorology and Atmospheric Dynamics: Ocean/atmosphere

interactions (0312, 4504); 4215 Oceanography: General: Climate and interannual variability (3309); 4522

Oceanography: Physical: El Niño; 1620 Global Change: Climate dynamics (3309); KEYWORDS: nonlinear

principal component analysis, heat content, El Niño
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1. Introduction

[2] Among the low-frequency variability of the thermal
fields in the Pacific Ocean, interannual variability and
decadal variability are the two most interesting [e.g., Wal-
lace et al., 1998; Trenberth and Hurrell, 1994]. While these
two well-defined variabilities reside in the whole Pacific
basin within at least the upper 400-m ocean, they also show
strong regional features. The interannual variability, domi-
nated by the El Niño-Southern Oscillation (ENSO) phe-
nomenon, is centered in the equatorial Pacific, whereas the
decadal variability is most strongly manifested in the mid-
latitude North Pacific, as characterized by an elliptical
anomaly located in the subtropic gyre [Zhang et al.,
1999]. Understanding and interpreting the interannual and
decadal variabilities have long been of interest [e.g., Klee-
man et al., 1996, 1999], not only for their major impacts on
the regional and global climates and ecologies, but also for
assessing possibly forced climate variability, such as anthro-
pogenic global warming [Latif et al., 1997].

[3] An important aspect of studying the low-frequency
variability in the Pacific Ocean is to characterize the major
spatial and temporal characteristics in a low-dimensional
space. Until very recently, this has been implemented by
principal component analysis (PCA, also called EOF anal-
ysis), and by related techniques, for example, singular
spectrum analysis (SSA, also called extended EOF analy-
sis), and principal oscillation pattern (POP) analysis, with
either observed data [Zhang et al., 1999] or modeled data
[Miller et al., 1998]. The interannual and decadal modes are
described by the first few leading eigenvectors, giving the
spatial patterns, and by the corresponding time series. To
focus on a specific timescale, the data are usually filtered
prior to applying PCA. For instance, for detecting decadal
variability, we used a filter which removes signals with
periods under 5 years, while for studying interannual
variability, we filtered out periods above 5 years. The
leading interannual and decadal PCA modes (Figures 1a
and 1b) characterize the spatial anomaly patterns at different
frequency oscillations (Figure 2a and 2b).
[4] In this paper, a nonlinear algorithm to extract low-

dimensional structure from multivariate data sets, i.e.,
nonlinear principal component analysis (NLPCA), is
applied to the oceanic heat content anomalies in the upper
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400 m (HCA) over the Pacific basin to detect nonlinear
modes of decadal-scale and interannual variability. There is
no a priori reason to believe that the thermal structures in
Pacific Ocean are linear. As the data contain nonlinear
lower-dimensional structure, the PCA will miss the non-
linearity. Compared with the sea surface temperature, the
upper ocean heat content is better for describing and
understanding interannual and decadal variability [Zhang
et al., 1999], as it reflects the thermocline displacement and
contains the ocean’s ‘‘memory.’’ NLPCA was developed
originally by Kramer [1991] in the chemical engineering
literature, was applied to the Lorenz three-component
chaos system by Monahan [2000], and to several meteoro-
logical and oceanographic data sets [Monahan, 2001;
Monahan et al., 2001; Hsieh, 2001; Hamilton and Hsieh,
2002].
[5] This paper is structured as follows: Section 2 briefly

describes the methodology and the data. Section 3 presents
the nonlinear interannual mode, section 4 presents the
nonlinear decadal mode, section 5 presents the decadal
changes in the 1980s and the 1990s, and Section 6 is the
summary and conclusion.

2. Method and Data

2.1. NLCPA

[6] If the data are in the form x(t) = [x1,. . ., xl], where
each variable xi, (i = 1,. . .,l ), is a time series containing n
observations, the PCA method looks for u, a linear combi-
nation of the xi, and an associated vector a, with

u tð Þ ¼ a � x tð Þ; ð1Þ

so that

hkx tð Þ � au tð Þk2i is minimized; ð2Þ

where h...i denotes a sample or time mean. Here u, called
the first principal component (PC), is a time series, while a,
the first eigenvector of the data covariance matrix (also
called an empirical orthogonal function, EOF), often
describes a spatial pattern.
[7] The fundamental difference between NLPCA and

PCA is that NLPCA allows a nonlinear mapping from x

to u whereas PCA only allows a linear mapping. To perform
NLPCA, a nonlinear mapping is made; that is,

u tð Þ ¼ f x tð Þ;wð Þ; ð3Þ

where f denotes the nonlinear mapping function from the
data space to the u (the nonlinear PC) space, and w denotes
the parameters determining the f structure inherent to the
data set. Denoting g as the inverse mapping function from u
to the data space, we have

x0 tð Þ ¼ g u; ~wð Þ; ð4Þ

where g is the f-adjoint operator. For linear PCA, g is simply
the transpose of f. Here x0(t) is the approximation to data set
x(t), when the 1-D PC space is used to describe the data set.

Figure 1. EOF1 of the HCA data for (a) the high-passed data (i.e., with the 61-month running mean
subtracted from the original data) and (b) the low-passed data (i.e., the 61-month running mean). The
value in percentage is the explained variance by each mode. Contour interval is 0.2�C, with dashed
contours for negative anomalies.

Figure 2. First mode PC associated with the EOF spatial
patterns in Figure 1. For better legibility, the PCs for
different data sets have been shifted vertically by 0.25. The
tick marks along the abscissa indicate the start of the year.
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As in linear PCA, the cost function defined by the error
between x(t) and x0(t) is used to determine the parameters w
and ~w; that is,

hkx tð Þ � x0 tð Þk2i is minimized: ð5Þ

[8] An important issue in NLPCA is how to derive the
nonlinear operators f and g from the inherent structure of the

data set. This has been implemented by neural networks
(NN) [Kramer, 1991], since NN can simulate any nonlinear
continuous functions [Cybenko, 1989]. Figure 3a shows the
architecture of the NLPCA, which is capable of extracting a
1-D open curve approximation to the data. However, this
algorithm cannot be used to extract closed curve solutions, as
the bottleneck neuron u is not an angular variable. Kirby and
Miranda [1996] introduced a circular node or neuron, and
showed that the NLPCA with a circular node (henceforth
abbreviated as NLPCA.cir) at the bottleneck is capable of
extracting closed curve solutions. The algorithm of the
NLPCA.cir is identical to the architecture of the NLPCA of
Kramer, except at the bottleneck layer, where instead of a
single neuron u, there are now two neurons p and q, con-
strained to lie on a unit circle in the p-q plane (Figure 3b), so
there is only 1 angular degree of freedom (q) to present the
nonlinear PC (NLPC). In this paper, both NLPCA and
NLPCA.cir algorithms are used. When we discuss the
decadal mode, we use NLPCA.cir, since the analyzed data,
obtained by smoothing the original data set with a low-pass
filter, are well characterized by closed curve solutions.
[9] In contrast to PCA, as the mapping function g from the

PC space to the data space is nonlinear, there is not a single
spatial pattern associated with an NLPCAmode. The approx-
imation x0(t), however, corresponds to a sequence of different
patterns that can be visualized cinematographically. For
linear PCA, the approximation au (equation (2)) produces a
standing wave pattern as the PC varies, whereas with NLPCA
the spatial pattern generally changes as the NLPC varies. We
will use the x0(t) corresponding to a few u (q) values to
explore the changing spatial structures of the NLPCAmodes.
[10] An important aspect of the NLPCA is the size of the

network, i.e., the number of hidden neurons m in the
encoding (and also in the decoding layer) for representing
the nonlinear functions f and g. A larger m increases the
nonlinear modeling capability of the network, but could also
lead to overfitted solutions (i.e., wiggly solutions which fit
to the noise in the data). Based on a general principle of
parsimony, the m values were varied from 2 to 4 and the
weight penalty parameters [Hsieh, 2001] were varied from
0.01 to 0.05 for smoothing. For a given m, an ensemble of
30 NNs with random initial weights and bias parameters
was run. Also, 20% of the data was randomly selected as
test data and withheld from the training of the NNs. Runs
where the mean square error (MSE) was larger for the test
data set than for the training data set were rejected to avoid
overfitted solutions. The NN with the smallest MSE was
selected as the solution for the given m. The solutions from
different m were further compared with respect to their MSE
to get the optimal NN structure.

2.2. Data

[11] The data used are the monthly 400-m depth-averaged
heat content anomalies (HCA) during 1961–2000, from the
data set of subsurface temperature and heat content pro-
vided by the Joint Environmental Data Analysis Center at
the Scripps Institution of Oceanography. This data set
consists of all available XBT, CTD, MBT and hydrographic
observations, optimally interpolated by White [1995] to a
three-dimensional grid of 2� latitude by 5� longitude, and 11
standard depth levels between the surface and 400 m. This
data set has recently been successfully assimilated into a

Figure 3. (a) A schematic diagram of the NN model for
calculating nonlinear PCA (NLPCA). There are three
‘‘hidden’’ layers of variables or ‘‘neurons’’ (denoted by
circles) sandwiched between the input layer x on the left and
the output layer x0 on the right. Next to the input layer is the
encoding layer, followed by the ‘‘bottleneck’’ layer (with
one neuron u), which is then followed by the decoding
layer. A nonlinear function maps from the higher dimension
input space to the lower dimension bottleneck space,
followed by an inverse transform mapping from the
bottleneck space back to the original space represented by
the outputs, which are to be as close to the inputs as possible
by minimizing the cost function J = hkx�x0k2i. Data
compression is achieved by the bottleneck, with the
bottleneck neuron giving u, the nonlinear principal
component (NLPC). (b) A schematic diagram of the NN
model for calculating the NLPCAwith a circular node at the
bottleneck (NLPCA.cir). Instead of having one bottleneck
neuron u, there are now two neurons p and q constrained to
lie on a unit circle in the p-q plane, so there is only one free
angular variable q, the NLPC. This network is suited for
extracting a closed curve solution.
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hybrid coupled model for ENSO prediction [Tang and
Hsieh, 2003], and used in the study of decadal oscillations
[e.g., Miller et al., 1997, 1998; Schneider et al., 1999].
[12] To study the decadal mode, the data were first

smoothed by a 61-month running mean (referred to as the
low-passed data hereinafter). The residual field between the
original data and the low-passed data (referred to as the high-
passed data) will be used to extract the interannual mode. To
reduce the large number of spatial variables, the HCA data
were preprocessed by retaining only the first six EOF modes,
which account for 41% and 93% of the variance for the high-
passed data and low-passed data, respectively.

3. Interannual Mode

[13] The six leading PCs from the high-passed HCA are
input to the NLPCA network to extract the NLPCA mode 1
(NLPCA1). Figure 4 shows the projection of the NLPCA1
solution in the PC1-PC2-PC3 space. The NLPCA1 accounts
for 26% of the total variance versus 22% by the PCA mode
1. The trajectory of the NLPCA1 describes a curve in the
PC space, indicating nonlinearity as compared to the PCA
(straight line). The NLPC, u, time series is shown in Figure
5a, well characterized by irregular oscillations at 2- to
5-year timescale, while Figure 5b is the frequency distribu-
tion curve (FDC) for u. We next examine the spatial
anomaly patterns associated with some specific u values,

namely those marked in Figure 5b. The neural network
maps from u to the output PCs (x0), which when individu-
ally multiplied to the associated EOF spatial pattern, and
summed over the six modes, yield the spatial anomaly
pattern of the NLPCA1 for the given u. As shown in Figure
6, the spatial structures of this nonlinear interannual mode
are mainly characterized by ENSO features in the tropical
Pacific, i.e., a seesaw oscillation along the equator. The
most probable spatial pattern, corresponding to C in Figure
5b, describes a neutral state, i.e., negligible anomalies in the
tropical Pacific (not shown). Patterns A and B depict
extreme and typical La Niña episodes, respectively, while
D and E represent typical and extreme El Niño, respectively
(Figure 6). In the middle latitude, the interannual variability

Figure 4. The first NLPCA mode for the high-pass filtered HCA plotted as (overlapping) squares in the
PC1-PC2-PC3 3-D space. The linear (PCA) mode is shown as a dashed line. The NLPCA mode and the
PCA mode are also projected onto the PC1-PC2 plane, the PC1-PC3 plane, and the PC2-PC3 plane, where
the projected NLPCA is indicated by (overlapping) circles, the PCA is indicated by thin solid lines, and
the projected data points are indicated by dots. One end of the NLPCA curve with maximum PC1 value is
associated with the minimum value of the NLPC u and an extreme La Niña situation, while the opposite
end of the curve corresponds to maximum u and extreme El Niño. The plotted PCs have been scaled up
by a factor of 10.

Figure 5. (a) NLPC1, u, and (b) the frequency distribution
curve (FDC) for the NLPC1. The data have been high-
passed prior to the NLPCA.
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is weak, particularly during the cool episodes of ENSO, in
contrast to the interannual variability in the sea surface
temperature (SST), where there are significant anomalies in
the midlatitudes [Giese and Carton, 1999].
[14] Asymmetries between El Niño and La Niña spatial

anomaly patterns, which are absent in the linear mode, are
readily manifested in NLPCA1 (Figure 6). One notices much
stronger anomalies occurring in the western tropical Pacific
during extreme El Niño ( pattern E) than during extreme La
Niña ( pattern A), even though in the eastern tropical Pacific,
the anomalies are of similar magnitude. Furthermore, north
of 30�N, the anomalies are considerably stronger during El
Niño than during La Niña (from comparing the amount of
shaded area in pattern D with that in B, and between E and
A). A useful way to characterize the asymmetry between El
Niño and La Niña is by the spatial correlation coefficient.
Between pattern A and E, the correlation is�0.75, departing
considerably from the correlation of �1 for the linear PCA
mode. Another interesting nonlinear behavior is seen
between typical El Niño ( pattern D) and extreme El Niño
( pattern E); as one proceeds from D to E, the cool anomalies
in the western equatorial Pacific intensifies as expected, but
the warm anomalies in the eastern equatorial Pacific weak-
ens; that is, E is obtained from D by adding cool HCA in
both the western and eastern equatorial Pacific.
[15] We can compare our NLPCA results with the con-

ventional composite method. Composites of HCA for 5
typical La Niña years (1971/1972, 1975/1976, 1984/1985,
1988/1989, 1995/1996) and 5 typical El Niño years (1972/
1973, 1982/1983, 1986/1987, 1991/1992, 1997/1998) are
shown in Figure 7, where the warm episodes have stronger
heat content anomalies in the equatorial Pacific, especially

in the western equatorial Pacific, than the cool episodes, in
agreement with our NLPCA results. Of course, the averag-
ing process in the composite method does not allow a
distinction between typical and extreme El Niño conditions
as in the NLPCA results. Also with the composite approach,
one has to somewhat subjectively decide which ENSO
episodes to include in the composite.
[16] One reviewer cautioned that the data had unrealisti-

cally small amplitudes in the southwestern tropical Pacific
before the early 1980s [Lysne and Deser, 2002], compared
to other data sources, and could affect our NLPCA calcu-
lations. Fortunately, the extreme u values were attained after
the earlier defective period, as seen in Figure 5a. We also
recomputed the NLPCA excluding the earlier defective
period, and the new extreme patterns A and E (not shown)
are not very different from those in Figure 6.
[17] Figure 8 is the Hovmöller diagrams showing the time

evolution of the HCA along the equator from the NLPCA1,
the linear PCA mode 1 and the leading six linear PCA
modes. As in Figure 8a, the NLPCA1 rather well reflects
observed features such as the eastward propagation of HCA,
the oscillatory periods of 2–5 years, and the asymmetry of
anomalies between El Niño and La Niña episodes. These
features are absent or not obvious in the PCA mode 1
(Figure 8b), indicating that the NLPCA1 approximates the
data set better than the PCA mode 1.

4. Decadal Mode

[18] The first nonlinear decadal mode for the low-passed
HCA data extracted from the NLPCA.cir network (Figure
3b) [Hsieh, 2001] is shown in the PC space (Figure 9). This

Figure 6. Spatial anomaly patterns associated with the NLPC at A, B, D and E in Figure 5b. The
contour interval is 0.4�C, and areas with absolute values over 0.2�C are shaded.
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mode explains 72% of the HCA variance, versus only 38%
by the first PCA mode. The NLPC q in Figure 10a shows
that the decadal variations are characterized by two jumps
in q. The first jump, occurring in the early 1980s as detected

also by linear PCA [Zhang et al., 1999], is closely asso-
ciated with the large-scale climate regime shift in the
Pacific Ocean around 1976. While the value at the time-
point t in the low-passed data is actually averaged from the

Figure 7. Composite of the HCA for several La Niña and El Niño years (see text), averaged over the
extreme month of each episode. The contour interval is 0.4�C, and areas with absolute values over 0.2�C
are shaded.

Figure 8. Time-longitude plot of the reconstructed heat content anomalies along the equator. The
reconstructed HCA is from (a) the first NLPCA mode, (b) the first PCA mode, and (c) the first six PCA
modes. The contour interval is 0.6�C, and areas with absolute values over 0.2�C are shaded.
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original data over 61 months, thereby precluding fine
temporal resolution, it nevertheless seems that the HCA
(which involves subsurface temperature changes to 400 m
depth) lags the sea surface condition changes around 1976,
suggesting that it may take a few years for the surface
regime shift to penetrate into the subsurface waters. The
second jump in the early 1990s (Figure 10a) is mainly
caused by q jumping from �p to p, rather than by a
physical regime shift like the first one. However, a clear
contrast between the 1980s and the 1990s has been found in
many observations such as sea level pressure, SST, low-
level zonal wind, and subsurface ocean heat content anoma-
lies in the Pacific [Kleeman et al., 1996; Latif et al., 1997;
Ji et al., 1996].

[19] Decadal dependence of ENSO predictability has
been found in many ENSO forecast models. While all
models tended to have very good forecast skills in the
1980s, they suffered low skills in the 1990s, even with an
improved initialization strategy [Chen et al., 1997]. It has
been suggested that the decadal dependence of predictabil-
ity may be due to the decadal changes in the mean state
leading to the decadal variability of ENSO [e.g., Wang,
1995; Zhang et al., 1997]. Several possible mechanisms for
changing the mean state have been suggested by some
recent work, including the remote response in the tropical
atmosphere to the midlatitude decadal oscillations, anthro-
pogenic global warming, and the interaction between trop-
ical and extratropical oceans by subduction processes
[Kleeman and Power, 1999].
[20] The frequency distribution of the decadal mode

(Figure 10b) presents a completely different shape than that
of the interannual mode shown in Figure 5b. The FDC of
the interannual mode is roughly Gaussian, whereas that of
the decadal mode shows several spikes distributed over the
full range of phase angles. As we lack sufficient samples to
compute the FDC of the decadal mode, the relative short
data record leads to the spiky frequency distribution. As
such, the spatial patterns associated with these spikes may
not be particularly meaningful. Instead, we examine the
spatial patterns associated with four phases of the decadal
mode, namely those corresponding to maximum p, max-
imum q, minimum p, and minimum q (Figure 3b), with their
locations in the PC space shown in Figure 9.
[21] The spatial anomalies of the NLPCA1 mode corre-

sponding to these four phases are shown in Figure 11, where
Figures 11b and 11d are roughly the negative version of each
other. Their basic pattern, similar to the linear PCA mode 1
(Figure 1b), is characterized by an anomaly in the midlati-
tudes about 40�N and one of the same sign in the western
tropical Pacific, and by a weak anomaly of the opposite sign
in the eastern Pacific. The anomaly in the midlatitudes
appears to connect to the anomaly in the western tropical
Pacific by a clockwise circulation. Hence this ‘‘subtropical
gyre’’ pattern depicts a possible link of the decadal oscil-
lation from the middle latitudes to the tropical Pacific. Such a
pathway of decadal signals from midlatitudes to the tropics
has also been proposed by other researchers through data

Figure 9. The first NLPCA.cir mode for low-passed HCA
data plotted as (overlapping) asterisks in the PC1-PC2-PC3

3-D space. The linear (PCA) mode is shown as a dashed
line, and the data points are shown as dots. The circle
denotes the point corresponding to min(q), the diamond
corresponds to max( p), the pentagram corresponds to
max(q), and the hexagram corresponds to min( p). The
plotted PCs have been scaled up by a factor of 10.

Figure 10. (a) NLPC1, q, and (b) NLPC1 FDC. The data have been smoothed by a 61-month running
mean prior to performing NLPCA.cir. Note that q is periodically bounded within (�p, p).

TANG AND HSIEH: NONLINEAR MODES IN SUBSURFACE PACIFIC OCEAN 29 - 7



analysis and modeling [e.g., Kleeman et al., 1999; Deser et
al., 1999].
[22] In contrast to Figures 11b and 11d, the other pair of

patterns in Figures 11a and 11c do not resemble each other
strongly. The pattern in Figure 11c is characterized by an El
Niño-like dipole structure along the equator, with positive
anomalies in the east and negative anomalies in the west,
suggesting that the pattern depicts the decadal variability of
the ENSO mode. Our interpretation is that when the pattern
in Figure 11c is on, warm phases of ENSO are reinforced,
while cold phases are weakened. The prevalence of warm
ENSO conditions in the period from 1991 to 1995 offers
one example for this type of interaction between interannual
and interdecadal variations. There are also notable midlati-
tude anomalies in this decadal phase (Figure 11c).
[23] The phase in Figure 11a reveals rather weak anoma-

lies, though in the tropics, the anomalies are La Niña-like.
The phase would enhance cool episodes and weaken warm
episodes. But the fact that the phase in Figure 11a is much
weaker than that in Figure 11c implies that the decadal
variability for La Niña episodes is much less dramatic than
for El Niño episodes.
[24] This finding is consistent with the study by A. Wu

and W. W. Hsieh (Nonlinear interdecadal changes of the El
Nino-Southern Oscillation, submitted to Climate Dynamics,
2002) using nonlinear canonical correlation analysis
(NLCCA) of wind stress and SST to examine the mid-
1970s climate regime shift. During 1981–1999, the location
of the equatorial easterly anomalies during cool phases of
ENSO was found to be unchanged from that observed in the
1961–1975 period, but during warm phases of ENSO, the
westerly anomalies were shifted eastward by up to 25�.

From the position of the wind anomalies, the delayed
oscillator theory would lengthen the duration of the warm
episodes, but leave the cool episodes unchanged. Hence the
NLCCA study also found much larger decadal changes in
El Niño episodes than in La Niña episodes.
[25] To further explore the spatial structure of the

NLPCA1 in the time domain, we plot the Hovmöller
diagrams for the reconstructed anomalies from the NLPCA1
along 40�N and along 10�S, the regions of the strongest
decadal variability (Figures 12 and 13). For comparison, the
reconstructed anomalies from the linear PCA mode 1 are
also given.
[26] As shown in Figures 12a and 13a, decadal changes

can be clearly seen in the NLPCA1. Along 40�N (Figures
12a and 12c), the Pacific basin exhibited a positive anomaly
during the middle 1960s to 1981 with a magnitude of
+0.6�C–+1.0�C around 1973–1974 centered in the Kur-
oshio-extension region. The whole Pacific basin shifted to a
large negative anomaly by 1981, which persisted about 10
years until 1990, when a new positive anomaly with a
magnitude of +0.4�C–+0.6�C emerged (Figure 12c). This
positive anomaly, which is not as wide as the earlier one in
the 1960s to 1970s, has its center shifted 10–15� toward the
east compared with the earlier one. Clearly the NLPCA1
(Figure 12a) models the regime shifts in Figure 12c much
better than the PCA1 (Figure 12b), which missed the regime
shift of the 1990s completely.
[27] Along 10�S (Figures 13a and 13c), from the mid-

1960s to the late 1970s, a strong positive anomaly in the
western Pacific coincided with a weak negative anomaly in
the eastern Pacific. Around early 1981, almost the whole
Pacific along 10�S shifted to a negative anomaly. This

Figure 11. Spatial patterns corresponding to the four phases labeled in Figure 9 for the NLPCA mode 1.
The contour interval is 0.1�C, and areas with absolute values over 0.1�C are shaded.
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negative anomaly persisted around 10 years in the eastern
Pacific until about 1990, when the eastern Pacific shifted to
a positive anomaly. In the western Pacific, the negative
anomaly persisted until the late 1990s.

5. The 1980s and 1990s Decadal-Scale Changes

[28] Over the last two decades, the upper ocean heat
content experienced two prominent changes, resulting in
generally warm conditions in the 1970s, cool conditions in
the 1980s and mixed conditions in the 1990s, as seen in last
section and in other works [e.g., Lysne and Deser, 2002].
The large-scale changes in the upper ocean thermal field
around 1980 and 1990 can be seen as phase transitions of
the decadal mode. Figures 14a and 14b show the differences
in the average HCA between the 1970s and 1980s, and
between the 1990s and 1980s, respectively. The spatial
pattern in Figure 14a strongly resembles one of the phases
of the decadal mode (Figure 11d), with a spatial correlation
of 0.96, while the pattern in Figure 14b moderately resem-
bles Figure 11c, with a correlation of 0.72.
[29] There are several hypotheses to explain the mecha-

nism of the decadal changes in the upper thermal field in the

Pacific Ocean. The most popular one is the decadal changes
in the wind stress curl affecting the gyre-scale patterns of
the ocean circulation via the Sverdrup balance [Deser et al.,
1999; Lysne and Deser, 2002]. The decadal signals in the
wind stress curl are first forced into the surface ocean by
Ekman pumping, and then transported to the thermocline by
Rossby wave adjustment with the time of about 2–5 years
[Deser et al., 1999].
[30] The occurrence of the decadal changes in SST

(Figure 15) could be almost simultaneous to the changes
in the wind around 1976 and 1988. That the decadal change
in the HCA occurred 2–5 years after the wind change is
probably due to the adjustment time scale of the subsurface
ocean to surface changes.
[31] As the 1980s decadal changes in the HCA lagged the

surface changes by a longer time compared to the 1990s
decadal change in the HCA, this suggests that the adjust-
ment timescale of the subsurface to surface changes is
considerably longer in the 1980 change than in the 1990
change. Possibly the physical processes involved in the two
decadal changes were not completely the same. For exam-
ple, for the 1990 decadal change, the main anomalies in the
subsurface (Figure 14b) and the surface (Figure 15b)

Figure 12. Time-longitude plot of the reconstructed heat content anomalies along 40�N. The
reconstructed HCA is based on (a) the first NLPCA mode, (b) the first PCA mode, and (c) the first six
PCA modes (with 93% of the variance of the HCA). The contour interval is 0.2�C, and areas with
absolute values over 0.1�C are shaded.
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occurred roughly in the same or neighboring regions,
suggesting that the adjustment processes of the subsurface
involved considerable vertical mixing and advection. But
for the 1980 decadal change, the main anomalous change in
the western equatorial subsurface ocean (Figure 14a) is very

different from changes in the surface (Figure 15a or 15c),
suggesting that the subsurface adjustment involved consid-
erable horizontal transmission of the surface signal. Adjust-
ment in the horizontal direction could involve the Rossby
wave adjustment timescale, resulting in the longer response

Figure 13. As for Figure 12, but along 10�S.

Figure 14. Differences in mean upper ocean heat content by (a) subtracting the mean of the 1970s from
the mean of the 1980s and (b) subtracting the mean of the 1980s from the mean of 1990s. The contour
interval is 0.2�C. Shading denotes the regions where the two-tailed t-test for difference in means exceeds
the 95% confidence level.
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time of the subsurface to surface in the 1980 change than in
the 1990 change. In addition, a much slower process of
subduction along the subtropical oceanic gyre may also be
involved in the 1980s subsurface decadal change as sug-
gested by Figure 14a.

6. Summary and Conclusion

[32] We applied the nonlinear principal component anal-
ysis technique to the observed upper ocean heat content
anomalies in the Pacific basin from 1961 to 2000, and
extracted the leading interannual and decadal modes. For
the leading nonlinear interannual mode, the spatial anoma-
lies are strongest in the equatorial Pacific, with an ENSO
east-west seesaw pattern. As the nonlinear mode is not
limited to a standing wave spatial anomaly pattern, it reveals
considerable asymmetry between strong La Niña and strong
El Niño. During strong El Niño, the negative anomaly in the
equatorial western Pacific is much stronger than the positive
anomaly found in this region during strong La Niña. This
nonlinear interannual mode also manifests eastward phase
propagation along the equator (Figure 8), in contrast to the
standing wave found in the linear mode 1.
[33] Four phases of the nonlinear decadal mode were

examined. Two of them are roughly mirror images of each
other, both showing a subtropical gyre pattern with the large
anomaly in the midlatitudes circulating clockwise around
the subtropical gyre towards the western tropical Pacific, a

possible link from the middle latitudes to the tropical Pacific
in the decadal mode. Two other phases of the decadal mode
are related to decadal changes in the La Niña and El Niño
characteristics. Since the one associated with La Niña has
much weaker anomalies than the one associated with El
Niño, it follows that the decadal changes in the character-
istics of La Niña episodes are much weaker than the
changes for El Niño episodes.
[34] Over the last 2 decades, the nonlinear decadal mode

experienced two phase shifts in 1981 and 1990, respectively,
leading to the remarkable decadal changes in the upper
ocean heat content in the 1980s and 1990s. From the
equatorial to midlatitude Pacific, positive HCA during the
mid-1960s to the late 1970s reversed to negative HCA
around 1981. The regime shift around 1990 was also well
represented by the nonlinear decadal mode; the negative
anomalies in the midlatitudes and in the equatorial region in
the 1980s reversed to positive anomalies around 1990 in the
central midlatitude region and in the eastern equatorial
Pacific. Prior to the two decadal changes in HCA, wind
stress (curl) also changed in 1976 and 1988. While the SST
changes were almost simultaneous with the wind changes,
the HCA changes were delayed 2–5 years, corresponding to
the Rossby wave adjustment timescale of the subsurface
waters to surface changes.
[35] The HCA change around 1980 was quite different

from the one around 1990 in that the former occurred after
the wind change with a much longer time delay than the

Figure 15. Differences in mean SST by (a) subtracting the mean of 1967–1976 from the mean of
1977–1986, (b) subtracting the mean of 1979–1988 from the mean of 1989–1997, (c) subtracting the
1970s from the 1980s, and (d) subtracting the 1980s from the 1990s. The years of surface wind changes
were around 1976 and 1988, while the HCA changes were around 1980 and 1990; hence Figures 15c and
15d are provided to temporally match Figure 14. The contour interval is 0.2�C. Shading denotes the
regions where the two-tailed t-test for difference in means exceeds 95% confidence.
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latter. The former (Figure 14a) showed the anomaly link
from the midlatitudes to the western tropical Pacific via the
subtropical gyre, while the latter (Figure 14b) did not. The
former was also more different from the corresponding SST
anomalies (Figure 15a) than the latter was from SST (Figure
15b), suggesting that the signals involved more horizontal
transmission in the former than in the latter, where the
surface signals appeared to be transmitted more vertically to
the subsurface. The leading linear PCA mode was able to
detect the former change but not the latter, which was
clearly detected by the leading nonlinear PCA mode.
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