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The equatorial Kelvin wave in finite difference models 
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Department of Oceanography, University of British Columbia, Vancouver, Canada 

Abstract. Coarse resolution ocean models tend to poorly resolve many smaller-scale 
phenomena, including the equatorial currents narrowly confined around the equator. We study the 
free equatorial Kelvin wave in inviscid finite difference models using the Amkawa A, B, C, and 
E grids. Exact analytic solutions with meridional velocity v = 0 are found on the A, C, and E 
grids. As the assumption v = 0 is not valid on the B grid, the solution is obtained numerically 
by a "shooting" method. In all cases, the wave remains nondispersive, and the phase speed is 
unchanged from that in the continuum except in the B grid, where it decreases with worsening 
resolution. The mean zonal heat transport by the Kelvin wave during an El Nifio is compared on 
the various grids. In terms of the currents and sea level displacements, the B grid best models the 
equatorial Kelvin wave under coarse resolution, though in terms of zonal heat transport and 
phase velocity, the C grid appears superior. The A and E grids appear to have the most trouble. 
Our theoretical predictions are checked experimentally by generating equatorial Kelvin waves in 
linear shallow-water equation models on the various grids. Additional effects of Rayleigh 
damping and Newtonian cooling are studied in the appendix. 

1. Introduction 

Distortions by finite difference effects are significant in 
coarse resolution ocean models, where the grid spacing is 
usually insufficient for properly resolving the internal 
Rossby radius. Nevertheless, there have only been a few 
studies of f'mite difference effects in ocean models: Arakawa 

and Lamb [1977] and Batteen and Han [1981] examined f'mite 
difference effects on Poincar6 waves, Henry [1981] and Hsieh 
et al. [1983] on coastal Kelvin waves, Wajsowicz [1986] on 
Rossby waves, Foreman [1987] on continental shelf waves, 
and O'Brien and Parham [ 1992] on equatorial Kelvin waves. 

Global ocean climate models and coupled climate models 
tend to use grid spacings of the order of the internal equatorial 
Rossby radius (about 290 kin), which is inadequate for 
resolving in the meridional direction the equatorial Kelvin 
wave and the equatorial undercurrent, as both are trapped 
mainly within one Rossby radius of the equator. The zonal 
grid spacing, on the other hand, has a negligible effect, as the 
wavelength in the zonal direction is generally much larger 
than the Rossby radius. Henceforth we limit our study to only 
finite difference effects in the meridional direction. Since the 

equatorial Kelvin wave has a central role in determining the 
equatorial climatology as well as the El Nifio-Southern 
Oscillation in climate models, the study of finite difference 
effects on the Kelvin wave is crucial to understanding biases 
in our climate models. 

In finite difference ocean models, there are several possible 
arrangements of the model variables in the horizontal plane 
(Figure 1). Except for the rarely used Arakawa A grid, the grids 
in Figure 1 are staggered, in that the variables are not all 
located at the same site. The Geophysical Fluid Dynamics 
Laboratory (GFDL) modular ocean model and its predecessors 
[e.g., Bryan and Cox, 1967] and the Oberhuber [1990] model 
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used the B grid; Bleck and Boudra [1981], Blumberg and 
Melior [1983], Dietrich et al. [1987], and Haidvogel et al. 
[1991] used the C grid; while Maier-Reimer and Hasselmann 
[1987] used the E grid. The only previous study on finite 
difference effects on the equatorial Kelvin wave is a note by 
O'Brien and Parham [1992], examining a particular case of 
the C grid. 

Our objective is to provide a comprehensive treatment of 
the finite difference effects on the equatorial Kelvin wave over 
the various grids. We present exact analytical solutions of the 
free equatorial Kelvin wave in the A, C, and E grids, and 
examine how resolution affects the wave structure and the 

zonal heat transport. As the B grid does not lend itself to 
exact analytical treatment, a numerical treatment is used for 
the B grid. Comparisons are made between the various grids to 
determine which grid models a particular aspect of the 
equatorial Kelvin wave best. 

The outline of this paper is as follows: After laying down 
the governing equations in section 2, we explore equatorial 
Kelvin waves on the C grid in section 3, the E and A grids in 
section 4, and the B grid in section 5. Zonal heat transports 
on the various grids are compared in section 6. Our theoretical 
predictions are tested experimentally in section 7 by 
generating equatorial Kelvin waves in shallow-water equation 
models. Kelvin waves under Raleigh damping and Newtonian 
cooling in finite difference models are studied in the 
appendix. 

2. Governing Equations 

The unforced linearized shallow water equations on the 
equatorial fl plane are 

u t - •yv = -g'lix - eu, 

v t + •Yu = -g'liy - •v, (1) 
lit + H( ux + Vy ) = - •rll , 

where u and v are the eastward and northward velocity 
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Figure 1. Orientation of the model variables in the Arakawa A, B, C, and E grids, where u, v represent the 
eastward and northwar•d•yelocity components, and t/ the vertical displacement or the pressure fluctuation. 
Tracers such as temperature or salinity are also located at the t/ sites. (The ill-behaved D grid resembles the C 
grid, but with the u and v points interchanged). The meridional grid spacing A is nondimensionalized by the 
Rossby radius. The zonal grid spacing is irrelevant, as we will make the assumption that the zonal wavelength 
is well resolved by the zonal grid spacing, thus ignoring the finite difference effects in the zonal directionø 

components, q the vertical displacement, fl the northward 
derivative of the Coriolis parameter at the equator, g' the 
reduced gravity, H the equivalent depth, and • and y the 
coefficients for mixing of momentum and heat respectively. 
Equation (1) can represent either one of the internal modes in 
a continuously stratified fluid (McCreary, 1981], or the 
internal mode in a two-layer fluid (Gill, 1982], where q 
becomes the interface displacement. Arakawa and Lamb 
[1977] showed how the shallow water equations are computed 
on the various finite difference grids. 

Restricting to zonal flows, we set v = 0. With the 
horizontal length scale L the equatorial Rossby radius 
•[c'lfi, time scale (c'fi) -1 , and vertical length scale H, 
where c'=•[•'H, we obtain the nondimensionalized 
equations 

u t =-r G-t:u, yu=-rly, t h +% =-•a/, (2) 

where (u, v) is the nondimensionalized velocity transport 
(velocity multiplied by the equivalent depth), and •: and y are 
the nondimensionalized mixing coefficients. 

We begin with the undamped case where the Rayleigh 
friction coefficient E and Newtonian cooling coefficient y are 
zero, so (2) reduces to 

u t=-t/x, yu=-•/•, t h=-u x. (3) 

Assuming a plane wave solution in the zonal direction, the 
dynamic variables take the form of 

[u, t/]: [u(y), tl(y)]exp[i(kx- ax)]. (4) 

Substituting (4) into (3) yields 

r•=cu, yu=-CUy, c=a•lk=+l. (5) 

The equatorially trapped solution, the equatorial Kelvin wave, 
follows from choosing c=l; whence 

u(y)= u o ex•pl-y 2 / 2), (6) 

with u o the wave amplitude at the equfitor. The wave is 
nondispersive and eastward propagating, as the phase speed c 
= 1. Equations (5) and (6) provide the continuum solution, 
against which the finite difference solutions of the following 
sections will be compared. 

3. Equatorial Kelvin Waves on the C Grid 

The finite difference effect on (3) is next investigated by 
looking at two different configurations of the C grid (Figure 
2), where the finite difference effects in the zonal direction 
have been ignored. A possible arrangement of the C grid 
places a u point on the equator (Figure 2a). Substituting (4) 
into the centerMifferenced form of the first and last equations 
in (3) on this C1 grid yields 

(Ouj = kT•j, (01'•j = kuj, (7) 
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Figure 2. Two possible configurations of the C grid about the equator, henceforth referred to as the C 1 and C2 
grids, respectively. 

with j the northward index defined by y = jA (]=0, +1,+2... ). 
The middle equation in (3) can be evaluated in two possible 
ways, depending on how the Coriolis term is approximated: 
case Cla, 

(j- «)A «(u• + u•_• )=-(• - •_• ) / A, (8a) 

and case Clb, 

A «[juj + (j- 1)u j_ 1] = -(hi - n j-i ) / A, (Sb) 

where in case C l a, the Coriolis parameter is estimated at a v 
point, then multiplied by the latitudinal average of two u 
points; whereas in case C lb, the average of the Coriolis term 
yu at two u points is used instead. These two cases correspond 
respectively to the potential-enstrophy-conserving scheme 
and the energy-conserving scheme by Sadourny [1975a, b], 
who found that the potential-enstrophy-conserving scheme 
(i.e., our case C l a) to have superior stability. 

From (7), we have 

•lj = cuj, c = +1, (9) 

where for the eastward propagating Kelvin wave, we choose c 
= 1. Hence, the Kelvin wave phase speed is unaffected by the 
finite difference effects in the C 1 grid. Equations (9) and (Sa) 
yield the recurrence relation 

uj = (10) l + (j- « ) A•/2c J "i-•' 
case Cla, where given, say, the value u0, all other values uj 
are obtained. As in the case of the continuum solution (6), the 
finite difference solution is also symmetric about the equator, 
since u_j = uj. In the Clb case, (9) and (8b) yield 

u i = (•) I+jA2/2c juJ -1' 
which is also symmetric about the equator. 

On the C2 grid (Figure 2b), Equation (7) remains valid but 
Equations (Sa) and (Sb) are changed, yielding, case C2a, 

+ jA2/2c uJ -1' (12) 

and case C2b , 

uj= + (j+ «)A2/2cJ uj-l' (13) 

where the Coriolis terms are again treated in two ways, 
analogous to cases Cla and C 1 b, respectively. Note that the 
phase speed c of the equatorial Kelvin wave in all four C grid 
configurations is independent of the grid spacing A, a result 
analogous to the coastal Kelvin wave on the C grid as found 
by Hsieh et al. [1983]. O'Brien and Parham [1992] examined 
case C2a, and essentially derived (12). 

The meridional structure of u for the four cases at resolution 

A = 1 is shown in Figure 3, where the curves have been 
normalized to all have the same meridionally integrated zonal 
mass transport as in the continuum solution. In Figure 3a, the 
value of u in case Cla is higher than that for the continuum 
solution at the equator, but declines away from the equator at a 
greater rate than the continuum solution, yielding a weak 
reverse flow by 3 Rossby radii from the equator. The solution 
in case C lb is closer to that in the continuum. Similarly, 
Figure 3b shows that the solution in C2b is better than the 
solution in C2a ' Hence for both the C 1 and C 2 
configurations, method b (i.e., latitudinally averaging the 
Coriolis term yu from two u points) yields a more accurate 
equatorial Kelvin wave than method a (i.e., multiplying the 
Coriolis parameter at a v point to the average of two u 
points), despite $adourny's [1975a, b] finding that method a 
offered superior stability. The percentage error of the finite 
difference solutions with respect to the continuum solution at 
A = 1 is shown in Figure 4, where results from other grids 
(discussed in the following sections) are also plotted to allow 
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Figure 3. The zonal transport u as a function of the distance from the equator (nondimensionalized by the 
equatorial Rossby radius) in (a) Cla (solid curve), Clb (sh6rt dash curve) and the continuum (long dash curve), 
and (b) C2a (solid curve), C2b (short dash curve) and the continuum (long dash curve). These curves have all 
been normalized so that the total meridionally integrated u transport (i.e., area under the curve) is the same for 
all the curves. The grid resolution A = 1 (where A is defined as the latitudinal grid spacing divided by the 
Rossby radius). 

4.0 

an intercomparison among the various grids. The changes in 
the zonally averaged rms error of u and h with changes in the 
grid resolution A are shown in Figure 5. 

For large enough j, all four cases, i.e., (10) to (13), yield 
uj •--uj_ 1 , i.e., a grid-scale oscillation always occurs in the 
C grid when far enough away from the equator. How far away 
from the equator when this oscillation occurs is controlled by 

A. For large enough A,-the grid-scale oscillations occur right 
near the equator, analogous to the coastal Kelvin wave 
behavior found by Hsieh et al. [1983]. Fortunately, the 
Rossby radius is so much larger in the equatorial region than 
at midlatitudes that this pathological equatorial Kelvin wave 
is not likely to occur even in coarse resolution climate 
models. 
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Figure 4. The percentage error in the f'mite difference solution of u with respect to the continuum solution for 
cases (a) Cla (circles), Clb (crosses), E 1 (circled crosses), and B 1 (triangles), and (b) for C2a (circles), C2b 
(crosses), and B 2 (circled crosses), with grid resolution A =1. 
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4. Equatorial Kelvin Waves on the E and A 
Grids 

When finite difference effects in the zonal direction are 

ignored, the E and A grids from Figure 1 collapse to the same 
grid shown in Figure 6. A u point is located on the equator in 
the E1 grid, where the finite difference form of (3) is given by 

rouj = k•/j, rm/j =kay, (14) 
(•tj+• - z/j_• ) 

jAuj =- . (15) 2A 

Equation (14) again leads to (9), and the following recursion 
relation is derive: 

uj+ 1 +2JA2uj-uj_i =0, (j=O, +1,+2...). (16) 
c 

In contrast to the first-order linear difference equations 
encountered in the previous section on the C grid, Equation 
(16) is a second-order linear difference equation with a 
nonconstant coefficient, as j is the independent variable. 

A helpful hint in solving (16) is provided by the recurrence 
relation of the modified Bessel functions [Abramowitz and 
$tegun, 1972]: 

Fj+ 1 (z) + 2__j Fi (Z)- Fj_ 1 (z) = 0, (17) 
where the argument Z may be complex. When j is an integer, 

E1 

Uo v o 11 o 

U_l v_• 11_1 

EQUATOR 

E2 

A/2 i I uø vø 

(a) (b) 
Figure 6. Two possible configurations of the E grid (or A grid) about the equator; henceforth referred to as the 
E1 and E 2 grids, respecQvely. 
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the two linearly independent solutions of (17) are the 
modified Bessel function of the first kind, lj, and (-1)JKj, 
with Kj the modified Bessel function of the second kind. 
Hence, Fj denotes /j, (-1)JKj or any linear combination of 
the two. By choosing c= 1 and z= 1/A 2, (16) and (17) are 
identical; hence 

(j=0, +1,+2...), (lS) 

where A and B are arbitrary constants. Note that z is real in 
this case. Figure 7 shows at A =1, the behavior of AIj in 
relation to the continuum solution (6) with both solutions 
normalized to having the same meridionally integrated zonal 

transport. While AIj resembles the continuum solution, 

(-1)JKj displays wildly growing grid-scale oscillations 
away from the equator. Whether this extra oscillator), mode is 
a problem in numerical models is investigated in section 7. 
To obtain a bounded solution, the Kj term is dropped in (18); 
hence 

uj =Atj, (j=0, 

The symmetry of the continuum solution (6) about the equator 
is also observed here as uj-AIj--AI_j--u_j. The 
percentage error of AIj with respect to the continuum 
solution is also shown in Figure 4a, which shows that it is 
generally poorer than the C grid results, except when far away 
from the equator. Similarly, Figure 5 shows the E1 (and A1) 
grids to have larger zonally averaged rms errors in u and h 
than the other grids. To be fair to the E grid, we need to point 
out that the E grid (with spacing A in both dimensions) can be 

regarded as a B grid (with spacing •A ) rotated by 45 ø 
(Figure 1). Hence in Figures 4 and 5, it may be more 
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Figure 7. The zonal transport u as a function of the distance 
from the equator in the E1 grid (solid curve) with the 
continnum solution shown as the dashed curve. The grid 
spacing A = 1. 

appropriate to compare the E grid of resolution D with the B 
and C grids with resolution •f•A. Such a comparison in 
Figure 5 would show the E 1 grid to be competitive with the C 
grids, but still not with the B grids. 

With the E2 (and A2) grids, where the u point no longer 
lies on the equator (Figure 6b), Equation (15) is repla• by 

(j +«)Auj = - ( rlj+l - rlj_l ) 2A 

leading to 

Uj+ 1 +--2c(j+•)A2u j -Uj_ 1 =0, 

(20) 

(j = 0, + 2... ).(2 l) 

The recurrence relation of the modified Bessel functions again 
provides a hint. Consider 

fj+l (Z)+ 2(j+«)fj(z)_fj_i(z)=0, (j=0, ñ1,ñ2...),(22) 
z 

where the argument z may be complex. The two linearly 
independent solutions of (22) again involve the modified 

Bessel functions, though of fractional order, where /j+« and 
/_j_« are linearly independent. The general solution of (21) 

is 

f j = 4•r/(2z) (AIj+« + BI_j_«), (23) 

where A and B are arbitrary constants. The functions 

4•r / (2z) lj+«, %]•r / (2z)/_j_« are known as the modified 
spherical Bessel functions of the first and second kinds, 
respectively. For a solution of (21) symmetric about the 

equator, we choose c = 1, z = 1 / A 2 and A = B; hence 

,j = C( Ij+« +/_j_«), (24) 

where the symmetry about the equator is easily seen from 

u 0 = u_ 1 = C(I« +/_«), u 1 = u_ 2 = C(I• +/_•), etc. Figure 8 
plots the behavior of uj on the E2 grid at A = 0.3, where the 
finite difference solution closely resembles the continuum 
solution near the equator, but develops large unbounded 
oscillations away from the equator. Reducing A does not 
eliminate the unbounded oscillations, but pushes their 
appearance further away from the equator. Increasing A leads 
to these unbounded oscillations moving closer to the equator, 
such that at, for instance, A = 1, the solution is unreasonable 
with oscillations right near the equator. Even though the C 
grid also has grid-scale oscillations (which do not grow 
spatially) for large enough A and far enough away from the 
equator, the situation for the E 2 case is much worse, as the 
oscillations grow rapidly spatially and are much closer to the 
equator for the same A. Thus an equatorially trapped Kelvin 
wave mode is not properly supported in the E 2 grid. For small 
A, the theoretically predicted spatially growing oscillations 
probably occur too far away from the equator to be a real 
problem. Of all the grids, only the E2 and A2 have no grid 
points on the equator at all, so for large enough A, the 
absence of grids at the equator is likely to cause serious 
problems for modeling the equatorial Kelvin wave. This 
strange phenomenon is investigated further in section 7. 
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the breakdown of the v = 0 assumption here. Nonzero v terms 
need to be retained in both the mass and momentum equations, 
since the simple balances of (7) and (14) are no longer 
possible with u and q located at different latitudes. After 
considerable algebra, u and v can be eliminated, resulting in a 
recurrence relation for q on the B 1 grid: 

;/j+l + F;/j + G;/j_ 1 = O, (25a) 

F = {2co2 (mt:2A 2 + 4co- 2kA2 - 2co3A 2 ) 
+ coA2 [j 2 +(j- 1) 2 ](4c02A 2 -k2A 2 -4) 
-4A4j(j - Ilk + coA2j(j - 1)]} 
/{co(k2A 2 - 4)[c02 -(j- 1) 2 A 2 ]} 

G=(co 2 -j2A2 )/[co 2 - (j-1)2A2 ]. (25b) 

The recurrence relation for q is of second order as in the E grid 
case, but the additional v terms render (25) a much more 
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Distance from Equator 
Figure 8. The zonal transport u as a function of the distance 
from the equator in the E2 grid (solid curve) with the 
continuum solution shown as the dashed curve. The grid 
spacing A = 0.3 (which is much smaller than the A = 1 value 
used in Figures 3 and 7). Due to the divergence of the 
meridionally integrated zonal transport, the norm•alization 
used here is as follows: the E2 solution is chosen to have the 
same u value as the continuum at the first point from the 
equator. 

5. Equatorial Kelvin Waves on the B Grid 

In contrast to the A, C, and E grids, the one-dimensional B 
grid (Figure 9) has the variables u and q at different latitudes. 
The finite difference equations are again formulated in two grid 
orientations, B 1 and B2, where a u point lies on the equator in 
B 1, but an q point lies on the equator in B 2. The major 
difference from the previous cases of the A, C, and E grids is 

complicated problem. As we could not find an analytic 
solution for (25), we used a numerical approach based on the 
"shooting" method. 

Given o• and A, we integrate (25a) northward starting from 
a point ;/-N several Rossby radii south of the equator. Since 
the solution Can be linearly scaled, ;/-N can be arbitrarily 
fixed. To integrate (25a) northward, we need to make an initial 
guess of two parameters, the wavenumber k and ;/-•v+l, i.e., 
the ;/ immediately north of ;/-N- Both parameters could be 
complex. Equation (25a) is integrated to the northernmost 
point ;/t•, and a cost function is defined as the sum of ;/2 
over the few northernmost points. Since we are seeking an 
equatorially trapped solution, we minimize the cost function 
by adjusting k and ;/-/½+1. Since v was not eliminated, the 
recurrence relation (25) holds over the entire equatorial wave 
spectrum, which includes Rossby waves and gravity waves. 
Hence, the frequency o) is deliberately set low to avoid 
convergence to the gravity waves. A wave period of 130 days 
is chosen. 

For the B 1 case, we found it necessary to allow the 
wavenumber to be complex. As A becomes small, the ratio of 

B 1 B 2 
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A T[0 A Ul VI 

uo vn EQUATOR qo 
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Figure 9. Two possible configurations of the B grid about the equator, henceforth referred to as the B 1 and B 2 
grids, respectively. 
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Figure 10. The phase speed c as a function of the grid 
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(dashed curve). Observed pltase speed in shallow water 
equation models with the B2 grid (see section 7) are also 
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the imaginary part to the real part of k converges to zero, 
while the real part of k converges to the wavenumber in the 
continuum solution, as expected. The imaginary part of k 
means that the Kelvin wave is zonally damped on the B 1 grid. 
At A=I, the 130-day period Kelvin wave has a zonal e-folding 
damping scale of 4.05x103 (Rossby radii), equivalent to 
about 29 times the Earth's circumference; hence the zonal 

damping is negligibly small. The phase speed c decreases as A 

increases (Figure 10), analogous to the behavior for coastal 
Kelvin waves on the B grid [Hsieh eta/., 1983]. Although the 
phase speed is dependent on A, the wave remains 
nondispersive• (i.e., o• o• k). For the wave structure, the 
latitudinal variation of u transports is compared to that of the 
continuum counterpart (Figure 11a). Even though the 
"shooting" method did not guarantee a zonally symmetric 
solution, the numerical solution did turn out to be symmetric. 
In contrast to the C 1 a and E 1 grid cases, the wave in B 1 is 
seen to be underestimated near the equator (Figure 4a). At 
regions away from the equator, the wave is widened, similar to 
the B grid coastal Kelvin wave [Hsieh eta/., 1983]. For the v 
transport, the ratio of v/u approaches zero as A tends to zero, 
as expected from the continuum theory. In general, v/u is too 
small to be noticeably different from zero. 

For the B2 case, eliminating u and v leads to 

•j+l + Frlj + Grlj-1 = 0 
where 

F= {2m2 (a•2A 2 +4m- 2kA 2 -2m3A 2 ) 

+ wA2 [(j_•)2 + (j+ •)2 ](4w2A2 _k2A2 -4) 
-4a 4 (j-•)(j + •)[k + •a 2 (j-•)(j + •)]} 
/{•(k2a2 _ 4)[•2- (j_ •)2 A21} 

G =[•2 _(j +•)2 a2 ]/[•2 _ (j_ •)2 a2]. 

(26a) 

(26b) 

The properties of the solution of (26) (Figures 9, 10b, 4b, and 
5) are similar to those for the •1 case, except that the 
wavenumber k now turns out to be real, meaning that the 
small zonal damping found in the B 1 grid is not present in the 
B2 grid. The decline in the phase speed with worsening 
resolution is more severe in the B 2 grid than in B1 (Figure 
10). From Figure 5, the B 2 grid outperforms B 1, with the B 
grids generally superior to the A, C, and E grids in modeling u 
and q of the equatorial Kelvin wave. 
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Figure 11. The zonal transport u as a function of the distance from the equator in 'the (a) B 1 grid and (b) B 2 grid, 
with the continnum solution shown as the dashed curve. The grid spacing A = 1. 
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Since (25a) and (26a) are second order difference equations 
like (16), the B grid could also contain an extra spatially 
growing oscillatory mode like that in the E1 grid. 
Unfortunately the cost function in our shooting method would 
only capture the bounded solutions for the B grid. 

6. Zona Heat Transport 

The thermocline in the equatorial Pacific is normally tilted 
in the zonal direction, from about 200 m on the western 
Pacific to about $0 m in the eastern Pacific [Philander, 1990]. 
During an E1 Nifio, an equatorial Kelvin wave traverses 
eastward across the Pacific, transmitting a large heat flux, 
while causing a deepening of the thermocline and an 
anomalous warming of the sea surface temperature in the 
eastern Pacific. An immediate application of the present 
theory is to calculate the zonal heat flux transmitted by the 
equatorial Kelvin wave in the various grids and to compare 
with the corresponding value in the continuum. 

The meridionally and vertically integrated zonal heat 
transport (ZHT, measured in J/s) is defined (in dimensional 
variables) as 

ZHT = pCp I>•' [•DUrdz]dY C27) 
where T is the temperature, P and Cp are the density and 
specific heat of water, respectively, Yl and Y2 are latitudinal 
limits of integration, and D is the ocean depth. For 
simplicity, consider a two-layer model, with subscripts 1 and 
2 denoting the first and second layers. The vertical integral 
term in (27) becomes 

[vøutdz=uiti(Hi-h)+u2t2(H2 +h). (28) 

where both temperature and velocity are constant throughout 
each layer, H i is the equilibrium water depth in layer i, and h is 
the interface elevation. Substituting (28) into (27), 

(29) 

+ T2 H2 I;•2 u2 dy + r2 I;•2 u2 h dy]. 
These dimensional variables are related to the 

nondimensional variables u and •l by 

u! =- H2 c'u, u 2 = H1 c'u, h = H•, (30) 
H+H: 

with H the equivalent depth and c' the wave speed defined as 

H= HH: , 
+ H: 

With • = u in the continuum as well as the A, C, and E grids, 
(29) can be expressed as 

H 2 H 2 

ZHT =pCpLc'{-T1HI 1 + T1 -•I 2 + T2HI 1 + T 2 •2-2 I2},(32) 
where L, the length scale, is the equatorial Rossby radius, and 
the nondimensional integrals are 

ii = j•2 u dy , I 2 = lyY• u2dy. (33) 
Taking u = u(y)cos(kx- oat) and averaging over one wave 

period and one wavelength, we obtain 

(34) 

Mean ZHT is obtained from (32) and (34) where u(y)is 
computed from the continuum solution (6) or from one of the 
C or E grid solutions. The integration in (34) is computed to 
+8 Rossby radii away from the equator. 

For the B grid, since r I ½ u, the integrals I2 in (32) are 
replaced by I3, where 

I3 = ]yY•u•l dy, (I3) = «I•2 u(y)•l(y) dy (35) 
The model parameters used to evaluate the ZHT in (32) are 

g' = 0.02 m s '2, H 1 = 200 m, H 2 = 4000 m, T 1 = 303 ø K, and 
T 2 = 290øK. The pre-E1 Nifio situation in the equatorial 
Pacific has the interface on the western boundary lowered 
(i.e., a trough) and that at the eastern boundary raised (a 
"crest"). During an E1 Nifio, the "trough" propagates from the 
western boundary to the eastern boundary in about 2 months. 
This suggests that the E1 Nifio scenario can be represented in 
our simple two-layer model by an equatorial Kelvin wave with 
a wavelength double that of the zonal basin width and a period 
of about 4 months (we chose 130 days). Figure 12 shows the 
percentage error in the ZHT on the four C grids, the El, the 
B1, and the B 2 grids with respect to the ZHT in the 
continuum. The ZHT on the E2 grid is not considered here as 
this solution was found to be unbounded in the last section. 

Note that the ZHT values in Figure 12 were calculated based on 
the assumption that the meridionally integrated u transports 
in the finite difference models were the same as the transport 
in the continuum solution. Under this normalization 

assumption, Clb, C2b, B1, and B 2 all underestimated the 
ZHT, while C la, C2a ' and E1 overestimated the ZHT relative 
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Figure 12. The percentage error in the mean zonal heat 
transport of the finite differenced equatorial Kelvin wave (with 
respect to that in the continuum) plotted as a function of the 
grid spacing A on the four C grids, the E l, the B 1 and B 2 
grids. The frequency and wavenumber of the Kelvin wave were 
chosen to be representative of the Kelvin wave during a 
typical E1 Nifio. 
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to the continuum solution. In general, the best ZHTs were 
found in C lb, C 2b, followed by B1 and B 2, in decreasing 
order of accuracy. It may seem puzzling why the B grid, which 
models the currents and sea level displacements better than 
the C grid, turns out to be less accurate in the ZHT. This may 
be explained by the fact that for the C grid, u and 11 are located 
at the same latitude, while for the B grid, they are not. Since 
the product u•l is involved in calculating the ZHT, the B grid 
is at a disadvantage when its u and •l points are at different 
latitudes. Again as in Figure 5, the result for E 1 at resolution 
A should probably be compared with the other grids at 
resolution %1• A, which gives E 1 a good accuracy for ZHT. 

7. Numerical Experiments 

To experimentally verify our theoretical predictions of 
finite difference effects, we ran shallow-water equation models 
[Arakawa and Lamb, 1977] on the various grids, with 
absolutely no damping. Centered on the equator, the 
numerical models were 12 Rossby radii wide meridionally, and 
38 Rossby radii wide zonally (corresponding to about 11,000 
km), with solid boundaries all around. The initial condition 
corresponded to having an equatorial Kelvin wave (with half 
wavelength equal to the model zonal width). Zonally, the 
wave had a sinusoial shape with a crest centered in the middle 
of the ocean. Our finite difference theory pwvided the initial 
sea level displacement and currents for this wave. The wave 
was allowed to evolve without external forcing. As the wave 
propogated eastward, we observed the shape and measured the 
propagation speed. 

Our theoretical prediction of decreasing phase speed in the 
B grid with worsening resolution was indeed observed. Figure 
10 shows some experimentally measured phase speeds plotted 
against the theoretical phase speed on the B2 grid. Similarly, 
our predictions that the phase speed should remain unchanged 
in the C grid with worsening resolution was also confirmed, 
with Figure 13 showing some measured phase speeds on the 
C2b grid. 

We also used the continuum solution (Section 2) as the 
initial condition on these grids. However, as the continuum 
solution is not the correct Kelvin wave mode on these grids, 
the initial wave soon began to disperse at a significantly 
faster rate than in the corresponding run which used our 
theoretical finite difference wave solution as the initial 

condition. 

Our predictions for the A or E grids were also tested on 
shallow-water A grid models. As the resolution worsens, the 
observed phase speed on the A 1 grid became greater than our 
predictions (which was a constant independent of the grid 
spacing) (Figure 13). The spatially growing grid-scale 
oscillatory mode permitted under (18) was not observed, 
indicating that the mode was not readily excited. However, our 
runs were only of 1-month duration, which could be too short 
a time to excite such a mode. In practice, numerical models 
would have damping terms which would also control this 
oscillatory mode. For the A 2 case, where there is no true 
equatorially trapped Kelvin mode, we could only run with the 
continuum solution as the initial condition. At coarse 

resolution, the results were a significantly stronger 
dispersion of the original wave and a drastic decline in the 
phase speed (shown as the circled crosses in Figure 13). The 
sharp decline in the phase speed was likely caused by the 
scattering of the initial wave form into the other equatorial 
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Figure 13. Observed phase speeds in shallow water equation 
models as a function of the grid spacing A for the A1 grid 
(diamond symbols), the A 2 grid (circled cwsses), and the C2b 
grid (triangles). The theoretical phase speed is plotted as the 
dashed horizontal line. 

modes, such as the westward propagating Rossby modes, 
which would produce the low observed phase speed. For finer 
resolution, the growing oscillations in our theory (Figure 8) 
occur too far off the equator to be of real consequence in our 
numerical model, and the initial Kelvin wave propagated 
without much deviation from the continuum solution. 

8. Summary and Conclusion 

We have derived exact analytic solutions for the free 
equatorial Kelvin wave on the Arakawa A, C, and E grids. By 
ignoring the finite difference effects in the zonal direction, 
the A grid solutions are identical to the E grid solutions. The v 
= 0 assumption for the Kelvin wave in the continuum also 
holds on the A, C, and E grids. The B grid is very different 
from the A, C, and E grids in that the u and •1 points do not lie 
on the same latitude in the B grid, so that a direct relation 
between u and •1, such as (7), is not possible in the B grid, 
rendering a need for a nonzero v to balance the momentum and 
mass equations. Our main findings for the equatorial Kelvin 
wave on the A, C, and E grids are as follows. 

1. The dispersion relations for the finite difference Kelvin 
wave are identical to the dispersion relation in the continuum, 
for both undamped and damped waves (see appendix). 

2. For the C grid, a better solution is obtained by 
calculating the Coriolis term in the v-transport equation by 
latitudinally averaging the yu term (method b) than by 
multiplying y at the v latitude to the latitudinal average of two 
u points (method a), though method a pwbably has superior 
stability [Sadourny, 1975a,b]. 

3. The E grid with a u point on the equator (i.e., E 1), allows 
an extra grid-scale oscillatory mode besides the Kelvin mode. 
However, the grid-scale mode does not appear readily excited. 
The E grid without a grid point on the equator (i.e., E2) does 
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not pror•rly support an equatorially trapp•t Kelvin mode, 
thus energy would leak to other equatorial modes. 

The main results for the B grid are as follows. 
1. Phase speed for the Kelvin wave decreases with 

worsening resolution (i.e., increasing A). However, the 
dispersion relation remains nondispersive (i.e., (o = k). 

2. On B 1 (with u point on the equator), there is a small 
zonal damping arising from the finite difference effect, which 
is absent in the B 2 configuration. 

3. Parameter v is generally nonzero, and only satisfies v --• 
0 as A --• 0. In general, v/u is negligibly small. 

4. Among the A, B, C, and E grids, the B grid appears to 
model the currents and sea level displacements of the 
equatorial Kelvin wave best under coarse resolution, with the 
B 2 configuration slightly better than B 1. However, in terms 
of zonal heat transport and phase speed, the C2b and C 1 b 
grids are better. 

Appendix: Damped Equatorial Kelvin Waves 

We now succinctly examine the equatorial Kelvin wave 
with damping terms in the governing equations. The zonal 
flow equations with damping are given by (2). Again 
assuming a plane wave form (4), it follows that 

u(y)= u 0 exp[-•/( (o+ i7)/( (o+ i• ) y2/2] (A1) 
and 

•/(y) = Uo •[( m + i• ) / ( m + i Y) exp[-•[( m + ir)/( m + i• ) y2/21 
(^2) 

with u 0 and Uo•](m+i•)l(m+iy) the wave amplitudes for u 
and q, respectively, at the equator [see Yamagata and 
Philander, 1985]. They found that increasing • widens the 
Kelvin wave in the meridional direction, while in contrast, 

increasing y concentrates the wave around the equator. The 
dispersion relation is 

k 2 = a• 2 +i(7+•)a•-• 7 (A3) 

Thus Rayleigh friction and Newtonian cooling disperse the 
wave. By assuming free wave (i.e., 0• real), (A3) implies wave 
damping in the zonal direction. With 0• set at a wave period of 
130 days, the zonal phase speed, (o/Re(k), is shown in Figure 
A1, where an interesting cancellation effect between y and • is 
observed. For instance, with • = 0, increasing ¾ leads to a drop 
in the zonal phase speed, as expected. However, if • is raised, 
it begins to cancel the slow-down effect due to •, such that 
when e = •, the phase speed has returned to 1, as if both y and e 
were zero. Further increasing e again leads to a drop in the 
phase speed, as illustrated by the curve labelled e = 5y. The 
damping parameters e and y also produce phase shifts in the 
meridional direction, as seen from (A1) and (A2). The 
constant phase lines in the x-y plane are described by 

-lm[4( m + iy)/( m + ie ) ]y2 /2 + Re(k )x = const. (A4) 

To the order of O(rdo•, y/o•), the imaginary part of the term in 
brackets in (A4) is directly proportional to (y-g), thereby 
revealing the cancellation effect between y and g. The phase 
lines (which were aligned in the meridional direction in the 
undamped case) may now slant backwards or forwards from the 
equator, depending on the relative size of g and y, as discussed 
by Yatnagata and Philander [1985]. For g = y or o• = 0, (A4) 
implies that the phase lines are aligned in the meridional 
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Figure A1. The zonal phase speed miRe(k) plotted as a 
function of y for various values of •. 

direction, as in the undamped case. Also from (A1) and (A2), it 
is clear that for the particular case of g = y, the meridional 
structures of u and q are reduced to the undamped solution. 

For the C grid, we limit ourselves to the C2b case, with the 
finite difference form of (2) yielding 

(o+ie)uj =kllj, «A2[(j+•)uj +(j-«)Uj_l]= •j-1-11j, 
( •0+ iy)•lj = kuj. (A5) 
The first and third equations in (A5) combine to give the 
dispersion relation, which is easily shown to be identical to 
the continuum dispersion relation (A3) and is therefore 
independent of A. The meridional structure is obtained by 
combining the first two equations in (A5): 

1-(j-{)kA2/2(m+ie)] uj = 1 + (j + -'Jj.) kA 2/2( (.0+ ie) J Uj-l' 
(A6) 

case C2b. As u is now complex, there is an additional phase 
shift in the meridional direction. We choose to plot the 
meridional profile of Re(u) in Figure A2 at resolution A=I, 
with the curve again normalized to have the same 
meridionally integrated zonal transport as in the continuum 
case. The plot is generated for a wave period of 130 days with 
(dimensionalized) e = 1 / 50 day '1 and y = 1 / 10 day 'l, typical 
values used by Yamagata and Philander [1985]. A weak reverse 
flow is found at 2.5 Rossby radius from the equator. The 
corresponding undamped solution (from Figure 3b) is 
superimposed as the short-dashed curves for comparison. 

The finite differenced equations with respect to the E1 grid 

(m+ie)uj =k•7j, jAuj =_(.•7j+l - •lj-1), 2A (A7) 

( m + i7) •lj = kuj . 

The dispersion relation is again found to be identical to (A3), 
while the meridional structure is described by 
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Figure A2. Re(u) for the C2b grid plotted as a function of the 
distance from the equator. The solid curve shows the C2b 
solution for nonzero 7 and • (as given in the text), with the 
corresponding continuum solution as the long-dashed curve. 
The corresponding undam• (7 = • = 0) finite difference and 
continuum solutions are also shown by the short-dashed 
curves. In the damped case, we have chosen 7 > œ; hence the 
damped continuum solution (long-dashed curve) is more 
concentrated around the equator than the invisicid continuum 
solution (short-dashed curve). (If 7 < œ were chosen, the 
damped continuum solution would be wider than the undamped 
continuum solution.) 
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Figure A3. Re(u) for the E1 grid plotted as a function of the 
distance from the equator. The solid curve shows the E 1 
solution for nonzero 1, and œ (as given in the text), with the 
corresponding continuum solution as the long-dashed curve. 
The corresponding undamped (1' = œ = 0) finite difference and 
continuum solutions are also shown by the short-dashed 
curves. 

Uj+l + 2jA2 ( o.;+' k")')uj-uj_l=O, (j=0,ñl,:k2 .... ). (AS) 
Equation (AS) resembles (16) in the undamped case except for 
the damping effect iy appearing now in the second term. The 
effect from œ is exerted implicitly in (AS) via 0) and k through 
the dispersion relation (A3). 

Following the same line of argument as in the undamped 
case, solutions of (AS) can be written in terms of the modified 
Bessel functions except that the function' s argument is now 
complex. Hence, 

k 1 
uj(z)=Ali(z), , z= (A9) re+i?' A --'l' 

and from (A7), 

iIj(z)= A a}+ie • a}+ie = a (A10) m+iy 

The meridional structure of Re(u) in (A9) is shown in Figure 
A3 for A=I. 

In summary, as •1 and v lie on the same latitude in all the C 
and E grid configurations, their dispersion relations are 
identical to that for the continuum, i.e. (A3). For the B grids, 
one can derive analogous equations to (25) and (26), though 
the functions F and G will be complex, and a numerical 
approach will again be needed. 
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