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[1] Methods in multivariate statistical analysis are
essential for working with large amounts of geophysical
data, data from observational arrays, from satellites, or from
numerical model output. In classical multivariate statistical
analysis, there is a hierarchy of methods, starting with linear
regression at the base, followed by principal component
analysis (PCA) and finally canonical correlation analysis
(CCA). A multivariate time series method, the singular
spectrum analysis (SSA), has been a fruitful extension of the
PCA technique. The common drawback of these classical
methods is that only linear structures can be correctly
extracted from the data. Since the late 1980s, neural
network methods have become popular for performing
nonlinear regression and classification. More recently,
neural network methods have been extended to perform
nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and

nonlinear SSA (NLSSA). This paper presents a unified view
of the NLPCA, NLCCA, and NLSSA techniques and their
applications to various data sets of the atmosphere and the
ocean (especially for the El Niño-Southern Oscillation and
the stratospheric quasi-biennial oscillation). These data sets
reveal that the linear methods are often too simplistic to
describe real-world systems, with a tendency to scatter a
single oscillatory phenomenon into numerous unphysical
modes or higher harmonics, which can be largely alleviated
in the new nonlinear paradigm. INDEX TERMS: 3299

Mathematical Geophysics: General or miscellaneous; 3394

Meteorology and Atmospheric Dynamics: Instruments and

techniques; 4294 Oceanography: General: Instruments and

techniques; 4522 Oceanography: Physical: El Niño; KEYWORDS:

neural networks, principal component analysis, canonical

correlation analysis, singular spectrum analysis, El Niño.
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1. INTRODUCTION

[2] In a standard text on classical multivariate statistical

analysis [e.g., Mardia et al., 1979] the chapters typically

proceed from linear regression to principal component

analysis and then to canonical correlation analysis. In

regression one tries to find how the response variable y is

linearly affected by the predictor variables x � [x1, . . ., xl],
i.e.,

y ¼ r � xþ r0 þ �; ð1Þ

where � is the error (or residual) and the regression

coefficients r and r0 are found by minimizing the mean of

�2.

1.1. Principal Component Analysis

[3] However, in many data sets one cannot separate

variables into predictor and response variables. For instance,

one may have a data set of the monthly sea surface

temperatures (SST) collected at 1000 grid locations over

several decades; that is, the data set is of the form x(t) = [x1,

. . ., xl], where each variable xi (i = 1, . . ., l) has N samples

labeled by the index t. Very often, t is simply the time, and

each xi is a time series containing N observations. Principal

component analysis (PCA), also known as empirical or-

thogonal function (EOF) analysis, looks for u, a linear

combination of the xi, and an associated vector a, with

u tð Þ ¼ a � x tð Þ; ð2Þ

so that

hkx tð Þ 	 au tð Þk2i

is minimized, where h i denotes a sample or time mean.

Here u, called the first principal component (PC) (or score),

is often a time series, while a, called the first eigenvector

(also called an EOF or loading), is the first eigenvector of

the data covariance matrix, and a often describes a spatially

standing oscillation pattern. Together u and a make up the

first PCA mode. In essence, a given data set is approximated

by a straight line (oriented in the direction of a), which

accounts for the maximum amount of variance in the data;

pictorially, in a scatterplot of the data the straight line found

by PCA passes through the ‘‘middle’’ of the data set. From

the residual, x 	 au, the second PCA mode can similarly be

extracted and so on for the higher modes. In practice, the
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common algorithms for PCA extract all modes simulta-

neously [Jolliffe, 2002; Preisendorfer, 1988]. By retaining

only the leading modes, PCA has been commonly used to

reduce the dimensionality of the data set and to extract the

main patterns from the data set. PCA has also been extended

to the singular spectrum analysis (SSA) technique for time

series analysis [Elsner and Tsonis, 1996; von Storch and

Zwiers, 1999; Ghil et al., 2002].

1.2. Canonical Correlation Analysis

[4] Next consider two data sets {xi(t)} and {yj(t)}, each

with N samples. We group the {xi(t)} variables to form the

vector x(t) and the {yj(t)} variables to form the vector y(t).

Canonical correlation analysis (CCA) [Mardia et al., 1979;

Bretherton et al., 1992; von Storch and Zwiers, 1999] looks

for linear combinations

u tð Þ ¼ a � x tð Þ v tð Þ ¼ b � y tð Þ; ð3Þ

where the canonical variates u and v have maximum

correlation; that is, the weight vectors a and b are chosen

such that cor(u, v), the Pearson correlation coefficient

between u and v, is maximized. For instance, if x(t) is the

sea level pressure (SLP) field and y(t) is the SST field, then

CCA can be used to extract the correlated spatial patterns

a and b in the SLP and SST fields. Unlike regression,

which tries to study how each yj is related to the x variables,

CCA examines how the entire y field is related to the x

field. This holistic view has made CCA popular [Barnett

and Preisendorfer, 1987; Barnston and Ropelewski, 1992;

Shabbar and Barnston, 1996].

[5] In the environmental sciences, researchers have to

work with large data sets from satellite images of the Earth’s

surface and global climate data to voluminous output from

large numerical models. Multivariate techniques such as

PCA and CCA have become indispensable in extracting

essential information from these massive data sets [von

Storch and Zwiers, 1999]. However, the restriction of

finding only linear relations means that nonlinear relations

are either missed or misinterpreted by these methods. The

introduction of nonlinear multivariate and time series tech-

niques is crucial to further advancement in the environmen-

tal sciences.

1.3. Feed Forward Neural Network Models

[6] The nonlinear neural network (NN) models originated

from research trying to understand how the brain functions

with its networks of interconnected neurons [McCulloch

and Pitts, 1943]. There are many types of NN models;

some are only of interest to neurological researchers, while

others are general nonlinear data techniques. There are now

many good textbooks on NN models [Bishop, 1995; Rojas,

1996; Ripley, 1996; Cherkassky and Mulier, 1998; Haykin,

1999].

[7] The most widely used NNmodels are the feed forward

NNs, also called multilayer perceptrons [Rumelhart et al.,

1986], which perform nonlinear regression and classifica-

tion. The basic architecture (Figure 1) consists of a layer of

input neurons xi (a ‘‘neuron’’ is simply a variable in

NN jargon) linked to a layer or more of ‘‘hidden’’ neurons,

which are, in turn, linked to a layer of output neurons yj. In

Figure 1, there is only one layer of hidden neurons hk. A

transfer function (an ‘‘activation’’ function in NN jargon)

maps from the inputs to the hidden neurons. There is a

variety of choices for the transfer function, the hyperbolic

tangent function being a common one, i.e.,

hk ¼ tanh
X
i

wkixi þ bk

 !
; ð4Þ

where wki and bk are the weight and bias parameters,

respectively. The tanh(z) function is a sigmoidal-shaped

function, where its two asymptotic values of ±1 as z ! ±1
can be viewed as representing the two states of a neuron (at

rest or activated), depending on the strength of the

excitation z. (If there is more than one hidden layer, then

equations of the same form as equation (4) are used to

calculate the values of the next layer of the hidden neurons

from the current layer of neurons). When the feed forward

NN is used for nonlinear regression, the output neurons yj
are usually calculated by a linear combination of the

neurons in the preceding layer, i.e.,

yj ¼
X
k

~wjkhk þ ~bj: ð5Þ

[8] Given observed data yoj, the optimal values for the

weight and bias parameters (wki, ~wjk, bk, and ~bj) are found

by ‘‘training’’ the NN, i.e., performing a nonlinear optimi-

zation, where the cost function or objective function

J ¼
X
j

yj 	 yoj
� �2* +

ð6Þ

is minimized, with J simply being the mean squared error

(MSE) of the output. The NN has found a set of nonlinear

regression relations yj = fj(x). To approximate a set of

Figure 1. Schematic diagram of the feed forward neural
network (NN) model, with one ‘‘hidden’’ layer of neurons
(i.e., variables) (denoted by circles) sandwiched between the
input layer and the output layer. In the feed forward NN
model the information only flows forward starting from the
input neurons. Increasing the number of hidden neurons
increases the number of model parameters. Adapted from
Hsieh and Tang [1998].
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continuous functions fj, only one layer of hidden neurons is

enough, provided enough hidden neurons are used in that

layer [Hornik et al., 1989; Cybenko, 1989]. The NN with

one hidden layer is commonly called a two-layer NN, as

there are two layers of mapping (equations (4) and (5))

going from input to output; however, there are other

conventions for counting the number of layers, and some

authors refer to our two-layer NN as a three-layer NN since

there are three layers of neurons.

1.4. Local Minima and Overfitting

[9] The main difficulty of the NN method is that the

nonlinear optimization often encounters multiple local

minima in the cost function. This means that starting

from different initial guesses for the parameters, the

optimization algorithm may converge to different local

minima. Many approaches have been proposed to allevi-

ate this problem [Bishop, 1995; Hsieh and Tang, 1998]; a

common approach involves multiple optimization runs

starting from different random initial parameters so that,

hopefully, not all runs will be stranded at shallow local

minima.

[10] Another pitfall with the NN method is overfitting,

i.e., fitting to the noise in the data, because of the

tremendous flexibility of the NN to fit the data. With

enough hidden neurons the NN can fit the data, including

the noise, to arbitrary accuracy. Thus, for a network with

many parameters, reaching the global minimum may mean

nothing more than finding a badly overfitted solution.

Usually, only a portion of the data record is used to train

(i.e., fit) the NN model; the other is reserved to validate

the model. If too many hidden neurons are used, then the

NN model fit to the training data will be excellent, but the

model fit to the validation data will be poor, thereby

allowing the researchers to gauge the appropriate number

of hidden neurons. During the optimization process it is

also common to monitor the MSE over the training data

and over the validation data separately. As the number of

iterations of the optimization algorithm increased, the MSE

calculated over the training data would decrease; however,

beyond a certain number of iterations the MSE over the

validation data would begin to increase, indicating the start

of overfitting and hence the appropriate time to stop the

optimization process. Another approach to avoid overfit-

ting is to add weight penalty terms to the cost function, as

discussed in Appendix A. Yet another approach is to

compute an ensemble of NN models starting from different

random initial parameters. The mean of the ensemble of

NN solutions tends to give a smoother solution than the

individual NN solutions.

[11] If forecast skills are to be estimated, then another

unused part of the data record will have to be reserved as

independent test data for estimating the forecast skills, as

the validation data have already been used to determine the

model architecture. Some authors interchange the terminol-

ogy for ‘‘validation’’ data and ‘‘test’’ data; the terminology

here follows Bishop [1995]. For poor quality data sets (e.g.,

short, noisy data records) the problems of local minima and

overfitting could render nonlinear NN methods incapable of

offering any advantage over linear methods.

[12] The feed forward NN has been applied to a variety of

nonlinear regression and classification problems in environ-

mental sciences such as meteorology and oceanography and

has been reviewed by Gardner and Dorling [1998] and

Hsieh and Tang [1998]. Some examples of recent applica-

tions using NN include the following: tornado diagnosis

[Marzban, 2000], efficient radiative transfer computation in

atmospheric general circulation models [Chevallier et al.,

2000], multiparameter satellite retrievals from the Special

Sensor Microwave/Imager [Gemmill and Krasnopolsky,

1999], wind retrieval from scatterometer [Richaume et al.,

2000], adaptive nonlinear model output statistics [Yuval and

Hsieh, 2003], efficient computation of sea water density or

salinity from a nonlinear equation of state [Krasnopolsky et

al., 2000], tropical Pacific sea surface temperature predic-

tion [Tang et al., 2000; Yuval, 2001], and an empirical

atmosphere in a hybrid coupled atmosphere-ocean model of

the tropical Pacific [Tang and Hsieh, 2002]. For NN

applications in geophysics (seismic exploration, well log

lithology determination, electromagnetic exploration, and

earthquake seismology), see Sandham and Leggett [2003].

[13] To keep within the scope of a review paper, I have to

omit reviewing the numerous fine papers on using NN for

nonlinear regression and classification and focus on the

topic of how the feed forward NN can be extended from its

original role as nonlinear regression to nonlinear PCA

(section 2), nonlinear CCA (section 3), and nonlinear SSA

(section 4), illustrated by examples from the tropical Pacific

atmosphere-ocean interactions and the equatorial strato-

spheric wind variations. These examples reveal various

disadvantages of the linear methods; the most common

one is the tendency to scatter a single oscillatory phenom-

enon into numerous modes or higher harmonics.

2. NONLINEAR PRINCIPAL COMPONENT
ANALYSIS ((NLPCA))

2.1. Open Curves

[14] As PCA finds a straight line which passes through

the ‘‘middle’’ of the data cluster, the obvious next step is to

generalize the straight line to a curve. Kramer [1991]

proposed a neural network-based NLPCA model where

the straight line is replaced by a continuous open curve

for approximating the data.

[15] The fundamental difference between NLPCA and

PCA is that PCA only allows a linear mapping (equation (2))

between x and the PC u, while NLPCA allows a nonlinear

mapping. To perform NLPCA, the feed forward NN in

Figure 2a contains three hidden layers of neurons between

the input and output layers of variables. The NLPCA is

basically a standard feed forward NN with four layers of

transfer functions mapping from the inputs to the outputs.

One can view the NLPCA network as composed of two

standard two-layer feed forward NNs placed one after the

other. The first two-layer network maps from the inputs x

through a hidden layer to the bottleneck layer with only
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one neuron u, i.e., a nonlinear mapping u = f (x). The next

two-layer feed forward NN inversely maps from the non-

linear PC (NLPC) u back to the original higher-dimensional

x space, with the objective that the outputs x0 = g(u) be as

close as possible to the inputs x (thus the NN is said to be

autoassociative). Note g(u) nonlinearly generates a curve in

the x space and hence a one-dimensional (1-D) approxima-

tion of the original data. To minimize the MSE of this

approximation, the cost function J = hkx 	 x0k2i is

minimized to solve for the weight and bias parameters of

the NN. Squeezing the input information through a bottle-

neck layer with only one neuron accomplishes the dimen-

sional reduction. Details of the NLPCA are given in

Appendix A.

[16] In effect, the linear relation (2) in PCA is now

generalized to u = f(x), where f can be any nonlinear

continuous function representable by a feed forward NN

mapping from the input layer to the bottleneck layer; and

instead of hkx(t) 	 au(t)k2i, hkx 	 g(u)k2i is minimized.

The residual, x 	 g(u), can be input into the same network

to extract the second NLPCA mode and so on for the higher

modes.

[17] That the classical PCA is indeed a linear version of

this NLPCA can be readily seen by replacing all the transfer

functions with the identity function, thereby removing the

nonlinear modeling capability of the NLPCA. Then the

forward map to u involves only a linear combination of

the original variables as in the PCA.

[18] The NLPCA has been applied to the radiometric

inversion of atmospheric profiles [Del Frate and Schiavon,

1999] and to the Lorenz [1963] three-component chaotic

system [Monahan, 2000; Hsieh, 2001a]. For the tropical

Pacific climate variability the NLPCA has been used to

study the SST field [Monahan, 2001; Hsieh, 2001a] and the

SLP field [Monahan, 2001]. The Northern Hemisphere

atmospheric variability [Monahan et al., 2000, 2001], the

Canadian surface air temperature [Wu et al., 2002], and the

subsurface thermal structure of the Pacific Ocean [Tang and

Hsieh, 2003] have also been investigated by the NLPCA.

[19] In the classical linear approach, there is a well-

known dichotomy between PCA and rotated PCA (RPCA)

[Richman, 1986]. In PCA the linear mode that accounts for

the most variance of the data set is sought. However, as

illustrated by Preisendorfer [1988, Figure 7.3], the resulting

eigenvectors may not align close to local data clusters, so

the eigenvectors may not represent actual physical states

well. One application of RPCA methods is to rotate the

PCA eigenvectors so they point closer to the local clusters

of data points [Preisendorfer, 1988]. Thus the rotated

eigenvectors may bear greater resemblance to actual phys-

ical states (though they account for less variance) than the

unrotated eigenvectors; hence RPCA is also widely used

[Richman, 1986; von Storch and Zwiers, 1999]. As there are

many possible criteria for rotation, there are many RPCA

schemes, among which the varimax [Kaiser, 1958] scheme

is perhaps the most popular.

[20] The tropical Pacific climate system contains the

famous interannual variability known as the El Niño-South-

ern Oscillation (ENSO), a coupled atmosphere-ocean inter-

action involving the oceanic phenomenon El Niño and the

associated atmospheric phenomenon the Southern Oscilla-

tion. The coupled interaction results in anomalously warm

SST in the eastern equatorial Pacific during El Niño

episodes and cool SST in the central equatorial Pacific

during La Niña episodes [Philander, 1990; Diaz and

Markgraf, 2000]. ENSO is an irregular oscillation, but

spectral analysis does reveal a broad spectral peak at the

4- to 5-year period. Hsieh [2001a] used the tropical Pacific

SST data (1950–1999) to make a three-way comparison

between NLPCA, RPCA, and PCA. The tropical Pacific

SST anomaly (SSTA) data (i.e., the SST data with the

climatological seasonal cycle removed) were prefiltered by

Figure 2. (a) Schematic diagram of the NN model for
calculating the nonlinear principal component analysis
(NLPCA). There are three layers of hidden neurons
sandwiched between the input layer x on the left and the
output layer x0on the right. Next to the input layer is the
encoding layer, followed by the ‘‘bottleneck’’ layer (with a
single neuron u), which is then followed by the decoding
layer. A nonlinear function maps from the higher-dimension
input space to the one-dimensional bottleneck space,
followed by an inverse transform mapping from the
bottleneck space back to the original space represented by
the outputs, which are to be as close to the inputs as possible
by minimizing the cost function J = hkx 	 x0k2i. Data
compression is achieved by the bottleneck, with the
bottleneck neuron giving u, the nonlinear principal
component (NLPC). (b) Schematic diagram of the NN
model for calculating the NLPCAwith a circular node at the
bottleneck (NLPCA(cir)). Instead of having one bottleneck
neuron u, there are now two neurons p and q constrained to
lie on a unit circle in the p-q plane, so there is only one free
angular variable q, the NLPC. This network is suited for
extracting a closed curve solution. From Hsieh [2001a],
reprinted with permission from Blackwell Science, Oxford.
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PCA, with only the three leading modes retained. PCA

modes 1, 2, and 3 accounted for 51.4%, 10.1%, and 7.2%,

respectively, of the variance in the SSTA data. The first

three PCs (PC1, PC2, and PC3) were used as the input x for

the NLPCA network.

[21] The data are shown as dots in a scatterplot in the

PC1-PC2 plane (Figure 3), where the cool La Niña states lie

in the top left corner and the warm El Niño states lie in the

top right corner. The NLPCA solution is a U-shaped curve

linking the La Niña states at one end (low u) to the El Niño

states at the other end (high u), similar to the solution found

originally by Monahan [2001]. In contrast, the first PCA

eigenvector lies along the horizontal line, and the second

PCA lies along the vertical line (Figure 3), neither of which

would come close to the El Niño states in the top right corner

nor the La Niña states in the top left corner, thus demon-

strating the inadequacy of PCA. For comparison, a varimax

rotation [Kaiser, 1958; Preisendorfer, 1988] was applied

to the first three PCA eigenvectors. (The varimax criterion

can be applied to either the loadings or the PCs depending

on one’s objectives [Richman, 1986; Preisendorfer, 1988];

here it is applied to the PCs.) The resulting first RPCA

eigenvector, shown as a dashed line in Figure 3, spears

through the cluster of El Niño states in the top right corner,

thereby yielding a more accurate description of the El Niño

anomalies (Figure 4c) than the first PCA mode (Figure 4a),

which did not fully represent the intense warming of

Peruvian waters. The second RPCA eigenvector, also shown

as a dashed line in Figure 3, did not improve much on the

second PCA mode, with the PCA spatial pattern shown in

Figure 4b and the RPCA pattern shown in Figure 4d. In

terms of variance explained, the first NLPCA mode

explained 56.6% of the variance versus 51.4% explained

by the first PCA mode and 47.2% explained by the first

RPCA mode.

[22] With the NLPCA, for a given value of the NLPC u,

one can map from u to the three PCs. This is done by

assigning the value u to the bottleneck neuron and mapping

forward using the second half of the network in Figure 2a.

Each of the three PCs can be multiplied by its associated

PCA (spatial) eigenvector, and the three can be added

together to yield the spatial pattern for that particular value

of u. Unlike PCA, which gives the same spatial anomaly

pattern except for changes in the amplitude as the PC varies,

the NLPCA spatial pattern generally varies continuously as

the NLPC changes. Figures 4e and 4f show the spatial

anomaly patterns when u has its maximum value (cor-

responding to the strongest El Niño) and when u has its

minimum value (strongest La Niña), respectively. Clearly,

the asymmetry between El Niño and La Niña (i.e., the cool

anomalies during La Niña episodes (Figure 4f) are observed

to center much farther west of the warm anomalies during

El Niño (Figure 4e) [Hoerling et al., 1997]) is well captured

by the first NLPCA mode; in contrast, the PCA mode 1

Figure 3. Scatterplot of the sea surface temperatures (SST) anomaly (SSTA) data (shown as dots) in the
principal component (PC)1-PC2 plane, with the El Niño states lying in the top right corner and the La
Niña states lying in the top left corner. The PC2 axis is stretched relative to the PC1 axis for better
visualization. The first-mode NLPCA approximation to the data is shown by the (overlapping) small
circles, which traced out a U-shaped curve. The first principal component analysis (PCA) eigenvector is
oriented along the horizontal line, and the second PCA is oriented along the vertical line. The varimax
method rotates the two PCA eigenvectors in a counterclockwise direction, as the rotated PCA (RPCA)
eigenvectors are oriented along the dashed lines. (As the varimax method generates an orthogonal
rotation, the angle between the two RPCA eigenvectors is 90� in the three-dimensional PC1-PC2-PC3
space). From Hsieh [2001a], reprinted with permission from Blackwell Science, Oxford.
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gives a La Niña that is simply the mirror image of the

El Niño (Figure 4a). While El Niño has been known by

Peruvian fishermen for many centuries because of its strong

SSTA off the coast of Peru and its devastation of the

Peruvian fishery, La Niña, with its weak manifestation in

the Peruvian waters, was not appreciated until the last

2 decades of the twentieth century.

[23] In summary, PCA is used for two main purposes:

(1) to reduce the dimensionality of the data set and (2) to

extract features or recognize patterns from the data set. It is

the second purpose where PCA can be improved upon. Both

RPCA and NLPCA take the PCs from PCA as input.

However, instead of multiplying the PCs by a fixed ortho-

normal rotational matrix, as performed in the varimax

RPCA approach, NLPCA performs a nonlinear mapping

of the PCs. RPCA sacrifices on the amount of variance

explained, but by rotating the PCA eigenvectors, RPCA

eigenvectors tend to point more toward local data clusters

and are therefore more representative of physical states than

the PCA eigenvectors.

[24] With a linear approach it is generally impossible to

have a solution simultaneously (1) explaining maximum

global variance of the data set and (2) approaching local

data clusters hence the dichotomy between PCA and

RPCA, with PCA aiming for objective 1 and RPCA

aiming for objective 2. Hsieh [2001a] pointed out that

with the more flexible NLPCA method both objectives 1

and 2 may be attained together; thus the nonlinearity in

NLPCA unifies the PCA and RPCA approaches. It is easy

to see why the dichotomy between PCA and RPCA in the

linear approach automatically vanishes in the nonlinear

approach. By increasing m, the number of hidden neurons

in the encoding layer (and the decoding layer), the solution

is capable of going through all local data clusters while

maximizing the global variance explained. (In fact, for

large enough m, NLPCA can pass through all data points,

Figure 4. SSTA patterns (in �C) of the PCA, RPCA, and the NLPCA. (a) First and (b) second PCA
spatial modes (both with their corresponding PCs at maximum value). (c) First and (d) second varimax
RPCA spatial modes (both with their corresponding RPCs at maximum value). Anomaly pattern as the
NLPC u of the first NLPCA mode varying from (e) maximum (strong El Niño) to (f ) its minimum
(strong La Niña). With a contour interval of 0.5�C the positive contours are shown as solid curves,
negative contours are shown as dashed curves, and the zero contour is shown as a thick curve. Adapted
from Hsieh [2001a], reprinted with permission from Blackwell Science, Oxford.

RG1003 Hsieh: NEURAL NETWORK METHODS

6 of 25

RG1003



although this will in general give an undesirable, overfitted

solution).

[25] The tropical Pacific SST example illustrates that with

a complicated oscillation like the El Niño-La Niña phenom-

enon, using a linear method such as PCA results in the

nonlinear mode being scattered into several linear modes.

(In fact, all three leading PCA modes are related to this

phenomenon.) This brings to mind the famous parable of

the three blind men and their disparate descriptions of an

elephant. Thus we see the importance of NLPCA as a

unifier of the separate linear modes. In the study of climate

variability the wide use of PCA methods has created the

somewhat misleading view that our climate is dominated by

a number of spatially fixed oscillatory patterns, which is, in

fact, due to the limitation of the linear method. Applying

NLPCA to the tropical Pacific SSTA, we found no spatially

fixed oscillatory patterns but an oscillation evolving in

space as well as in time.

2.2. Closed Curves

[26] The NLPCA is capable of finding a continuous open

curve solution, but there are many geophysical phenomena

involving waves or quasiperiodic fluctuations, which call

for a continuous closed curve solution. Kirby and Miranda

[1996] introduced a NLPCA with a circular node at the

network bottleneck (henceforth referred to as the NLPCA

(cir)), so that the NLPC as represented by the circular node

is an angular variable q, and the NLPCA(cir) is capable of

approximating the data by a closed continuous curve.

Figure 2b shows the NLPCA(cir) network, which is almost

identical to the NLPCA of Figure 2a, except at the

bottleneck, where there are now two neurons p and q

constrained to lie on a unit circle in the p-q plane, so there

is only one free angular variable q, the NLPC. Details of the
NLPCA(cir) are given in Appendix B.

[27] Applications of the NLPCA(cir) have been made to

the tropical Pacific SST [Hsieh, 2001a] and to the equatorial

stratospheric zonal wind (i.e., the east-west component of the

wind) for the quasi-biennial oscillation (QBO) [Hamilton

and Hsieh, 2002]. The QBO dominates over the annual

cycle or other variations in the equatorial stratosphere, with

the period of oscillation varying roughly between 22 and

32 months, with a mean of about 28 months. After the

45-year means were removed, the zonal wind u at seven

vertical levels in the stratosphere became the seven inputs to

the NLPCA(cir) network. The NLPCA(cir) mode 1 solution

gives a closed curve in a seven-dimensional space. The

system goes around the closed curve once, as the NLPC q
varies through one cycle of the QBO. Figure 5 shows the

solution in three of the seven dimensions, namely, the wind

anomalies at the 70-, 30-, and 10-hPa pressure levels

(corresponding to elevations ranging roughly between 20

and 30 km above sea level). The NLPCA(cir) mode 1

explains 94.8% of the variance. For comparison, the linear

Figure 5. NLPCA(cir) mode 1 solution for the equatorial stratospheric zonal wind shown by the
(overlapping) circles, with the data shown as dots. For comparison, the PCA mode 1 solution is shown as
a thin straight line. Only three out of seven dimensions are shown, namely, u at the top, middle, and
bottom levels (10, 30, and 70 hPa). (a)–(c) Two-dimensional views. (d) Three-dimensional view. From
Hamilton and Hsieh [2002].
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PCAyields seven modes explaining 57.8, 35.4, 3.1, 2.1, 0.8,

0.5, and 0.3% of the variance, respectively. To compare

with the NLPCA(cir) mode 1, Hamilton and Hsieh [2002]

constructed a linear model of q. In the plane spanned by

PC1 and PC2 (each normalized by its standard deviation),

an angle q can be defined as the arctangent of the ratio of the
two normalized PCA coefficients. This linear model

accounts for 83.0% of the variance in the zonal wind,

considerably less than the 94.8% accounted for by the

NLPCA(cir) mode 1. The QBO as q varies over one cycle

is shown in Figure 6 for the NLPCA(cir) mode 1 and for the

linear model. The observed strong asymmetries between the

easterly and westerly phases of the QBO [Hamilton, 1998;

Baldwin et al., 2001] are captured by the nonlinear mode

but not by the linear mode.

[28] The actual time series of the wind measured at a

particular height level is somewhat noisy, and it is often

desirable to have a smoother representation of the QBO time

series which captures the essential features at all vertical

levels. Also, the reversal of the wind from westerly to

easterly and vice versa occurs at different times for different

height levels, rendering it difficult to define the phase of the

QBO.Hamilton and Hsieh [2002] found that the phase of the

QBO as defined by the NLPC q is more accurate than

previous attempts to characterize the phase, leading to a

stronger link between the QBO and Northern Hemisphere

polar stratospheric temperatures in winter (the Holton-Tan

effect) [Holton and Tan, 1980] than previously found.

2.3. Other Approaches (Principal Curves and
Self-Organizing Maps)

[29] Besides the autoassociative NN, there have been

several other approaches developed to generalize PCA

[Cherkassy and Mulier, 1998]. The principal curve method

[Hastie and Stuetzle, 1989; Hastie et al., 2001] finds a

nonlinear curve which passes through the middle of the data

points. Developed originally in the statistics community,

this method does not appear to have been applied to the

environmental sciences or geophysics. There is a subtle but

important difference between NLPCA (by autoassociative

NN) and principal curves. In the principal curve approach

each point in the data space is projected to a point on the

principal curve, where the distance between the two is the

shortest. In the NLPCA approach, while the mean square

error (hence distance) between the data point and the

projected point is minimized, it is only the mean which is

minimized. There is no guarantee for an individual data

point that it will be mapped to the closest point on the curve

found by NLPCA. Hence, unlike the projection in principal

curves, the projection used in NLPCA is suboptimal

[Malthouse, 1998]. However, NLPCA has an advantage

over the principal curve method in that its NN architecture

provides a continuous (and differentiable) mapping function.

[30] Newbigging et al. [2003] used the principal curve

projection concept to improve the NLPCA solution.

Malthouse [1998] made a comparison between principal

curves and the NLPCA model by autoassociative NN.

Unfortunately, when testing a closed curve solution, he

used NLPCA instead of NLPCA(cir) (which would have

extracted the closed curve easily), thereby ending up with

the conclusion that the NLPCA was not satisfactory for

extracting the closed curve solution.

[31] Another popular NN method is the self-organizing

map (SOM) [Kohonen, 1982, 2001], used widely for clus-

tering. Since this approach fits a grid (usually a 1-D or 2-D

grid) to a data set, it can be thought of as a discrete version of

nonlinear PCA [Cherkassky and Mulier, 1998]. SOM has

been applied to the clustering of winter daily precipitation

data [Cavazos, 1999], to satellite ocean color classification

[Yacoub et al., 2001], and to high-dimensional hyperspectral

Airborne Visible/Infrared Imaging Spectrometer data to

classify the geology of the land surface [Villmann et al.,

2003]. For seismic data, SOM has been used to identify and

classify multiple events [Essenreiter et al., 2001] and used in

well log calibration [Taner et al., 2001].

Figure 6. (a) Contour plot of the NLPCA(cir) mode 1
zonal wind anomalies as a function of pressure and qweighted,
where qweighted is q weighted by the histogram distribution
of q. Thus qweighted is more representative of actual time
during a cycle than q. Contour interval is 5 m s	1, with
westerly winds indicated by solid lines, easterlies indicated
by dashed lines, and zero contours indicated by thick lines.
(b) Similar plot for a linear circular model of qweighted. From
Hamilton and Hsieh [2002].
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[32] Another way to generalize PCA is via independent

component analysis (ICA) [Comon, 1994; Hyvärinen et al.,

2001], which was developed from information theory and

has been applied to study the tropical Pacific SST variability

by Aires et al. [2000]. Since ICA uses higher-order statistics

(e.g., kurtosis, which is very sensitive to outliers), it may not

be robust enough for the noisy data sets commonly encoun-

tered in climate or seismic studies (T. Ulrych, personal

communication, 2003).

3. NONLINEAR CANONICAL CORRELATION
ANALYSIS (NLCCA)

[33] While many techniques have been developed for

nonlinearly generalizing PCA, there has been much less

activity in developing nonlinear CCA. A number of differ-

ent approaches have recently been proposed to nonlinearly

generalize CCA [Lai and Fyfe, 1999, 2000; Hsieh, 2000;

Melzer et al., 2003]. Hsieh [2000] proposed using three feed

forward NNs to accomplish NLCCA, where the linear

mappings in equation (3) for the CCA are replaced by

nonlinear mapping functions using two-layer feed forward

NNs. The mappings from x to u and y to v are represented

by the double-barreled NN on the left-hand side of Figure 7.

By minimizing the cost function J = 	cor(u, v), one finds

the parameters that maximize the correlation cor(u, v). After

the forward mapping with the double-barreled NN has been

solved, inverse mappings from the canonical variates u and

v to the original variables, as represented by the two

standard feed forward NNs on the right side of Figure 7,

are to be solved, where the MSE of their outputs x0 and y0

are minimized with respect to x and y, respectively. For

details, see Appendix C.

[34] Consider the following test problem from Hsieh

[2000]. Let

X1 ¼ t 	 0:3t2; X2 ¼ t þ 0:3t3; X3 ¼ t2; ð7Þ

Y1 ¼ ~t3; Y2 ¼ 	~t þ 0:3~t3; Y3 ¼ ~t þ 0:3~t2; ð8Þ

where t and ~t are uniformly distributed random numbers in

[	1, 1]. Also let

X 0
1 ¼ 	s	 0:3s2; X 0

2 ¼ s	 0:3s3; X 0
3 ¼ 	s4; ð9Þ

Y 0
1 ¼ sech 4sð Þ; Y 0

2 ¼ sþ 0:3s3; Y 0
3 ¼ s	 0:3s2; ð10Þ

where s is a uniformly distributed random number in [	1, 1].

The shapes described by the X and X0 vector functions are

displayed in Figure 8, and those described by Y and Y0 are

displayed in Figure 9. To lowest order, equation (7) for X

describes a quadratic curve, and equation (9) for X0 describes

a quartic. Similarly, to lowest order, Y is a cubic, and Y0 is a

hyperbolic secant. The signal in the test data was produced

by adding the second mode (X0, Y0) to the first mode (X, Y),

with the variance of the second mode being 1/3 that of the

first mode. A small amount of Gaussian random noise, with

standard deviation equal to 10% of the signal standard

deviation, was also added to the data set. The data set of N =

500 points was then standardized (i.e., each variable with

mean removed was normalized by the standard deviation).

Note that different sequences of random numbers tn and ~tn
(n = 1, . . ., N) were used to generate the first modes X and Y,

respectively. Hence these two dominant modes in the x space

and the y space are unrelated. In contrast, as X0 and Y0 were

generated from the same sequence of random numbers sn,

they are strongly related. The NLCCA was applied to the

data, and the first NLCCA mode retrieved (Figures 10

and 11) resembles the expected theoretical mode (X0, Y0).

This is quite remarkable considering thatX0 andY0 have only

1/3 the variance of X and Y; that is, the NLCCA ignores the

large variance of X and Y and succeeded in detecting

the nonlinear correlated mode (X0, Y0). In contrast, if the

NLPCA is applied to x and y separately, then the first

NLPCA mode retrieved from x will be X, and the first mode

from y will be Y. This illustrates the essential difference

between NLPCA and NLCCA.

[35] The NLCCA has been applied to analyze the tropical

Pacific sea level pressure anomaly (SLPA) and SSTA fields

[Hsieh, 2001b], where the six leading PCs of the SLPA and

the six PCs of the SSTA during 1950–2000 were inputs to

an NLCCA model. The first NLCCA mode is plotted in the

PC spaces of the SLPA and the SSTA (Figure 12), where

only the three leading PCs are shown. For the SLPA

(Figure 12a) in the PC1-PC2 plane the La Niña states are

in the left corner (corresponding to low u values), while the

El Niño states are in the top right corner (high u values).

The CCA solutions are shown as thin straight lines. For the

Figure 7. Three feed forward NNs used to perform
nonlinear canonical correlation analysis (NLCCA). The
double-barreled NN on the left maps from the inputs x and y
to the canonical variates u and v, respectively. The cost
function J forces the correlation between u and v to be
maximized. On the right side the top NN maps from u to the
output layer x0. The cost function J1 basically minimizes the
mean-square error (MSE) of x0 relative to x. The third NN
maps from v to the output layer y0. The cost function J2
basically minimizes the MSE of y0 relative to y. From Hsieh
[2001b], reprinted with permission from the American
Meteorological Society.
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SSTA (Figure 12b) in the PC1-PC2 plane the first NLCCA

mode is a U-shaped curve linking the La Niña states in the

top left corner (low v values) to the El Niño states in the top

right corner (high v values). In general, the nonlinearity is

greater in the SSTA than in the SLPA, as the difference

between the CCA mode and the NLCCA mode is greater in

Figure 12b than in Figure 12a.

[36] The MSE of the NLCCA divided by the MSE of the

CCA is a useful measure on how different the nonlinear

solution is relative to the linear solution; a smaller ratio

means greater nonlinearity, while a ratio of 1 means the

NLCCA can only find a linear solution. This ratio is 0.951

for the SLPA and 0.935 for the SSTA, confirming that the

mapping for the SSTA was more nonlinear than that for the

SLPA. When the data record was divided into two halves

(1950–1975 and 1976–1999) to be separately analyzed by

the NLCCA, Hsieh [2001b] found that this ratio decreased

for the second half, implying an increase in the nonlinearity

of ENSO during the more recent period.

[37] For the NLCCA mode 1, as u varies from its

minimum value to its maximum value, the SLPA field varies

from the strong La Niña phase to the strong El Niño phase

(Figure 13). The zero contour is farther west during La Niña

(Figure 13a) than during strong El Niño (Figure 13b).

Similarly, as v varies from its minimum to its maximum,

the SSTA field varies from strong La Niña to strong

El Niño (Figure 14), revealing that the SST anomalies during

La Niña are centered farther west of the anomalies during

El Niño.

[38] Wu and Hsieh [2002, 2003] studied the relation

between the tropical Pacific wind stress anomaly (WSA)

and SSTA fields using the NLCCA. Wu and Hsieh [2003]

found notable interdecadal changes of ENSO behavior

before and after the mid-1970s climate regime shift, with

greater nonlinearity found during 1981–1999 than during

1961–1975. Spatial asymmetry (for both SSTA and WSA)

between El Niño and La Niña episodes was significantly

enhanced in the later period. During 1981–1999 the loca-

tion of the equatorial easterly WSA in the NLCCA solution

during La Niña was unchanged from the earlier period, but

during El Niño the westerly WSA was shifted eastward by

up to 30�. From dynamical considerations based on the

delay oscillator theory for ENSO (where the farther east

the location of the WSA, the longer is the duration of the

resulting SSTA in the eastern equatorial Pacific), Wu and

Hsieh [2003] concluded that this interdecadal change would

lengthen the duration of the ENSO warm phase but leave

the duration of the cool phase unchanged, which was

confirmed with numerical model experiments. This is an

example of a nonlinear data analysis detecting a feature

missed by previous studies using linear techniques, which,

in turn, leads to new dynamical insight.

Figure 8. First theoretical mode X generated from equation (7) shown by curve made up of small
circles. The solid curve shows the second mode X0 generated from equation (9). A projection in the
(a) x1-x2, (b) x1-x3, and (c) x2-x3 planes and a (d) three-dimensional plot. The actual data set of 500 points
(shown by dots) was generated by adding mode 2 to mode 1 (with mode 2 having 1/3 the variance of
mode 1) and adding a small amount of Gaussian noise. Follows Hsieh [2000], with permission from
Elsevier Science.
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[39] The NLCCA has also been applied to study the

relation between the tropical Pacific SSTA and the Northern

Hemisphere midlatitude winter atmospheric variability

(500 mbar geopotential height and North American surface

air temperature) simulated in an atmospheric general circu-

lation model (GCM), demonstrating the value of NLCCA as

a nonlinear diagnostic tool for GCMs [Wu et al., 2003].

4. NONLINEAR SINGULAR SPECTRUM ANALYSIS
(NLSSA)

[40] By the 1980s, interest in chaos theory and dynamical

systems led to further extension of the PCA method to

singular spectrum analysis [Elsner and Tsonis, 1996;

Golyandina et al., 2001; Ghil et al., 2002]. Given a time

series yj = y(tj) (j = 1, . . ., N), lagged copies of the time

series are stacked to form the augmented matrix Y,

Y ¼

y1 y2 � � � yN	Lþ1

y2 y3 � � � yN	Lþ2

..

. ..
. ..

. ..
.

yL yLþ1 � � � yN

2
66666666664

3
77777777775
: ð11Þ

This matrix has the same form as the data matrix produced

by L variables, each being a time series of length n = N 	

L + 1. Y can also be viewed as composed of its column

vectors yj, forming a vector time series y(tj) (j = 1, . . ., n).
The standard PCA can be performed on the augmented data

matrix Y, resulting in

y tj
� �

¼
X
i

xi tj
� �

ei; ð12Þ

where xi is the ith PC, a time series of length n, and ei is the ith

eigenvector (or loading vector) of length L. Together xi and ei
represent the ith SSAmode. This resulting method is the SSA

with window L.

[41] In the multivariate case, with M variables yk(tj) � ykj
(k = 1, . . ., M; j = 1, . . ., N), the augmented matrix can be

formed by letting

Y ¼

y11 y12 � � � y1;N	Lþ1

..

. ..
. ..

. ..
.

yM1 yM2 � � � yM ;N	Lþ1

..

. ..
. ..

. ..
.

y1L y1;Lþ1 � � � y1N

..

. ..
. ..

. ..
.

yML yM ;Lþ1 � � � yMN

2
6666666666666666666666664

3
7777777777777777777777775

: ð13Þ

Figure 9. First theoretical modeY generated from equation (8) shown by curve made up of small circles.
The solid curve shows the second mode Y0 generated from equation (10). A projection in the (a) y1-y2
plane, (b) y1-y3 plane, and (c) y2-y3 plane and a (d) three-dimensional plot. The data set of 500 points was
generated by adding mode 2 to mode 1 (with mode 2 having 1/3 the variance of mode 1) and adding a
small amount of Gaussian noise. Follows Hsieh [2000], with permission from Elsevier Science.
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Figure 10. Nonlinear canonical correlation analysis (NLCCA) mode 1 in x space shown as a string of
(densely overlapping) small circles. The theoretical mode X0 is shown as a thin solid curve, and the linear
canonical correlation analysis (CCA) mode is shown as a thin dashed line. The dots display the 500 data
points. The number of hidden neurons (see Appendix C) used is l2 = m2 = 3. Follows Hsieh [2000], with
permission from Elsevier Science.

Figure 11. NLCCA mode 1 in y space shown as a string of overlapping small circles. The thin solid
curve is the theoretical mode Y0, and the thin dashed line is the CCA mode. Follows Hsieh [2000], with
permission from Elsevier Science.
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PCA can again be applied to Y to get the SSA modes,

resulting in the multichannel SSA (MSSA) method, also

called the space-time PCA method or the extended EOF

(EEOF) method (though in typical EEOF applications, only

a small number of lags are used). For brevity, we will use

the term SSA to denote both SSA and MSSA. Commonly

used in the meteorological and oceanographic communities

[Ghil et al., 2002], SSA has also been used to analyze solar

activity [Watari, 1996; Rangarajan and Barreto, 2000] and

storms on Mars [Hollingsworth et al., 1997].

[42] Hsieh and Wu [2002] proposed the NLSSA method:

Assume SSA has been applied to the data set, and after

discarding the higher modes, we have retained the leading

PCs, x(t) = [x1, . . ., xl], where each variable xi (i = 1, . . ., l )
is a time series of length n. The variables x are the inputs to

the NLPCA(cir) network (Figure 2b). The NLPCA(cir),

with its ability to extract closed curve solutions, is partic-

ularly ideal for extracting periodic or wave modes in the

data. In SSA it is common to encounter periodic modes,

each of which has to be split into a pair of SSA modes

[Elsner and Tsonis, 1996], as the underlying PCA technique

is not capable of modeling a periodic mode (a closed curve)

by a single mode (a straight line). Thus two (or more) SSA

modes can easily be combined by NLPCA(cir) into one

NLSSA mode, taking the shape of a closed curve. When

implementing NLPCA(cir), Hsieh [2001a] found that there

were two possible configurations, a restricted configuration

Figure 12. NLCCA mode 1 between the tropical Pacific
(a) sea level pressure anomaly (SLPA) and (b) SSTA,
plotted as (overlapping) squares in the PC1-PC2-PC3 three-
dimensional (3-D) space. The linear (CCA) mode is shown
as a dashed line. The NLCCA mode and the CCA mode are
also projected onto the PC1-PC2 plane, the PC1-PC3 plane,
and the PC2-PC3 plane, where the projected NLCCA is
indicated by (overlapping) circles, and the CCA is indicated
by thin solid lines, and the projected data points (during
1950–2000) are shown by the scattered dots. There is no
time lag between the SLPA and the corresponding SSTA
data. The NLCCA solution was obtained with the number
of hidden neurons l2 = m2 = 2; with l2 = m2 = 1, only a linear
solution can be found. Adapted from Hsieh [2001b].

Figure 13. SLPA field when the canonical variate u of the
NLCCA mode 1 is at (a) its minimum (strong La Niña) and
(b) its maximum (strong El Niño). Contour interval is
0.5 mbar. Reprinted from Hsieh [2001b], with permission
from the American Meteorological Society.
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and a general configuration (see Appendix B). We will use

the general configuration here. After the first NLSSA mode

has been extracted, it can be subtracted from x to get the

residual, which can be input again into the same network to

extract the second NLSSA mode, and so forth for the higher

modes.

[43] To illustrate the difference between the NLSSA and

the SSA, consider a test problem with a nonsinusoidal wave

of the form

f tð Þ ¼
3 t ¼ 1; . . . ; 7

	1 t ¼ 8; . . . ; 28

8<
: ð14Þ

and periodic thereafter. This is a square wave with the peak

stretched to be 3 times as tall but only 1/3 as broad as the

trough; it has a period of 28. Gaussian noise with twice the

standard deviation as this signal was added, and the time

series was normalized to unit standard deviation (Figure 15).

The time series has 600 data points.

[44] SSA with window L = 50 was applied to this time

series, with the first eight eigenvectors shown in Figure 16.

The first eight modes individually accounted for 6.3, 5.6,

4.6, 4.3, 3.3, 3.3, 3.2, and 3.1% of the variance of the

augmented time series y. The leading pair of modes displays

oscillations of period 28, while the next pair manifests

oscillations at a period of 14, i.e., the first harmonic. The

nonsinusoidal nature of the SSA eigenvectors can be seen in

mode 2 (Figure 16), where the trough is broader and

shallower than the peak but nowhere as intense as in the

original stretched square wave signal. The PCs for modes

1–4 are also shown in Figure 17. Both the eigenvectors

(Figure 16) and the PCs (Figure 17) tend to appear in pairs,

each member of the pair having similar appearance except

for the quadrature phase difference.

[45] The first eight PC time series were served as inputs

to the NLPCA(cir) network, with m (the number of hidden

neurons in the encoding layer) ranging from 2 to 8 (and the

weight penalty parameter P = 1, see Appendix B). The MSE

dropped with increasing m, until m = 5, beyond which the

MSE showed no further improvement. The resulting NLSSA

mode 1 (with m = 5) is shown in Figure 18. Not surprisingly,

the PC1 and PC2 are united by the approximately circular

curve. What is more surprising are the Lissajous-like curves

found in the PC1-PC3 plane (Figure 18b) and in the PC1-

PC4 plane (Figure 18c), indicating relations between the

first SSA mode and the higher modes 3 and 4. (It is well

known that for two sinusoidal time series z1(t) and z2(t)

oscillating at frequencies w1 and w2, respectively, a plot of

the trajectory in the z1-z2 plane reveals a closed Lissajous

curve if and only if w2/w1 is a rational number.) There was no

relation found between PC1 and PC5, as PC5 appeared

independent of PC1 (Figure 18d). However, with less noise

in the input, relations can be found between PC1 and PC5

and even higher PCs.

[46] The NLSSA reconstructed component 1 (NLRC1) is

the approximation of the original time series by the NLSSA

mode 1. The neural network output x0 are the NLSSA

mode 1 approximation for the eight leading PCs. Multiply-

ing these approximated PCs by their corresponding SSA

eigenvectors and summing over the eight modes allows the

reconstruction of the time series from the NLSSA mode 1.

As each eigenvector contains the loading over a range of

lags, each value in the reconstructed time series at time tj
also involves averaging over the contributions at tj from the

various lags.

[47] In Figure 15, NLRC1 (curve f) from NLSSA is to be

compared with the reconstructed component (RC) from

SSA mode 1 (RC1) (curve c). The nonsinusoidal nature

of the oscillations is not revealed by the RC1 but is clearly

manifested in the NLRC1, where each strong narrow peak is

followed by a weak broad trough, similar to the original

stretched square wave. Also, the wave amplitude is more

steady in the NLRC1 than in the RC1. Using contributions

from the first two SSA modes, RC1-2 (not shown) is rather

similar to RC1 in appearance except for a larger amplitude.

[48] In Figure 15, curves d and e show the RC from SSA

using the first three modes and the first eight modes, respec-

tively. These curves, referred to as RC1-3 and RC1-8,

respectively, show increasing noise as more modes are

used. Among the RCs, with respect to the stretched square

Figure 14. SSTA field when the canonical variate v is at
(a) its minimum (strong La Niña) and (b) its maximum
(strong El Niño). Contour interval is 0.5�C. Reprinted from
Hsieh [2001b], with permission from the American
Meteorological Society.
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wave time series (curve b), RC1-3 attains the most favorable

correlation (0.849) and root-mean-square error (RMSE)

(0.245) but remains behind the NLRC1, with correlation

(0.875) and RMSE (0.225).

[49] The stretched square wave signal accounted for only

22.6% of the variance in the noisy data. For comparison,

NLRC1 accounted for 17.9%, RC1 accounted for 9.4%, and

RC1–2 accounted for 14.1% of the variance. With more

modes the RCs account for increasingly more variance, but

beyond RC1-3 the increased variance is only from fitting to

the noise in the data.

[50] When classical Fourier spectral analysis was per-

formed, the most energetic bands were the sine and cosine

at a period of 14, the two together accounting for 7.0% of

the variance. In this case the strong scattering of energy to

higher harmonics by the Fourier technique has actually

assigned 38% more energy to the first harmonic (at period

14) than to the fundamental period of 28. Next the data

record was slightly shortened from 600 to 588 points, so the

data record is exactly 21 times the fundamental period of

our known signal; this is to avoid violating the periodicity

assumption of Fourier analysis and the resulting spurious

energy scatter into higher spectral bands. The most ener-

getic Fourier bands were the sine and cosine at the funda-

mental period of 28, the two together accounting for 9.8%

of the variance, compared with 14.1% of the variance

accounted for by the first two SSA modes. Thus, even with

great care, the Fourier method scatters the spectral energy

considerably more than the SSA method.

[51] The SSA has also been applied to the multivariate

case by Hsieh and Wu [2002]. The tropical Pacific monthly

SLPA data [Woodruff et al., 1987] during 1950–2000 were

used. The first eight SSA modes of the SLPA accounted for

7.9, 7.1, 5.0, 4.9, 4.0, 3.1, 2.5, and 1.9%, respectively, of the

total variance of the augmented data. In Figure 19 the first

two modes displayed the Southern Oscillation (SO), the

east-west seesaw of SLPA at around the 50-month period,

while the higher modes displayed fluctuations at around the

QBO [Hamilton, 1998] average period of 28 months.

[52] The eight leading PCs of the SSA were then used as

inputs, x1, . . ., x8, to the NLPCA(cir) network, yielding the

NLSSA mode 1 for the SLPA. This mode accounts for

Figure 15. Noisy time series y containing a stretched square wave signal shown by curve a. Curve b
shows the stretched square wave signal, which we will try to extract from the noisy time series. Curves c,
d, and e are the reconstructed components (RC) from SSA leading modes, using one, three, and eight
modes, respectively. Curve f is the NLSSA mode 1 RC (NLRC1). The dashed lines show the means of
the various curves, which have been vertically shifted for better visualization.

RG1003 Hsieh: NEURAL NETWORK METHODS

15 of 25

RG1003



17.1% of the variance of the augmented data, more than the

variance explained by the first two SSA modes (15.0%).

This is not surprising as the NLSSA mode did more than

just combine the SSA modes 1 and 2: It also connects the

SSA mode 3 to the SSA modes 1 and 2 (Figure 20). In the

x1-x3 plane the bowl-shaped projected solution implies that

PC3 tends to be positive when PC1 takes on either large

positive or large negative values. Similarly, in the x2-x3
plane the hill-shaped projected solution indicates that PC3

tends to be negative when PC2 takes on large positive or

negative values. These curves reveal interactions between

the longer-timescale (50 months) SSA modes 1 and 2 and

the shorter-timescale (28 months) SSA mode 3.

[53] In the linear case of PCA or SSA, as the PC varies,

the loading pattern is unchanged except for scaling by the

PC. In the nonlinear case, as the NLPC varies, the loading

pattern changes as it does not generally lie along a fixed

eigenvector. The space-time loading patterns for the NLSSA

mode 1 at various values of the NLPC q (Figure 21)

manifest prominently the growth and decay of the negative

phase of the SO (i.e., negative SLPA in the eastern equa-

torial Pacific and positive SLPA in the west) as time

progresses. The negative phase of the SO here is much

shorter and more intense than the positive phase, in agree-

ment with observations and in contrast to the SSA modes 1

and 2 (Figures 19a and 19b), where the negative and

positive phases of the SO are about equal in duration and

magnitude.

[54] The tropical Pacific SSTA field was also analyzed by

the NLSSA method by Hsieh and Wu [2002]. Comparing

the NLSSA mode 1 loading patterns with the patterns

from the first two SSA modes of the SSTA, Hsieh and Wu

[2002] found three notable differences: (1) The presence of

warm anomalies for 24 months followed by cool anomalies

for 24 months in the first two SSA modes is replaced in the

NLSSA mode 1 by warm anomalies for 18 months followed

by cool anomalies for about 33 months; although the cool

anomalies can be quite mild for long periods, they can

develop into full La Niña cool episodes. (2) The El Niño

warm episodes are strongest near the eastern boundary, while

the La Niña episodes are strongest near the central equatorial

Pacific in the NLSSA mode 1, an asymmetry not found in

the individual SSA modes. (3) The magnitude of the peak

positive anomalies is significantly larger than that of the

peak negative anomalies in the NLSSA mode 1, again an

asymmetry not found in the individual SSA modes. All three

differences indicate that the NLSSA mode 1 is much closer

to the observed ENSO properties than the first two SSA

modes are.

[55] Furthermore, from the residual the NLSSA mode 2

has been extracted by Hsieh and Wu [2002] for the SLPA

field and for the SSTA field. For both variables the NLSSA

mode 2 has a 39-month period, considerably longer than the

QBO periods typically reported by previous studies using

linear techniques [Ghil et al., 2002]. Intriguingly, the

coupling between the SLPA and the SSTA fields for the

second nonlinear mode of a 39-month period was found to

be considerably stronger than their coupling for the first

nonlinear ‘‘ENSO’’ mode of a 51-month period [Hsieh and

Wu, 2002]. The NLSSA technique has also been used to

study the stratospheric equatorial winds for the QBO

phenomenon [Hsieh and Hamilton, 2003].

5. SUMMARY AND CONCLUSIONS

[56] This paper has reviewed the recent extension of the

feed forward NN from its original role for nonlinear

regression and classification to nonlinear PCA (for open

and closed curves), nonlinear CCA, and nonlinear SSA.

With examples from the atmosphere and the ocean, notably

the ENSO and the stratospheric QBO phenomena, these NN

methods can be seen to advance our understanding of

geophysical phenomena. To highlight only a few of the

many new findings by the nonlinear techniques, we note

that the nonlinearity in the tropical Pacific interannual

variability has been found to have increased in recent

decades [Hsieh, 2001b; Wu and Hsieh, 2003]; that besides

the main coupling at the ENSO timescale of about

51 months the strongest coupling between the tropical

Figure 16. First eight SSA eigenvectors as a function of
time lag: (a) mode 1 (solid curve) and mode 2 (dashed
curve), (b) mode 3 (solid curve) and mode 4 (dashed curve),
(c) mode 5 (solid curve) and mode 6 (dashed curve), and (d)
mode 7 (solid curve) and mode 8 (dashed curve).
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Pacific SLP and SST has been identified at a second

nonlinear mode of a 39-month period, this unusual period

itself arising from the interaction between the linear modes

with ENSO and QBO timescales [Hsieh and Wu, 2002]; and

that the phase of the stratospheric QBO can be better

defined, resulting in an enhancement of the Holton-Tan

effect [Hamilton and Hsieh, 2002]. The nonlinear PCA,

CCA, and SSA codes (written in MATLAB
1

are freely

downloadable from the author’s web site (http://www.

ocgy.ubc.ca/projects/clim.pred).

[57] PCA is widely used for two main purposes: (1) to

reduce the dimensionality of the data set and (2) to extract

features or recognize patterns from the data set. It is purpose

2 where PCA can be improved upon. Rotated PCA (RPCA)

sacrifices on the amount of variance explained, but by

rotating the PCA eigenvectors, RPCA eigenvectors can

point more toward local data clusters and can therefore be

more representative of physical states than the PCA eigen-

vectors. With the tropical Pacific SST as an example it was

shown that RPCA represented El Niño states better than

PCA, but neither method represented La Niña states well. In

contrast, nonlinear PCA (NLPCA) passed through both the

clusters of El Niño and La Niña states, thus representing

both well within a single mode; the NLPCA first mode also

accounted for more variance of the data set than the first

mode of PCA or RPCA.

[58] With PCA the straight line explaining the maximum

variance of the data is found. With NLPCA the straight line

is replaced by a continuous, open curve. NLPCA(cir)

(NLPCA with a circular node at the bottleneck) replaces

the open curve with a closed curve, so periodic or wave

solutions can be modeled. When dealing with data contain-

ing a nonlinear or periodic structure, the linear methods

scatter the energy into multiple modes, which is usually

prevented when the nonlinear methods are used.

[59] With two data fields x and y the classical CCA

method finds the canonical variate u (from a linear combi-

nation of the x variables) and its partner v (from the y

variables), so that the correlation between u and v is

maximized. CCA finds a line in the x space, where

fluctuations of the x data projected onto this line are most

highly correlated with fluctuations of y data projected onto

another line in the y space. NN can perform nonlinear CCA

(NLCCA), where u and v can be nonlinear functions of the

x and y variables, respectively. NLCCA finds a curve in the

x space where fluctuations of the x data projected onto this

curve are most highly correlated with fluctuations of y data

projected onto another curve in the y space.

Figure 17. PC time series of SSA (a) mode 1 (solid curve) and mode 2 (dashed curve), (b) mode 3
(solid curve) and mode 4 (dashed curve), and (c) q, the nonlinear PC from NLSSA mode 1. Note q is
periodic, here bounded between 	p and p radians.
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[60] For univariate and multivariate time series analysis

the PCA method has been extended to the SSA technique.

NN can also be used to perform nonlinear SSA (NLSSA):

The data set is first condensed by the SSA; then several

leading PCs from the SSA are chosen as inputs to the

NLPCA(cir) network, which extracts the NLSSA mode by

nonlinearly combining the various SSA modes.

[61] In general, NLSSA has several advantages over

SSA: (1) The PCs from different SSA modes are linearly

uncorrelated; however, they may have relationships that can

be detected by the NLSSA. (2) Although the SSA modes

are not restricted to sinusoidal oscillations in time like the

Fourier spectral components, in practice, they are inefficient

in modeling nonsinusoidal periodic signals (e.g., the

stretched square wave in section 4), scattering the signal

energy into many SSA modes, similar to the way Fourier

spectral analysis scatters the energy of a nonsinusoidal wave

to its higher harmonics. The NLSSA recombines the SSA

modes to extract the nonsinusoidal signal, alleviating the

spurious transfer of energy to higher frequencies. In the

tropical Pacific the NLSSA mode 2 of both the SSTA field

and the SLPA field yielded a 39-month signal, considerably

lower in frequency than the QBO frequency signals found

by linear methods.

Figure 18. First NLSSA mode indicated by the (overlapping) small circles, with the input data shown
as dots. The input data were the first eight PCs from the SSA of the time series y containing the stretched
square wave. The NLSSA solution is a closed curve in an eight-dimensional PC space. The NLSSA
solution projected onto (a) the PC1-PC2 plane, (b) the PC1-PC3 plane, (c) the PC1-PC4 plane, and (d) the
PC1-PC5 plane.

Figure 19. (a–f ) SSA modes 1–6 for the tropical Pacific sea level pressure anomalies (SLPA), respectively. The contour
plots display the SSA space-time eigenvectors (loading patterns), showing the SLPA along the equator as a function of the
lag. Solid contours indicate positive anomalies, and dashed contours indicate negative anomalies, with the zero contour
indicated by the thick solid curve. In a separate graph beneath each contour plot the PC of each SSA mode is also plotted as
a time series (where each tick mark on the abscissa indicates the start of a year). The time of the PC is synchronized to the
lag time of 0 month in the space-time eigenvector. Figure 19 courtesy of A. Wu.
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Figure 19
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[62] In summary, the linear methods currently used are

often too simplistic to describe complicated real-world

systems, resulting in a tendency to scatter a single oscilla-

tory phenomenon into numerous modes or higher harmon-

ics. This would introduce unphysical spatially standing

patterns or spurious high-frequency energy. These problems

are shown to be largely alleviated by the use of nonlinear

methods.

[63] The main disadvantage of NN methods compared

with the linear methods lies in their instability or nonunique-

ness; with local minima in the cost function, optimizations

started from different initial parameters often end up at

different minima for the NN approach. A number of opti-

mization runs starting from different random initial param-

eters is needed, where the best run is chosen as the solution;

even then, there is no guarantee that the global minimum has

been found. Proper scaling of the input data is essential to

avoid having the nonlinear optimization algorithm searching

for parameters with a wide range of magnitudes. Regulari-

zation by adding weight penalty terms to the cost functions

generally improved the stability of the NN methods. Never-

theless, for short records with noisy data one may not be able

to find a reliable nonlinear solution, and the linear solution

may be the best one can extract from of the data. The time

averaging data (e.g., averaging daily data to yield monthly

data) may also, through the central limit theorem, severely

reduce the nonlinearity which can be detected [Yuval and

Hsieh, 2002].

[64] Hence, whether the nonlinear approach has a

significant advantage over the linear approach is highly

dependent on the data set: The nonlinear approach is

generally ineffective if the data record is short and noisy

or the underlying physics is essentially linear. For the

Earth’s climate, tropical variability such as ENSO and

the stratospheric QBO have strong signal-to-noise ratio

and are handled well by the nonlinear methods; in

contrast, in the middle and high latitudes the signal-to-

noise ratio is much weaker, rendering the nonlinear

methods less effective. Presently, the number of hidden

neurons in the NN and the weight penalty parameters are

often determined by a trial and error approach; adopting

techniques such as generalized cross validation [Yuval,

2000] and information criterion [Burnham and Anderson,

1998] may help in the future to provide more guidance

on the choice of the most appropriate NN architecture.

While NN has been widely used as the main workhorse

in nonlinear multivariate and time series analysis, new

emerging techniques such as kernel-based methods

[Vapnik, 1998] may play an increasingly important role

in the future.

APPENDIX A: NLPCA MODEL

[65] In Figure 2a the transfer function f1 maps from x, the

input column vector of length l, to the first hidden layer (the

Figure 20. NLSSA mode 1 for the tropical Pacific SLPA. The PCs of SSA modes 1–8 were used as
inputs x1, . . ., x8 to the NLPCA(cir) network, with the resulting NLSSA mode 1 shown as (densely
overlapping) crosses in the x1-x2-x3 3-D PC space. The projections of this mode onto the x1-x2, x1-x3, and
x2-x3 planes are denoted by the (densely overlapping) small circles, and the projected data are shown by
dots. For comparison, the linear SSA mode 1 is shown by the dashed line in the 3-D space and by the
projected solid lines on the 2-D planes. From Hsieh and Wu [2002].
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encoding layer), represented by h(x), a column vector of

length m, with elements

h
xð Þ
k ¼ f1 W xð Þxþ b xð Þ

� �
k

h i
; ðA1Þ

where (with the capital bold font reserved for matrices and

the small bold font for vectors), W(x) is an m � l weight

matrix, b(x) is a column vector of length m containing the

bias parameters, and k = 1, . . ., m. Similarly, a second

transfer function f2 maps from the encoding layer to the

bottleneck layer containing a single neuron, which repre-

sents the nonlinear principal component u,

u ¼ f2 w xð Þ � h xð Þ þ b
xð Þ

� �
: ðA2Þ

The transfer function f1 is generally nonlinear (usually the

hyperbolic tangent or the sigmoidal function, though the

exact form is not critical), while f2 is usually taken to be

the identity function.

Figure 21. SLPA NLSSA mode 1 space-time loading patterns for various values of the NLPC q: (a) q =
0�, (b) q = 60�, (c) q = 120�, (d) q = 180�, (e) q = 240�, and (f) q = 300�. The contour plots display the
SLPA along the equator as a function of the lag time. Contour interval is 0.2 mbar. Figure 21 courtesy of
A. Wu.
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[66] Next a transfer function f3 maps from u to the final

hidden layer (the decoding layer) h(u),

h
uð Þ
k ¼ f3 w uð Þuþ b uð Þ

� �
k

h i
; ðA3Þ

(k = 1, . . ., m), followed by f4 mapping from h(u) to x0, the

output column vector of length l, with

x0i ¼ f4 W uð Þh uð Þ þ b
uð Þ

� �
i

h i
: ðA4Þ

[67] The cost function J = hkx 	 x0k2i is minimized by

finding the optimal values of W(x), b(x), w(x), b(x), w(u), b(u),

W(u), and b(u). The mean-square error (MSE) between the

NN output x0 and the original data x is thus minimized. The

NLPCA was implemented using the hyperbolic tangent

function for f1 and f3 and the identity function for f2 and

f4, so that

u ¼ w xð Þ � h xð Þ þ b
xð Þ ðA5Þ

x0i ¼ W uð Þh uð Þ þ b
uð Þ

� �
i
: ðA6Þ

[68] Furthermore, we adopt the normalization conditions

that hui = 0 and hu2i = 1. These conditions are approxi-

mately satisfied by modifying the cost function to

J ¼ hkx	 x0k2i þ hui2 þ hu2i 	 1
� �2

: ðA7Þ

The total number of (weight and bias) parameters used by

the NLPCA is 2lm + 4m + l + 1, though the number of

effectively free parameters is two less because of the

constraints on hui and hu2i.
[69] The choice of m, the number of hidden neurons in

both the encoding and decoding layers, follows a general

principle of parsimony. A larger m increases the nonlinear

modeling capability of the network but could also lead to

overfitted solutions (i.e., wiggly solutions which fit to the

noise in the data). If f4 is the identity function and m = 1,

then equation (A6) implies that all x0i are linearly related to a

single hidden neuron; hence there can only be a linear

relation between the x0i variables. Thus, for nonlinear

solutions we need to look at m � 2. It is also possible to

have more than one neuron at the bottleneck layer. For

instance, with two bottleneck neurons the mode extracted

will span a 2-D surface instead of a 1-D curve.

[70] The nonlinear optimization was carried out by the

MATLAB function ‘‘fminu,’’ a quasi-Newton algorithm.

Because of local minima in the cost function, there is no

guarantee that the optimization algorithm reaches the global

minimum. Hence a number of runs with random initial

weights and bias parameters was made. Also, 20% of the

data were randomly selected as validation data and withheld

from the training of the NNs. Runs where the MSE was

larger for the validation data set than for the training data set

were rejected to avoid overfitted solutions. Then the run

with the smallest MSE was selected as the solution.

[71] In general, the most serious problem with NLPCA is

the presence of local minima in the cost function. As a

result, optimizations started from different initial parameters

often converge to different minima, rendering the solution

unstable or nonunique. Regularization of the cost function

by adding weight penalty terms is an answer.

[72] The purpose of the weight penalty terms is to limit

the nonlinear power of the NLPCA, which came from the

nonlinear transfer functions in the network. The transfer

function tanh has the property that given x in the interval

[	L, L], one can find a small enough weight w, so that

tanh(wx) � wx; that is, the transfer function is almost linear.

Similarly, one can choose a large enough w so that tanh

approaches a step function, thus yielding Z-shaped solu-

tions. If we can penalize the use of excessive weights, we

can limit the degree of nonlinearity in the NLPCA solution.

This is achieved with a modified cost function

J ¼ hkx	 x0k2i þ hui2 þ hu2i 	 1
� �2þP

X
ki

W
xð Þ

ki

� �2
; ðA8Þ

where P is the weight penalty parameter. A large P increases

the concavity of the cost function and forces the weights

W(x) to be small in magnitude, thereby yielding smoother

and less nonlinear solutions than when P is small or zero.

Hence increasing P also reduces the number of effectively

free parameters of the model. The percentage of the

variance explained by the NLPCA mode is simply

100 %� 1	 hkx	 x0k2i
hkx	 xk2i

 !
; ðA9Þ

with x being the mean of x.

APPENDIX B: NLPCA(cir) MODEL

[73] At the bottleneck in Figure 2b, analogous to u in

equation (A5), we calculate the prestates po and qo by

po ¼ w xð Þ � h xð Þ þ b
xð Þ

qo ¼ ~w xð Þ � h xð Þ þ ~b xð Þ; ðB1Þ

where w(x) and ~w(x) are weight parameter vectors and b(x)

and ~b(x) are bias parameters. Let

r ¼ p2o þ q2o
� �1=2

; ðB2Þ

then the circular node is defined with

p ¼ po=r q ¼ qo=r; ðB3Þ

satisfying the unit circle equation p2 + q2 = 1. Thus, even

though there are two variables p and q at the bottleneck,

there is only one angular degree of freedom from q
(Figure 2b) because of the circle constraint. The mapping

from the bottleneck to the output proceeds as in Appendix A,

with equation (A3) replaced by

h
uð Þ
k ¼ tanh w uð Þpþ ~w uð Þqþ b uð Þ

� �
k

h i
: ðB4Þ

[74] When implementing NLPCA(cir), Hsieh [2001a]

found that there are actually two possible configurations:

(1) A restricted configuration where the constraints hpi =

0 = hqi are applied and (2) a general configuration without
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the constraints. With configuration 1 the constraints can be

satisfied approximately by adding the extra terms hpi2 and

hqi2 to the cost function. If a closed curve solution is

sought, then configuration 1 is better than configuration 2

as it has effectively two fewer parameters. However, con-

figuration 2, being more general than configuration 1, can

more readily model open curve solutions like a regular

NLPCA. The reason is that if the input data mapped onto

the p-q plane cover only a segment of the unit circle instead

of the whole circle, then the inverse mapping from the p-q

space to the output space will yield a solution resembling an

open curve. Hence, given a data set, configuration 2 may

yield either a closed curve or an open curve solution. Its

generality comes with a price, namely, that there may be

more local minima to contend with. The number of param-

eters is 2lm + 6m + l + 2; though under configuration 1 the

number of effectively free parameters is two less because of

the imposed constraints. Unlike NLPCA, which reduces to

PCA when only linear transfer functions are used, NLPCA

(cir) does not appear to have a linear counterpart.

APPENDIX C: NLCCA MODEL

[75] In Figure 7 the inputs x and y are mapped to the

neurons in the hidden layer:

h
xð Þ
k ¼ tanh W xð Þxþ b xð Þ� �

k

h i
h yð Þ
n ¼ tanh W yð Þyþ b yð Þ� �

n

h i
;

ðC1Þ

where W(x) and W(y) are weight matrices and b(x) and b(y)

are bias parameter vectors. The dimensions of x, y, h(x),

and h(y) are l1, m1, l2, and m2, respectively.

[76] The canonical variate neurons u and v are calculated

from a linear combination of the hidden neurons h(x) and

h(y), respectively, with

u ¼ w xð Þ � h xð Þ þ b
xð Þ

v ¼ w yð Þ � h yð Þ þ b
yð Þ
: ðC2Þ

These mappings are standard feed forward NNs and are

capable of representing any continuous functions mapping

from x to u and from y to v to any given accuracy, provided

large enough l2 and m2 are used.

[77] To maximize cor(u, v), the cost function J =

	 cor(u, v) is minimized by finding the optimal values of

W(x), W(y), b(x), b(y), w(x), w(y), b(x), and b(y). We also adopt

the constraints hui = 0 = hvi and hu2i = 1 = hv2i, which are

approximately satisfied by modifying the cost function to

J ¼ 	cor u; vð Þ þ hui2 þ hvi2 þ hu2i1=2 	 1
� �2

þ hv2i1=2 	 1
� �2

:

ðC3Þ

[78] On the right side of Figure 7 the top NN (a standard

feed forward NN) maps from u to x0 in two steps:

h
uð Þ
k ¼ tanh w uð Þuþ b uð Þ

� �
k

h i
x0 ¼ W uð Þh uð Þ þ b

uð Þ
: ðC4Þ

The cost function J1 = hkx0 	 xk2i is minimized by finding

the optimal values of w(u), b(u), W(u), and b(u). The MSE

between the NN output x0 and the original data x is thus

minimized.

[79] Similarly, the bottom NN on the right side of Figure 7

maps from v to y0:

h vð Þ
n ¼ tanh w vð Þvþ b vð Þ

� �
n

h i
y0 ¼ W vð Þh vð Þ þ b

vð Þ
; ðC5Þ

with the cost function J2 = hky0 	 yk2i minimized. The total

number of parameters used by the NLCCA is 2(l1l2 +

m1m2) + 4(l2 + m2) + l1 + m1 + 2, though the number of

effectively free parameters is four less because of the

constraints on hui, hvi, hu2i, and hv2i.
[80] A number of runs mapping from (x, y) to (u, v),

using random initial parameters, were performed. The run

attaining the highest cor(u, v) was selected as the solution.

Next a number of runs (mapping from u to x0) was used to

find the solution with the smallest MSE in x0. Finally, a

number of runs were used to find the solution yielding the

smallest MSE in y0. After the first NLCCA mode has been

retrieved from the data, the method can be applied again to

the residual to extract the second mode and so forth.

[81] That the CCA is indeed a linear version of this

NLCCA can be readily seen by replacing the hyperbolic

tangent transfer functions in equations (C1), (C4), and (C5)

with the identity function, thereby removing the nonlinear

modeling capability of the NLCCA. Then the forward maps

to u and v involve only a linear combination of the original

variables x and y, as in the CCA.

[82] With three NNs in NLCCA, overfitting can occur in

any of the three networks. With noisy data the three cost

functions are modified to

J ¼ 	cor u; vð Þ þ hui2 þ hvi2 þ hu2i1=2 	 1
� �2

þ hv2i1=2 	 1
� �2

þ P
X
ki

W
xð Þ

ki

� �2
þ
X
nj

W
yð Þ

nj

� �2" #
; ðC6Þ

J1 ¼ hkx0 	 xk2i þ P1

X
k

w
uð Þ
k

� �2
; ðC7Þ

J2 ¼ hky0 	 yk2i þ P2

X
n

w vð Þ
n

� �2
; ðC8Þ

where P, P1, and P2 are nonnegative weight penalty

parameters. Since the nonlinearity of a network is controlled

by the weights in the hyperbolic tangent transfer function,

only those weights are penalized.
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