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[1] To investigate the potential for improving hybrid coupled models (HCM) of the
tropical Pacific by the use of neural network (NN) methods for nonlinear regression, NN
was introduced for the nonlinear parameterization of the subsurface temperature in the
Lamont ocean model and for the nonlinear estimation of the wind stress anomalies (WSA)
from the sea surface temperature anomalies (SSTA). For comparison, corresponding linear
regression (LR) models were also built. By combining the NN or the LR version of the
ocean model and the atmospheric model, four HCMs resulted. For the coupled model
Niño3 SSTA spectrum, using NN in the ocean model produced a much broader spectrum
than using LR, which gave basically a single narrow spectral peak. Using NN in the
atmospheric model in addition to the ocean model further broadened the SSTA spectrum,
yielding a spectrum with two main peaks as observed. Principal component analysis
(PCA) and nonlinear PCA (NLPCA) were used to analyze the SSTA and WSA. By
comparing the NLPCA mode 1 and the PCA mode 1, we found that all the coupled models
(including the original Lamont coupled model) were too linear compared to the
observations. However, using NN in the ocean model and in the atmospheric model, we
were able to alleviate the weak nonlinearity in the coupled models.

Citation: Li, S., W. W. Hsieh, and A. Wu (2005), Hybrid coupled modeling of the tropical Pacific using neural networks, J. Geophys.

Res., 110, C09024, doi:10.1029/2004JC002595.

1. Introduction

[2] Numerous models have been developed to study and
to forecast the El Niño–Southern Oscillation (ENSO)
phenomenon, the most important interannual variability in
the tropical Pacific coupled atmosphere-ocean climate sys-
tem. With complexity laying somewhere between the com-
putationally demanding coupled general circulation models
and simple models, ‘‘intermediate’’ coupled models [e.g.,
Zebiak and Cane, 1987] are widely used. Alternatively,
ENSO models can be divided into three classes: dynamical
coupled models, statistical models and hybrid coupled
models [Barnston et al., 1994].
[3] A hybrid coupled model (HCM) consists of a dynam-

ical ocean model coupled to a statistical atmospheric model
[Syu et al., 1995; Barnett et al., 1993; Tang and Hsieh,
2002]. The design of the hybrid coupled model uses the fact
that the ocean possesses long-term memory in the coupled
atmosphere-ocean system, while the atmosphere can be
treated as a fast adjusting component, so a steady state
statistical model for the atmosphere can be used. The hybrid
coupled model uses an empirical atmospheric component,
based on the assumption that for monthly or longer time-
scales, contemporaneous correlation between wind stress
and oceanic variables such as sea surface temperatures
(SST) is associated with the atmosphere’s rapid nonlocal
adjustment to the oceanic anomaly patterns throughout the
basin [Syu et al., 1995]. The main merits of a hybrid

coupled model are (1) lower computing cost than a full
coupled general circulation model (GCM) [Blank et al.,
1997], (2) The climate drift problem is avoided, and (3)
comparable, or even better ENSO simulation and prediction
skills relative to a coupled GCM [Palmer and Anderson,
1994].
[4] There are two important aspects affecting the HCM

performance: One is the construction of the empirical
atmospheric model, i.e., the method used to estimate the
surface wind stress field from a given ocean state. Most of
the empirical atmospheric models used in HCMs so far are
linear statistical models and the methods used include
correlation [Latif and Villwock, 1990], linear regression
with empirical orthogonal function (EOF) modes [Barnett
et al., 1993] and singular value decomposition (SVD) [Syu
et al., 1995]. Tang et al. [2001] tried to improve the
empirical atmospheric model by a nonlinear regression
approach using artificial neural network (NN) methods.
This NN atmosphere was then coupled to a dynamical
ocean model for ENSO prediction [Tang and Hsieh, 2002,
2003]. The other aspect affecting the HCM performance is
the dynamical ocean model, which in this study was adapted
from the ocean component of the Lamont coupled model
[Zebiak and Cane, 1987]. The original Lamont ocean model
used a simple parameterization scheme for the subsurface
temperature Tsub, which has been replaced here by an NN
nonlinear regression scheme. For comparison, linear regres-
sion (LR) was also tested in place of NN.
[5] Upon coupling the oceanic and atmospheric models, a

total of four HCMs resulted: (1) the Lamont ocean model
with a nonlinear NN Tsub parameterization coupled to a
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nonlinear NN atmosphere (henceforth referred to as the
NONA HCM), (2) the ocean model with NN coupled to an
LR atmospheric model (the NOLA HCM), (3) the ocean
model with LR coupled to an NN atmosphere (LONA), and
(4) the ocean model with LR coupled to an LR atmosphere
(LOLA). We compared these four HCMs to see the effects
from incorporating nonlinearity in the Tsub parameterization
and in the atmospheric response to the SST, leading to a
better understanding of the role of nonlinearity in interme-
diate coupled models of ENSO.
[6] This paper is organized as follows: The data and

models used are described in section 2. In section 3, the
interannual variability of the four HCMs over a 167-year
period is examined. In section 4, principal component
analysis (PCA) and nonlinear principal component analysis
(NLPCA) are applied to the SST anomalies (SSTA) simu-
lated by the four HCMs, and the results are compared with
observations. In section 5, NLPCA is applied to the wind
stress anomalies simulated by the HCMs.

2. Data and Models

2.1. Data

[7] Themonthlywind stress on a 2�� 2� grid for the period
of January 1964 to January 2002 was obtained from Florida
State University (FSU). The monthly SST came from the
reconstructed historical SST data set of Smith et al. [1996] for
the period of January 1950 to December 2001 with a 2� by 2�
resolution over the global oceans. The SSTwere converted to
the Lamont ocean model grid using linear interpolation.

2.2. Neural Network Models

[8] NN is a nonparametric statistical model for extracting
nonlinear relations in the data [Bishop, 1995; Hsieh and
Tang, 1998]. Figure 1a shows a common NN model
configuration for nonlinear regression. A ‘‘hidden’’ layer
of variables, called ‘‘neurons’’ in NN jargon, is placed
between the input and output variables. The jth hidden
neuron is assigned the value yj, given by

yj ¼ tanh
X
i

wijxi þ bj

 !
;

where xi is the ith input values, wij and bj are the weight and
bias parameters, respectively. The hyperbolic tangent
function is used as the transfer function (other forms of
the transfer function can also be used, since it only serves as
a basis function).
[9] The output neuron z is calculated by a linear combi-

nation of the neurons in the hidden layer, i.e.,

z ¼
X
j

~wjyj þ ~b :

To construct a NN model for nonlinear regression, the
predictor variables are the inputs, and the predictands are
the outputs of the network.
[10] The cost function

J ¼ z� zobsð Þ2
D E

þ p
X
l

W 2
l

has a first term measuring the mean square error between
the model output z and the observed data zobs, and a second
term penalizing the use of excessive weight and bias
parameters, where p is a penalty parameter and Wl

represents all the weight and bias parameters of the NN.
The NN model is trained by finding the optimal parameters
wij, ~wj, bj and ~b as the cost function is minimized. An
ensemble of 200 NN models with random initial parameters
were trained, then the 30 NN models with the smallest cost
functions were selected, so the final output of the NN model
was actually the ensemble average of the 30 individual NN

Figure 1. (a) Schematic diagram of a neural network (NN)
model for nonlinear regression, with one ‘‘hidden’’ layer of
neurons (i.e., variables) (denoted by circles) sandwiched
between the input layer x and the output layer z. Increasing
the number of hidden neurons y increases the number of
model parameters. In this paper, the output layer has only a
single neuron. (b) Schematic diagram of the NN model for
nonlinear principal component analysis (NLPCA). There
are three layers of hidden neurons sandwiched between the
input layer x on the left and the output layer x0 on the right.
Next to the input layer is the encoding layer, followed by
the ‘‘bottleneck’’ layer (with a single neuron u), which is
then followed by the decoding layer. Effectively, a nonlinear
function u = F(x) maps from the higher dimension input
space to the lower dimension bottleneck space, followed by
an inverse transform x0 = G(u) mapping from the bottleneck
space back to the original space, as represented by the
outputs. To make the outputs as close to the inputs as
possible, the cost function J = hkx � x0k2i (i.e., the mean
square error, MSE) is minimized. Data compression is
achieved by the bottleneck, yielding the nonlinear principal
component (NLPC) u. See Hsieh [2004] for details. In
sections 4 and 5, three neurons were used in each of the
encoding and decoding layers, and there were six (seven)
input and six (seven) output neurons in section 4 (section 5).
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model outputs. Ensembles can alleviate the problem of
multiple minima in the cost function, commonly found with
NN models [Hsieh and Tang, 1998].

2.3. Ocean Model

[11] The ocean model used in this research is the ocean
component of the Lamont coupled model (henceforth the
Lamont ocean model) but with a new parameterization of
the subsurface temperature Tsub and two extra terms added to
the temperature equation for the surface layer. It is a reduced
gravity model consisting of an active upper layer with a fixed
depth surface mixed layer, overlying a motionless deep layer,
covering the tropical Pacific from 29�S to 29�N. The resolu-
tion of ocean dynamics is 2� in longitude and 0.5� in latitude,
but that of SST physics is 5.625� in longitude and 2� in
latitude. The integration time step is 10 days.
[12] The temperature equation for the surface layer in the

Lamont model [Zebiak and Cane, 1987, equation A11] has
two extra terms added [Boulanger and Menkes, 2001]:

@T

@t
¼ � u1 �

#�T þ Tð Þ � �u1 �

#

T � M �ws þ wsð Þ �M �wsð Þf g�Tz

�M �ws þ wsð ÞT � Te

H1

� asT � KT@zT þ AHr2 T ; ð1Þ

where T (�T ) is the anomalous (mean) SST; u1 (�u1) andws (�ws)
are the anomalous (mean) horizontal currents and upwelling,
respectively;M(x) is a function which equals x if x is positive
and equals zero otherwise, the entrainment temperature
anomaly Te=gTsub+ (1�g)T; andas is a damping parameter.
The two extra terms added are the vertical mixing term
�KT@zT and the horizontal diffusion term AHrHT, where we
take KT = 2.9 � 10�5 m s�1 and AH = 2000 m2 s�1.
[13] In the Lamont ocean model, Tsub, the ocean temper-

ature anomaly below the mixed layer, is parameterized in
terms of the thermocline depth anomaly h:

Tsub ¼
A1 tanh B1

�hþ h
� �� 	

� tanh B1
�h

� �
 �
; h � 0

A2 tanh B2
�h� h
� �� 	

� tanh B2
�h

� �
 �
; h < 0 ;

8<
: ð2Þ

where A1 = 28�C, B1 = 0.0125 m�1, A2 = �40�C, and B2 =
0.03 m�1, and �h(x) is specified using an observed equatorial
thermocline distribution after Colin et al. [1971].
[14] In this paper, we used an NN or LR model to

estimate Tsub from h. First the Lamont ocean model was
forced by the FSU wind stress anomalies from 1964 to
2001, and the model thermocline depth anomalies and
current anomalies were extracted. Tsub was then inversely
estimated [Zhang et al., 2004] from the SST anomaly
equation (1) from 1964 to 2001 using the simulated current
anomalies and the observed monthly SST fields from Smith
et al. [1996].
[15] Principal component analysis (PCA), i.e., empirical

orthogonal function (EOF) analysis, was first applied to the
thermocline depth anomaly h(x, y, t) and the subsurface
temperature anomaly Tsub(x, y, t):

h x; y; tð Þ ¼
X
n

an tð Þ fn x; yð Þ ;

Tsub x; y; tð Þ ¼
X
n

cn tð Þ en x; yð Þ ;

where n indicates the nth mode. For the thermocline depth
anomaly h, the first four PCA modes accounted for 48% of
the variance, while for the Tsub, the first five modes
accounted for 69% of the variance. The NN used has at
most four input neurons, namely the first four principal
components (PCs) an(t) for h, and the single output neuron
is one of the five leading PCs cn(t) for Tsub, i.e., a different
NN model was used to predict each predictand cn, using at
most four an as predictors, with no time lag between the
predictors and the predictand. Since the NN model is
performing nonlinear regression, we checked the role of
nonlinearity by building a corresponding linear regression
(LR) model for comparison.
[16] Data from 1964 to 2001 were used to train the NN

model or the corresponding LR model. For each Tsub PC, we
used cross validation to find out the number of hidden
neurons, the number of PC predictors and the weight
penalty parameter p for the best NN result, and the number
of PC predictors for the best LR result. Cross validation was
performed as follows: First, the data record was divided into
five equal segments. One segment was selected to be the
test data and the rest, training data. The NN (or LR) model
was built using the training data only, and model simula-
tions on the independent test data were obtained. Next,
another segment was selected as the test data, and a new
model built. This was repeated until the entire data record
had been used for independent testing. The model test
results on the entire record were compared with the ob-
served Tsub PCs. From cross validation, the optimal NN or
LR Tsub model was obtained.

2.4. Atmospheric Model

[17] The FSU wind stress anomalies were first smoothed
by a 3-month running mean, then the ocean models were
driven by the FSU wind stress anomalies from 1964 to
2001. PCA was applied to the model SSTA T(x, y, t), and
combined PCA to both components of the FSU wind stress
anomalies T (x, y, t):

T x; y; tð Þ ¼
X
n

~an tð Þ ~fn x; yð Þ ;

T x; y; tð Þ ¼
X
n

~cn tð Þ~en x; yð Þ :

Table 1. Cross-Validated Correlation and Root-Mean-Square

Error Between the Predicted Wind Stress Anomaly PCs and the

Observed PCs

SSTAa
Atmospheric

Modelb
Correlationc

PC1 PC2 PC3 PC4 PC5 PC6 PC7

NN NN 0.836 0.224 0.531 0.085 0.125 0.322 0.207
(2.04) (3.26) (2.71) (2.60) (2.12) (1.91) (1.95)

NN LR 0.821 0.144 0.349 0.028 �0.007 0.073 0.274
(2.12) (3.29) (2.99) (2.58) (2.15) (2.01) (1.80)

LR NN 0.835 0.276 0.481 0.010 0.099 0.319 0.286
(2.05) (3.21) (2.82) (2.64) (2.13) (1.91) (1.83)

LR LR 0.804 0.194 0.414 �0.025 0.101 0.096 0.075
(2.21) (3.25) (2.92) (2.63) (2.13) (2.00) (1.91)

aNN or LR means that the predictors are the SSTA from the ocean model
with an NN or LR Tsub parameterization.

bNN or LR indicates the method used to estimate the wind stress
anomaly PCs from the SSTA.
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For T, the first four PCA modes accounted for 91.6% and
91.8% of the variance for the ocean model with NN and LR
Tsub parameterization, respectively, while forT, the first seven
modes contained 39.5% of the variance. The NN or LR used
has atmost four inputs, namely, the first four PCs forT, and the
single output is one of the first seven PCs for T.
[18] Table 1 shows the cross-validated skills for the first

seven wind stress PCs attained by the NN and LR models
where the predictors were the SSTA PCs from the ocean
model with anNNor LRTsub parameterization. In general, the
NN atmospheric model predicted the wind stress PCs slightly
better than the LR. PC2 was harder to predict than PC3, and
PC4 was the most difficult. Henceforth, only if the cross-
validated correlation of thewind stress PC is over 0.1,will this

PC be included in the atmospheric model, i.e., PC4will not be
used in all the atmospheric models, and some of the higher
PCs are also excluded from the LR atmospheric model.

3. Interannual Variability From the Coupled
Models

[19] As common with statistical atmospheric models, the
variance of the predicted wind stress was lower than that
observed, hence the estimated wind stress were scaled up by
an adjustable scale factor m [Barnett et al., 1993; Tang and
Hsieh, 2002]. To determine m, each HCM was repeatedly
integrated for 167 years, with m ranging from 1.10 to 1.30 at
increments of 0.01. Among them, the model with overall the

Figure 2. Niño3 (solid line) and Niño34 (dotted line) SSTA from the (a) NONA, (b) NOLA, (c) LONA
and (d) LOLA HCMs and (e) observations.
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most realistic model Nino3 and Nino34 SSTA indices, and
La Niña and El Niño SSTA patterns (as determined by the
nonlinear principal component analysis method described in
the following section) was selected. Hence m was chosen to
be 1.19, 1.26, 1.21, and 1.19 in the NONA, NOLA, LONA
and LOLA HCMs, respectively.
[20] From construction, the statistical atmospheric models

only capture the low-frequency relationship between SSTA
and the wind stress. However, high-frequency wind vari-
ability is important for the model to exhibit irregular
behavior. Neelin et al. [1998] pointed out that there is a
greater likelihood for the irregularity of ENSO to be due to
external uncoupled atmospheric noise as opposed to internal
nonlinear dynamics. In order to produce irregular behavior,
‘‘atmospheric noise,’’ i.e., high-frequency wind variability
with a monthly timescale was added as by Kirtman and
Schopf [1998]. The difference between the unsmoothed
FSU wind stress from 1964 to 2001 and its 9-month running
mean was taken as the atmospheric noise. At the initial time
of the coupled model run, a random date was selected to
begin sampling the noise data set. Each successive simula-
tion month would sample each successive month of noise,
continuing for a period of time until a new random start date
was chosen.
[21] In this section, we present results of the 167-year

coupling experiments. The ocean model was first forced by
the FSU wind stress for 37 years, then coupled to the

atmosphere and integrated forward for 167 years (2004
months). Figure 2 shows the 450-month long records of
the area-averaged SSTA for the regions Niño3 (5�N–5�S,
150�W–90�W) and Niño34 (5�N–5�S, 170�W–120�W).
The oscillations in the LONA and LOLA models (where the
ocean used LR Tsub parameterization) appear to be more
regular in structure with smaller interepisode spacing than
the oscillations in NONA and NOLA (where the ocean used
NN Tsub parameterization). That warm episodes tend to have
larger amplitude than cool episodes in the more nonlinear
models (Figure 2) is consistent with An and Jin [2004],
where nonlinear dynamical heating terms are shown to
strengthen the warm episodes relative to the cool ones.
[22] If we define a strong El Niño as a warm episode where

the Niño3 anomaly index is greater than 1.5�C, then over 167
years there were 20, 7, 16, 13 strong El Niño episodes in the
NONA, NOLA, LONA and LOLA model runs, respectively.
The standard deviation of Niño3 (Niño34) SSTA for the
NONA, NOLA, LONA, LOLAmodels and observation were
0.74 (0.70), 0.63 (0.60), 0.77(0.72), 0.82 (0.76), 0.88 (0.78),
respectively. Although among the four HCMs, NONA had
more strong warm episodes than others, the standard devia-
tion of Niño3 (Niño34) SSTA for NONAwas not the biggest
because there was more interepisode spacing, as the oscil-
lations in NONAwere more irregular than in the others.
[23] Figure 3 shows the Fourier spectral analysis of

the Niño3 SSTA from the four HCMs over 167 years

Figure 3. Autospectrum of the Niño3 SSTA time series from the (a) NONA, (b) NOLA, (c) LONA and
(d) LOLA HCMs and (e) observations.
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and the observed Niño3 SSTA over the period 1950–
2001. Models where the ocean used NN parameterization
(NONA and NOLA) had considerably broader spectra
than models where the ocean used LR (LONA and
LOLA). Using NN instead of LR in the atmosphere
also broadened the spectrum (compare NONA with
NOLA, and LONA with LOLA). Among the four
HCMs, NONA had by far the best agreement with observa-
tions, as it exhibited two main spectral peaks at 44-month
period (0.0229 month�1 frequency) and 65-month
(0.0154 month�1), while observations revealed two main
peaks at 45-month period (0.0225 month�1) and 69-month
(0.0144 month�1). The other HCMs showed only a single
dominant peak: at 58-month period (0.0172 month�1)
for NOLA, 45-month (0.0223 month�1) for LONA, and
42-month (0.0240 month�1) for LOLA.

[24] Figure 4 shows the time-longitude cross sections of the
simulated SSTA from the four HCMs along the equator
during year 67 to year 96. The oscillations were much more
regular in the HCMs with the ocean model using LR param-
eterization (LONA and LOLA) than the ones with NN
parameterization (NONA andNOLA), which displayed quiet
interepisode periods. Figure 5 shows the time-longitude cross
sections of the simulated thermocline depth anomaly along
the equator from the four HCMs, showing eastward propa-
gation of the thermocline anomalies as the upper ocean heat
content in the western equatorial Pacific is discharged.

4. PCA and Nonlinear PCA of SSTA

[25] We next compare the two leading PCA modes of the
model SSTA during the last 100 years from the four HCMs.

Figure 5. Time-longitude cross section along the equator of the thermocline depth anomaly from the
(a) NONA, (b) NOLA, (c) LONA and (d) LOLA HCMs. The plotted anomalies have been smoothed by a
3-month running mean. The contour interval is 20 m, and positive anomalies above 10 m are shaded.
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All the spatial patterns of PCA mode 1 from the four HCMs
(Figures 6a, 6c, 6e, and 6g) agreed well with the observed
pattern (Figure 6i). The percentage of the SSTA variance
accounted for by the first mode is 79.7%, 79.1%, 86.6% and
88.0% for the NONA, NOLA, LONA and LOLA models,
respectively, versus 56.5% for observations.

[26] For PCAmode 2, the patterns from LONA and LOLA
models (Figures 6f and 6h) did not do aswell as those from the
NONA and NOLA models (Figure 6b and 6d) in agreeing
with the observed pattern (Figure 6j), which shows a west-
east dipole structure. The percentage variance accounted for
by mode 2 is 7.5%, 6.1%, 5.4% and 5.6% for the NONA,

Figure 6. First two PCA modes of the SSTA results from the (a–b) NONA, (c–d) NOLA, (e–f)
LONA, and (g–h) LOLA models and (i–j) observations. The contour interval is 0.02.
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Figure 7. SSTA patterns (in �C) of the nonlinear principal component analysis (NLPCA) mode 1 when
the NLPC u is (left) minimum (corresponding to strong La Niña) or (right) maximum (strong El Niño).
SSTA are shown from the (a–b) NONA, (c–d) NOLA, (e–f) LONA, and (g–h) LOLA models and (i–j)
observations. The contour interval is 0.5�C.
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NOLA, LONA, and LOLA models, respectively, versus
12.7% for observations. Thus relative to observations,
the four HCMs all have too much variance concentrated in
the first PCAmode, and not enough in their secondmode, the
situation being worse for the two HCMs using LR parame-
terization in their ocean component.
[27] Neural networks have been introduced to nonlinearly

generalize the PCA method [Kramer, 1991], in that instead
of a straight line, a curve is found to pass through the
middle of the data cloud. The nonlinear principal compo-
nent analysis (NLPCA) code and procedure from Hsieh
[2001, 2004] were applied to the SSTA from the four HCMs
during the last 100 years. The first six PCs of the SSTA
were supplied as inputs to the NLPCA network (Figure 1b).
The NLPCA model fits a curve to the data in the six-
dimensional PC space. At one end of this curve, where the
nonlinear principal component (NLPC) u assumes its min-
imum value, one finds the strongest La Niña episodes, while
at the other end of the curve, where u assumes its maximum
value, one finds the strongest El Niño episodes.
[28] Figure 7 shows the NLPCAmode 1 spatial patterns of

SSTA at min(u) and at max(u) for the four models and for the
observed data. The linear PCA solution has the same standing
spatial anomaly pattern (but for a sign change) as the PC flips
from its minimum to its maximum value. In contrast, the
NLPCA mode 1 of the observed data shows the cool SSTA
during strong La Niña (Figure 7i) to be located much further
west of the warm anomalies found during strong El Niño
(Figure 7j). This asymmetry between La Niña and El Niño
SSTA is evident in the NONA, NOLA, and LONA HCMs
(Figures 7a–7b, 7c–7d, and 7e–7f) but is least evident in the
LOLA model (Figures 7g and 7h). The enhanced asymmetry
between La Niña and El Niño seen in our more nonlinear
models demonstrates the value of using the nonlinear NN
approach over the earlier use of linear statistical methods in
HCMs [Kang and Kug, 2000]. The spatial correlations and
root mean square differences (RMSD) between these model
SSTA patterns and the observed patterns during strong El
Niño and strong La Niña (Table 2) showed that NONA and
NOLA did slightly better than LONA and LOLA in simulat-
ing the strong El Niño SSTA pattern, but slightly worse in
simulating the strong La Niña SSTA pattern.
[29] To gauge the nonlinearity in a data set, we computed

the percentage variance accounted for by the NLPCAmode 1
(pNL) and that by the PCA mode1 (pL), and calculated the
normalized difference d (= (pNL � pL)/pL). If the data set is
completely linear, then the NLPCA mode 1 will retrieve the
same straight line approximation of the data set as the PCA
mode 1, and d will be 0. The larger d is, the more nonlinear is

the data set and the greater is the asymmetry between the El
Niño and La Niña patterns. We found that d had the values
6.2% (NONA), 5.2% (NOLA), 0.3% (LONA), 0.03%
(LOLA) and 11.7% (observed). In the original Lamont
coupled model [Zebiak and Cane, 1987], we found d to be
2.1%. This implies that none of the models could match the
observed nonlinear structure of the SSTA in ENSO. NONA
and NOLA managed to improve on the weak nonlinearity in
the Lamont coupled model, while LONA and LOLA were
even more linear than the original Lamont model. Thus the
nonlinearity in the NN parameterization of Tsub has helped in
giving the HCMs a more asymmetric, nonlinear structure in
the ENSO SSTA.

5. NLPCA of Wind Stress Anomalies

[30] The NLPCA was also applied to the model wind
stress anomalies (WSA) during the last 100 years and the
observed anomalies. The first seven PCs of the WSA were
supplied as inputs to the NLPCA network (Figure 1b).
Figure 8 shows the WSA NLPCA mode 1 spatial patterns
at min(u) and at max(u) for the four HCMs and the observed
data. For the strong La Niña WSA pattern (Figures 8a, 8c,
8e, 8g, and 8i), the easterly anomalies in the western
equatorial Pacific in the four HCMs were all stronger than
the observed anomalies, especially for NOLA and LOLA
(Figures 8c and 8g). Also, strong WSA blowing away from
the equator in the region 10�S–25�S, 165�E–140�W and
the region 5�N–15�N, 180�–100�W can be found in NOLA
and LOLA (Figures 8c and 8g), but not in NONA, LONA
and the observations (Figures 8a, 8e, and 8i).
[31] For the strong El Niño WSA pattern (Figures 8b, 8d,

8f, 8h, and 8j), relatively strong wind anomalies blowing
toward the equator in the region 10�S–20�S, 150�E–180�
can be found in NOLA and LOLA (Figures 8d and 8h)
but not in NONA, LONA and the observations. The rather
strong easterly wind anomalies observed (Figure 8j) in the
region 0�N–10�N, 120�E–160�E are only simulated well in
the LONA model (Figure 8f) and to a lesser extent in the
NONA model (Figure 8b). In sum, the two HCMs with NN
atmosphere simulated the observed WSA during strong El
Niño and strong La Niña noticeably better than the two
HCMs with LR atmosphere. This is confirmed by the spatial
correlation and RMSD between the simulated and observed
WSA patterns (Table 2), where NONA and LONA did
much better than NOLA and LOLA.
[32] To gauge the nonlinearity in the WSA data set, we

compared the NLPCA mode 1 solution to the PCA mode
1 solution, and found that d had the values 21.9%
(NONA), 0.4% (NOLA), 21.9% (LONA), 0.1% (LOLA)
and 34.7% (observed). For the original Lamont coupled
model, d was 5.3%. Again, none of the models quite
matched the nonlinearity in the observed ENSO WSA.
NONA and LONA managed to dramatically improved on
the weak nonlinearity in the Lamont coupled model,
while NOLA and LOLA were even more linear than
the original Lamont model.

6. Summary and Conclusion

[33] In this paper, we investigated the potential for
improving hybrid coupled modeling of the tropical Pacific

Table 2. Spatial Correlation and RMS Difference Between the

Observed and Model ENSO Patternsa

Correlation RMSD

NONA NOLA LONA LOLA NONA NOLA LONA LOLA

La Niña SSTA 0.84 0.86 0.89 0.89 0.17 0.15 0.13 0.13
El Niño SSTA 0.91 0.91 0.88 0.85 0.22 0.19 0.23 0.23
La Niña WSA 0.87 0.68 0.89 0.62 0.06 0.10 0.06 0.14
El Niño WSA 0.92 0.65 0.92 0.73 0.09 0.19 0.08 0.15

aRMSD, RMS difference. The spatial patterns of SSTA and wind stress
anomaly (WSA) for strong El Niño and strong La Niña were extracted by
the NLPCA method.
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Figure 8. WSA patterns of the nonlinear principal component analysis (NLPCA) mode 1 when the
NLPC u is (left) minimum (corresponding to strong La Niña) or (right) maximum (strong El Niño). WSA
are shown from the (a–b) NONA, (c–d) NOLA, (e–f) LONA, and (g–h) LOLA models and (i–j)
observations.
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by the use of nonlinear NN methods. NN was introduced
for the nonlinear parameterization of the subsurface tem-
perature in the Lamont ocean model, and for the nonlinear
estimation of the WSA from the SSTA. To compare with
the nonlinear regression by NN, corresponding linear
regression (LR) models were also developed. By combin-
ing the NN or the LR version of the ocean model and the
atmospheric model, four HCMs resulted: NONA (with
NN for both the ocean and atmosphere), NOLA (NN
for ocean and LR for atmosphere), LONA (LR ocean
and NN atmosphere) and LOLA (LR for both ocean and
atmosphere).
[34] For the coupled model Niño3 SSTA spectrum, using

NN in the ocean model produced a much broader spectrum
than using LR, which gave basically a single narrow
spectral peak. Thus the oscillations in LONA and LOLA
were all far too regular when compared to the observed
oscillations. Using NN in the atmospheric model in addition
to the ocean model furthered broadened the SSTA spectrum,
yielding a spectrum with two main peaks at periods of 44
and 65 months, in good agreement with the observed
spectrum, where there were two peaks at 45 and 69 months
(Figure 3).
[35] PCA on the SSTA also showed that using the LR

ocean model led to excessive concentration of energy in the
first mode and poorer agreement of the mode 2 spatial
patterns between the models and observations. Nonlinear
PCA (NLPCA) on the SSTA was less conclusive, as using
the NN ocean model instead of LR yielded a slightly better
spatial pattern during strong El Niño but also a slightly
worse pattern during La Niña. From d (the normalized
difference between the percentage variance explained by
the NLPCA mode 1 and that by the PCA mode 1), we found
that for SSTA all the coupled models were too linear
compared to the observations. However, using the NN
ocean model was able to alleviate the weak nonlinearity
in the original Lamont coupled model.
[36] NLPCA applied to the WSA revealed that using the

NN atmospheric model instead of LR led to much better
agreement in the spatial anomaly patterns between the
coupled model and observations during both strong El Niño
and La Niña. For the WSA, d again revealed the original
Lamont coupled model to be too linear, and that using the
NN atmospheric model considerably alleviated this prob-
lem. Thus the use of NN in the ocean model and in the
atmospheric model improved on the nonlinear behavior of
the coupled model.
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