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[1] Complex principal component analysis (CPCA) is a
linear multivariate technique commonly applied to complex
variables or 2-dimensional vector fields such as winds or
currents. A new nonlinear CPCA (NLCPCA) method has
been developed via complex-valued neural networks.
NLCPCA is applied to the tropical Pacific wind field to
study the interannual variability. Compared to the CPCA
mode 1, the NLCPCA mode 1 is found to explain more
variance and reveal the asymmetry in the wind anomalies
between El Niño and La Niña states. INDEX TERMS: 4215

Oceanography: General: Climate and interannual variability

(3309); 3339 Meteorology and Atmospheric Dynamics: Ocean/

atmosphere interactions (0312, 4504); 3309 Meteorology and

Atmospheric Dynamics: Climatology (1620); 4522 Oceanography:

Physical: El Nino; 4504 Oceanography: Physical: Air/sea

interactions (0312). Citation: Rattan, S. S. P., and W. W.

Hsieh (2004), Nonlinear complex principal component analysis of

the tropical Pacific interannual wind variability, Geophys. Res.

Lett., 31, L21201, doi:10.1029/2004GL020446.

1. Introduction

[2] Principal component analysis (PCA) also known as
empirical orthogonal function (EOF) analysis [von Storch
and Zwiers, 1999; Jolliffe, 2002] is a multivariate statistical
method widely used to compress datasets and to extract
features. Complex PCA (CPCA) is PCA generalized to
complex variables. It has been used to analyze 2-dimensional
vector fields such as winds [Legler, 1983] and currents
[Stacey et al., 1986], where the 2-D vectors are expressed
as complex variables. CPCA has also been used to analyze
real data complexified first by the Hilbert transform
[Horel, 1984].
[3] Linear methods such as PCA has a tendency to

scatter the energy of a single oscillatory phenomenon into
numerous unphysical modes [Hsieh, 2004]. Nonlinear PCA
(NLPCA) via a neural network (NN) approach [Kramer,
1991] has been applied to meteorological/oceanographic
datasets, where it has largely alleviated the scattering
problem associated with PCA and has revealed the under-
lying nonlinear structure of the data (see the review by
Hsieh [2004]).
[4] For nonlinear feature extraction in the complex

domain, the nonlinear CPCA (NLCPCA) method has
recently been proposed using a complex-valued NN and
applied to the tropical Pacific sea surface temperatures
[Rattan and Hsieh, 2004]. This research letter will be the
first application of the NLCPCA to a 2-D vector field, the
monthly tropical Pacific wind data.

2. Method and Data

2.1. Method

[5] Let Z = X + iY be a complex matrix with dimension
m � n. We take n to be the number of time points and m the
number of spatial points, with zero mean in time. A CPCA
of Z seeks a solution that contains r (r � m, n) linearly
independent complex unitary vectors or eigenvectors in the
columns of Q (m � r) such that [Strang, 1988]:

Z ¼ QA; ð1Þ

where the rows of A (r � n) contain the r complex principal
component (CPC) time series. The first l CPC can serve as
input to the NN for NLCPCA.
[6] The Kramer [1991] auto-associative NN for NLPCA

can be adapted to the complex domain (Figure 1) to non-
linearly generalize CPCA. After the layer of input neurons
came 3 ‘‘hidden’’ layers of neurons, with the first layer
called the encoding layer, followed by the bottleneck layer
(with a single complex neuron), then by the decoding
layer. A nonlinear transfer function f1 maps from a, the
input column vector of length l, to the first hidden layer,
h(a), a column vector of length q with elements

h
að Þ
k ¼ f1 W að Þaþ b að Þ

� �
k

h i
; ð2Þ

where W(a) is a q � l weight matrix, b(a) is a column vector
of length q containing the bias parameters, and k = 1, . . ., q.
The neurons at the bottleneck, the decoding layer and the
output layer are given respectively by

u ¼ f2 w að Þ � h að Þ þ �b að Þ
� �

; ð3Þ

h
uð Þ
k ¼ f3 w uð Þuþ b uð Þ

� �
k

h i
; ð4Þ

a0j ¼ f4 W uð Þh uð Þ þ �b
uð Þ

� �
j

� �
; j ¼ 1; . . . ; l; ð5Þ

(see Rattan and Hsieh [2004] for details of the NLCPCA
method). It is well known that a feed-forward NN only
needs one hidden layer of neurons for it to model any
nonlinear continuous function [Bishop, 1995]. For the
forward mapping u = f (a), where u is the nonlinear CPC
(NLCPC), this hidden layer is provided by the encoding
layer, while for the inverse mapping a0 = g(u), with a0 the
NLCPCA model output, it is provided by the decoding
layer. For the typical 1-hidden layer feed-forward NN, the
transfer function from the input to the hidden layer is
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nonlinear, while the transfer function from the hidden layer
to the output is usually linear [Bishop, 1995]. Hence the
transfer functions f1, f2, f3, f4 are respectively nonlinear,
linear, nonlinear and linear, where the linear function is
simply the identity function.
[7] The nonlinear complex transfer function that is used

is the hyperbolic tangent (tanh(z)), with certain constraints
on z. In the complex plane tanh(z) has singularities at
(1
2
+ p)pi, p 2 N and these have to be removed to achieve

convergence [Kim and Adali, 2002]. If the magnitude of z is
constrained within a circle of radius p

2
then the singularities

do not pose any problem and the transfer function is
bounded. This requires a restriction on the magnitudes of
the input data and the (weight and bias) parameters: Each
element of the rth row of Z was divided by the maximum
magnitude of an element in that row, so each element of
Z has magnitude �1. The parameters were randomly
initialized with magnitude �0.1, and a weight penalty term
was added to the objective function J, i.e.,

J ¼ 1

n

Xn
j¼1

k aj � a0j k2

þ p
Xq
k¼1

k w
1ð Þ
k k2 þ k w 2ð Þ k2 þ

Xq
k¼1

k w
3ð Þ
k k2

 !
; ð6Þ

where the first term on the right hand side is the mean
square error between a0 and a, and the second term is the
weight penalty term, with wk

(1), w(2) and wk
(3) denoting

respectively the vectors containing all the weight and bias
parameters from the hidden layers 1, 2 and 3, and the weight
penalty parameter p having typical values from 0.01 to 0.1.
During the optimization of J, the real and the imaginary

components of the weight and bias parameters were
separated and kept in a single real vector while optimization
was done by the MATLAB function ‘‘fminunc’’. After
optimization, the predicted CPC a0 from the model output
can be multiplied by the spatial eigenvectors from Q to give
the predicted values.

2.2. Data

[8] The monthly ship and buoy wind data from
the Florida State University (FSU) pseudo-stress analysis
[Stricherz et al., 1997] were used. Consider a wind field Z =
X + iY where X and Y are m � n matrices of the zonal and
meridional components of the wind respectively. These
components are calculated from the zonal and meridional
wind stress data (Lx and Ly): X = Lx/(Lx

2 + Ly
2)1/4, Y = Ly/

(Lx
2 + Ly

2)1/4 [Wang and Weisberg, 2000]. The data period is
January 1961 through December 1999, covering the whole
tropical Pacific from 124�E to 70�W, 29�S to 29�N with a
grid of 2� by 2�. After the climatological monthly mean was
removed, the data were smoothed by a 3-month running
mean.

3. Results

[9] Prior to NLCPCA, traditional CPCA (i.e., complex
EOF analysis) was first performed to reduce the dimensions
of the data. The first two CPCs accounted for 15.3% and
10.7% of the total variance. The first and the second CPCs
were also rotated in the complex plane by 13� and 64�
respectively so that the mean value of the argument of the
rotated CPCs were nearly 0�, i.e., the variance is mainly
along the real axis [Hardy and Walton, 1978]. The spatial
anomalies associated with the first 2 CPCA modes are
shown in Figure 2, with Figure 2a showing the wind
anomalies during maximum El Niño.
[10] The six leading CPCs (with 46% of the total vari-

ance) were used as the inputs to the NN model (Figure 1).
These input variables were first normalized by removing
their mean and the real components were divided by the

Figure 1. The complex-valued NN model for nonlinear
complex PCA (NLCPCA) is an auto-associative feed-
forward multi-layer perceptron model. There are l input and
output neurons or nodes corresponding to the l CPCs or the
number of rows of A used as input. Sandwiched between
the input and output layers are 3 hidden layers (starting with
the encoding layer, then the bottleneck layer and finally the
decoding layer) containing q, 1 and q neurons respectively.
The network is composed of two parts: The first part from
the input to the bottleneck maps the input a to the single
nonlinear complex principal component (NLCPC) u by the
functions f1 and f2. The second part from the bottleneck to
the output a0 is the inverse mapping by the functions f3 and
f4. For auto-associative networks, the target for the output
neurons are simply the input data. Increasing the number of
neurons in the encoding and decoding layers increases the
nonlinear modelling capability of the network.

Figure 2. The spatial patterns of the CPCA (a) mode 1 and
(b) mode 2 (plotted when the real component of the
corresponding CPC is maximum).
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largest standard deviation among the 6 real CPCs while
the imaginary components were divided by the largest
standard deviation among the 6 imaginary CPCs. Division
by the individual CPC’s standard deviation was not done in
order to avoid exaggerating the importance of the higher
modes.
[11] The numberq of hidden neurons used in the encoding/

decoding layer of the NN model was varied between 2 and
10. While a relatively large q tends to give smaller mean
square error during the NN training, it also tends to give
overfitted solutions due to the relatively large number
of network parameters. Based on a general principle of
parsimony, q = 6 was chosen in this study. Values of the
penalty parameter p used ranged from 0.01 to 0.1. For each p,

25 randomly initialized runs were made. Also, 20% of the
data was randomly selected as test data and withheld from the
training of the NN model. Runs where the mean square error
was larger for the test data set than for the training data set
were rejected to avoid overfitted solutions. Among the
remaining NN runs, the one with the smallest mean square
error was selected as the solution.
[12] The first NLCPC shown in Figure 3 had been rotated

by �90� in the complex plane (while the weights in the
third hidden layer had also been rotated by 90�). The
NLCPCA mode 1 explained 17.4% of the total variance
compared to 15.3% explained by the CPCA mode 1. As the
NLPC varies, the NLCPCA mode 1 yields nonstationary
spatial anomaly patterns, in contrast to the CPCA mode 1
which yields a standing oscillation pattern with the ampli-
tude varying according to the CPC.
[13] Four spatial patterns of NLCPCA mode 1 corres-

ponding to points near the minimum Re(u), half minimum
Re(u), half maximum Re(u), and maximum Re(u) are shown
in Figure 4. In Figure 4a (strongest La Niña conditions) the
equatorial Pacific displays anomalous easterly winds, with
the strongest winds in the equatorial western Pacific. As the
negative real component of NLCPC 1 decreases to about half
its minimum, the easterly wind anomalies weaken over the
equatorial Pacific as shown in Figure 4b to about half the
maximum La Niña wind magnitude.
[14] Under El Niño conditions, the tropical Pacific wind

field has reversed in direction (Figures 4c and 4d). In
Figure 4d, during maximum El Niño, an easterly wind
anomaly is observed in the far western equatorial Pacific
together with strong westerly anomalies in the central
equatorial Pacific. In contrast to the two La Niña pictures
(Figures 4a and 4b) which look quite similar except for
the magnitude, the weak El Niño state (Figure 4a) is
quite different when compared to the strong El Niño state
(Figure 4d), e.g., Figure 4c shows westerly anomalies
located further west with much less than half the magnitude
of Figure 4d, as well as missing the easterly anomalies at
the far western equatorial Pacific and the off-equatorial
anomalies.

Figure 3. The first NLCPC u shown in the complex plane
as dots, with crosses indicating the (a) minimum Re(u)
(strongest La Niña), (b) half minimumRe(u) (weak La Niña),
(c) half maximum Re(u) (weak El Niño) and (d) maximum
Re(u) (strongest El Niño). The four corresponding spatial
anomaly patterns are shown in Figure 4.

Figure 4. The spatial patterns of the NLCPCA mode 1 showing spatial patterns near the (a) minimum Re(u) (strongest La
Niña), (b) half minimum Re(u) (weak La Niña), (c) half maximum Re(u) (weak El Niño) and (d) maximum Re(u) (strongest
El Niño). Different scalings are used, as indicated at the top right corner of each panel.
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[15] The asymmetry between strong El Niño and strong
La Niña is evident from Figure 4a (with anomaly center
near 0�N 175�E) and Figure 4d (with center near 5�S
160�W). In contrast, the CPCA mode 1 yields anti-
symmetrical stationary patterns for El Niño and La Niña.
During maximum real CPC 1 (Figure 2a) the patterns for
strong El Niño are captured whereas the minimum real
CPC 1 represents the maximum La Niña features. The La
Niña spatial patterns when plotted involves a 180� rotation
of the El Niño wind directions and look similar to Figure 4a.
Hence the CPCA centres for both strong El Niño and La Niña
are near 0�N 175�E, i.e., the CPCAmode 1 completely failed
to characterize the asymmetry between El Niño and La Niña
which results in the asymmetric El Niño-Southern Oscilla-
tion (ENSO) features being scattered into CPCA mode 2
(Figure 2b) and higher modes. Compared to NLCPCA
mode 1, CPCA mode 1 also substantially underestimated
the magnitude of the maximum El Niño (Figure 2a), as
well as missing the easterly anomalies in the far western
equatorial Pacific and the off-equatorial anomalies found
in Figure 4d. Figure 5 shows the difference between the
NLCPCA mode 1 and CPCA mode 1 during the strongest
La Niña and the strongest El Niño, revealing the difference
during the latter to be much greater than during the former,
i.e., the CPCA mode 1 does not accurately describe the wind
anomalies during strong El Niño conditions.
[16] To test whether the El Niño and La Niña asymmetry

have been biased by outliers, we removed the two strongest
El Niño episodes and the two strongest La Niña episodes
(i.e., a total of 4 � 12 monthly values) from the input data
before NLCPCAwas again performed. The resultant spatial
patterns again exhibited the asymmetry between El Niño
and La Niña.
[17] The NLCPCA mode 2 was extracted from the

residual. Again with the NLCPC and CPC rotated so their
variance is mainly along the real axis, we found that the
correlation between the Southern Oscillation Index (SOI)
and Re(NLCPC) is 0.80 for mode 1 and 0.22 for mode 2. In

contrast, the correlation between SOI and Re(CPC) is 0.77
for mode 1 and 0.52 for mode 2. In other words, for CPCA,
the second mode also contains significant ENSO signal, as
the nonlinear ENSO mode cannot be described by a linear
mode and is scattered into higher modes, but the NLCPCA
mode 1 has been much more effective in extracting the
ENSO signal, so the second nonlinear mode is less corre-
lated with the SOI than the second linear mode is.

4. Conclusions

[18] Linear statistical methods such as PCA are often too
simplistic to describe real-world systems, with a tendency to
scatter a single oscillatory phenomenon into numerous
unphysical modes [Hsieh, 2004]. Two-dimensional vector
fields like the horizontal wind and ocean currents have
commonly used the linear CPCA method for feature
extraction. By using a neural network approach, the new
NLCPCA method allows a nonlinear generalization of the
CPCA. Applied to the tropical Pacific horizontal wind
anomaly data, the NLCPCA mode l explained 17.4% of
the total variance (versus 15.3% for the CPCA mode 1), and
gave an accurate description of the ENSO oscillation from
strong La Niña to strong El Niño, revealing the considerable
asymmetry in the oscillation. The NLCPCA code (written in
MATLAB) is downloadable from http://www.ocgy.ubc.ca/
projects/clim.pred/download.html.
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Figure 5. The NLCPCA mode 1 spatial pattern minus
the CPCA mode 1 pattern during the (a) strongest La Niña,
and (b) strongest El Niño. Different scalings are used in
Figures 5a and 5b.
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