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ABSTRACT

From vertical normal mode decomposition, sea level and sea surface temperature (SST) are shown to be
modally biased—higher modes are suppressed in sea level while lower modes are suppressed in SST data.
Having been effectively “low passed”” and “high passed” (with respect to mode number) by nature, sea level
and SST contain complementary information which can in principle be combined to yield a relatively
unbiased picture. The full potential of the sea level-SST pair is not appreciated in present remote sensing
studies, where the two are used separately. A proposed “stereoscopic” method may in the future produce
unbiased three-dimensional pictures from satellite-sensed two-dimensional pictures of sea level and SST.
Modal bias in coastal trapped waves is studied in the Appendix.

1. Introduction

Vertical normal mode decomposition is widely
used for studying long-wave motion in a stratified,
flat-bottom ocean (LeBlond and Mysak, 1978). As-
suming each mode is given the same amount of
potential energy, the sea level displacements are nev-
ertheless much smaller for the higher modes, while
the sea surface temperature (SST) perturbations are
much weaker for the lower modes. Hence, sea level
and SST data are modally biased. We can think of
nature as having effectively performed a low-pass
filter (with respect to mode number) on sea level data
and a high-pass filter on SST data. The two types of
data are thus individually incomplete yet complemen-
tary—and herein lies an opportunity for overcoming
modal bias. Can we recombine the “high-passed” and
“low-passed” information to obtain a relatively un-
biased view of the ocean?

Within the foreseeable future, only SST and sea
level will be available for large-scale ocean monitoring
from space. Yet the full potential of the sea level-
SST pair is not appreciated in present remote sensing
studies, where the two are used separately. From a
study of the modally biased nature of SST and sea
level data (in Section 2), this note proceeds to advocate
(in Section 3) that new techniques be developed to
combine these two complementary data sources.

Combining two incomplete but complementary
sources of information to yield a higher quality view
or sound is familiar to us through three-dimensional
movies and stereos. The making of a three-dimen-
sional image (Fig. la) inspires Fig. 1b, where SST

! Present affiliation: Department of Oceanography, University of
British Columbia, Vancouver, B.C., Canada V6T 1W5.

and sea level are combined by a ‘stereoscopic”
method outlined in Section 3. Stereoscopic remote
sensing may some day replace our present satellite
pictures of SST and sea level as stereo records have
replaced gramophone records.

2. Modal bias in an ocean of constant depth

We start with the inviscid, unforced linearized
long-wave equations:

U —fo=——p;, (la)
Po
1
v+ fu=——p, (1b)
Po
pz = _pg’ (lc)
U+ v, +w, =0, (1d)
Pt = _WPOz, (le)

where u, v, w are the velocity components, p the
pressure perturbation, p the density perturbation from
the rest state pg(z); f the Coriolis parameter and g is
the gravitational constant.

In order to perform vertical mode decomposition,
we neglect topography and assume a constant depth
H. Following Gill and Clarke (1974), we let

u U,
D) = Z vn)ﬁn(z):

p " \Dn

w Wnl .
(—p/poz) - ? (hn)w"(z)’ @
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FiG. 1. (a) Creating a three-dimensional image from two two-dimensional images. The
original object is photographed by two cameras spaced slightly apart, the two two-dimensional
images in different colours are then projected separately, and picked up individually by each
eye through coloured filters. (b) Corresponding stereoscopic method for combining SST and
sea level data. Nature’s bias for low modes in sea level fluctuations and for high modes in SST
effectively supplies a “red” and a “blue” filter. These two filtered sources of data are then
recombined by an inverse method for the least biased view.
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where u,, v,, p,, w, and h, are functions of x, y, ¢

v, = — H
only, and the depth-dependent parts are marked with W = 3 Sin(nmz/H),

2
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(4b)

a circumflex. The Boussinesq approximation is. as- with ¢, = NH/(nm), n = 1, 2 the internal long-

sumed, where po(z) in Egs. (la, b) is replaced by a
constant py .
Separation of variables in (1d, c) gives

wave speed for the nth mode.

From (le), (2) and (4b), the maximum isopycnal
displacement in the water column is given by

D = dW,/dz, (3a) D, = h,c,/N. &)
dpn/dz = —(N*/c nz)“sm (3b)  The sea surface displacement 7, is obtained from
where ¢,? is a constant of separation and the buoyancy Dn = P& 6)

frequency N2 = —gpo,/px -

From (Ic) and (3b), we obtain the ratio of the sea
a. Constant N level displacement to the maximum 1s0pycnal dis-

Assume constant N, then (3) together with the placement for the nth mode,

boundary conditions w = 0 at z = 0 and —H yield 0./Dn = Nc,/g.
for the baroclinic modes,

)

If we fix D, (i.e., all modes having the same internal

Dn = cos(nmz/H), (4a) potential energy), the sea level displacement of the
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modes are biased by the factor c,, which decreases
with increasing n (see also Wunsch and Gill, 1976,
pp. 377-378).

For modal bias associated with SST observations,
we examine the ratio of surface density perturbations
ps of two equally excited modes m and n (1 e, D,
= D,). By (2), (4b) and (5), we have

- lim hoW2) sin(nwz/H) _n
70 hmw,,,(z) z—0 sin(mwz/H) m’

t))

psm
Thus, modal bias is in favor of higher modes—e.g.,
Ps2/ps1 = 2, psulpsy = n. Intuitively, this bias is to be
expected from the vertical structure of sin(nwz/H),
with the uppermost maximum at z = —H/(2n). As n
increases, this uppermost maximum moves progres-
sively closer to the surface, thereby enhancing its
influence near the surface.

b. Realistic N(z)

Figure 2a shows the N(z) profile determined from
hydrographic data off Vancouver Island by Crawford
and Thomson (1984). Using this profile for M(z), we
integrate (3) through the water column with. a flat
bottom and a free surface (e.g., see LeBlond and
Mysak, 1978, p. 124) to obtain the normal modes.
The density perturbations p(z) for modes 1-3 are
shown in Fig. 2b.

In the absence of surface mixing, the density
perturbation at the sea surface is identically zero.
Recently, Stevenson (1983) investigated how baro-
clinic Rossby waves can be manifested in the surface
temperature by connecting a Kraus-Turner (1967)
surface mixed layer to the ‘underlying quasi-geo-
strophic wave.

Here, we will limit ourselves to a simple model.
Figure 2b shows the near-surface gradient dp,/dz
becoming stronger with increasing mode number n.
Figure 3 illustrates how the stronger gradients give
rise to larger sea surface density perturbations in the
presence of a mixed layer of thickness D, with

90
9z’

i.e. the surface density perturbation is directly pro-
portional to the near-surface gradient and to the
mixed layer depth.

Table 1 shows the near surface density gradients
and sea level displacements for several modes and
the corresponding modal bias factors (8p,/9z)/(dp,/
dz) and 7,/n,. As vertical normal-mode decomposition
is applicable to long Poincaré waves, Rossby waves,
Equatorial trapped waves and coastal Kelvin waves
(LeBlond and Mysak, 1978), modal bias—that higher
modes are enhanced in SST but suppressed in sea
level data—covers a surprisingly large class of ocean
waves. In particular, for coastal Kelvin waves at a
given frequency, the wavelengths are proportional to
¢.,» whence higher modes have shorter wavelengths.

Psn = 5 C))
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FIG. 2. (a) Buoyancy frequency M(z) in s™'. Ocean is 4 km deep.
(b) Vertical structure of the density perturbation for modes |, 2
and 3 (labelled I, II, 1II). Only the top 2 km are shown. Below 2
km, the curves taper off to zero at the bottom. The modes are
normalized to have equal potential energy (10* kg m? s72) in the
water column. Note the much stronger gradients 8p,/0z near the
surface for the higher modes.

Thus, alongshore length scales determined from sea
level data should be considerably larger than those
from SST data, as low modes dominate the sea level
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FIG. 3. Schematic diagram illustrating how the stronger gradients
dpn/3z of the higher modes give rise to larger sea surface density
perturbations p,,. Given a surface mixed layer of depth D, kinetic
energy from the wind lifts the water in the lower shaded triangle
to the upper triangle, thereby producing a uniform density pertur-
bation p,3 throughout the mixed layer for mode 3. The same
mechanism gives rise to a much lower value for py;.

but not the SST. The effects of the continental shelf
on modal bias are discussed in the Appendix.

Rhines’ (1970) study of the combined effects of
gently sloping topography and stratification shows
that as the wavelength decreases, the waves become
increasingly bottom-trapped. For higher modes with
relatively shorter wavelengths, bottom-trapping would
diminish the surface density gradients. Hence, surface
(8p,/82)/(0p,/0z) values for n > 1 would be less than
the corresponding values for a flat-bottom ocean.
Furthermore, in contrast to the flat-bottom situation
where 9p,/0z < 8p,/0z < - -+, the presence of
sloping topography would probably introduce a mode
number m such that

dp; _9p; 00m _ Pmi1

— <—< <> — > e

0z 0z 0z dz ’
at z=0, (10)

i.e. SST would be biased in favor of intermediate

modes with mode number near m.

3. Applications to remote sensing

At a given frequency band, sea level ne ™" and
surface temperature T,¢”"* can be expanded in terms
of the contributions from individual modes,

(11a)
(11b)

n=4daypot+apt @p+ -,
Ts=bopo+ bipr + bap2 + - - -,

where p, is given in (2), and a,, b, are the modal
bias factors determined from vertical normal-mode
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decomposition for a given stratification N(z). For
instance, a,p, is the contribution to the sea level
displacements by mode 7, with a perturbation pressure
of p,pA2z) in the water column [see Eq. (2)]. The
quantities in (11) are complex to allow for phase lags
between 7, p, and T.

With the series truncated after mode m, we have

Do
woa e wlln) (1]
bo b, by +++ bn . T,

Dm

or
AX =Y, (12b)

where A is a complex matrix containing the modal
bias factors, and X and Y are complex vectors. In
reality, with the satellite data covering a horizontal
grid, A, X and Y will be much larger in size than
those illustrated in (12a) where, for simplicity, the
data are assumed to have come from a single location.
With A known from normal mode decomposition
and Y from satellite data, X can be determined from
the inverse method (Claerbout, 1976, Wunsch, 1978).
The optimal solution for X is given by

X = (A"A)'ATY (13)

where A¥ is the complex conjugate-transpose of A.
With p, known from X, and the depth structures
D.(2) known from normal mode decomposition, we
can construct the perturbation pressure field p in the
water column, with

D= 2 Pubd2). (14)

TABLE 1. Modal bias for sea surface density (temperature) and
sea level perturbations, with normal modes calculated from the N(z)
profile shown in Fig. 2a. The modal bias factors (8p,/8z)/(dp,/3z)
and 7,/n, respectively show how the higher modes are stronger at
sea surface density (temperature) and weaker at sea level perturbations.
All modes are normalized to have the same potential energy (10*
kg m? s72) in the water column. For comparison, numbers in pa-
rentheses are the corresponding values from the constant N, rigid-
lid model.

Mode n

0 1 2 3 10
¢, (ms™) 198. 222 1.18 0.83 0.24
Surface % 0.08 0.29 0.88 1.14 4.25

(1072 kg/m%)

9p,/0z o0 0.28 1.0 3.0 3.9 14.5
oz 02 (20 (0 (100
Sea level », (cm) 140. 4.67 4.03 2.58 0.84
Malm 30. 1.0 0.86 0.55 0.18
(89.) (0.50) (0.33) (0.10)
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We can then proceed to construct the density pertur-
bation fields and the geostrophic velocity fields. Hence,
three-dimensional pictures of the ocean are derived
from the original two-dimensional sea level and SST
data.

This proposed “stereoscopic” method is of course
highly idealistic, and serves only to stimulate further
studies. The degree of ill-posedness of such a procedure
and the effects of the surface mixed layer need careful
scrutiny before the feasibility of stereoscopic remote
sensing can be established.
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APPENDIX
Modal Bias in Coastal Trapped Waves

We let x and y be the offshore and alongshore
coordinates, and assume the variables depend on y
and ¢ in the form exp[i(ky — wt)]. At the equilibrium
sea level z = 0,

(A1)

w =9, = —iwn. (A2)

The velocity component normal to the solid bottom
boundary must vanish, i.e.

P = pogm,

w=—u dh

dx

where A(x) is the depth. At the coast x = 0, A(0)

= 0. Let dh/dx = a at x = 0; (A2) and (A3) at x =0
give

at z=—h(x), (A3)

iw
U=—n, (A4)
o
where U and 7, are the values of u and 7 at the coast.
Substituting (A1) and (A4) into (1b) at x = O gives

V= (g f)nc,

where ¢ = w/k and V, the value of v at the coast.
Equations (A4) and (A5) relate the horizontal current
components U, V to the coastal sea level 5, at the
coast. Analogous relations have been used by Battisti
and Clarke (1982a,b) to predict the barotropic tidal
currents from the coastal sea level. As we have started
with Egs. (1), the three-dimensional equations for a
stratified fluid, instead of the two-dimensional baro-
tropic equations as in Battisti and Clarke, the deri-
vation here is in some sense a generalization of the
Battisti and Clarke result to a stratified ocean and
coastal trapped waves.

(AS5)
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For monotonically increasing depth A(x), Huth-
nance [1978, Eq. (2.7)] proves that for any given k
> 0, an infinite number of modes exists with |wg|
> |wy| > Jwa| > -+« (or || > |ci] > - - +), where in
our coordinate system, the w, and ¢, are negative in
the Northern Hemisphere. Thus the two terms within
the parentheses in (AS5) have opposite signs, and
depending on whether their sum is positive or nega-
tive, ¥ and 7, are respectively in-phase or 180° out-
of-phase.

For typical continental shelves, the slope «
~ 1073, giving |ga/f| ~ 10°m s™' at midlatitudes.
As this is a relatively large value, only the n = 0
mode (corresponding to the barotropic Kelvin wave
modified by the continental shelf) is likely to satisfy
lcol > lga/fl(lcol = =200 ms™! for H=4
km). All other modes (n = 1) tend to satisfy |c,|

< |ga/fl, so
me _ (§+L)“ G
V Chn g

to a very good approximation; i.e., in contrast to the
n = 0 mode, the higher modes are not significantly
affected by the coastal slope «. For a given V, 7, is
directly proportional to c,, i.e., the faster the mode
propagates, the larger the relative sea level displace-
ments. For these subinertial modes, the kinetic energy
of the horizontal currents is very much larger than
the potential energy associated with the sea level
displacements. At a particular frequency, the coastal
alongshore velocity V is a sum of contributions from
all possible modes, i.e. V = Vo + V; + V, +

The coastal sea level is, however, weighted or b1ased
as follows

ne=boVo+bVi+ bV, + -+, (A7)

where the “bias factors” b, = 9. /V, are given by
(A6). Since |col > |¢y| > |zl > - - - from Huthnance
(1978), (A6) yields |bo| > |by| > |by] > -+ - . Hence
we conclude that for subinertial motion, the sea level
data are biased in favour of the low modes, which
propagate faster. Consequently, alongshore phase
speeds estimated from sea level data are almost
invariably higher than corresponding estimates from
current data, with examples given in Hsieh (1982).
The relations (A4) and (AS5) between coastal cur-
rents and sea level are surprisingly general. They are
also valid for suprainertial frequencies, {w| > |f],
i.e., edge waves. However, in contrast to the subinertial
modes, Huthnance (1975) proved that |c] < ¢l
< |e| < - - -+ for the edge waves, so 5./V is biased in
favor of the high modes. Furthermore, if A(x) is not
monotonically increasing, e.g., in the presence of
trenches or banks off the coast, additional trapped
modes may be present (Mysak et al, 1979; Brink
1983; Middleton, 1983). Equations (A4) and (A5)
still govern the coastal behavior of these extra modes.

(A6)
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Frictional effects which are important in shallow
water may however modify these relations (Battisti
and Clarke, 1982a, p. 9). For a viscous fluid, even
the alongshore velocity must vanish at the shore.
Thus V in (AS) must be interpreted as the alongshore
velocity just outside the coastal viscous boundary
layer.

Finally, a cautionary note on the use of shelf

models with a small coastal wall. With 4 = 0 at the

coast, the term f/a disappears from (A6) and 75./V
= ¢,/g. While this is accurate for the » = 1 subinertial
modes it is incorrect for the Kelvin mode (and the
edge wave modes). For instance, for a typical shelf
with @ = 1.5 X 1073, f= 10"*s!, ¢p = =200 m s,
then g/c, = —0.05 s7!, while f/a = +0.067 s~. The
exact relation (AS5) gives 5./V = +60 s, whereas
models with a small coastal wall predict »./V = ¢y/g
= —20 s. Thus, not only is the sea level too small by
a factor of 3, but 5, and V are out-of-phase instead
of in-phase! Many researchers using such models for
barotropic Kelvin waves (or edge waves) seem unaware
that the small coastal wall leads to incorrect coastal
sea level values despite having correct shelf topography
in their models.

The SST modal bias in coastal waters is more
difficult to quantify. Without a continental shelf, the
modes trapped against the vertical wall in a flat-
bottom ocean are the surface and internal Kelvin
waves, which are biased in SST in favor of the higher
modes (Table 1). With a continental shelf, the modes
n = | resemble internal Kelvin waves only at low
latitudes, but become quasi-barotropic shelf waves at
higher- latitudes (Brink, 1982). Using Brink’s coastal
trapped wave program and the N(z) of Fig. 2a, we
computed the modal structures for a “typical” con-
tinental shelf (with a coastal wall of 1 m, a linear
slope of 1:400 from coast to shelf break at the 150
m isobath, and a smooth joint to a continental slope
of gradient ~ 0.1). At 10°N, with the same energy
.in modes 1 and 2, the surface modal bias (dp,/9z)/
(3p1/0z) values are 2.7, 1.8 and 1.1 respectively at 0,
40 and 80 km offshore (i.e., at the 1, 100 and 1000
m isobaths), which are smaller than those from the
flat-bottom model. The offshore decrease in the modal
bias is due to the faster offshore decay of mode 2
relative to mode 1. As we moved to higher latitudes,
surface dp/dz values from Brink’s model diminish,
(e.g., surface dp/dz values for modes 1 and 2 at 50°
are only about half as large as those at 10°).

In summary, for coastal trapped waves, modal bias
in sea level data, as suggested by Hsieh (1982), has
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been quantified by (A6). For SST, Brink’s (1982)
program shows the second mode to be enhanced with
respect to the first mode. However, the importance
of modal bias in the coastal SST is less clear since
the waves become quasibarotropic at mid to high
latitudes, and much of coastal SST variability is
caused by river runoff, fronts, local upwelling, etc.
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