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[1] Nonlinear characteristics of the Canadian surface air temperature (SAT) were
investigated by applying a neural-network-based nonlinear principal component analysis
(NLPCA) method to the SAT anomaly data for individual seasons. The SAT data were
separated into three subsets: data for 1900–1949 and 1900–1995 over southern Canada
(south of 60�N), called S0049 and S0095, respectively, and data for 1950–1995 over the
entire country, called C5095. The NLPCA was computed for the three data sets
separately. The leading NLPCA modes from C5095 and S0095 show similar results: the
nonlinearity is strong in winter (December, January, and February, DJF) and fall
(September, October, and November, SON), but is much weaker in spring (March, April
and May, MAM) and summer (June, July, and August, JJA), manifesting the seasonal
dependence of the nonlinearity in the Canadian SAT. No significant nonlinearity is
detected from data set S0049, even for the winter and fall seasons, indicating interdecadal
dependence of the nonlinearity. The leading NLPCA mode combines the effects of
Pacific-North America (PNA) pattern and North Atlantic Oscillation (NAO) on the
Canadian winter SAT. A possible reason for the existence of nonlinearity in the winter
SAT only after 1950 is that the NAO manifested its strong negative phase from the 1950s
to the early 1970s. INDEX TERMS: 3309 Meteorology and Atmospheric Dynamics: Climatology

(1620); 3220 Mathematical Geophysics: Nonlinear dynamics; 4215 Oceanography: General: Climate and

interannual variability (3309); KEYWORDS: surface air temperature, Canada, neural network, nonlinear
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1. Introduction

[2] North America is an area of interest for climate
studies related to the El Niño-Southern Oscillation (ENSO)
phenomenon [Horel and Wallace, 1981; Wallace and Gut-
zler, 1981; Trenberth et al., 1998]. The traditional view is
that the climate variations associated with El Niño-Southern
Oscillation (ENSO) are linear, with anomalies during the El
Niño phase being the reverse of those during the La Niña
phase [e.g., Ropelewski and Halpert, 1989; Bunkers et al.,
1996]. However, recent evidence shows that the atmos-
pheric responses to warm and cold events were not exactly
opposite. Richman and Montroy [1996] examined the com-
posite January temperature and precipitation patterns over
the United States and parts of Canada associated with El
Niño and La Niña events. Their results suggest that El Niño
and La Niña have their own unique characteristics in terms
of temperature and precipitation, so the responses are not
linear. Asymmetric spatial patterns of the Canadian surface
air temperature (SAT) and precipitation associated with the

Southern Oscillation (SO) were detected by Shabbar and
Khandekar [1996] and Shabbar et al. [1997]. Further
evidences of nonlinear response of North America climate
to ENSO were provided by Hoerling et al. [1997], who
suggested that the midlatitude atmospheric response to the
different phases of the SO is inherently nonlinear, due to
differences in the locations of the intense tropical Pacific
SST-induced deep convection between El Niño and La Niña
events. From the phase shift in the midlatitude geopotential
height anomalies during the opposite phases of the SO, they
concluded that midlatitude temperature and precipitation
patterns should also have nonlinear relations with the SO.
The robustness of nonlinear climate response to ENSO’s
extreme phases was then confirmed by four GCMs [Hoerl-
ing et al., 2001]. A nonlinear identification of the atmos-
pheric response to ENSO was also addressed by Hannachi
[2001] using state-of-the-art general circulation models.
[3] Describing the nonlinear behavior in the midlatitude

climate and its nonlinear relations to ENSO is a great
challenge. Standard multivariate statistical techniques such
as principal component analysis (PCA, also known as EOF
analysis) and canonical correlation analysis (CCA) are linear
methods. Composite analysis does not assume linearity, but
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is restricted to the analysis of differences between specific
phases of the SO or equatorial sea surface temperature (SST)
indices. Are there general methods which can describe the
nonlinearity of the midlatitude climate variability and its
nonlinear relations to ENSO? Recently, neural networks
(NN) [Hsieh and Tang, 1998] have been used for nonlinear
PCA (NLPCA) [Kramer, 1991] and nonlinear CCA
(NLCCA) [Hsieh, 2000]. The tropical Pacific SST and sea
level pressure fields have recently been analyzed by the
NLPCA [Monahan, 2001] and by NLCCA [Hsieh, 2001a],
where SST was found to exhibit considerable nonlinearity,
while the sea level pressure was found to be less nonlinear.
Also, NLPCA was applied to the analysis of the winter
Northern hemisphere atmospheric variability [Monahan et
al., 2000]. Hsieh [2001b] pointed out that NLPCA unifies
the PCA and rotated PCA approaches.
[4] In this paper, the NLPCA model of Hsieh [2001b] will

be applied to study the SAT variability over Canada. The
motivation of this paper is to examine the nonlinear charac-
teristics of the Canadian SAT using NLPCA, before we build
our prediction models using NLCCA to link the SAT and the
tropical Pacific SST. The paper is organized as follows: The
data are briefly introduced in section 2. The leading NLPCA
modes for the Canadian SAT data for 1950–1995 over the
entire country, and for 1900–1995 and 1900–1949 over
southern Canada (south of 60�N) are presented in section 3.
Some possible dynamics related to the NLPCA mode of
Canadian winter SAT are discussed in section 4. A Summary
with concluding remarks is given in section 5. Details of the
NLPCA model are described in Appendix A.

2. Data

[5] The basic data we used in this study is the gridded
monthly mean SATs interpolated from the station observa-
tions for the period of January 1900 to December 1995
[Vincent and Gullet, 1999]. With this data (up to 1998),
Zhang et al. [2000] analyzed the trend of Canadian SAT in
the 20th century. Following Zhang et al. [2000], we
separated the data into three subsets: data for 1900–1949
and for 1900–1995 over southern Canada (south of 60�N),
called S0049 and S0095, respectively, and data for 1950–
1995 over whole Canada, called C5095. There are two
reasons for doing so: (1) the limited data availability in
northern Canada prior to 1950; (2) a check on the signifi-

cance of the NLPCA results. If the NLPCA results are
reproducible from different data sets, then the nonlinearity
can be regarded as robust rather than sampling dependent.
The SAT data have an approximately linear trend [see
Zhang et al., 2000, Figure 3], so linear detrending was
performed first. Monthly SAT anomalies were calculated by
removing the climatological monthly mean based on the
whole period of each data set. The anomaly data were then
smoothed with a 3-month running mean. The SAT anoma-
lies were separated into four seasons: SAT anomalies in
December, January, and February (DJF) were used to form a
data set for the winter season, March, April, and May
(MAM) for the spring, June, July, and August (JJA) for
the summer, and September, October, and November (SON)
for the fall.
[6] The 500-mb geopotential height came from the

National Centers for Environmental Prediction’s (NCEP)
reanalysis data sets for the period from January 1948 to
December 1995 with a 2.5� grid over a global domain
[Kalnay et al., 1996]. The monthly SST was from the
reconstructed global historical SST data sets by Smith et
al. [1996] for the period 1950–2000 with a resolution of 2�
by 2� over global oceans. Anomalies for the 500-mb height
and SST fields are calculated with respect to climatological
monthly means for 1950–1995. Linear detrending and 3-
month running mean were then performed on both data sets.
[7] The winter (December through March) index of the

North Atlantic Oscillation (NAO), defined as the difference
of normalized sea level pressure (SLP) between Lisbon,
Portugal and Stykkisholmur/Reykjavik, Iceland since 1864
to 2001, was provided by Dr. Jim Hurrel of the National
Center for Atmospheric Research (NCAR). The SLP
anomalies at each station were normalized by dividing the
seasonal mean pressure by the long-term (1864–1983)
standard deviation. The NAO index used in this paper is
an update of the time series published by Hurrel [1995].

3. The Leading NLPCA Mode of Canadian SAT

3.1. C5095

[8] Prior to NLPCA, traditional PCA (or EOF analysis)
was performed on the SAT anomalies of each season.
Variance contributions from the four leading modes are
listed in Table 1 and the spatial patterns for the three leading
modes are shown in Figure 1. We can see that spatial

Table 1. Variance Explained by the Four Leading EOF (PCA) Modes of the Seasonal SAT Anomaliesa

C5095 S0095 S0049

DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

1 44.6 46.1 40.6 40.1 58.2 54.9 48.3 55.4 61.4 55.3 47.9 60.6
2 24.7 17.5 15.3 29.4 21.3 21.3 16.5 24.9 19.0 20.9 15.7 20.9
3 11.0 14.2 14.3 10.6 7.5 8.2 11.2 5.8 6.1 7.5 11.1 5.7
4 7.3 6.1 6.5 5.7 4.1 3.8 6.0 3.3 4.2 3.5 7.1 2.9
�1
4 87.6 83.9 76.7 85.8 91.1 88.2 82.0 90.0 90.7 87.2 81.8 90.1
aValues are in percent. Given are anomalies for 1950–1995 over the entire country (C5095) and for 1900–1995 and 1900–1949

over southern Canada (south of 60�N, S0095 and S0049, respectively). The bottom line shows the sum of the four modes.

Figure 1. (opposite) The first four empirical orthogonal functions (EOFs) of the seasonal surface air temperature (SAT)
anomalies for 1950–1995 over the entire country (C5095). From top to bottom, the four rows represent the winter (a–c),
spring (d–f ), summer (g–i) and fall ( j– l), respectively. Solid curves denote positive contours, dashed curves, negative
contours, and thick curves, zero contours. The contour interval is 0.02. The EOFs are normalized to unit norm.
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patterns of individual seasons are very similar to each other,
except that mode 2 and mode 3 of the spring data are
interchanged. The first mode is uniform in sign (except the
west coast for the summer) by indicating either warm or
cold conditions over the whole domain, while the second
mode displays a southwest-northeast contrast. For each
season, the first mode can always explain 40–50% of the
total variance, and the second mode about 20%. The four
leading modes explain altogether about 80% of the total
variance. The four leading principal components (PCs) (i.e.,
EOF time coefficients) are thus used as the inputs to the
NLPCA model (Figure 2).
[9] The first NLPCA modes of SAT anomalies for four

seasons are shown in Figure 3. For convenience, 3-dimen-
sional figures are used, where we can see not only the
NLPCA curve in the PC1-PC2-PC3 3-D space but also its
projections on PC1-PC2, PC1-PC3 and PC2-PC3 planes. In
winter (Figure 3a), we can find a notable curve in the PC1-
PC2 plane, which indicates considerable nonlinearity, rela-
tive to the PCA (straight line). 53.7% of the variance of the
original data is explained by the NLPCA mode 1, versus
44.6% by the PCA mode 1. The MSE (mean square error)
for the NLPCA mode is much smaller than that for the PCA
mode with a ratio of 0.865. Here MSE is the mean square of
the distance between a data point and its projection onto the
NLPCA (or PCA) mode, i.e., the unexplained variance. The
MSE ratio can be considered an indicator of the non-
linearity: As a ratio of 1 or close to 1 means the NLPCA
is essentially linear, while a smaller MSE ratio means
stronger nonlinearity.

[10] Figures 3b and 3c show relatively weak nonlinearity
in the spring and summer data, with MSE ratios of 0.965
and 0.977, respectively, and with slightly higher variance
contributions (Table 2) relative to their PCA mode 1
counterparts (Table 1). The nonlinearity is then enhanced
during the fall, as manifested in the increased curvature
(Figure 3d). The NLPCA mode 1 for the fall data accounts
for 51.8% of the total variance, versus 40.1% by the PCA
mode 1. The MSE ratio is 0.833, indicating a little higher
nonlinearity than during winter.
[11] Unlike a PCA mode, which produces a fixed spatial

pattern (the EOF), the NLPCA mode does not give a
single characteristic spatial pattern. For a specific value of
the NLPC u (see Appendix A), we can use the NN to map
u in the bottleneck neuron onto x0 in the output layer
(Figure 2) using equations (5) and (6) (in Appendix A).
Note that u can be regarded as a simple curvilinear
coordinate system on the NLPCA curve, and therefore
each value of u corresponds to a pattern within the first
four PCs. Figure 4 shows the SAT anomaly patterns
corresponding to minimum u and maximum u. We can
see that the spatial patterns on opposite extremes of u are
now asymmetric, i.e., no longer mirror images. The
asymmetry is enhanced as the nonlinearity increases.
The spatial patterns associated with minimum u and
maximum u are basically symmetric for the summer
(Figures 4e and 4f ), and slightly more asymmetric for
the spring, with the warm center shifted southward relative
to the cooling center in Figures 4c and 4d. The spatial
asymmetry gets enhanced in the fall and winter. For the
fall, the minimum and maximum u patterns have respec-
tively negative and positive anomalies basically covering
the whole domain. But the cold pattern is centered over
the northeast (Figure 4g), and the warm pattern is centered
toward the west (Figure 4h). The spatial patterns for
opposite values of u are also quite asymmetric during
the winter. At maximum u, there are positive anomalies
over all of Canada (Figure 4b), similar to the EOF1
(Figure 1a), with the warm center over western Canada.
At minimum u, there are negative anomalies to the south-
west and positive anomalies to the northeast, similar to the
EOF2 (Figure 1b). It is not surprising because the NLPCA
mode 1 combines PC1 and PC2 (Figure 3a).
[12] It is worth noting that the winter SAT anomaly

pattern associated with maximum u (Figure 4b) is similar
to the composite results during El Niño years [Hoerling et
al., 1997, 2001], while the SAT anomaly pattern associated
with minimum u (Figure 4a) is different from their compo-
site results during La Niña years. Therefore, the NLPCA
mode reveals the possible effects from more than ENSO on
the Canadian SAT. This will be further discussed later in this
paper.

3.2. S0095

[13] Similarly, traditional PCAwas performed on the SAT
anomalies of S0095 for each season to compress the data
and the first three EOFs are shown in Figure 5. The EOF1
and EOF2 are roughly consistent with those of C5095,
while the EOF3 patterns are different from those shown in
Figure 1. The variance contributions for the four leading
modes are listed in Table 1. The first four PCs are used as
the inputs to the NLPCA.

Figure 2. A schematic diagram of the NN model for
calculating nonlinear PCA (NLPCA). There are three
‘‘hidden’’ layers of variables or ‘‘neurons’’ (denoted by
circles) sandwiched between the input layer x on the left and
the output layer x

0
on the right. Next to the input layer is the

encoding layer (with m hidden neurons), followed by the
‘‘bottleneck’’ layer (with a single neuron u), which is then
followed by the decoding layer. A nonlinear function maps
from the higher dimension input space to the lower
dimension bottleneck space, followed by an inverse trans-
form mapping from the bottleneck space back to the original
space represented by the outputs, which are to be as close
to the inputs as possible by minimizing the cost function
J = hkx � x0k2i. Data compression is achieved by the
bottleneck, with the bottleneck neuron giving u, the
nonlinear principal component. The actual NLPCA used
in this paper has four inputs (and four outputs), has m
between 2 and 3, and adds a weight penalty term in the cost
function to alleviate overfitting (see Appendix A).
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[14] The first NLPCA modes of SAT for four seasons are
shown in Figure 6, where we can see similar results as
extracted from C5095 although the NLPC curves are not
exactly the same. The strongest nonlinearity occurs in
winter with a MSE ratio of 0.879, followed by the fall with
a MSE ratio of 0.908. The NLPCA modes explain 63.4%
and 60.8% of the total variance of the winter and fall SAT
anomalies, respectively, versus 58.2% and 55.4% by the
PCA modes. Figures 6b and 6c show rather weak non-
linearity in the spring and summer data (see also Table 2).

[15] In the spatial patterns (Figure 7), for the spring
(Figures 7c and 7d) and summer (Figures 7e and 7f ), the
SAT anomalies on opposite extremes of the NLPC u are
basically similar except for a sign change, resembling their
EOF1 patterns(Figures 5d and 5g). More asymmetry can be
seen in the winter (Figures 7a and 7b) and fall (Figures 7g
and 7h), and the spatial patterns are in reasonably good
agreement with those shown in Figures 4a and 4b and
Figures 4g and 4h, respectively. Although C5095 and S0095
are partially overlapping (not completely independent), the
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Figure 3. The first NLPCA mode for the seasonal SAT anomalies of C5095 plotted as (overlapping)
squares in the PC1-PC2-PC3 3-D space. The linear (PCA) mode is shown as a dashed line. The NLPCA
mode and the PCA mode are also projected onto the PC1-PC2 plane, the PC1-PC3 plane, and the PC2-PC3

plane, where the project NLPCA is indicated by (overlapping) circles, and the PCA by thin solid lines,
and the projected data points by scattered dots. Panels (a), (b), (c) and (d) correspond to the winter,
spring, summer and fall, respectively.

Table 2. Explained Variance by the NLPCA Mode 1 (Ev) and the Ratio (R) Between the MSE of the NLPCA Mode 1

and That of the PCA Mode 1a

C5095 S0095 S0049

DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

Ev 53.7 48.4 41.2 51.8 63.4 55.2 48.8 60.8 62.7 56.3 48.3 61.9
R 0.865 0.965 0.977 0.833 0.879 0.983 0.986 0.908 0.951 0.960 0.973 0.958

aValues are in percent.
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Figure 4. The SAT anomaly patterns (in �C) of the NLPCA mode 1 extracted from C5095, as the NLPC
(i.e., u) of the first NLPCA mode takes its minimum and maximum values. Contour interval is 1�C. The
four rows from top to bottom display the winter (a,b), spring (c,d), summer (e,f ) and fall (g,h) patterns,
respectively.

ACL 8 - 6 WU ET AL.: CHARACTERISTICS OF SURFACE AIR TEMPERATURE OVER CANADA



Figure 5. Similar to Figure 2, but for S0095. For better visualization, the values have been multiplied
by 100 and drawn with contour interval of 2.
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similarity of the NLPCA results from two data sets suggests
the significance of the seasonal dependence of the non-
linearity of the Canadian SAT, at least for the data after the
1950s.

3.3. S0049

[16] S0049, which is completely independent of C5095, is
considered in this section. Spatial patterns of the first three
PCA modes, shown in Figure 8, are well consistent with
those extracted from S0095 (Figure 5, except for the opposite
sign in EOF2 for the winter, spring and summer). Detailed
information for the PCAmodes are listed in Table 1. The first
four PCs serve as the inputs to the NLPCA.
[17] The first NLPCA modes of SAT anomalies for four

seasons are shown in Figure 9. If disregarding the few
outlier points (e.g., in Figure 9d), no notable nonlinearity
can be seen in any of the four seasons. Table 2 indicated that
the MSE ratios are all above 0.95 and the explained
variance percentage differences between nonlinear and
linear modes are also small (not over 2.0%), implying rather
weak nonlinearity. The spatial anomaly patterns associated
with minimum u and maximum u are generally symmetric
for all four seasons (figures not shown), confirming the
weak nonlinearity again.

[18] Since S0095 exhibits considerable nonlinearity in
winter and fall, while S0049 does not show apparent non-
linearity for all four seasons, nonlinearity for the winter and
fall exists mainly in the data after 1950s, suggesting
interdecadal dependence in the nonlinearity of the Canadian
SAT.

4. Dynamics Related to Canadian SAT
NLPCA Mode

4.1. Winter 500-mb Height

[19] As the strong nonlinearity tends to occur in winter,
we will examine the winter season more closely. Regres-
sions of a winter SAT EOF PC onto the global 500-mb
height anomalies (1950–1995) reveal the spatial patterns of
the 500-mb heights covarying with the PC, which was
standardized first. The first winter SAT PC regressed onto
the simultaneous 500-mb height anomalies revealed a
Pacific-North American (PNA) pattern, where there is
generally positive height anomalies over Canada, and neg-
ative height anomalies over the midlatitude North Pacific
and the southeastern United States when the PC is positive
(Figure 10a), corresponding to warming over whole Canada
(Figure 4b). The second SAT PC regressed onto the winter
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Figure 6. Similar to Figure 3, but for S0095.
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Figure 7. Similar to Figure 4, but for S0095.
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Figure 8. Similar to Figure 5, but for S0049.

ACL 8 - 10 WU ET AL.: CHARACTERISTICS OF SURFACE AIR TEMPERATURE OVER CANADA



500-mb height anomalies gave an NAO pattern, with a large
negative anomaly centered over southwestern Greenland
and northeastern Canada, and a large positive anomaly
centered over western Europe and a positive anomaly over
the west coast of Canada when the PC is positive (Figure
10b), corresponding to warm western Canada and cool
eastern Canada (Figure 4a with signs reversed). Since major
nonlinearity occurs between PC1-PC2 (Figures 3a and 6a),
the leading NLPCA mode thus combines the effects of PNA
and NAO on the Canadian winter SAT, suggesting that the
effects of PNA and NAO on Canada may not be totally
independent. It appears that the SAT PC2 tends to take on
negative values when PC1 takes on significant negative
values (Figure 3a), i.e., negative NAO effects, a warm
eastern Canada-cool western Canada (Figure 1b with signs
reversed), tends to concur with negative PNA effects (cool
Canada) (Figure 1a with signs reversed).

4.2. The Global SST

[20] Similar regressions of a winter SAT PC onto the
global SST anomalies were performed. The regressions of
the first winter SAT PC onto SST anomalies yielded a
spatial pattern resembling the Pacific Decadal Oscillation

(PDO) [Trenberth and Hurrell, 1994]; that is, when the PC
is positive (corresponding to warm Canada, Figure 1a),
there is cool SST over the central-western midlatitude North
Pacific and warm waters off the west coast of North
America (Figure 10c), which is consistent with the ocean’s
response to the PNA pattern in the atmosphere. The third
SAT PC regressed on the SST anomalies manifested a
pattern somewhat similar to ENSO, i.e., warm SST in the
eastern-central equatorial Pacific (Figure 10d) when the
third PC is positive, corresponding to warm southern
Canada and cool northern Canada (Figure 1c).

4.3. Nonlinearity and the NAO

[21] We take a closer look at the NLPCA mode for S0095
and S0049 in Figure 11 (only projections on the PC1-PC2

plane are shown). S0095 and its NLPCA mode are shown
by the symbols of plus and overlapping circles, while S0049
and its NLPCA mode, by scattered dots and squares,
respectively. For comparison, the signs of PC2, also the
PC2 at the output layer of NLPCA model of S0049 are
reversed since the EOF2 of S0049 (Figure 8b) is opposite in
sign to the EOF2 of S0095 (Figure 5b). We can see the
symbols of ‘‘+’’ and ‘‘.’’ at the same time (1900–1949) are
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Figure 9. Similar to Figure 3, but for S0049.
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close but not exactly overlapping, as the EOFs for two data
sets are similar but not identical (Figures 5a–5c and Figures
8a–8c). Regarding the NLPCA modes, if we ignore the data
points of S0095 in the big circle (Figure 11), the two NLPC
curves could be very similar, i.e., it is these points that
brings the nonlinearity to S0095. These data points are to be
found in the winters of 1916, 1933, 1937, 1951, 1955, 1956,
1965,1966, 1968, 1969, 1977 and 1982. These years have
negative NAO index values (Figure 12), except for 1933,
1937 and 1982, and most of them are within the period of
1951–1977. Actually, after a 7-year running mean, the
NAO index (thick line in Figure 12) is basically positive
from 1900 to 1930, normal in the 1930s and 1940s and
negative from 1952 to the early 1970s and then turns to be
positive after the mid 1970s, reaching its positive extreme in
the early 1990s. It is possible that the existence of the
nonlinearity in the Canadian winter SAT only after the
1950s is due to the strong negative phase of the NAO
occurring from 1950s to the early 1970s. The negative NAO
pattern (Figure 10b with signs reversed) and the resulting
SAT patterns shown in Figures 4a and 7a are more likely to
occur during the negative phase of the NAO.

[22] To check that the downward curve in S0095 (Figure
11) is not due to the outliers from a single year, we removed
the data from winter 1969 (which contributed the two points
with the most negative PC2 values) and recomputed the
NLPCA solution, which again yielded the downward curve
found in Figure 11.

5. Concluding Remarks

[23] NLPCA was performed on three subsets of the
Canadian seasonal SATs: 1900–1949 and 1900–1995 over
southern Canada (south of 60�N), and 1950–1995 over the
entire country, with the three data sets named S0049, S0095,
and C5095, respectively. The SAT anomalies were found to
be generally linear during 1900–1949 for all seasons in
S0049. However, after 1950, the SAT anomalies showed
considerable nonlinearity in winter (DJF) and fall (SON)
(but much weaker nonlinearity in spring and summer),
indicating interdecadal and seasonal dependence in the
nonlinearity of the Canadian SAT. During winter, the
leading NLPCA model reveals asymmetric SAT anomaly
patterns: At one extreme of the NLPCA mode, there are

Figure 10. The regression coefficients between the winter first PC (of the Canadian SAT anomalies of
C5095) and the global simultaneous (a) 500-mb height anomalies, and (c) SST anomalies; and the
regression coefficients (b) between the winter second PC and the 500-mb height anomalies, and (d)
between the winter third PC and the SST anomalies. The regression coefficient shown is the slope, with
the PC treated as the independent variable in the regression. Contour interval is 10 in panel (a) and (b),
and 0.1 in panel (c) and (d), respectively. The SAT PCs were standardized before performing regression.
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negative NAO effects with a warm eastern Canada-cool
western Canada pattern (Figure 4a), and at the other
extreme, positive PNA effects with warming over all of
Canada (Figure 4b). The negative NAO effects also tend to
concur with negative PNA effects, suggesting that the PNA

and NAO effects on Canadian SAT may not be independent,
and the NLPCA has been successful in combining the
effects of the two.
[24] The absence of notable nonlinearity in the SAT

anomalies during 1900–1949 was puzzling. Since non-
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Figure 11. Projections of S0095 and its leading NLPCA mode onto the PC1-PC2 plane, shown by the
symbol of plus (+) and overlapping circles. Similarly, projections of S0049 and its leading NLPCA mode,
by scattered dots and overlapping squares, respectively. The big circle includes the data points which
possibly contribute to nonlinearity of SAT anomalies after 1950. The straight line represents the PCA
mode 1.

Figure 12. Time series of the winter (December through March) index of the North Atlantic Oscillation
(NAO), defined as the difference of normalized sea level pressure (SLP) between Lisbon and
Stykkisholmur (Lisbon minus Stykkisholmur) since 1864 to 2001, shown with the hollow bars. A 7-year
running mean of the NAO index is displayed by the thick line.

WU ET AL.: CHARACTERISTICS OF SURFACE AIR TEMPERATURE OVER CANADA ACL 8 - 13



linearity was found in the data during 1900–1995 (S0095),
this implied nonlinearity of considerable strength in the data
after 1950. In fact, the NLPCA mode 1 results from data set
S0095 agreed well with those from data set C5095, con-
firming the robustness of the nonlinearity found in the SAT
anomalies in the later period of 1950–1995. Still, there is a
concern that the nonlinearity detected in the 1950–1995
period was due to sampling, as nonlinearity was not
detected in the 1900–1949 period. Indeed, with short
climate records, this possibility cannot be ruled out. How-
ever, in the last section, our test with the outlier winter1969
data removed from the NLPCA calculation at least elimi-
nated the possibility that the detected nonlinearity arose
from a single outlier year. Furthermore, as negative NAO
effects contributed to the nonlinearity in the winter SAT, and
strong negative NAO occurred during the 1950s to the early
1970s but not during the 1900–1949 period, this could be a
reason for the absence of significant nonlinearity in the
winter SAT data before 1950.
[25] The temporal relationship between the NAO and

ENSO was investigated by Huang et al. [1998] using a
multi-resolution cross-spectral technique. Their results show
significant coherence between NAO and Niño3 SST in
about 70% of the warm events from 1900 to 1995; that is,
the strong El Niño events concur with the positive phase of
the NAO. During relatively weak Niño3 SST anomalies,
they found a teleconnection pattern which shows a strong
negative phase of the NAO and a pattern resembling a weak
eastward-shifted negative PNA pattern. Interestingly, their
results generally corroborate the findings in this paper.

Appendix A: The NLPCA Method

[26] A variable x, which consists of l spatial stations and n
observations in time, can be expressed in the form x(t) =
[x1,. . ., xl], where xi (i = 1, 2, . . ., l ), is a time series of
length n. PCA is to find a scalar variable u and an associated
vector a, with

uðtÞ ¼ a 	 xðtÞ; ðA1Þ

so that

hkxðtÞ � auðtÞk2i is minimized; ðA2Þ

where h	 	 	i denotes a sample or time mean. Here u, called
the first principal component (PC), is a time series resulting
from a linear combination of the original variables xi, while
a, the first eigenvector of the data covariance matrix (also-
called an empirical orthogonal function, EOF), often
describes a spatial pattern. From the residual, x � au, the
second PCA mode can similarly be extracted, and so on for
the higher modes. In practice, the common algorithms for
PCA extract all modes simultaneously by calculating the
eigenvalues and eigenvectors of the data covariance matrix.
[27] The fundamental difference between NLPCA and

PCA is that NLPCA allows a nonlinear continuous mapping
from x to u whereas PCA only allows a linear mapping. To
perform NLPCA, the NN in Figure 2 contains three ‘‘hid-
den’’ layers of variables (or ‘‘neurons’’) between the input
and output layers, called the encoding layer, bottleneck, and
decoding layer, respectively.

[28] Following Hsieh [2001b], four transfer functions f1,
f2, f3, f4 are used to map from the input layer to the output
layer (x ! h(x) ! u ! h(u) ! x0):

h
ðxÞ
k ¼ f1ððWðxÞxþ bðxÞÞkÞ; ðA3Þ

u ¼ f2ðwðxÞ 	 hðxÞ þ �b
ðxÞÞ; ðA4Þ

h
ðuÞ
k ¼ f3ððwðuÞuþ bðuÞÞkÞ; ðA5Þ

x0i ¼ f4ððWðuÞhðuÞ þ �b
ðuÞÞiÞ; ðA6Þ

where the capital bold font is reserved for matrices and the
small bold font for vectors, x is the input column vector of
length l, h(x), a column vector of lengthm (m is the number of
the hidden neurons in the encoding layer), W(x) is an m � l
weight matrix, b(x), a column vector of length m containing
the bias parameters, and k 2 [1, m]. The bottleneck layer
contains a single neuron, which represents the nonlinear
principal component u. The decoding layer contain the same
number of neurons m as the encoding layer, and the output
layer is also a column vector of length l.
[29] The transfer functions f1 and f3 are generally non-

linear (here taken to be the hyperbolic tangent function),
while f2 and f4 are taken to be the identity function. If the
transfer functions f1 and f3 are also replaced by a linear
function, NLPCA essentially reduces to PCA.
[30] The cost function J = hkx � x0k2i is minimized by

finding the optimal values of W(x), b(x), w(x), �b(x), w(u),
b(u), W(u) and �bðuÞ. The MSE (mean square error) between
the NN output x0 and the original data x is thus minimized.
[31] Generally, we can impose the constraint hui = 0, hence

�b
ðxÞ ¼ �hwðxÞ 	 hðxÞi: ðA7Þ

The total number of free (weight and bias) parameters to be
determined is then 2lm + 4m + l. Furthermore, we adopt the
normalization condition that hu2i = 1. This condition is
approximately satisfied by modifying the cost function to

J ¼ hkx� x0 k2i þ ðhu2i � 1Þ2: ðA8Þ

[32] The most serious problem with NLPCA is the
presence of local minima in the cost function. As a result,
optimizations started from different initial parameters often
converge to different minima, rendering the method unsta-
ble. This problem can be effectively avoided by adding a
weight penalty term into the cost function [Hsieh, 2001b].

J ¼ hkx� x0 k2i þ ðhu2i � 1Þ2 þ p
X

ki

ðW ðxÞ
ki Þ2; ðA9Þ

where p is the weight penalty parameter. With p, the
concavity of the cost function is increased, pushing the
weights W(x) to be smaller in magnitude, thereby yielding
smoother and less nonlinear solutions than when p is small
or zero. With a large enough p, the danger of overfitting is
greatly reduced, hence the optimization can proceed until
convergence to the global minimum.
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[33] The nonlinear optimization was carried out by the
MATLAB function ‘‘fminu,’’ a quasi-Newton algorithm.
Despite of the weight penalty, there is still no guarantee that
the optimization algorithm reaches the global minimum.
Hence an ensemble of 60 NNs with random initial weights
and bias parameters was run. Also, 20% of the data was
randomly selected as test data and withheld from the train-
ing of the NNs. Runs where the MSE was larger for the test
data set than for the training data set were rejected to avoid
overfitted solutions. Then the NN with the smallest MSE
was selected as the solution. The NLPCA was run repeat-
edly with m = 2 and 3, and 30 values of p ranging from 0 to
0.18, then the solution with the smallest MSE was chosen as
the desired solution.
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