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Abstract
Diffusion has been described on a microscopic scale by Einstein 

as a probabilistic collision of particles. On a macroscale, diffusion 
has been thoroughly described by Fick’s laws. However, the solu-
tions to Fick’s laws are limited to idealized physical systems. The 
aim of this experimental study is to provide a mathematical model 
for diffusion which incorporates both macroscopic and micro-
scopic properties to effectively model diffusion in a geometrically 
constrained two-dimensional system. Based on macroscopic and 
microscopic properties, two-dimensional diffusion was modelled 
as a summation of equally probable paths of diffusion. The point 
source diffusion of hydrochloric acid in an arena with variable bar-
rier dimensions was monitored continuously using a pH probe. The 
numerical solution of the mathematical model for each experimental 
condition was determined and the pre-exponential factor was fit to 
the measurements. The average pre-exponential value was deter-
mined for each experimental condition, and t-scores were calcu-
lated to compare the average pre-exponential values which were 
found to be statistically similar. This indicates that the proposed 
model is an accurate model as it predicts identical pre-exponential 
values between experimental conditions, accounting for all variants 
that it attempts to model. This model provides a bridge between the 
microscopic and macrcoscopic theoretical descriptions of diffusion 
that were independently postulated by Einstein and Fick. Applica-
tions of the model include the approximation of locations of leakage 
in hydraulic systems.

Key Words
Modelling Diffusion, Numerical Computation, Ficks Laws 

Introduction 
Adolf Fick, in 1855, provided a mathematical explanation of dif-

fusion by postulating two fundamental laws for diffusion, known as 
Fick’s laws (1). 

Fick’s first law states that the flux of diffusion - the movement 
of particles through a given area - is proportional to the diffusive 

constant multiplied by the negative of the concentration gradient 
(1). The differential equation is described as

    (1)
Where J represents the diffusive flux (mol/m2s), C is the concen-

tration in (mol/m3), x is some defined position along a defined x-axis 
in (m), and the D, the diffusion constant in (m2/s) which describes a 
solute’s relative rate of diffusion in relation to the properties of the 
solute, solvent, and overall system (1, 2). 

Fick’s second law of diffusion states that the change in concen-
tration in some defined space with respect to time is proportional 
to the second derivative of concentration with respect to position 
multiplied by the diffusion constant (1). This law states that a con-
centration gradient will result in concentration changes in the sys-
tem, where regions down a concentration gradient will experience 
an increasing concentration with time. The partial differential equa-
tion is described as

    (2)
Although Fick’s laws of diffusion provide a thorough descrip-

tion of diffusion, they are limited to a macroscopic explanation of 
the phenomenon. It was later that Einstein described the observed 
Brownian Motion as a series of stochastic collisions between par-
ticles, thus bridging the kinetic molecular theory of heat with classi-
cal thermodynamics (2). 

By this stochastic nature of particle collisions, individual par-
ticles have an equal probability of moving in any direction (2). 
Secondly, in an arbitrarily defined three-dimensional coordinate 
system, movements along an axis are independent of movements 
along the other two axes (2). 

Many solutions to Fick’s laws of diffusion are limited to idealized 
systems and consequently fail to account for more complex geom-
etries of the physical system. In response, this study investigates 
the feasibility of the development of a more holistic model of diffu-
sion that incorporates complex geometries of a physical system. An 
idealized system in this context is defined as a physical system of 
perfect geometric dimensions such a line, rectangle, or a cylinder. 

The model developed in this study will provide a new bridge be-
tween the macroscopic and microscopic descriptions of diffusion 
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that have been developed independently by Einstein and Fick. Fur-
thermore, the model will be a basis for future models that can be 
applied to macroscopic scenarios of fluid diffusion. This has perti-
nence in several fields, including but not limited to industrial, envi-
ronmental, and health care settings. 

To achieve the purpose of this study, a new numerical model 
of diffusion based on solutions to Fick’s laws and the microscopic 
properties of diffusion is postulated and verified against experimen-
tal results from a physically constrained two-dimensional system 
of diffusion.

Methods

Development of the Model.As a basis for this new model, the solu-
tion to a one-dimensional idealized system described by Fick’s sec-
ond law is employed (3). The solution is

     (3)

where A is a dimension-less preexponential factor, t is time in 
(s), r is displacement in (m). The pre-exponential factor remains 
constant for a specific system, and is an empirically determined 
value (3). 

The diffusion constant for the experimental system is approxi-
mated using the Einstein- Stokes equation

     (4)

Where, KB, the Boltzmann constant is 1.38065 x 10−23 m2kg/s2k, 
T is the absolute temperature of the system in (K), P, is the dynamic 
viscosity of the solvent in Ns/m2 , and r is the solute’s radius in (m) 
(2, 4).

Figure 1 displays the idealized onedimensional system that equa-
tion 3 represents and as well as the two-dimensional systems of 
diffusion that this study investigates. 

To model a two-dimensional physically constrained system, 
diffusion is treated as a summation of all possible and reasonable 
net paths a particle could take to the final displacement position. A 
reasonable path of diffusion is defined as a path with as few direc-
tional changes as possible, and whereby all paths should contain 
the same number of directional changes with the exception of a few 
paths that may have fewer directional changes as is the case with 
the central path of the second diagram in Figure 1.

Figure 2 displays an unreasonable path. Although this path is 
a realistic representation of an individual particle’s stochastic dis-
placement (2), on a macroscale Fick’s laws treat these stochastic 
movements in aggregate by quantifying the net diffusive flux rath-
er than the exact movement of a particle (1, 3). The assumption 
with choosing only paths defined as reasonable paths as opposed 
to including unreasonable paths in this model lies in the statisti-
cal improbability of individual particles moving in identical, or at 
least similar, stochastic paths like in Figure 2. It is more likely that 
particles would move in the reasonable paths, or at least paths 
that more closely resemble them, as compared to the stochastic 
path displayed in Figure 2. Further, an addition of more paths, with 
changes in their direction at multiple and different points than just 
at the barrier’s slit would have led to an increasingly large number of 
computational operations to solve the model, which would have be-
come overly cumbersome for the scope of this study. Consequently, 
equation 3 provides an effective solution to an idealized one dimen-
sional system of diffusion and by using this solution as the basis for 
the summation of many paths of diffusion, the same assumption 
about the net diffusion along the paths should also apply. 

In this new model, each path is weighed by the angle the path 

 Figure 2: Representations of an unreasonable path of diffusion.

 Figure 1: Representations of Fick’s one-dimensional sytem of 
diffusion, and two-dimensional systems.

Green dots represent initial points of concentration and red dots 
represent final postions after displacement; arrows represent paths 
of net diffusion.
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represents as a proportion of the overall angle of diffusion. By this 
view, an infinite number of net paths of diffusion would result in an 
infinitesimally small weighing of each path. The key assumption of 
this two-dimensional model is the microscopic property that par-
ticles have an equal probability in moving in any direction (2). By 
the use of an equally probable diffusion with respect to angle, each 
path must be equally spaced apart in terms of an internal angle (dθ) 
between paths of diffusion from an initial concentration source. 

Another reason why paths were chosen to be weighted with re-
spect to angle was because of the empirical trend noted when slit 
size and position were varied. It was found that the experimental 
trends correlated with changes in the size of the angle between the 
slit edges and the central angle as opposed to the changes in the ab-
solute size of the slit. This is evidenced by the more drastic change 
in experimental results between the 1.0 cm and 2.0 cm slit trials 
versus the difference in the results between the 10.0 cm slit and a 
no barrier (21.2 cm slit) trials. Likewise, experimental data showed 
that the positioning of a same size slit (2.0 cm) with respect to a 
central angle altered the diffusive rate, even though the slit width 
remained constant. Thus, these empirical observations, along with 
the theoretical assumptions about equal probabilistic diffusion into 
any direction led to the assumption of weighing reasonable paths of 
diffusion with respect to angle. 

Thus, this summation of paths, each weighed by dθ, is

     (5)
Where N is defined as

     (6)
Since the displacement path distance ri is being incremented 

with respect to the central angle, ri becomes a function of the incre-
mented angle where 

     (7) 

In order to computationally solve equation 4, a function R must 
be developed where the displacement distance ri can be determined 
repetitively in increments, with respect to a constant change of the 
central angle (Equation 7). Figures 3 and 4 display geometries of 
two-dimensional diffusion systems with incremented ri displace-
ments. The systems displayed in these figures are identical to this 
study’s experimental conditions, and for the purpose of this study, 
ri was solved for using standard Pythagorean and trigonometric re-
lationships.

Experimental Procedure
Hydrochloric acid was chosen as the diffusion particle due to its 

ability to induce an observable pH change. All trials were conducted 
in a glass experimental arena measuring 21.2 cm x 25.4 cm x 7 
cm. A corrugated-plastic barrier with variable-sized slits bisects the 
arena into two halves as shown in Figures 5 and 6. The medium for 
diffusion throughout the experiment was 700 mL of tap water. The 
relatively shallow water depth of about 1.25 cm could be used as an 
effective model for two dimensional diffusion as the movement of 
particles in the two-dimensional horizontal plane is independent of 
vertical-depth movements (2). In each trial, 10.0 mL of 8.62 M hy-
drochloric acid was injected into a small closed plastic container via 
a serological syringe, which was subsequently secured on the arena 
edge facing towards the barrier. A Vernier pH probe secured on the 
opposite side was used to record the pH data over time. Changes 
in pH during the diffusion process were assumed to be due to the 

 Figure 3: Representation of the summation of many paths diffu-
sion model.

A barrier bisects the system through the centre, containing a per-
meable opening along a central axis.

 Figure 4: Representation of the summation of many paths diffu-
sion model in a system with a shifted barrier opening away from the 
central axis.
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diffusion of hydrochloric acid and hydronium. 
The pH probe was set to start recording data when the plas-

tic container was opened. Experimental trials were performed for 
a minimum duration of 500 seconds, with the exception of the 
positive control which lasted for 480 seconds. Extraneous environ-
mental variables such as temperature and air flow were minimized 
through conducting the experiment in the same indoor laboratory 
setting. Furthermore, the pH probe was calibrated after every ex-
periment by placing it in a buffer solution.

To determine the effects of different slit widths and distances 
travelled by the diffusing particles, the widths of the slit and the 
angle that the slit’s edges make with the bisecting axis of the arena 
was varied as shown in Table 1. Each experimental treatment was 
limited to a minimum of three experimental trials to allow for the 
measurement of many treatments as opposed to a precise focus 
on a relatively few number of treatments. An example of the experi-
mental system for treatments 3-6 is represented in Figure 5 while 
an example of an experimental system for treatments 7 and 8 is 
represented in Figure 6. 

The first trial was performed as a negative control to determine 
whether or not the plastic barrier was effective in blocking the acid 
from crossing into the detection region. In addition, to confirm that 
the acid is able to diffuse in water and induce a drop in pH in the 
detection region, a positive control with no barriers was conducted.

For each treatment, a weighted chi-square optimization was per-
formed for the pre- exponential factor A to fit the model function 
(Equation 4) to the data. The average standard deviation between 

the measurements within a certain treatment was used as the un-
certainty when calculating weighted chi-square values for that treat-
ment. This allows for the comparison of A values to confirm if Fick’s 
second law still holds true in a geometrically constrained system.

To quantify the model’s effectiveness in modeling two-dimen-
sional diffusion, a t-score analysis was employed to compare all 
treatments except for the negative control.

 Table 1: List of experimental treatments and their angular and 
dimensional parameters.

 Figure 5: Representation of an experimental arena with the bar-
rier’s slit directly between the pH probe and insertion container.

The green dot represents the position of the insertion container 
and the red dot represents the position of the pH probe.

 Figure 6: Representation of the experimental arena with the bar-
rier’s slit shifted away from the central axis running between the pH 
probe and the insertion container.

The green dot represents the position of the insertion container 
and the red dot represents the position of the pH probe.

Fo
r p

er
so

na
l u

se
 o

nl
y.

 



42

STEM Fellowship Journal

PHYSICS

vol.2 l issue 1

Results

Determining the Diffusion Coefficient.The diffusion constant was 
approximated using the Einstein-Stokes equation (Equation 4) to a 
value of 2.94 x 10−9 (m2/s).

The values used to calculate this constant are KB, the Boltzmann 
constant, T, the absolute temperature of the system, which is 296K, 
P, the dynamic viscosity of the aqueous solvent, which is 0.844 x 
10−3 (Ns/m2), and R, the solute radius, which is 1.01 x 10−10 m, 
an average value between the bond distance of a hydrochloric acid 
molecule and a hydronium molecule (5).

Analyses of Results. Comparing the fitted models, a p-value great-
er than the conventional 0.05 was found for all trials, and a p value 
greater than the conventional 0.95 was found for 23 out of the 25 
trials. In general, this implies excellent agreement between the data 
and the fitted models, implying the feasibility of using a numerical 
approach to approach similar problems in practical settings. For a 
detailed table of the tabulated chi-square values, refer to the ap-
pendix.

The pH measurements for each set of trials along with the fit-
ted model of the average pre-exponential factor (equation (5)) are 
reproduced in Figures 7 through 14.

 Figure 7: Plot of continuous pH measurements 
in two second time intervals in the 0.0 cm barrier 
slit treatment (negative control).

 Figure 8: Plot of continuous pH measurements in 
two second time intervals in the 21.2 cm barrier slit 
treatment (positive control) with the average fitted 
model for the treatment.

 Figure 9: Plot of continuous pH measurements in 
two second time intervals in the direct 1.0 cm barrier-
slit treatment with the average fitted model for the 
treatment.
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 Figure 10: Plot of continuous pH measurements 
in two second time intervals in the direct 2.0 cm bar-
rier slit treatment with the average fitted model for the 
treatment.

 Figure 11: Plot of continuous pH measurements 
in two second time intervals in the direct 4.0 cm bar-
rier slit treatment with the average fitted model for the 
treatment.

 Figure 13: Plot of continuous pH measurements in 
two second time intervals in the direct 2.0 cm barrier-
slit, shifted 15° from the central axis, with the average 
fitted model for the treatment.

 Figure 12: Plot of continuous pH measurements in 
two second time intervals in the direct 10.0 cm barri-
er-slit treatment with the average fitted model for the 
treatment.
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To determine whether or not the pre-exponential factor varies 
with obstacle size, for each treatment, the optimized A values of the 
fitted model functions were averaged and a standard deviation was 
determined to quantify the variability in the data. These results are 
shown in Table 2.

Although there is no clear trend in A values as the size of the 
slit increased, the uncertainty in A did increase as the slit became 
more narrow, which could be accredited to greater stochastic influ-

ence. Nevertheless, it was found that all of the comparisons in A 
values result in a t-score less than the conventional threshold of 
1. This indicates that all the pre-exponential factors that the model 
produced are statistically similar, further validating the method of 
using macroscopic models of diffusion such as Fick’s second law 
to numerically analyze diffusion scenarios. The exact t-scores are 
tabulated in the appendix for reference.

Discussion
An accurate model would predict identical A values between 

experimental trials because it should account for all variants it at-
tempts to model. Overall, the model gives an excellent approxima-
tion for the experimental conditions that were tested, indicated by 
the statistically similar A values (Table 2). Among all treatments, the 
average pre-exponential value was found to be 3.9 ± 1.0. 

Although the t-scores are below the conventional threshold of 
1, it is important to note that this is in part due to the large uncer-
tainties associated with the results, which was calculated based on 
the variance between experimental trials. Although there is some 
predicted random uncertainty in this experiment, the presence of 
large uncertainties suggests there could be systematic errors with 
either the experimental procedure or with the pH probe’s precision. 
This indicates that more data sets should be collected to potentially 
detect outliers in the original data sets.

Despite the study’s constraints, the summation of all reason-
able paths of diffusion in a system is a reasonable model for two-
dimensional physically constrained sysems of diffusion. An exciting 
implication of this discovery is that the general approach of taking 
the summation of equally probabilistic angles of movement proves 
to be a reasonable methodology in determining the expected con-
centration change over time due to diffusion. These positive results 
provide a further link between Fick’s macroscopic description of dif-
fusion and the microscopic properties of diffusion.

While the statistical tests implied a close correlation between the 
experimental data and the numerical results, it did not escape our 
attention that certain discrepancies exist. For example, the model 
predicts the initial pH drop to occur gradually, whereas there was an 
initial sudden drop in almost all of the experimental measurements. 
This discrepancy can be attributed to the reflection of acid particles 
off of the back wall of the arena. An important assumption in Fick’s 
laws is that the arena is infinitely wide. In other words, the agent 
inducing concentration change cannot reflect back to the pH probe. 
It is probable that the momentary sudden drop in pH observed for 
most experimental trials is due to the combined effects of both the 
incoming acid solute from the source and the reflection off of the 

 Figure 14: Plot of continuous pH measurements in 
two second time intervals in the direct 2.0 cm barrier-
slit, shifted 35° from the central axis, with the average 
fitted model for the treatment.

Table 2: Mean A values of fitted model functions to the measure-
ments, with standard deviations.
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back wall. This explanation is supported by the observation that co-
loured dye reflects off of the walls upon contact. In order to refine 
the experimental procedure to comply with the theoretical assump-
tions of the model it would be necessary to use a large arena to 
minimize reflections.

Furthermore, another point of conflict between the data and the 
computational results is the differences in their final slopes. In gen-
eral, the model predicts a steeper drop in pH than the actual data 
after 500 seconds. This is likely due to acid particles lingering in the 
side of the arena where the insertion container is, and not diffusing 
to the other half of the arena where the pH probe is. This suggests 
a potential area for improvement as our computational model as-
sumes that acid particles will not become trapped in one side of 
the arena.

Finally, an interesting observation to note is that the pH in the 
experimental data sets occasionally in-creases slightly right before 
it drops. This is likely a result of systematic error since no base 
was added to the arena. Furthermore, no appreciable side reactions 
could have occurred between water and HCl to result in an increase 
in pH. Therefore, this particular discrepancy can be accredited to 
the sensitiveness of the pH probes and any potential mistakes in 
equipment handling.

Interestingly, if one were to approach the diffusion problem as 
a solution to the root mean square displacement relationship, as 
described by 

   (8) 
where r is the distance travelled by the hydronium ion, D is its 

diffusion constant, which was earlier found to be 2.94 x 10−9 m2/s, 
and t is the time that it was allowed to diffuse for, then one would 
find that a hydronium ion would travel less than 2 mm in 500 sec-
onds (2). Although this theoretical expectation appears to be in stark 
contrast with the proposed diffusion model, where acid particles 
were able to reach a pH probe over 25 cm away in approximately 
200 seconds, it should be noted that there are three main possible 
factors responsible for this apparent discrepancy.

Firstly, Equation 8 is the solution for the root mean square dis-
placement of a particle. It does not represent the maximum dis-
placement by any particle. The distribution curve of a particle dis-
placement can be modelled as a Gaussian curve as shown in Figure 
15. Although the root mean square displacement is small, there are 
still many particles which could have travelled a long distance. Since 
0.0862 moles of hydrochloric acid were added to the arena contain-
ing 700 mL of water, and only about 7.0 x 10−6 moles were required 
to change the pH in the arena from 7 to 5, thus it is highly likely that 

the pH changes detected by the probe were due to the relatively few 
hydronium particles which had high displacement.

Additionally, it is possible that the hydronium particles them-
selves were not diffusing to the pH probe, but rather it was the dif-
fusion of charge. If the charge gradient between the source and the 
detector was great enough, it is possible that the change in pH was 
induced by positive charges moving from the source to the detector, 
or more precisely, the movement of electrons from the detector to 
the source facilitated by the rapid breakage and formation of the O-H 
bonds in water and hydronium, as shown in Figure 16.

In addition to these theoretical explanations, systematic errors 
could also be responsible for such a discrepancy. An inevitable error 
in the experiments was the initial velocity of the acid particles. When 
the lid of the container of acid was opened, it could be justifiably 
assumed that this action transfers some kinetic energy among both 
the water and acid molecules, which in turn may have accelerated 
the diffusion process to a certain degree.

Figure 15: Example of a Gaussian diffusion within a labelled 
root mean square displacement along with a minimal concentration 
threshold to trigger a pH change.

All values are arbitrary.

Figure 16: Representation of charge flow with the breaking and 
formation of O-H bonds of water and hydronium..
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Conclusion
Despite these sources of error, the model is able to determine 

that the pre-exponential factor A remains statistically constant as 
the physical environment of the system changes, which is expected 
based on pre-established theory (1; 3). Among all treatments, the 
average pre-exponential value was found to be 3.9 ± 1.0.

The relative consistency of this model in multiple scenarios sug-
gests that such a combination of numerical integration and Fick’s 
laws could be applied to more complex systems with numerous 
compartments and geometries, which is a potential direction for 
future research. The immense applicable aspects of such a model 
could be used to estimate macroscopic effects given the point of 
diffusion and the nature of the system. Conversely, it can predict 
the location of such a point based on the macroscopic effects. 
From a broader perspective, any physical system of diffusion could 
be modelled using this approach, albeit the numerical integration 
would become increasing complex for three-dimensional systems 
where reflection must be taken into consideration.
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by Dr. James Charbonneau, 
Department of  Physics and Astronomy, University of  British Columbia. Vancouver

 In this paper the authors venture to do three things 1) create numerical model for diffusion in 2-dimensions that 
can account for diffusion around barriers 2) experimentally verify their numerical model and 3) experimentally verify some 
standard results that arise from Fick’s laws of  diffusion. This is particularly notable as it approaches the problems from 
theoretical, computational, and experimental sides, demonstrating a complete understanding of  the topic.
 The paper mostly succeeds at its goals, and is of  very good quality. The numerical model developed is interesting, 
the experiment is meticulously carried out, and the statistical analysis is thorough. However, there are some points that I 
would like to address.
The following is a list of  my comments mostly as they appear in the paper, and not in order of  importance. 

1. As a relatively minor point, at the end of  the introduction, and the end of  the paper, the authors feel the need to 
point out applications in a very specific field, approximation of  leaks in hydraulic systems. This feels forced. They 
shouldn’t feel obligated to include such narrow justifications. The work stands on its own in a much broader context. 

2. The authors often use the word idealized in the introduction and beginning of  the methodology when describing the 
solutions to Fick’s law, without describing what idealizations are actually made in these solutions. Defining this would be 
helpful as their study involves a non-idealized system. Providing the reader a contrast would greatly help understanding 
exactly what is special about their study.
 
3. The authors propose a microscopic model for diffusion that involves looking at paths from one point to another with 
a single bounce. The contribution of  each path to the total diffusion is weighted by the angle of  the path to a point along 
the line of  the barrier and the total distance that the particle has to travel. This results in particles that take paths to the far 
edge of  a slit are weighted less. It is interesting model, and maybe somewhat intuitive, but the authors never provide physical 
reasoning for why they would do this. When coming up with a model to describe a physical system, one should always have 
a physical justification for the assumptions made in the model. There’s likely a good reason why their model works, but the 
authors never state it. The next point addresses this.
 
4. The idea of  reasonable and unreasonable paths int he development of  the model is interesting. A key point of  their work is 
choose a subset of  possible diffusion paths to represent all the possible paths of  diffusion. Those paths in which the particle 
bounces once, at the line of  the boundary, are deemed reasonable, whereas a path in which the particle takes many bounces 
to get to the final point is unreasonable.
 There are two issues here. First, when discussing why they discard unreasonable paths, their justification is that the 
macroscopic model accounts for all flow, rather than specific paths. This isn’t a valid argument. The authors should justify 
discarding unreasonable paths be-cause they’re statistically unlikely, which uses ideas in the microscopic paradigm in which 
their model lives.
 The second issue is that the choice of  reasonable paths seems to include a very specific subset of  one-bounce paths, 
those that occur exactly along the line of  the boundary. I agree that one bounce paths probably contribute the most to diffu-
sion around the barrier, something which the authors should spend much more time justifying in their paper. However, there 
are many other two bounce paths where the bounce doesn’t happen exactly on the boundary that should be considered. It 
could be that this deficiency might explain why their model doesn’t capture the sudden drop in pH seen in all their trials, Fig-
ures 7-14. Their model predicts a gradual diffusion rate rather that the steep one because it’s missing possible paths. Luckily, 
it think it’s the exponential weighting of  the path length ri that leads to the success of  the model. This should be fleshed out. 

5. The experimental procedure is very well described. The inclusion of  positive and negative controls is very important. 
Additionally, in the presentation of  the experimental results the authors are careful to use both p-values and t-scores to in-
terpret their data. This makes the conclusion that the A values all agree with each other, which agrees with the theory, very 

REVIEW
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strong. With the increasing concern of  the incorrect usage of  p-values, this is a very, very good. You should always use multiple 
statistics to interpret your data to ensure you’re not being fooled, or fooling yourself.
 
6. The plots of  the numerical model to the experimental data, Figures 7-14 are very interesting. We see there are many differences 
between the numerical model and the experimental results. Three things of  note: 1) in some experimental trials, the pH seems to 
slightly spike before it drops, which the model never does, 2) The pH drops much faster than the model, and 3) the final slope 
of  the trails is very different than the model.
In the discussion the authors comment on the second of  these, speculating that the there are errors within the pH probe, their 
model, or the experimental setup. This is a scattershot approach to cover their bases, and seem somewhat contrived. The authors 
should have used this as a opportunity to critique the underlying assumptions of  their computational model.

7. In the discussion the authors include a very nice description of  why their results don’t match with a pure root-mean-square 
diffusion calculation.

 Overall the paper is very enjoyable and an outstanding example of  the interplay between physical theory, mathematical 
modelling, and experimental evidence. Well done.
 One thing that is missing is an attempt to use their computational model to calculate the pre-exponential value A. The 
analysis involving the computational model in general only involves a qualitative comparison with experimental data. The study 
would be greatly strengthened if  the authors could make a quantitative comparison between model and data. Pointing out that 
they look similar doesn’t tell us as much.
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