
0	
	
	

The Last Plague
Investigating the Lethality of Pandemics Using Deterministic and Stochastic Epidemic Models

Co-Authors: Li Qing Wang & Uma Wu
Faculty Advisor: James D. Berger
SCI001 T2 Project
March 9, 2016

1	
	
	

Abstract
This project investigates the effects of seven parameters on the spread of viral epidemics:
infectivity, infectious period, mobility, incubation period, mortality, immunity and recovery
period. Two algorithms were created to simulate the progression – one stochastic, and one
deterministic. While the deterministic model simulates the spread through regulating the flux
between compartments, the stochastic model simulates the spread by applying the parameters
as a set of probabilities. The models were calibrated with current data on SARS and Ebola
from WHO. Using optimization methods, we found the characteristics of viral diseases that
would lead to the most lethal disease, marked by death rates of 92.26% of the world
population in the deterministic model and 98.76% in the stochastic model. By investigating
the effect of each parameter on the disease, we found that the key factors in regulating the
spread of an epidemic are percentage immunity, mobility and recovery rate.

Introduction
Scientific question: what parameter values define the most deadly disease possible, and how
do they each contribute to the epidemic?

An epidemic is defined as a sudden spread of a disease that affects an unexpectedly high
number of people in a certain population [1]. The determinant factors for the lethality
examined in this study include infectivity, infectious period, mobility, incubation period,
mortality, immunity and recovery period (refer to Appendix Pages for definitions).

Although we are working with simulated diseases, the combination of parameters that define
a “super viral disease” is important because any of these combinations may be present in a
future infection. Therefore, by knowing the most dangerous aspects of an infectious disease,
we can better focus our resources to counteract it.

This project has four phases: 0, I, II and III. The model is developed in Phase 0, calibrated in
Phase I and used to answer our scientific question in Phases II and III. The models use the
susceptible-infected-removed model with a few more compartments to provide insight into
the effect of each on the spread of diseases.
The deterministic model is a closed model. The flux in and out of the compartments is
represented as a series of differential equations. In order to optimize this program for certain
desired outputs, the L-BFGS-B method was implemented [14]. The stochastic model is also
closed, but it relies on a matrix system instead. To optimize this program for desired outputs,
the Bayesian Optimization package Spearmint was implemented.

Different sets of parameters can contribute to the same death rate; therefore, further analysis
was done to find the trend in those combinations.

2	
	
	

Procedure
Phase 0
Principle Objective: To create the deterministic and stochastic models
Deterministic
Assumption 1: The parameters remain constant throughout the simulation.
Justification: This means the effects of borders, quarantines, cures, and other currently
implementable disease-control tactics are unavailable. The implementation of these features
would impede the observations on the spread of the disease amidst all of the other elements
affecting it.

FIGURE 1: Flowchart of Deterministic Model. [For the complete code, refer to Appendix
Pages 10-16]

Stochastic
-See also Assumptions 1 for the Deterministic Model-
Assumption 1: The disease can only spread between adjacent individuals.
Justification: While it is possible to simulate the disease spreading as a function of the total
number of infected/incubating individuals regardless of their position in the simulated matrix,
it defeats the point of having a stochastic process.

Assumption 2: The parameter values produced by optimizing the program are scalable and
will produce around the same proportions between individuals of different states regardless of
population size.
Justification: The spread of the disease overall have the same progression as long as the
population is >9, since the disease needs to be spreading between unique individuals. This has
been verified.

3	
	
	

FIGURE 2: Flowchart of one individual’s possible status within Stochastic Model
[For the complete code, refer to Appendix Pages 21-32]

Phase I
Principle Objective: Fitting and calibrating the program to real disease data
Cumulative data on the number of cases, recoveries and deaths for SARS and cumulative data
on the number cases and deaths for Ebola were collected from the World Health Organization
(WHO) website [7, 11].
Target points were chosen for the simulations to fit. The best trend line for each category of
data was found by minimizing the coefficient of determination (R2) to a value below a
biological alpha of 5% with respect to the population using minimize function L-BFGS-B.
For each disease, the category of data with the highest number of data points on the trend line
was selected, and target points were chosen from these points. The death data and infected
data for SARS and Ebola were used, respectively. The selected data points were
representative of the trend of the disease, and minimized the noise in the raw data. [For the
raw data used to fit the data points, refer to Appendix Pages 1-7.]

Phase II
Principal Objective: Finding the Parameters that result in the most deadly pandemics
In both models, the functions representing the simulation were reconfigured to return the
negative maximum percentage of the population that is dead over the time frame of a year.

Deterministic - L-BFGS-B
The percentage mortality is maximized using the L-BFGS-B gradient evaluation method. The
L-BFGS-B evaluates the derivative of the gradient from a given starting point and follows the
slope to find a local minimum. To counteract the possibility of multiple minima within our
function, multiple parameter sets were generated (~10000) to ideally produce as many minima

4	
	
	

as possible. Among these, the ones with the highest death rates were selected for analysis.

Stochastic - Spearmint
The Spearmint package uses Bayesian Optimization in a global black-box operation in order
to find the global minimum of a function. This experiment required no more than using
Spearmint to find the global minimum of the Stochastic outputs while minimizing the noise
that comes from the random factors that govern its processes.
Assumption: everyone was susceptible.
Justification: if a significant fraction of a population is pre-immune, the disease may not
become an epidemic at all.

Phase III
Principal Objective: investigating the effect of each parameter on percentage death
independently.
While keeping other parameters at the values that lead to the most deadly disease, each
parameter in the deterministic program was varied independently from 0.1~1.0, in increments
of 10%. The output percentage death, defined by the percentage of the world population dying
from the disease, was recorded.

Results
Each of the following sets of parameters fit the respective disease data collected from WHO
with the sum of residuals squared indicated.

PHASE I RESULTS
Deterministic Fitting Results (PHASE I) (FIGURE 3)
 EBOLA SARS SARS
Infectivity 62.9133% 12.2454% 63.4744%
Infection Rate 30.6023% 98.3275% 37.0586%
Mobility 99% 98.211% 76.4858%
Incubation Period 1.395 101.01 150.443
Incubation Rate 71.68% 99% 0.6647%
Mortality 46.2063% 42.6484% 29.8424%
Percent Immunity 0.1% 0.1% 0.9516%
Recovery Rate 10.6243% 43.7013% 32.6739%
Population 6990000000 1795595082 1407579615
Residual Sum 2.546% of Pop 0.0083558% of Pop. 0.0081459% of Pop
Stochastic Fitting Results (PHASE I) (FIGURE 4)
 EBOLA SARS
Infectivity 99% 43.14%
Infectious Period 25 11
Mobility 27.6382% 40.22%
Incubation Period 23 12

5	
	
	

Mortality 36.72% 13.79%
Percentage Immunity 50.266% 85.85%
Recovery Period 28 11
Population Any Any
Standard Deviation 0.022747 0.022434

FIGURE 5.2: Plots of epidemic progression as generated by Deterministic
Model & SARS Data

Simulated	SARS	(Parameter	Set	2)	

Simulated	SARS	(Parameter	Set	1)	

FIGURE 5.1: Plots of epidemic progression as generated by Deterministic
Model & SARS Data

	

	

6	
	
	

Simulated	Ebola	 	

FIGURE	6:	Plot	 of	 epidemic	 progression	 as	 generated	 by	 Deterministic	
Model	&	Ebola	Data	
	

FIGURE	7:	Plot	of	epidemic	progression	as	generated	by	Stochastic	Model	&	SARS	
Data	

	

7	
	
	

Model Disease
Estimated Basic

Reproductive
Number

R0 from Literature
[3, 15]

Deterministic SARS 2.25 0.24-2.47, 2.87
2.4-3.6 (Re) Deterministic SARS 1.13

Deterministic Ebola 2.88
1.50-2.67

Stochastic Ebola 1.12

Stochastic SARS 1.0 0.24-2.47, 3.87
2.4-3.6 (Re)

FIGURE 9: Estimation of Basic Reproduction Number

FIGURE	8:	Plot	of	epidemic	progression	as	generated	by	Stochastic	Model	&	
EBOLA	Data	

8	
	
	

PHASE II RESULTS
 Deterministic Stochastic

Infectivity 19.82% Infectivity 99%

Infectious Period 1.124 Infectious Period 14

Infection Rate 90.53% Infection Rate 7.14%

Mobility 99.00% Mobility 65.61%

Incubation Period 7.731 Incubation Period 4

Incubation Rate 18.65% Incubation Rate 25%

Mortality 99.00% Mortality 90.45%

Percentage
Immunity

1.0% Percentage
Immunity

0.00%

Recovery Rate 1.0% Recovery Rate 4%

Recovery Period 100 Recovery Period 25

Percentage Dead 92.26% Percentage Dead 98.76%

FIGURE 10: Parameters that constitute the most lethal disease in each model

 Average Standard

Deviation
Maximum Minimum

Infectivity 19.82362286% 9.03404125% 37.5849% 1.5306%
Infectious
Period

1.123803493 0.1633870674 1.6784099416 1.010101

Infectious Rate 90.53117143% 11.04190317% 99% 59.5802%
Mobility 99% 0% 99% 0.99
Incubation
Period

7.7306150843 7.0662311461 38.6085479325 2.6623430216

Incubation Rate 18.64900571% 8.47061018% 37.5609% 2.5901%
Mortality 99% 0% 99% 99%
Percentage
Immunity

1% 0% 1% 1%

Recovery Rate 1% 0% 1% 1%
Percentage
Dead

92.25818% 8.622e-4% 92.2588% 92.2555%

FIGURE 11: PHASE II Deterministic Parameter Features

9	
	
	

Deterministic Model
The data shows parameter values that contribute to the most deadly disease predicted by the
deterministic model. (Figure 10)
The disease is infectious slightly over 1 day. A diseased individual may infect 99% of the
healthy people he meets. Only 19.82% of infecteds will display symptoms after infection.
Other individuals do not show any symptom until 7.7 days after infection. 99% of infected
individuals will die from the disease, and only 1% will gain immunity. Infected individuals, if
capable of recovering from the disease, take 100 days to do so.

FIGURE 12: Trend of optimized pandemic (Deterministic)

	

	

10	
	
	

Stochastic Model
The data shows parameter values that contribute to the most deadly disease predicted by the
stochastic model. (Figure 10)
The disease incubates for 4 days. There is a 99% chance that an infected population will
display symptoms of the disease, and the disease is infectious over a span of two weeks. A
healthy individual has a 65.61% chance of contracting the disease from an infectious
individual in close proximity. Infected individuals have a 90.45% chance of dying from the
disease. No one can develop immunity against this disease, but individuals can recover from
the disease over a period of 25 days.

FIGURE 13: Trend of optimized pandemic (Stochastic)
	

11	
	
	

FIGURE 14.1: Incubation Period compared to Infectivity

FIGURE 14.2: Percentage Death compared to Incubation Period

FIGURE 14.3: Incubation Period compared to Infection Rate

12	
	
	

PHASE III RESULTS
Infectivity Infectious

Period
 Mobility Incubation

Period
 Mortality Percentage

Immunity
 Recovery
Rate

≤30% 1-2 days ≥20% 5-10 days any ≤70% ≤70%
FIGURE 15: Table of criteria for a significant drop in population as a result of an epidemic

Analysis
Analysis of PHASE I Data
Estimation of Basic Reproduction Number
The basic reproduction number characterizes the ability of a disease to spread, and is
calculated by dividing the infection rate by recovery rate. On the other hand, the effect
reproduction number (Re) represents the observed number of secondary infections from a
primary infection. Since the two are sometimes used interchangeably in literature, both values
were obtained from literature as references.

Two sets of parameters were selected for SARS because both provided R0 that were within the
literature range. No statistical comparison was feasible between our results and the literature
values due to the limitations of the model. However, it is clear that the Ro estimated by both
models (Figure 9) generally adhered to what was reported from the literature. The
deterministic model generally predicts a higher R0 than the stochastic model.

Incubation Periods
The stochastic model predicted a more reasonable incubation period for each disease
compared to the deterministic one. The actual incubation periods for SARS and Ebola are up
to two weeks [16] and up to 21 days [17], respectively. Both of these adhere significantly
more to the stochastic results.

Deterministic vs. Stochastic
Comparing the shapes of the graphs of simulated SARS and Ebola produced by both models
to the graphs of raw disease data, the stochastic model is clearly a better model than the
deterministic one. The stochastic model is a better fit for the randomness in the nature of
disease spread, unlike the deterministic.

Combining this with analyses of estimated R0 and incubation period, the stochastic model
seemed to have produced a lower residual for each disease (See Appendix Graphs).

13	
	
	

Analysis of PHASE II Data

A Holistic Analysis of PHASE II Deterministic Data
This is done to deterministic only due to the various sets of optimized parameters it produced,
all of which produced the desired maximal death rate. Of the 10000 parameter sets, 34
representative ones were selected for analysis.

The standard deviation for each parameter was computed using 34 sets of parameters that
yield a percentage death of 92.26%. Since the standard deviation of mobility, mortality,
percentage immunity and recovery are zero, these parameters must be at a specific value to
result in the most lethal epidemic. Therefore, any changes made to those parameters alone
will result in a death rate deviating from 92.26%.

The disease has high mobility (99%), high mortality (99%), low immunity (1%) and low
recovery rate (1%). Infectivity can range from 1.53% to 37.58%, infection rate can range from
59.58% to 99% and incubation period can range from 2.66 ~ 38.61 days. A clear correlation
between incubation period and infectivity can be observed below (Figure 14.1). When
infectivity is below 20%, incubation period is less than a week. As infectivity goes beyond
20%, incubation period increases drastically and can be as high as 38 days.

Therefore, as shown in Figures 14.1-3, a combination of the following qualities is most likely
to happen and will lead to a 92.26% death rate: 1.53% ~26.21% infectivity, a short infectious
period of 1~1.33 days, 99% mobility, within two weeks of incubation, 99% mortality, 1%
immunity and1% recovery.

14	
	
	

Discussion
Accuracy & Precision
The accuracy of either models can be defined by how replicable the results are. The
deterministic model is completely accurate since the same parameters will always yield the
same output. Therefore, the accuracy of deterministic model is not representative of its
uncertainty, since no model can have 0 uncertainty. However, for the stochastic model,
standard deviations of outputs were determined. The standard deviation of the phase II result,
(0.005512%), defines the uncertainty of the model since it is purely based on the outputs of
the program and does not depend on any data. This small standard deviation indicates an
accurate model.

The precision of either models can be defined as how well it fits to the real data in Phase I.
This was obtained by fitting the simulation to the real data by minimizing the residuals. The
stochastic model’s precision cannot be determined through its precision due to the restraint in
runtime as a function of population (it can only fit the trend), and is therefore not
representative of its uncertainty. The deterministic model does yield a wide array of residuals,
however. In our fitting of the data, the lowest residual was 2.546% of Population with Ebola,
while the two SARS fittings yielded 0.0083558% of population and 0.0081459% of
population respectively. Since the percentages are less than 5%, the model is likely precise.

Limitations
Limitations of Collected Data
Inconsistency in WHO data
The cumulative number of SARS cases fluctuated for the last few days for which data were
collected. SARS is a diagnosis of exclusion; as previous cases were further investigated, some
patients were re-examined and re-diagnosed [6]. Since the fluctuation only involved a few
individuals, we disregarded the occasional decrease, and recorded further data by adding the
number of newly dead people to the cumulative number.

Limitation of Obtainable Categories of Data
While there are 7 parameters, only the aforementioned 3 had available data.

Limitations of Model

1. Quarantine & Borders
In April 2003, the Chinese government started implementing quarantine and restricting social
interactions by methods such as closing theatres and implementing border control [4].
Quarantine would limit the mobility of the disease; however, this is not accounted for in the
model. (See Assumptions)

2. Parameters change with time
The parameters in both models are constant over time, while in reality they do change with

15	
	
	

time. For example, the mortality of both disease increased with time.

Run Time Constraints
Deterministic
The deterministic model does not take long to complete one function evaluation (~0.1s for
Population = 7000000000) due to its nature as a linear-time computation, but its optimization
took much longer due to the methodology of the L-BFGS-B method of evaluating the
function multiple times until it reached a local minimum. Therefore, a global optimization
would have been better for this instance.

Stochastic
The stochastic model takes a lot longer than the deterministic (~1s for Population = 400) to
complete one function evaluation. With the Spearmint Optimization package, we were able to
bypass that issue. Not only does Spearmint find the global minimum, it only takes around 5
hours to yield applicable and accurate results. However, it is still subject to the limitations of
populations, since the run time increases linearly with the addition of an individual.

Inferences
Deterministic Phase II
Summary: The most deadly disease according to the deterministic model is a disease that
doesn’t show symptoms immediately (19.82% infectivity), transmits quickly from person to
person (99% mobility), almost certainly and immediately kills its host upon infection (99%
mortality), and is almost impossible to develop immunity from (only 1% of the population
can become immune). . This disease can kill 92.26 % of the world population in one year.

This set of parameters produces a greater incubating population than infectious population.
There are many currently known viruses that can remain dormant in individuals (e.g Rabies,
STDs) for a relatively long time before manifesting symptoms. The disease may cover its
lethality by displaying nonlethal typical flu symptoms as fever, cough and diarrhea when
individuals are first infected, thus creating a high incubating population. This feature of the
simulated disease greatly contributes to the risk of unknowingly getting infected since the
number of susceptible people becoming incubating is dependent on both the number of
carriers (infecteds) and susceptibles.

Stochastic Phase II
Summary: The most deadly disease according to the stochastic model is one that shows
symptoms almost immediately (99% infectivity), transmits at a moderate rate (65.61%) from
person to person, is infectious over two weeks, and is develop immunity. This disease can kill
98.76% of the world population in one year.

Instead of a high mobility, the disease becomes highly infective with a small incubation
period, which means the patients would immediately show symptoms upon infection. A zero
percent immunity means that even if a patient did manage to survive, they would become
susceptible again with another chance of being infected and eventually succumbing to the

16	
	
	

disease.

This disease resembles past epidemics such as AIDS, since it mutates very quickly and
suppresses the immune system. The disease would exhibit symptoms that lead to more
infection and eventually death, such as skin lesions (e.g smallpox), discharging fluids (e.g
diarrhea), and even irregular behavior (e.g rabies patients may bite other individuals).

17	
	
	

Figure 16.1 The percentage dead seems to decrease somewhat linearly with increased recovery rate
when the recovery rate is lower than 70%. A recovery rate of 70% seems to be a threshold beyond
which the disease is no longer an epidemic.

Figure 16.2 A disease with low mortality (10%) can have a high percentage death (~70%). The percentage
death increase by ~10% in response to a 10 fold increase in mortality.
This may indicate that the mortality of a disease is not the major determinant of its percentage death.

Deterministic Phase III results and inferences
Since the purpose of Phase III is purely making inferences, its results will be shown here along
with the inferences.

18	
	
	

Figure 16.3 A disease for which an infected can only spread the infection to less than 20% of the people
he contacts will not cause an epidemic. The percentage death increases drastically with the increase in
mobility. This suggests that mobility is a major determinant in the spread of a disease.

Figure 16.4 As incubation rate increases, or as the length of incubation period decreases, the percentage
death decreases.

19	
	
	

Figure 16.5 The larger the fraction of the infected population that shows symptoms, the less deadly the
disease becomes. This may suggest that a disease must not let the patients display symptoms
immediately in order to let it spread unknowingly, and eventually kill a large percentage of the world
population.

Figure 16.6 The disease is the most deadly when zero percent of the population is immune to it. The
death rate decreases with increased immunity. There seems to be a threshold at 70% immunity, beyond
which the disease is essentially no longer an epidemic.

20	
	
	

Key Inferences and Observations
In agreement with what was observed in phase II, any deviation from the set of the most
deadly parameters led to a decrease in percentage death. However, this phase allowed a closer
investigation of the magnitude of such effect. For example, the mortality barely alters the
percentage death while independent changes in mobility, recovery rate, and percentage
immunity led to much greater changes. The effect of infection rate, incubation rate, and
infectivity is somewhere in between. Some threshold values were observed in percentage
immunity (≤70%), mobility (≥20%) and recovery rate (≤70%). These three parameters are the
major contributors to the percentage death of an epidemic; however, they must reach a certain
threshold level for a disease to become an epidemic. These three parameters need to be
regulated in order to prevent or control the spread of epidemic most efficiently.

As a summary of phase III, a chart of criteria for the most lethal epidemic predicted by the
deterministic model was produced (figure 15). If an outbreak is suspected and several of its
parameters fall into these values, it is likely to develop into a fairly lethal epidemic. Such
disease can then be most effectively regulated by controlling percentage immunity, mobility
and recovery rate.

Figure 16.7 A low infection rate such as 10% can lead to a death percentage of ~87%. The increase in
infection rate from 10% to 70% causes the most increase in percentage death. Beyond that, the increase
in infection rate has minute effect on percentage death.

21	
	
	

Conclusion
Both the deterministic and stochastic models developed are able to fit realistic disease data
and predict combinations of parameters that would lead to the most deadly epidemic. Both
models also predict a high death rate when the chances of developing immunity are low,
indicating the threat of an immune-suppressive disease is especially high.

Ranges of values for each parameter that constitute the most lethal epidemic outlined can be
used to assess the lethality of a real disease. With further development, future potentials of
this pair of models include investigation of other viral diseases, predicting the outcome of a
disease in real time, and modelling the effect of prevention and control methods on the
epidemic.

References
[1]"Lesson 1: Introduction to Epidemiology." Centers for Disease Control and Prevention.
Centers for Disease Control and Prevention, 2012. Web. 11 Mar. 2016.
[2]"Learning Basic Epidemic Models with Python." Learning Basic Epidemic Models with
Python. Web. 11 Mar. 2016.
[3]"Estimating the Reproduction Number of Ebola Virus (EBOV) During the 2014 Outbreak
in West Africa – PLOS Currents Outbreaks." PLOS Currents Outbreaks. Web. 11 Mar. 2016.
[4]"SARS Reference | SARS Timeline." SARS Reference | SARS Timeline. Web. 11 Mar. 2016.
[5]"The SIR Model for Spread of Disease - The Differential Equation Model." The SIR Model
for Spread of Disease. Web. 11 Mar. 2016.
[6] "Cumulative Number of Reported Probable Cases of SARS." WHO. Web. 13 Mar. 2016.
<http://www.who.int/csr/sars/country/2003_07_09/en/>.
[7]"Cumulative Number of Reported Probable Cases of Severe Acute Respiratory Syndrome
(SARS)." WHO. Web. 11 Mar. 2016.
[8]"WHO IRIS: Consensus Document on the Epidemiology of Severe Acute Respiratory
Syndrome (SARS)." WHO IRIS: Consensus Document on the Epidemiology of Severe Acute
Respiratory Syndrome (SARS). Web. 11 Mar. 2016.
[9]Wallinga, J. "Different Epidemic Curves for Severe Acute Respiratory Syndrome Reveal
Similar Impacts of Control Measures." American Journal of Epidemiology 160.6 (2004):
509-16. Web.
[10]"Epidemic." Wikipedia. Wikimedia Foundation. Web. 11 Mar. 2016.
[11]"Ebola Virus Disease." World Health Organization. Web. 11 Mar. 2016.
[12]Zhang, Zhibin. "The Outbreak Pattern of SARS Cases in China as Revealed by a
Mathematical Model." Ecological Modelling 204.3-4 (2007): 420-26. Web.
[13]Zhou, Yicang, Zhien Ma, and F. Brauer. "A Discrete Epidemic Model for SARS
Transmission and Control in China." Mathematical and Computer Modelling 40.13 (2004):
1491-506. Web.
[14]"Scipy.optimize.minimize¶." Scipy.optimize.minimize — SciPy V0.17.0 Reference Guide.
Web. 11 Mar. 2016.
[15] Althaus, Christian L. "Estimating the Reproduction Number of Ebola Virus (EBOV)

22	
	
	

During the 2014 Outbreak in West Africa." PLoS Curr PLoS Currents (2014). Web. 13 Mar.
2016.
[16] "Frequently Asked Questions About SARS." Centers for Disease Control and Prevention.
Centers for Disease Control and Prevention, 2012. Web. 21 Mar. 2016.
<http://www.cdc.gov/sars/about/faq.html>.
[17] "Ebola Virus Disease." World Health Organization. Web. 21 Mar. 2016.
<http://www.who.int/mediacentre/factsheets/fs103/en/>.

Special Thanks
James D. Berger for mentoring this project
Michael Gelbart for implementing Spearmint, suggesting fitting methods, and debugging
Pam Kalas for reviewing and advising this project
Omer Angel for providing insight on the data analysis
Costanza Piccolo for refining our parameters
Eric Cytrynbaum for refining the mechanics of the model

Appendix

Table of Contents

SARS Raw Data: Cumulative Number of Deaths vs. Time (Fig1) ---1

SARS Raw Data: Cumulative Number of Recovered Individuals vs. Time (Fig2) --------------------------1

SARS Extrapolated Data: Number of Alive & Infected Individuals vs. Time (Fig3) -----------------------2

SARS Extrapolated Data: Cumulative Number of Deaths vs. Time Fitted (Fig4) --------------------------2

SARS Extrapolated Data: Currently Infectious Individuals vs. Time Fitted (Fig5) -------------------------3

EBOLA Raw Data: Cumulative Number of Infectious Individuals vs. Time (Fig6) -------------------------3

EBOLA Raw Data: Cumulative Number of Deaths vs. Time (Fig7) ---4

EBOLA Raw Data: Cumulative Number of Deaths vs. Time Fitted (Fig7) -----------------------------------4

EBOLA Extrapolated Data: Cumulative Number of Infectious vs. Time Fitted (Fig8) --------------------5

EBOLA Parameter Sets--6

SARS Parameter Sets--7

PHASE II Parameter Sets (Deterministic) --8

DeterministicEPIMOD PHASE I Model---10

DeterministicEPIMOD PHASE II Model--17

StochasticEPIMOD PHASE I Model---21

StochasticEPIMOD PHASE II Model--33

PHASE III Data Table---39

Definitions of Parameters--40

Phase I Target Points---41

Appendix Fig1

Appendix Fig2

SARS Raw Data

SARS Raw Data

1

Appendix Fig3

Appendix Fig4

SARS Extrapolated Data

2

Appendix Fig5

Appendix Fig6

3

Appendix Fig7

Appendix Fig7

Cumulative Deaths vs. Time

4

Appendix Fig8

Cumulative Infectious vs. Time

5

Ebola Parameter Sets

 Infectivity Infection
Rate Mobility Incubation

Rate Mortality Percentage
Immunity

 Recovery
Rate Population ResidualSum

Average 0.99 0.001 0.988710041
7 0.989113625 0.8238342917 0.0010002083 0.0010002083 3470330353.2916

7 0.000287125

Standard Deviation 0 0 0.004447423
9 0.0030006973 0.0039407441 1.02062072615966

E-06
1.02062072615

966E-06
2126288880.6962

5
5.50345741132

434E-06
Maximum
Population 6866802093
Minimum

Population 729407782

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 2218138142 0.000285

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 2584033055 0.000285

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 1901057942 0.000285

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 3827085168 0.000285

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 5857301234 0.000285

 0.99 0.001 0.99 0.982891 0.82749 0.001 0.001 6114060146 0.00029

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 930036007 0.000285

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 729407782 0.000285

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 801051285 0.000285

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 6193655290 0.000285

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 2750261610 0.000285

 0.99 0.001 0.977391 0.99 0.81404 0.001 0.001 3354761252 0.000299

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 6205577078 0.000285

CHOSEN 0.99 0.001 0.971673 0.989046 0.809716 0.001005 0.001005 1040879429 0.000307

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 1737874180 0.000285

 0.99 0.001 0.99 0.97679 0.830056 0.001 0.001 6085799484 0.000295

 0.99 0.001 0.989994 0.99 0.824532 0.001 0.001 6866802093 0.000285

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 4768289329 0.000285

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 2566033336 0.000285

6

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 3319300965 0.000285

 0.99 0.001 0.989983 0.99 0.824523 0.001 0.001 1374802524 0.000285

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 1356416950 0.000285

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 6781393146 0.000285

 0.99 0.001 0.99 0.99 0.824537 0.001 0.001 3923911052 0.000285

SARS Parameter Sets

 Infectivity Infection
Rate Mobility Incubation

Period
 Incubation

Rate Mortality Percentage
Immunity

Recovery
Period

 Recovery
Rate Population Residual

Sum
Estimated

Basic
Reproductio
n Number

Standard
Deviation

0.32247140
94

0.23450121
31

0.097017
819 0.2934826

039
0.04951005

97
0.06366222

41 0.0496357966 2350778466.1
5791 1.72857633

31
 0.486726 0.253035 0.866356 1.11787924

89 0.894551 0.215118 0.029584 16.0815657012 0.062183 4930935930 0.456655 4.06919897
72

Chosen
Parameter

set#1
0.851473 0.187879 0.868682 10.0161259

628 0.099839 0.233785 0.024091 5.8622832421 0.170582 1959432004 0.492016 1.10139991
32

 0.644418 0.26588 0.944756 1.48991328
7 0.67118 0.245621 0.02129 7.9605158414 0.12562 114133266 0.370468 2.11654195

19

 0.200633 0.124275 0.796056 1.47475876
63 0.678077 0.249025 0.07947 21.1671570391 0.047243 781370871 0.276411 2.63054844

1

 0.942965 0.970427 0.973074 1.09729133
63 0.911335 0.265489 0.118805 6.096631611 0.164025 4384338355 0.980407 5.91633592

44

 0.08657 0.255206 0.706624 1.01201361
36 0.988129 0.283516 0.021446 20.461195343 0.048873 5630901875 0.317624 5.22181981

87

 0.033523 0.142002 0.853813 1.77943858
71 0.561975 0.322865 0.211555 7.2050781391 0.138791 1453683352 0.739969 1.02313550

59

 0.245728 0.430487 0.826955 1.36814439
94 0.730917 0.325093 0.117911 7.381544662 0.135473 3293913925 0.625295 3.17765901

69
 0.533429 0.364678 0.873111 1.23848058

25 0.807441 0.338197 0.001 8.5397825771 0.117099 1607023420 0.233318 3.11427083
07

 0.533066 0.387292 0.907111 1.58932734
9 0.629197 0.339495 0.148519 15.5265037419 0.064406 5784967215 0.348509 6.01329068

72
Chosen

Parameter
set#2

0.840515 0.539667 0.801637 13.8900463
928 0.071994 0.347849 0.098526 5.1692943913 0.19345 6631318516 0.819369 2.78969759

63

 0.095789 0.538563 0.62483 1.22433188
21 0.816772 0.349846 0.055587 9.1958250954 0.108745 73865743 0.724964 4.95253115

09

7

PHASE II PARAMETER SETS

 Infectivity Infectious Period Infection Rate Mobility Incubation Period Incubation Rate Mortality Percentage
Immunity

 Recovery
Rate

 Percentage
Dead

Max 0.375849 1.6784099416 0.99 0.99 38.6085479325 0.375609 0.99 0.01 0.01 0.922588

Min 0.015306 1.0101010101 0.595802 0.99 2.6623430216 0.025901 0.99 0.01 0.01 0.922555

Average 0.1982362286 1.123803493 0.9053117143 0.99 7.7306120843 0.1864900571 0.99 0.01 0.01 0.9225818

Standard
Deviation 0.0903404125 0.163870674 0.1104190317 0 7.0662311461 0.0847061018 0 0 0 8.6221329420

5885E-06

 0.260417 1.2797854056 0.781381 0.99 10.059147789 0.099412 0.99 0.01 0.01 0.922573

 0.104144 1.0101010101 0.99 0.99 3.3601360183 0.297607 0.99 0.01 0.01 0.922588

 0.189311 1.1429681741 0.874915 0.99 5.2823132306 0.189311 0.99 0.01 0.01 0.92258

 0.262111 1.1204130291 0.892528 0.99 8.3298625573 0.12005 0.99 0.01 0.01 0.922582

 0.141358 1.0555983659 0.94733 0.99 3.9715162852 0.251793 0.99 0.01 0.01 0.922585

 0.243455 1.3201633834 0.757482 0.99 8.9630632165 0.111569 0.99 0.01 0.01 0.922571

 0.076546 1.0101010101 0.99 0.99 3.0750023831 0.325203 0.99 0.01 0.01 0.922588

 0.28003 1.3154761826 0.760181 0.99 13.23872061 0.075536 0.99 0.01 0.01 0.922571

 0.158479 1.2698122456 0.787518 0.99 4.9362970861 0.202581 0.99 0.01 0.01 0.922573

 0.139883 1.0952806547 0.913008 0.99 4.0586392194 0.246388 0.99 0.01 0.01 0.922583

 0.303098 1.0101010101 0.99 0.99 10.1366419333 0.098652 0.99 0.01 0.01 0.922588

 0.210875 1.0101010101 0.99 0.99 5.2390307793 0.190875 0.99 0.01 0.01 0.922588

 0.358884 1.0185975541 0.981742 0.99 24.2824534991 0.041182 0.99 0.01 0.01 0.922588

 0.199946 1.0101010101 0.99 0.99 4.9553031654 0.201804 0.99 0.01 0.01 0.922588

8

 0.015306 1.6784099416 0.595802 0.99 3.2547951269 0.307239 0.99 0.01 0.01 0.922555

 0.197484 1.0425093617 0.959224 0.99 5.0488730915 0.198064 0.99 0.01 0.01 0.922586

 0.200874 1.0101010101 0.99 0.99 4.978245069 0.200874 0.99 0.01 0.01 0.922588

 0.1805 1.2800475154 0.781221 0.99 5.5774625892 0.179293 0.99 0.01 0.01 0.922573

 0.24139 1.0132061287 0.986966 0.99 6.2602119708 0.159739 0.99 0.01 0.01 0.922588

 0.183169 1.0124039735 0.987748 0.99 4.5845692568 0.218123 0.99 0.01 0.01 0.922588

 0.343787 1.0307875629 0.970132 0.99 18.5325895587 0.053959 0.99 0.01 0.01 0.922587

 0.154238 1.2546358796 0.797044 0.99 4.7907175058 0.208737 0.99 0.01 0.01 0.922574

 0.091475 1.5073748314 0.663405 0.99 4.0880233181 0.244617 0.99 0.01 0.01 0.922562

 0.200875 1.0101010101 0.99 0.99 4.9782202862 0.200875 0.99 0.01 0.01 0.922588

 0.32745 1.0101010101 0.99 0.99 13.458769061 0.074301 0.99 0.01 0.01 0.922588

 0.375849 1.0101010101 0.99 0.99 38.6085479325 0.025901 0.99 0.01 0.01 0.922588

 0.204574 1.0683144349 0.936054 0.99 5.3677153393 0.186299 0.99 0.01 0.01 0.922585

 0.211214 1.0777011772 0.927901 0.99 5.6163052574 0.178053 0.99 0.01 0.01 0.922584

 0.133185 1.3427378694 0.744747 0.99 4.5602338488 0.219287 0.99 0.01 0.01 0.92257

 0.234127 1.0205143801 0.979898 0.99 6.0392308436 0.165584 0.99 0.01 0.01 0.922587

 0.306 1.0101010101 0.99 0.99 10.4435370171 0.095753 0.99 0.01 0.01 0.922588

 0.041942 1.2324423186 0.811397 0.99 3.0871724896 0.323921 0.99 0.01 0.01 0.922575

 0.026141 1.0101010101 0.99 0.99 2.6623430216 0.375609 0.99 0.01 0.01 0.922588

 0.181518 1.0322111822 0.968794 0.99 4.6306586649 0.215952 0.99 0.01 0.01 0.922587

 0.158633 1.0106195907 0.989492 0.99 4.1150739273 0.243009 0.99 0.01 0.01 0.922588

9

""" 1
DETERMINISTIC EPIDEMIC MODEL PHASE I 2
Uma Wu & LiQing Wang 3
 4
~Ver.7 Updates~ 5
-began implementation of fitting model 6
--- 7
 8
BLOCK DIAGRAM 9
 10
######## ############# 11
#IMMUNE#<--- #SUSCEPTIBLE# 12
######## --|------RecP------>############# 13
 ^ | -Imn---------------- |Mob ^RecP 14
 Imn| | | v | 15
############<------------I---############ 16
#INFECTIOUS#<--------IncP----#INCUBATING# 17
############-----InfP------> ############ 18
 |Mor 19
 v 20
21
#DEAD# 22
23
 24
#####PARAMETERS##### 25
I = Infectivity (percentage of people that move from INCUBATING to INFECTIOUS without IncP 26
[OVERRIDE]) 27
InfP = Length of Infectious Period (rate of individuals moving from INFECTIOUS to INCUBATING) 28
Mob = Mobility (rate of individuals moving from SUSCEPTIBLE to INCUBATING) 29
IncP = Length of Incubation Period (rate of individuals moving from INCUBATING to 30
INFECTIOUS) 31
Mor = Morbidity (percentage of infectious individuals that move from INFECTIOUS to DEAD) 32
Imn = Immunity (percentage of recovered individuals that move from INFECTIOUS to IMMUNE) 33
RecP = Length of Recovery Period (rate of individuals moving from INFECTIOUS and 34
INCUBATING to SUSCEPTIBLE) 35
 36
#Note: Incubating refers to both the disease being dormant and the disease displaying 37
nonconsequential symptoms. 38
Pop = Population (Total number of people in each compartment. Remains constant throughout 39
simulation) 40
 41
#####INITIAL VALUES##### 42
Pop = Population 43
T = Time of Simulation in Days 44

10

IMMUNE = Pop*PImmune 45
SUSCEPTIBLE = Pop - Pop*PImmune 46
INCUBATING = 1 47
INFECTIOUS = 0 48
DEAD = 0 49
 50
#####DIFFERENTIAL EQUATIONS FROM BLOCK##### 51
IMMUNE = IMMUNE + INFECTIOUS*Imn + INCUBATING*Imn 52
SUSCEPTIBLE = SUSCEPTIBLE + INFECTIOUS*RecP + INCUBATING*RecP - 53
SUSCEPTIBLE*(INCUBATING/Population)Mob 54
INCUBATING = INCUBATING + SUSCEPTIBLE*Mob + INFECTIOUS*InfP - INCUBATING*Imn - 55
INCUBATING*I - INCUBATING*IncP -INCUBATING*RecP 56
INFECTIOUS = INFECTIOUS + INCUBATING*I + INCUBATING*IncP - INFECTIOUS*Imn - 57
INFECTIOUS*InfP - INFECTIOUS*Mor 58
DEAD = DEAD + INFECTIOUS*Mor 59
 60
""" 61
import numpy as np 62
import random 63
from scipy.optimize import minimize 64
import matplotlib.pyplot as plt 65
 66
################FITTING################## 67
 68
SusFit = False 69
IncFit = False 70
InfFit = False 71
ImmFit = False 72
DeaFit = False 73
 74
if SusFit: 75
 SUSCEPTIBLEquery = [] 76
 with open("SUSCEPTIBLEfit.csv", "r") as SUSCEPTIBLEfit: 77
 for line in SUSCEPTIBLEfit: 78
 SUSCEPTIBLEquery.append(tuple([int(x) for x in line[:-1].split(",")])) 79
 preset = SUSCEPTIBLEquery 80
 status = "SusFit" 81
 82
if IncFit: 83
 INCUBATINGquery = [] 84
 with open("INCUBATINGfit.csv", "r") as INCUBATINGfit: 85
 for line in INCUBATINGfit: 86
 INCUBATINGquery.append(tuple([int(x) for x in line[:-1].split(",")])) 87
 preset = INCUBATINGquery 88

11

 status = "IncFit" 89
 90
if InfFit: 91
 INFECTIOUSquery = [] 92
 with open("INFECTIOUSfit.csv", "r") as INFECTIOUSfit: 93
 for line in INFECTIOUSfit: 94
 INFECTIOUSquery.append(tuple([int(x) for x in line[:-1].split(",")])) 95
 preset = INFECTIOUSquery 96
 status = "InfFit" 97
 98
if ImmFit: 99
 IMMUNEquery = [] 100
 with open("IMMUNEfit.csv", "r") as IMMUNEfit: 101
 for line in IMMUNEfit: 102
 IMMUNEquery.append(tuple([int(x) for x in line[:-1].split(",")])) 103
 preset = IMMUNEquery 104
 status = "ImmFit" 105
 106
if DeaFit: 107
 DEADquery = [] 108
 with open("DEADfit.csv", "r") as DEADfit: 109
 for line in DEADfit: 110
 DEADquery.append(tuple([int(x) for x in line[:-1].split(",")])) 111
 preset = DEADquery 112
 status = "DeaFit" 113
 114
""" 115
INPUTS: 116
 time: the current time value 117
 y: the current value of the function 118
 query: the list of points (t, value) to fit against 119
OUTPUTS: 120
 dy: the deviation from the query 121
""" 122
fit = False 123
if fit: 124
 def Fit(time, y, query = preset): 125
 for i in query: 126
 if time == i[0]: 127
 dy = y - i[1] #Calculates the residuals 128
 return dy 129
 else: 130
 return "NONE" 131
else: 132

12

 status = "SusFit" 133
 134
###############SIMULATION################# 135
 136
def DeterministicEPIMOD1(Parameters, T = 365, Plot = True, Print = True, fit = fit, status = status, 137
dt = 0.1): 138
 IMMUNE = np.zeros(int((T+1)/dt)) 139
 SUSCEPTIBLE = np.zeros(int((T+1)/dt)) 140
 INCUBATING = np.zeros(int((T+1)/dt)) 141
 INFECTIOUS = np.zeros(int((T+1)/dt)) 142
 DEAD = np.zeros(int((T+1)/dt)) 143
 144
 #PARAMETER VALUES (INITIAL VALUES) 145
 I = Parameters[0] 146
 InfP = Parameters[1] 147
 Mob = Parameters[2] 148
 IncP = Parameters[3] 149
 Mor = Parameters[4] 150
 Imn = Parameters[5] 151
 RecP = Parameters[6] 152
 153
 Pop = Parameters[7] 154
 155
 #INITIAL VALUES 156
 IMMUNE[0] = 0 #1213 #Pop*PImmune 157
 INCUBATING[0] = 1 #1516 158
 INFECTIOUS[0] = 0 #286 159
 DEAD[0] = 0 160
 SUSCEPTIBLE[0] = Pop - IMMUNE[0] - INCUBATING[0] - INFECTIOUS[0] - DEAD[0] 161
 162
 #FITTING 163
 residuals = [] 164
 n = 0 165
 166
 for t in range(1, int(float(T)/dt+1)): 167
 SUSCEPTIBLEin = INFECTIOUS[t-1]*RecP*dt + INCUBATING[t-1]*RecP*dt 168
 SUSCEPTIBLEout = SUSCEPTIBLE[t-1]*(INCUBATING[t-1]/float(Pop))*Mob*dt 169
 SUSCEPTIBLE[t] = SUSCEPTIBLE[t-1] + SUSCEPTIBLEin - SUSCEPTIBLEout 170
 171
 INCUBATINGin = SUSCEPTIBLE[t-1]*(INCUBATING[t-1]/float(Pop))*Mob*dt + 172
INFECTIOUS[t-1]*InfP*dt 173
 INCUBATINGout = INCUBATING[t-1]*Imn*dt + INCUBATING[t-1]*I*dt + 174
INCUBATING[t-1]*IncP*dt + INCUBATING[t-1]*RecP*dt 175
 INCUBATING[t] = INCUBATING[t-1] + INCUBATINGin - INCUBATINGout 176

13

 177
 INFECTIOUSin = INCUBATING[t-1]*I*dt + INCUBATING[t-1]*IncP*dt 178
 INFECTIOUSout = INFECTIOUS[t-1]*Imn*dt + INFECTIOUS[t-1]*InfP*dt + 179
INFECTIOUS[t-1]*Mor*dt + INFECTIOUS[t-1]*RecP*dt 180
 INFECTIOUS[t] = INFECTIOUS[t-1] + INFECTIOUSin - INFECTIOUSout 181
 182
 DEADin = INFECTIOUS[t-1]*Mor*dt 183
 DEADout = 0 184
 DEAD[t] = DEAD[t-1] + DEADin - DEADout 185
 186
 IMMUNEin = INFECTIOUS[t-1]*Imn*dt + INCUBATING[t-1]*Imn*dt 187
 IMMUNEout = 0 188
 IMMUNE[t] = IMMUNE[t-1] + IMMUNEin - IMMUNEout 189
 190
 if fit == True: 191
 if status == "SusFit": 192
 y = SUSCEPTIBLE[t] 193
 elif status == "IncFit": 194
 y = INCUBATING[t] 195
 elif status == "InfFit": 196
 y = sum(INFECTIOUS) 197
 elif status == "ImmFit": 198
 y = IMMUNE[t] 199
 elif status == "DeaFit": 200
 y = DEAD[t] 201
 else: 202
 print "ERROR: I DON'T KNOW WHAT IT IS BUT SOMETHING IS NOT RIGHT." 203
 204
 diffs = Fit(int(t*dt), y) 205
 206
 if diffs != "NONE": 207
 residuals.append(diffs**2) 208
 # plt.plot(t, preset[n][1], "*r") 209
 # plt.plot(t, y, ".b") 210
 # print preset[n][1] 211
 # n += 1 212
 213
 if Print == True: 214
 Survivors = IMMUNE[t] + SUSCEPTIBLE[t] + INCUBATING[t] + INFECTIOUS[t] 215
 print "TOTAL POPULATION = %i" %Pop 216
 print "REMAINING POPULATION = %f" %Survivors 217
 print "IMMUNE = %.0f" %round(IMMUNE[t]) 218
 print "SUSCEPTIBLE = %.0f" %round(SUSCEPTIBLE[t]) 219
 print "INCUBATING = %.0f" %round(INCUBATING[t]) 220

14

 print "INFECTIOUS = %.0f" %round(INFECTIOUS[t]) 221
 print "DEAD = %.0f" %round(DEAD[t]) 222
 223
 if Plot == True: 224
 plt.plot(IMMUNE, label="IMMUNE") 225
 plt.plot(SUSCEPTIBLE, label="SUSCEPTIBLE") 226
 plt.plot(INCUBATING, label="INCUBATING") 227
 plt.plot(INFECTIOUS, label="INFECTIOUS") 228
 plt.plot(DEAD, label="DEAD") 229
 230
 plt.legend(loc="best") 231
 plt.title("PHASEIIpandemic") 232
 plt.ylabel("Number of Individuals") 233
 plt.xlabel("Time/%f (in days)" %dt) 234
 235
 #plt.show() 236
 plt.savefig("PHASEIIpandemicDET.pdf") 237
 238
 if fit == True: 239
 return abs(sum(residuals)) 240
 else: 241
 return -np.log(DEAD[t]) 242
 #return abs(7452-(IMMUNE[-1])) + abs(831 - DEAD[-1]) 243
 244
###############EXECUTING SIMULATION#################### 245
 246
#Parameters = [0.8515,0.1879,0.8687,0.09984,0.2338,0.02409,0.1706,1959432004] 247
Parameters = [0.1982, 0.9053, 0.99, 0.1865, 0.99, 0.01, 0.01, 7000000000] 248
print np.exp(-DeterministicEPIMOD1(Parameters)) 249
 250
print minimize(DeterministicEPIMOD1, [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 5000], method = 'L-251
BFGS-B', bounds = ((0.01, 1),(0.01, 1),(0.01, 1),(0.01, 1),(0.01, 1),(0.01, 1),(0.01, 1), (100, 252
7000000001))) 253
 254
if status == "SusFit": 255
data = open('DeterministicPHASEI_EBOLAsus.csv', 'w') 256
elif status == "IncFit": 257
data = open('DeterministicPHASEI_EBOLAinc.csv', 'w') 258
elif status == "InfFit": 259
data = open('DeterministicPHASEI_EBOLAinf.csv', 'w') 260
elif status == "ImmFit": 261
data = open('DeterministicPHASEI_EBOLAimm.csv', 'w') 262
elif status == "DeaFit": 263
data = open('DeterministicPHASEI_EBOLAdea.csv', 'w') 264

15

else: 265
print "ERROR: I DON'T KNOW WHAT IT IS BUT SOMETHING IS NOT RIGHT." 266
 267
data.write("Infectivity, InfectionRate, Mobility, IncubationRate, Mortality, 268
PercentageImmunity, RecoveryRate, Population, ResidualSum") 269
 270
i = 0 271
trials = 10000 272
for n in range(trials): 273
print "\n" 274
print n 275
guess = np.random.rand(8) 276
guess[7] = random.randint(100, 7000000001) 277
Combination = minimize(DeterministicEPIMOD1, guess, method = 'L-BFGS-B', bounds 278
= ((0.001, 0.99),(0.001, 0.99),(0.001, 0.99),(0.001, 0.99),(0.001, 0.99),(0.001, 0.99),(0.001, 279
0.99), (100, 7000000001))) 280
if Combination.fun <= 1: 281
i += 1 282
print "%i candidates found!" %i 283
I = Combination.x[0] 284
InfP = Combination.x[1] 285
Mob = Combination.x[2] 286
IncP = Combination.x[3] 287
Mor = Combination.x[4] 288
Imn = Combination.x[5] 289
RecP = Combination.x[6] 290
Population = Combination.x[7] 291
Residual = Combination.fun 292
data.write("\n" + "%f, %f, %f, %f, %f, %f, %f, %f, %f" %(I, InfP, Mob, IncP, Mor, Imn, 293
RecP, Population, Residual**2)) 294
 295

16

""" 1
DETERMINISTIC EPIDEMIC MODEL 2
Uma Wu & LiQing Wang 3
 4
Discussed With: Michael Gelbart 5
 6
~Ver.8 Updates~ 7
-Began implementation of Spearmint 8
-Removed normalization 9
--- 10
 11
BLOCK DIAGRAM 12
 13
######## ############# 14
#IMMUNE#<--- #SUSCEPTIBLE# 15
######## --|------RecP------>############# 16
 ^ | -Imn---------------- |Mob ^RecP 17
 Imn| | | v | 18
############<------------I---############ 19
#INFECTIOUS#<--------IncP----#INCUBATING# 20
############-----InfP------> ############ 21
 |Mor 22
 v 23
24
#DEAD# 25
26
 27
#####PARAMETERS##### 28
PImmune = Pre-Immunity (percentage of population immune to disease at initial time) 29
I = Infectivity (percentage of people that move from INCUBATING to INFECTIOUS without IncP 30
[OVERRIDE]) 31
InfP = Length of Infectious Period (rate of individuals moving from INFECTIOUS to INCUBATING) 32
Mob = Mobility (rate of individuals moving from SUSCEPTIBLE to INCUBATING) 33
IncP = Length of Incubation Period (rate of individuals moving from INCUBATING to 34
INFECTIOUS) 35
Mor = Morbidity (percentage of infectious individuals that move from INFECTIOUS to DEAD) 36
Imn = Immunity (percentage of recovered individuals that move from INFECTIOUS to IMMUNE) 37
RecP = Length of Recovery Period (rate of individuals moving from INFECTIOUS and 38
INCUBATING to SUSCEPTIBLE) 39
#Note: Incubating refers to both the disease being dormant and the disease displaying 40
nonconsequential symptoms. 41
 42
#####INITIAL VALUES##### 43
Pop = Population 44

17

T = Time of Simulation in Days 45
IMMUNE = Pop*PImmune 46
SUSCEPTIBLE = Pop - Pop*PImmune 47
INCUBATING = 0 48
INFECTIOUS = 1 49
DEAD = 0 50
 51
#####DIFFERENTIAL EQUATIONS FROM BLOCK##### 52
IMMUNE = IMMUNE + INFECTIOUS*Imn + INCUBATING*Imn 53
SUSCEPTIBLE = SUSCEPTIBLE + INFECTIOUS*RecP - SUSCEPTIBLE*Mob 54
INCUBATING = INCUBATING + SUSCEPTIBLE*Mob + INFECTIOUS*InfP - INCUBATING*Imn - 55
INCUBATING*I - INCUBATING*IncP 56
INFECTIOUS = INFECTIOUS + INCUBATING*I + INCUBATING*IncP - INFECTIOUS*Imn - 57
INFECTIOUS*InfP - INFECTIOUS*Mor 58
DEAD = DEAD + INFECTIOUS*Mor 59
 60
""" 61
 62
import numpy as np 63
from scipy.optimize import minimize 64
import scipy.optimize 65
 66
def main(job_id, params): 67
 Parameters = [params["I"], params["InfP"], params["Mob"], params["IncP"], 68
params["Mor"], params["Imn"], params["RecP"]] 69
 return -StochasticEPIMOD(Parameters) 70
 71
def DeterministicEPIMOD(Parameters, T = 365, Pop = 7000000000): 72
 dt = 0.1 73
 IMMUNE = np.zeros(int((T+1)/dt)) 74
 SUSCEPTIBLE = np.zeros(int((T+1)/dt)) 75
 INCUBATING = np.zeros(int((T+1)/dt)) 76
 INFECTIOUS = np.zeros(int((T+1)/dt)) 77
 DEAD = np.zeros(int((T+1)/dt)) 78
 79
 #PARAMETER VALUES (INITIAL VALUES) 80
 I = Parameters[0] #0.1 #0.011 is the rate of infection from data 81
 InfP = Parameters[1] #0.12 #max 0.12 82
 Mob = Parameters[2] #11.0/30.0 #THIS SHOULD DEPEND ON THE NUMBER OF INFECTED 83
INDIVIDUALS SOMEHOW AHHH 84
 IncP = Parameters[3] #7.0/15.0 85
 Mor = Parameters[4] #0.07 #0.096 is the death rate from data 86
 Imn = Parameters[5] #0.397 #1.0 - Mor 87
 RecP = Parameters[6] #0.468 is the recovery rate from data 88

18

 89
 #INITIAL VALUES 90
 IMMUNE[0] = 0 #1213 #Pop*PImmune 91
 INCUBATING[0] = 1 #1516 92
 INFECTIOUS[0] = 0 #286 93
 DEAD[0] = 0 94
 SUSCEPTIBLE[0] = Pop - IMMUNE[0] - INCUBATING[0] - INFECTIOUS[0] - DEAD[0] 95
 96
 97
 for t in range(1, int(float(T)/dt+1)): 98
 SUSCEPTIBLEin = INFECTIOUS[t-1]*RecP*dt + INCUBATING[t-1]*RecP*dt 99
 SUSCEPTIBLEout = SUSCEPTIBLE[t-1]*(INCUBATING[t-1]/float(Pop))*Mob*dt 100
 SUSCEPTIBLE[t] = SUSCEPTIBLE[t-1] + SUSCEPTIBLEin - SUSCEPTIBLEout 101
 102
 INCUBATINGin = SUSCEPTIBLE[t-1]*(INCUBATING[t-1]/float(Pop))*Mob*dt + 103
INFECTIOUS[t-1]*InfP*dt 104
 INCUBATINGout = INCUBATING[t-1]*Imn*dt + INCUBATING[t-1]*I*dt + 105
INCUBATING[t-1]*IncP*dt + INCUBATING[t-1]*RecP*dt 106
 INCUBATING[t] = INCUBATING[t-1] + INCUBATINGin - INCUBATINGout 107
 108
 INFECTIOUSin = INCUBATING[t-1]*I*dt + INCUBATING[t-1]*IncP*dt 109
 INFECTIOUSout = INFECTIOUS[t-1]*Imn*dt + INFECTIOUS[t-1]*InfP*dt + 110
INFECTIOUS[t-1]*Mor*dt + INFECTIOUS[t-1]*RecP*dt 111
 INFECTIOUS[t] = INFECTIOUS[t-1] + INFECTIOUSin - INFECTIOUSout 112
 113
 DEADin = INFECTIOUS[t-1]*Mor*dt 114
 DEADout = 0 115
 DEAD[t] = DEAD[t-1] + DEADin - DEADout 116
 117
 IMMUNEin = INFECTIOUS[t-1]*Imn*dt + INCUBATING[t-1]*Imn*dt 118
 IMMUNEout = 0 119
 IMMUNE[t] = IMMUNE[t-1] + IMMUNEin - IMMUNEout 120
 121
 return -np.log(DEAD[t]) 122
 123
def Normalize(Parameters): 124
 return np.sum(Parameters) - 1 125
 126
###############EXECUTING SIMULATION#################### 127
 128
#print minimize(DeterministicEPIMOD, [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], method = 'L-BFGS-B', 129
bounds = ((0.01, 1),)*7) 130
#print scipy.optimize.fmin_slsqp(DeterministicEPIMOD, [0.3, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1], 131
bounds = ((0.01, 1),)*7, f_eqcons = Normalize) 132

19

#returns the seven best parameters if not printed 133
 134
data = open('DeterministicPHASEII2.csv', 'w') 135
data.write("Infectivity, InfectionRate, Mobility, IncubationRate, Mortality, 136
PercentageImmunity, RecoveryRate, PercentageDead") 137
 138
trials = 50000 139
for n in range(trials): 140
 print n 141
 guess = np.random.rand(7) 142
 Combination = minimize(DeterministicEPIMOD, guess, method = 'L-BFGS-B', bounds = 143
((0.01, 0.99),)*7) 144
 I = Combination.x[0] 145
 InfP = Combination.x[1] 146
 Mob = Combination.x[2] 147
 IncP = Combination.x[3] 148
 Mor = Combination.x[4] 149
 Imn = Combination.x[5] 150
 RecP = Combination.x[6] 151
 Dead = np.exp(-DeterministicEPIMOD(Combination.x))/7000000000.0 152
 data.write("\n" + "%f, %f, %f, %f, %f, %f, %f, %f" %(I, InfP, Mob, IncP, Mor, Imn, RecP, Dead)) 153
 154
TESTING PURPOSES ONLY 155
guess = np.random.rand(7) 156
print scipy.optimize.fmin_slsqp(DeterministicEPIMOD, guess, bounds = ((0.01, 1),)*7, 157
f_eqcons = Normalize) 158

20

""" 1
STOCHASTIC EPIDEMIC MODEL 2
Uma Wu & LiQing Wang 3
 4
Discussed With: Noah Bayless, Michael Gelbart 5
--- 6
#####PATIENT INFORMATION##### 7
xLoc = range(0, x_Dim) 8
yLoc = range(0, y_Dim) 9
Status = IMMUNE, SUSCEPTIBLE, INFECTIOUS, INCUBATING, or DEAD 10
tExist = time elapsed since start of simulation 11
tInc = time incubating 12
tInf = time infectious 13
tRec = time recovering 14
 15
#####PARAMETERS##### 16
PImmune = Pre-Immunity (Probable Percentage of Population that is Pre-Immune to Disease, 17
float) 18
I = Infectivity (Percentage Probability of Displaying Symptoms When Infected, float) 19
InfP = Length of Infectious Period (Time Range in which the Disease is Infectious, array) 20
Mob = Mobility (Percentage Probability of Contracting the Disease from an Adjacent Diseased 21
Individual, float) 22
IncP = Length of Incubation Period (Time Range in which the Disease does not produce 23
Symptoms (In an Infective Individual), array) 24
Mor = Morbidity (Percentage Probability of Infective Individuals Dying from the Disease, float) 25
Imn = Immunity (Percentage Probability of Individuals of Gaining Immunity After Recovery, 26
float) 27
RecP = Length of Recovery Period (Time Range in which the Disease is Present in an Individual, 28
array) 29
""" 30
 31
########################DEFINING PATIENT 32
CLASS################################# 33
 34
import random 35
import matplotlib.pyplot as plt 36
import numpy as np 37
 38
class Dossier(): #Creates an object (like list or array) that has its own modules 39
 def __init__(self, x, y, PImmune, IncP, InfP, RecP): #Automatically run as soon as object is 40
created 41
 #x and y - int 42
 #PImmune - float 43
 #IncP, InfP and RecP - lists 44

21

 self.xLoc = x #Stores the inputted x location in the object 45
 self.yLoc = y #Same as above 46
 47
 vaccination = random.random() 48
 if vaccination <= PImmune: #If the "roll" is below the PImmune probability 49
 self.Status = "IMMUNE" #The Individual becomes immune 50
 else: self.Status = "SUSCEPTIBLE" #If not, the individual becomes susceptible 51
 52
 self.IncLen = random.choice(IncP) #Picks a incubation rate out of the IncP list 53
 self.InfLen = random.choice(InfP) #Same as above for infectious rate 54
 self.RecLen = random.choice(RecP) #Same as above for recovery rate 55
 self.IncState = False #Sets incubation state as false 56
 self.InfState = False #Same as above for infectious rate 57
 self.RecState = False #Same as above for recovery rate 58
 59
 60
 def Incubation(self, I, Imn): 61
 self.IncLen -= 1 #When the function is called, it first decreases the incubation period 62
by 1 63
 if self.IncLen >= 0: #While the incubation period is more than 0, the IncState is set to 64
True 65
 self.IncState = True 66
 else: self.IncState = False #Otherwise, the IncState is False. In other words, the 67
patient stops incubating. 68
 69
 if self.IncState == False: #Once the patient finishes incubating.. 70
 luck = random.random() 71
 if luck <= I: #If their "roll" is less than Infectivity... 72
 self.Status = "INFECTIOUS" #They become Infectious 73
 else: 74
 antibody = random.random() #If their "roll" is more than Infectivity... 75
 if antibody <= Imn: #If their "roll" is smaller than the Immunity 76
 self.Status = "IMMUNE" #They become Immune. 77
 else: self.Status = "SUSCEPTIBLE" #Otherwise, they become susceptible. 78
 79
 80
 def Infection(self, Mor): #Same concepts as incubation. 81
 self.InfLen -= 1 82
 if self.InfLen >= 0: 83
 self.InfState = True 84
 else: self.InfState = False 85
 86
 if self.InfState == False: 87
 hopesndreams = random.random() 88

22

 if hopesndreams <= Mor: 89
 self.Status = "DEAD" 90
 else: self.Status = "INCUBATING" 91
 92
 93
 def Recovery(self, Imn): #Activated when patient goes into incubation or infection 94
 self.RecLen -= 1 95
 if self.RecLen >= 0: 96
 self.RecState = True 97
 else: self.RecState = False 98
 99
 if self.RecState == False: 100
 antibody = random.random() 101
 if antibody <= Imn: 102
 self.Status = "IMMUNE" 103
 else: self.Status = "SUSCEPTIBLE" 104
 105
 def Copy(self): 106
 new_pat = Dossier(self.xLoc, self.yLoc, 0, range(2,7), range(2,7), range(2,7)) 107
 #^These input values doesn't matter cuz we're gonna update it anyway 108
 new_pat.Status = self.Status 109
 new_pat.IncLen = self.IncLen 110
 new_pat.InfLen = self.InfLen 111
 new_pat.RecLen = self.RecLen 112
 new_pat.IncState = self.IncState 113
 new_pat.InfState = self.InfState 114
 new_pat.RecState = self.RecState 115
 return new_pat 116
 117
############################DEFINING 118
FUNCTIONS################################# 119
 120
def Spread(Mob, NBR): 121
 if NBR.Status == "INFECTIOUS": 122
 contagion = random.random() 123
 if contagion <= Mob: #If the "roll" is lower than mobility, then the patient is infected 124
by the virus 125
 return True 126
 else: 127
 return False 128
 return False 129
 130
def Plot(Patient, Population): 131
 for P in range(1, Population+1): 132

23

 x = Patient[P].xLoc 133
 y = Patient[P].yLoc 134
 135
 if Patient[P].Status == 'SUSCEPTIBLE': 136
 colour = "white" 137
 elif Patient[P].Status == 'IMMUNE': 138
 colour = "blue" 139
 elif Patient[P].Status == 'INFECTIOUS': 140
 colour = "red" 141
 elif Patient[P].Status == 'INCUBATING': 142
 colour = "yellow" 143
 elif Patient[P].Status == 'DEAD': 144
 colour = "black" 145
 146
 if colour == "white": 147
 plt.plot(x, y, "wo") 148
 elif colour == "blue": 149
 plt.plot(x, y, "bo") 150
 elif colour == "red": 151
 plt.plot(x, y, "ro") 152
 elif colour == "yellow": 153
 plt.plot(x, y, "yo") 154
 elif colour == "black": 155
 plt.plot(x, y, "ko") 156
 plt.show() 157
 158
def DeepCopy(Old): #Takes in dict, returns deep copy 159
 New = dict() 160
 for i in range(1, len(Old)+1): 161
 New[i] = Old[i].Copy() 162
 return New 163
 164
########################FITTING 165
FUNCTIONS###################################### 166
if __name__ == "__main__": 167
 SusFit = False 168
 IncFit = False 169
 InfFit = False 170
 ImmFit = False 171
 DeaFit = False 172
 173
 if SusFit: 174
 SUSCEPTIBLEquery = [] 175
 with open("SUSCEPTIBLEfit.csv", "r") as SUSCEPTIBLEfit: 176

24

 for line in SUSCEPTIBLEfit: 177
 SUSCEPTIBLEquery.append(tuple([int(x) for x in line[:-1].split(",")])) 178
 preset = SUSCEPTIBLEquery 179
 status = "SusFit" 180
 181
 if IncFit: 182
 INCUBATINGquery = [] 183
 with open("INCUBATINGfit.csv", "r") as INCUBATINGfit: 184
 for line in INCUBATINGfit: 185
 INCUBATINGquery.append(tuple([int(x) for x in line[:-1].split(",")])) 186
 preset = INCUBATINGquery 187
 status = "IncFit" 188
 189
 if InfFit: 190
 INFECTIOUSquery = [] 191
 with open("INFECTIOUSfit.csv", "r") as INFECTIOUSfit: 192
 for line in INFECTIOUSfit: 193
 INFECTIOUSquery.append(tuple([int(x) for x in line[:-1].split(",")])) 194
 preset = INFECTIOUSquery 195
 status = "InfFit" 196
 197
 if ImmFit: 198
 IMMUNEquery = [] 199
 with open("IMMUNEfit.csv", "r") as IMMUNEfit: 200
 for line in IMMUNEfit: 201
 IMMUNEquery.append(tuple([int(x) for x in line[:-1].split(",")])) 202
 preset = IMMUNEquery 203
 status = "ImmFit" 204
 205
 if DeaFit: 206
 DEADquery = [] 207
 with open("DEADfit.csv", "r") as DEADfit: 208
 for line in DEADfit: 209
 DEADquery.append(tuple([int(x) for x in line[:-1].split(",")])) 210
 preset = DEADquery 211
 status = "DeaFit" 212
 213
 """ 214
 INPUTS: 215
 time: the current time value 216
 y: the current value of the function 217
 query: the list of points (t, value) to fit against 218
 OUTPUTS: 219
 dy: the deviation from the query 220

25

 """ 221
 222
 fit = False 223
 if fit == True: 224
 def Fit(time, y, query = preset): 225
 for i in query: 226
 if time == i[0]: 227
 dy = y - i[1] 228
 else: 229
 dy = "NONE" 230
 return dy 231
else: 232
 fit = False 233
 234
 235
###########################INITIALIZE 236
SIMULATION############################### 237
def main(job_id, params): 238
 Parameters = [params["I"], params["InfP"], params["Mob"], params["IncP"], 239
params["Mor"], params["Imn"], params["RecP"]] 240
 return StochasticEPIMOD(Parameters) 241
 242
 243
def StochasticEPIMOD(Parameters, xDimension = 20, yDimension = 20, tElapsed = 365, flux = 244
True, move_range = 0.5, Plot = True, Print = True, fit = fit): 245
 #INITIAL VALUES 246
 Population = xDimension*yDimension 247
 248
 #PARAMETERS 249
 PImmune = 0.0 250
 I = Parameters[0] #Percentage 251
 InfP = range(int(Parameters[1])-3, int(Parameters[1])+4) 252
 Mob = Parameters[2] #Percentage 253
 IncP = range(int(Parameters[3])-3, int(Parameters[3])+4) 254
 Mor = Parameters[4] #Percentage 255
 Imn = Parameters[5] #Percentage 256
 RecP = range(int(Parameters[6])-3, int(Parameters[6])+4) 257
 258
 #PATIENTS 259
 Patient = dict() 260
 ID = 0 261
 Pos2Pat = np.zeros((yDimension, xDimension)) 262
 for x in range(xDimension): 263
 for y in range(yDimension): 264

26

 ID += 1 265
 Patient[ID] = Dossier(x, y, PImmune, IncP, InfP, RecP) 266
 Pos2Pat[y,x] = ID 267
 268
 #GENERATING PATIENT ZERO 269
 x = xDimension/2 270
 y = yDimension/2 271
 for P in range(1, ID+1): 272
 if Patient[P].xLoc == x and Patient[P].yLoc == y: 273
 Patient[P].Status = "INFECTIOUS" 274
 275
 Record = DeepCopy(Patient) 276
 277
 SUSCEPTIBLEtrend = [] 278
 INCUBATINGtrend = [] 279
 INFECTIOUStrend = [] 280
 IMMUNEtrend = [] 281
 DEADtrend = [] 282
 283
 residuals = [] 284
 285
 ###########################SIMULATION 286
BEGINS################################### 287
 for t in range(tElapsed): 288
 # Plot(Patient, Population) 289
 for P in range(1,ID+1): 290
 #STATUS PRIORITY: DEAD = IMMUNE > INFECTIOUS = INCUBATING > 291
SUSCEPTIBLE 292
 if Record[P].Status == "SUSCEPTIBLE": 293
 n = 8 294
 x = Patient[P].xLoc 295
 y = Patient[P].yLoc 296
 while Patient[P].Status != "INFECTIOUS" and Patient[P].Status != 297
"INCUBATING" and n > 0: 298
 if n == 8: 299
 infection = Spread(Mob, Record[Pos2Pat[y,(x+1)%xDimension]]) 300
#Right 301
 if infection == True: 302
 infection = random.random() 303
 if infection <= I: 304
 Patient[P].Status = "INFECTIOUS" 305
 else: Patient[P].Status = "INCUBATING" 306
 elif n == 7: 307
 infection = Spread(Mob, Record[Pos2Pat[y,(x-1)%xDimension]]) 308

27

#Left 309
 if infection == True: 310
 infection = random.random() 311
 if infection <= I: 312
 Patient[P].Status = "INFECTIOUS" 313
 else: Patient[P].Status = "INCUBATING" 314
 elif n == 6: 315
 infection = Spread(Mob, Record[Pos2Pat[(y+1)%yDimension,x]]) 316
#Above 317
 if infection == True: 318
 infection = random.random() 319
 if infection <= I: 320
 Patient[P].Status = "INFECTIOUS" 321
 else: Patient[P].Status = "INCUBATING" 322
 elif n == 5: 323
 infection = Spread(Mob, Record[Pos2Pat[(y-1)%yDimension,x]]) 324
#Below 325
 if infection == True: 326
 infection = random.random() 327
 if infection <= I: 328
 Patient[P].Status = "INFECTIOUS" 329
 else: Patient[P].Status = "INCUBATING" 330
 elif n == 4: 331
 infection = Spread(Mob, 332
Record[Pos2Pat[(y+1)%yDimension,(x+1)%xDimension]]) #Upper Right 333
 if infection == True: 334
 infection = random.random() 335
 if infection <= I: 336
 Patient[P].Status = "INFECTIOUS" 337
 else: Patient[P].Status = "INCUBATING" 338
 elif n == 3: 339
 infection = Spread(Mob, Record[Pos2Pat[(y-1)%yDimension,(x-340
1)%xDimension]]) #Lower Left 341
 if infection == True: 342
 infection = random.random() 343
 if infection <= I: 344
 Patient[P].Status = "INFECTIOUS" 345
 else: Patient[P].Status = "INCUBATING" 346
 elif n == 2: 347
 infection = Spread(Mob, Record[Pos2Pat[(y+1)%yDimension,(x-348
1)%xDimension]]) #Upper Left 349
 if infection == True: 350
 infection = random.random() 351
 if infection <= I: 352

28

 Patient[P].Status = "INFECTIOUS" 353
 else: Patient[P].Status = "INCUBATING" 354
 elif n == 1: 355
 infection = Spread(Mob, Record[Pos2Pat[(y-356
1)%yDimension,(x+1)%xDimension]]) #Lower Right 357
 if infection == True: 358
 infection = random.random() 359
 if infection <= I: 360
 Patient[P].Status = "INFECTIOUS" 361
 else: Patient[P].Status = "INCUBATING" 362
 n -= 1 363
 364
 elif Record[P].Status == "INFECTIOUS": 365
 Patient[P].Recovery(Imn) 366
 if Patient[P].RecState == True: #If the patient is still infectious... 367
 Patient[P].Infection(Mor) 368
 369
 elif Record[P].Status == "INCUBATING": 370
 Patient[P].Recovery(Imn) 371
 if Patient[P].RecState == True: #If the patient is still incubating... 372
 Patient[P].Incubation(I,Imn) 373
 374
 elif Record[P].Status == "IMMUNE": #Removed from population 375
 pass 376
 elif Record[P].Status == "DEAD": #Removed from population 377
 pass 378
 379
 380
 #UPDATE MOVING 381
 if flux == True: 382
 for x in range(xDimension): 383
 for y in range(yDimension): 384
 if Patient[Pos2Pat[y,x]].Status != "DEAD": 385
 move = random.random() 386
 if move <= move_range: 387
 swap = random.randint(1, 4) 388
 if swap == 1: #switch with above 389
 oriID = Pos2Pat[y, x] 390
 newID = Pos2Pat[(y+1)%yDimension, x] 391
 Patient[oriID].yLoc = (y+1)%yDimension 392
 Patient[newID].yLoc = y 393
 Pos2Pat[y,x] = newID 394
 Pos2Pat[(y+1)%yDimension, x] = oriID 395
 396

29

 elif swap == 2: #switch with below 397
 oriID = Pos2Pat[y, x] 398
 newID = Pos2Pat[(y-1)%yDimension, x] 399
 Patient[oriID].yLoc = (y-1)%yDimension 400
 Patient[newID].yLoc = y 401
 Pos2Pat[y,x] = newID 402
 Pos2Pat[(y-1)%yDimension, x] = oriID 403
 404
 elif swap == 3: #switch with left 405
 oriID = Pos2Pat[y, x] 406
 newID = Pos2Pat[y, (x-1)%yDimension] 407
 Patient[oriID].xLoc = (x-1)%xDimension 408
 Patient[newID].xLoc = x 409
 Pos2Pat[y,x] = newID 410
 Pos2Pat[y, (x-1)%yDimension] = oriID 411
 412
 elif swap == 4: #switch with right 413
 oriID = Pos2Pat[y, x] 414
 newID = Pos2Pat[y, (x+1)%yDimension] 415
 Patient[oriID].xLoc = (x+1)%xDimension 416
 Patient[newID].xLoc = x 417
 Pos2Pat[y,x] = newID 418
 Pos2Pat[y, (x+1)%yDimension] = oriID 419
 SUSCEPTIBLE = 0 420
 INFECTIOUS = 0 421
 INCUBATING = 0 422
 IMMUNE = 0 423
 DEAD = 0 424
 425
 for P in range(1, ID+1): 426
 if Patient[P].Status == "SUSCEPTIBLE": 427
 SUSCEPTIBLE += 1 428
 elif Patient[P].Status == "INFECTIOUS": 429
 INFECTIOUS += 1 430
 elif Patient[P].Status == "INCUBATING": 431
 INCUBATING += 1 432
 elif Patient[P].Status == "IMMUNE": 433
 IMMUNE += 1 434
 elif Patient[P].Status == "DEAD": 435
 DEAD += 1 436
 437
 SUSCEPTIBLEtrend.append(SUSCEPTIBLE) 438
 INCUBATINGtrend.append(INCUBATING) 439
 INFECTIOUStrend.append(INFECTIOUS) 440

30

 IMMUNEtrend.append(IMMUNE) 441
 DEADtrend.append(DEAD) 442
 443
 if fit == True: 444
 if status == "SusFit": 445
 y = SUSCEPTIBLE 446
 elif status == "IncFit": 447
 y = INCUBATING 448
 elif status == "InfFit": 449
 y = INFECTIOUS 450
 elif status == "ImmFit": 451
 y = IMMUNE 452
 elif status == "DeaFit": 453
 y = DEAD 454
 455
 diffs = Fit(t, y) 456
 if diffs != "NONE": 457
 residuals.append(diffs**2) 458
 459
 Record = DeepCopy(Patient) 460
 461
 if Plot: 462
 plt.plot(SUSCEPTIBLEtrend, "0.5", label = "SUSCEPTIBLE") 463
 plt.plot(INCUBATINGtrend, "y", label = "INCUBATING") 464
 plt.plot(INFECTIOUStrend, "r", label = "INFECTIOUS") 465
 plt.plot(IMMUNEtrend, "b", label = "IMMUNE") 466
 plt.plot(DEADtrend, "k", label = "DEAD") 467
 468
 plt.legend(loc="best") 469
 plt.title("ebolaSTOinfSIM") 470
 plt.ylabel("Number of Individuals") 471
 plt.xlabel("Time (in days)") 472
 # plt.show() 473
 plt.savefig("ebolaSTOinfSIM2.pdf") 474
 475
 if Print: 476
 print "SUSCEPTIBLE = %i" %SUSCEPTIBLE 477
 print "INFECTIOUS = %i" %INFECTIOUS 478
 print "INCUBATING = %i" %INCUBATING 479
 print "IMMUNE = %i" %IMMUNE 480
 print "DEAD = %i" %DEAD 481
 print "Percent Dead = %f" %(float(DEAD)/float(Population)) 482
 483
 return abs(sum(residuals)) 484

31

 # PercentDead = float(DEAD)/float(Population) 485
 # return PercentDead 486
 487
if __name__ == "__main__": 488
 StochasticEPIMOD([0.6834, 14, 0.0163, 19, 0.9512, 0.8861, 22]) 489

32

""" 1
STOCHASTIC EPIDEMIC MODEL 2
Uma Wu & LiQing Wang 3
 4
Discussed With: Noah Bayless, Michael Gelbart 5
--- 6
#####PATIENT INFORMATION##### 7
xLoc = range(0, x_Dim) 8
yLoc = range(0, y_Dim) 9
Status = IMMUNE, SUSCEPTIBLE, INFECTIOUS, INCUBATING, or DEAD 10
tExist = time elapsed since start of simulation 11
tInc = time incubating 12
tInf = time infectious 13
tRec = time recovering 14
 15
 16
#####PARAMETERS##### 17
PImmune = Pre-Immunity (PERCENTAGE PROBABILITY of Population that is Pre-Immune to 18
Disease, float) 19
I = Infectivity (PERCENTAGE PROBABILITY of Displaying Symptoms When Infected, float) 20
InfP = Length of Infectious Period (TIME RANGE in which the Disease is Infectious, array) 21
Mob = Mobility (PERCENTAGE PROBABILITY of Contracting the Disease from an Adjacent 22
Diseased Individual, float) 23
IncP = Length of Incubation Period (TIME RANGE in which the Disease does not produce 24
Symptoms (In an Infective Individual), array) 25
Mor = Morbidity (PERCENTAGE PROBABILITY of Infective Individuals Dying from the Disease, 26
float) 27
Imn = Immunity (PERCENTAGE PROBABILITY of Individuals of Gaining Immunity After Recovery, 28
float) 29
RecP = Length of Recovery Period (TIME RANGE in which the Disease is Present in an Individual, 30
array) 31
""" 32
 33
from StochasticEPIMOD1 import Dossier 34
from StochasticEPIMOD1 import Spread 35
from StochasticEPIMOD1 import Plot 36
from StochasticEPIMOD1 import DeepCopy 37
 38
import random 39
import matplotlib.pyplot as plt 40
import numpy as np 41
from scipy.optimize import minimize 42
 43
 44

33

def main(job_id, params): 45
 Parameters = [params["I"], params["InfP"], params["Mob"], params["IncP"], 46
params["Mor"], params["Imn"], params["RecP"]] 47
 return -StochasticEPIMOD(Parameters) 48
 49
def StochasticEPIMOD(Parameters, xDimension = 20, yDimension = 20, tElapsed = 365, flux = 50
True, move_range = 0.5, Plot = False, Print = False): 51
 #INITIAL VALUES 52
 Population = xDimension*yDimension 53
 54
 #PARAMETERS 55
 PImmune = 0.0 56
 I = Parameters[0] #Percentage 57
 InfP = range(int(Parameters[1])-3, int(Parameters[1])+4) 58
 Mob = Parameters[2] #Percentage 59
 IncP = range(int(Parameters[3])-3, int(Parameters[3])+4) 60
 Mor = Parameters[4] #Percentage 61
 Imn = Parameters[5] #Percentage 62
 RecP = range(int(Parameters[6])-3, int(Parameters[6])+4) 63
 64
 #PATIENTS 65
 Patient = dict() 66
 ID = 0 67
 Pos2Pat = np.zeros((yDimension, xDimension)) 68
 for x in range(xDimension): 69
 for y in range(yDimension): 70
 ID += 1 71
 Patient[ID] = Dossier(x, y, PImmune, IncP, InfP, RecP) 72
 Pos2Pat[y,x] = ID 73
 74
 #GENERATING PATIENT ZERO 75
 x = xDimension/2 76
 y = yDimension/2 77
 for P in range(1, ID+1): 78
 if Patient[P].xLoc == x and Patient[P].yLoc == y: 79
 Patient[P].Status = "INFECTIOUS" 80
 81
 Record = DeepCopy(Patient) 82
 83
 ###########################SIMULATION 84
BEGINS################################### 85
 for t in range(tElapsed): 86
 for P in range(1,ID+1): 87
 #STATUS PRIORITY: DEAD = IMMUNE > INFECTIOUS = INCUBATING > 88

34

SUSCEPTIBLE 89
 if Record[P].Status == "SUSCEPTIBLE": 90
 n = 8 91
 x = Patient[P].xLoc 92
 y = Patient[P].yLoc 93
 while Patient[P].Status != "INFECTIOUS" and Patient[P].Status != 94
"INCUBATING" and n > 0: 95
 if n == 8: 96
 infection = Spread(Mob, Record[Pos2Pat[y,(x+1)%xDimension]]) 97
#Right 98
 if infection == True: 99
 infection = random.random() 100
 if infection <= I: 101
 Patient[P].Status = "INFECTIOUS" 102
 else: Patient[P].Status = "INCUBATING" 103
 elif n == 7: 104
 infection = Spread(Mob, Record[Pos2Pat[y,(x-1)%xDimension]]) 105
#Left 106
 if infection == True: 107
 infection = random.random() 108
 if infection <= I: 109
 Patient[P].Status = "INFECTIOUS" 110
 else: Patient[P].Status = "INCUBATING" 111
 elif n == 6: 112
 infection = Spread(Mob, Record[Pos2Pat[(y+1)%yDimension,x]]) 113
#Above 114
 if infection == True: 115
 infection = random.random() 116
 if infection <= I: 117
 Patient[P].Status = "INFECTIOUS" 118
 else: Patient[P].Status = "INCUBATING" 119
 elif n == 5: 120
 infection = Spread(Mob, Record[Pos2Pat[(y-1)%yDimension,x]]) 121
#Below 122
 if infection == True: 123
 infection = random.random() 124
 if infection <= I: 125
 Patient[P].Status = "INFECTIOUS" 126
 else: Patient[P].Status = "INCUBATING" 127
 elif n == 4: 128
 infection = Spread(Mob, 129
Record[Pos2Pat[(y+1)%yDimension,(x+1)%xDimension]]) #Upper Right 130
 if infection == True: 131
 infection = random.random() 132

35

 if infection <= I: 133
 Patient[P].Status = "INFECTIOUS" 134
 else: Patient[P].Status = "INCUBATING" 135
 elif n == 3: 136
 infection = Spread(Mob, Record[Pos2Pat[(y-1)%yDimension,(x-137
1)%xDimension]]) #Lower Left 138
 if infection == True: 139
 infection = random.random() 140
 if infection <= I: 141
 Patient[P].Status = "INFECTIOUS" 142
 else: Patient[P].Status = "INCUBATING" 143
 elif n == 2: 144
 infection = Spread(Mob, Record[Pos2Pat[(y+1)%yDimension,(x-145
1)%xDimension]]) #Upper Left 146
 if infection == True: 147
 infection = random.random() 148
 if infection <= I: 149
 Patient[P].Status = "INFECTIOUS" 150
 else: Patient[P].Status = "INCUBATING" 151
 elif n == 1: 152
 infection = Spread(Mob, Record[Pos2Pat[(y-153
1)%yDimension,(x+1)%xDimension]]) #Lower Right 154
 if infection == True: 155
 infection = random.random() 156
 if infection <= I: 157
 Patient[P].Status = "INFECTIOUS" 158
 else: Patient[P].Status = "INCUBATING" 159
 n -= 1 160
 161
 elif Record[P].Status == "INFECTIOUS": 162
 Patient[P].Recovery(Imn) 163
 if Patient[P].RecState == True: #If the patient is still infectious... 164
 Patient[P].Infection(Mor) 165
 166
 elif Record[P].Status == "INCUBATING": 167
 Patient[P].Recovery(Imn) 168
 if Patient[P].RecState == True: #If the patient is still incubating... 169
 Patient[P].Incubation(I,Imn) 170
 171
 elif Record[P].Status == "IMMUNE": #Removed from population 172
 pass 173
 elif Record[P].Status == "DEAD": #Removed from population 174
 pass 175
 176

36

 177
 #UPDATE MOVING 178
 if flux == True: 179
 for x in range(xDimension): 180
 for y in range(yDimension): 181
 if Patient[Pos2Pat[y,x]].Status != "DEAD": 182
 move = random.random() 183
 if move <= move_range: 184
 swap = random.randint(1, 4) 185
 if swap == 1: #switch with above 186
 oriID = Pos2Pat[y, x] 187
 newID = Pos2Pat[(y+1)%yDimension, x] 188
 Patient[oriID].yLoc = (y+1)%yDimension 189
 Patient[newID].yLoc = y 190
 Pos2Pat[y,x] = newID 191
 Pos2Pat[(y+1)%yDimension, x] = oriID 192
 193
 elif swap == 2: #switch with below 194
 oriID = Pos2Pat[y, x] 195
 newID = Pos2Pat[(y-1)%yDimension, x] 196
 Patient[oriID].yLoc = (y-1)%yDimension 197
 Patient[newID].yLoc = y 198
 Pos2Pat[y,x] = newID 199
 Pos2Pat[(y-1)%yDimension, x] = oriID 200
 201
 elif swap == 3: #switch with left 202
 oriID = Pos2Pat[y, x] 203
 newID = Pos2Pat[y, (x-1)%yDimension] 204
 Patient[oriID].xLoc = (x-1)%xDimension 205
 Patient[newID].xLoc = x 206
 Pos2Pat[y,x] = newID 207
 Pos2Pat[y, (x-1)%yDimension] = oriID 208
 209
 elif swap == 4: #switch with right 210
 oriID = Pos2Pat[y, x] 211
 newID = Pos2Pat[y, (x+1)%yDimension] 212
 Patient[oriID].xLoc = (x+1)%xDimension 213
 Patient[newID].xLoc = x 214
 Pos2Pat[y,x] = newID 215
 Pos2Pat[y, (x+1)%yDimension] = oriID 216
 SUSCEPTIBLE = 0 217
 INFECTIOUS = 0 218
 INCUBATING = 0 219
 IMMUNE = 0 220

37

 DEAD = 0 221
 222
 for P in range(1, ID+1): 223
 if Patient[P].Status == "SUSCEPTIBLE": 224
 SUSCEPTIBLE += 1 225
 elif Patient[P].Status == "INFECTIOUS": 226
 INFECTIOUS += 1 227
 elif Patient[P].Status == "INCUBATING": 228
 INCUBATING += 1 229
 elif Patient[P].Status == "IMMUNE": 230
 IMMUNE += 1 231
 elif Patient[P].Status == "DEAD": 232
 DEAD += 1 233
 234
 Record = DeepCopy(Patient) 235
 236
 PercentDead = float(DEAD)/float(Population) 237
 return PercentDead 238
 239
def Average(Parameters, tests = 1000): 240
 total = 0.0 241
 results = np.zeros(tests) 242
 for n in range(tests): 243
 results[n] = float(StochasticEPIMOD(Parameters)) 244
 print n 245
 print np.mean(results) 246
 print np.std(results) 247
 print results 248
 return np.mean(results), np.std(results), results 249
 250
data = open("StochasticEPIMOD1SARSresultsDEAD.txt", "w") 251
 252
Combination = [0.2860000, 9, 0.256050, 5, 0.34989, 0.462340, 17] 253
average, stdev, results = Average(Combination) 254
 255
data.write("Average: %f" %average) 256
data.write("Standard Deviation: %f" %stdev) 257
for i in range(len(results)-1): 258
 data.write("%f" %results[i]) 259
 260
 261

38

0.

1

0.
91

52
5

0.
1

0.
87

41
4

0.
1 0 0.
1

0.
91

69
6

0.
1

0.
72

15
2

0.
1

0.
57

79
6

0.
1

0.
81

51
2

0.
2

0.
92

25
8

0.
2

0.
89

06
1

0.
2 0 0.
2

0.
92

24
5

0.
2

0.
82

44
4

0.
2

0.
37

33
7

0.
2

0.
69

71
6

0.
3

0.
91

56
6

0.
3

0.
90

20
9

0.
3

0.
42

79

0.
3

0.
91

40
1

0.
3

0.
86

56
4

0.
3

0.
24

62
2

0.
3

0.
57

96
4

0.
4

0.
89

65

0.
4

0.
91

00
3

0.
4

0.
68

41
3

0.
4

0.
89

35
2

0.
4

0.
88

76
3

0.
4

0.
15

87
9

0.
4

0.
46

09
3

0.
5

0.
86

64
8

0.
5

0.
91

54
2

0.
5

0.
79

69
8

0.
5

0.
86

22
9

0.
5

0.
90

09
5

0.
5

0.
09

49
8

0.
5

0.
33

82
7

0.
6

0.
82

67
2

0.
6

0.
91

89
5

0.
6

0.
85

48
5

0.
6

0.
82

14
6

0.
6

0.
90

95

0.
6

0.
04

66

0.
6

0.
20

61
8

0.
7

0.
77

82

0.
7

0.
92

11

0.
7

0.
88

67
3

0.
7

0.
77

19
7

0.
7

0.
91

51
3

0.
7

0.
00

00
2

0.
7

0.
00

00
2

0.
8

0.
72

17
7

0.
8

0.
92

22
3

0.
8

0.
90

51
8

0.
8

0.
71

46
5

0.
8

0.
91

88
4

0.
8 0 0.
8 0

0.
9

0.
65

81
4

0.
9

0.
92

25
8

0.
9

0.
91

62
7

0.
9

0.
65

02
2

0.
9

0.
92

12
3

0.
9 0 0.
9 0

1

0.
58

79
4

1

0.
92

23
5

1

0.
92

31
4

1

0.
57

92
9

1

0.
92

27

1 0 1 0

In
fe

ct
iv

ity

Pe
rc

en
ta

ge

D
ea

th

In
fe

ct
io

n

R
at

e

Pe
rc

en
ta

ge

D
ea

th

M
ob

ili
ty

Pe
rc

en
ta

ge

D
ea

th

In
cu

ba
tio

n
R

at
e

Pe
rc

en
ta

ge

D
ea

th

M
or

ta
lit

y

Pe
rc

en
ta

ge

D
ea

th

Pe
rc

en
ta

ge

Im
m

un
ity

Pe
rc

en
ta

ge

D
ea

th

R
ec

ov
er

y
R

at
e

Pe
rc

en
ta

ge

D
ea

th

39

PARAMETERS STOCHASTIC DETERMINISTIC

Initially Susceptible
Population/ Total
Population (Pop)

N/A: There was not enough
computational power to simulate
population as a parameter.

(PHASE I only) Total number of
people in each compartment.
Remains constant throughout
simulation

Infectivity (I) Percentage Probability of
Population that Displays
Symptoms When Infected

Percentage of Population that
Displays Symptoms When Infected

Length of Infectious
Period (InfP)

(+/-3) Possible Time Range in
which the Disease is Infectious

Time in which the Disease is
Infectious

Mobility (Mob) Percentage Probability of
Contracting the Disease from an
Adjacent Diseased Individual

Number of Healthy Individuals that
a Diseased Individual may Infect

Length of Incubation
Period (IncP)

(+/-3) Possible Time Range in
which the Disease does not
produce Symptoms (In an Infective
Individual)

Time in which the Disease does not
produce Symptoms (In an Infective
Individual)

Length of Recovery
Period (RecP)

(+/-3) Possible Time Range in
which the Disease is Present in an
Individual

Time in which the Disease is
Present in an Individual

Mortality (Mor) Percentage Probability of Infective
Individuals Dying from the Disease

Percentage of Infective Individuals
Dying from the Disease

Immunity (Imn) Percentage Probability of
Individuals of Gaining Immunity
After Recovery

Percentage of Individuals that Gain
Immunity Upon Recovery

40

SARS Data points for Fitting

153 78

158 98

159 103

165 144

166 154

186 461

187 478

188 495

189 506

202 666

204 689

210 750

211 754

216 772

221 784

228 799

229 799

231 804

238 809

239 810

242 811

243 812

244 812

249 812

252 812

 41

Ebola Data Points for Fitting

7 24

279 12713

312 13697

347 14487

382 15151

413 15854

446 16236

479 16470

510 16763

 42

	AppendixTABLEOFCONTENTS
	Appendix
	Table of Contents

	Appendix I (Raw data, Phase I and Phase II data)
	Appendix II (DeterministicEPIMOD1)
	Appendix III (DeterministicEPIMOD2)
	Appendix IV (StochasticEPIMOD1)
	Appendix V (StochasticEPIMOD2)
	Appendix VI (PHASE III)
	Appendix VII (Parameters)
	Appendix VIII (Target Points)

