The Last Plague

Investigating the Lethality of Pandemics Using Deterministic and Stochastic Epidemic Models

Co-Authors: Li Qing Wang & Uma Wu Faculty Advisor: James D. Berger SCI001 T2 Project March 9, 2016

<u>Abstract</u>

This project investigates the effects of seven parameters on the spread of viral epidemics: infectivity, infectious period, mobility, incubation period, mortality, immunity and recovery period. Two algorithms were created to simulate the progression – one stochastic, and one deterministic. While the deterministic model simulates the spread through regulating the flux between compartments, the stochastic model simulates the spread by applying the parameters as a set of probabilities. The models were calibrated with current data on SARS and Ebola from WHO. Using optimization methods, we found the characteristics of viral diseases that would lead to the most lethal disease, marked by death rates of 92.26% of the world population in the deterministic model and 98.76% in the stochastic model. By investigating the effect of each parameter on the disease, we found that the key factors in regulating the spread of an epidemic are percentage immunity, mobility and recovery rate.

Introduction

Scientific question: what parameter values define the most deadly disease possible, and how do they each contribute to the epidemic?

An epidemic is defined as a sudden spread of a disease that affects an unexpectedly high number of people in a certain population [1]. The determinant factors for the lethality examined in this study include infectivity, infectious period, mobility, incubation period, mortality, immunity and recovery period (refer to Appendix Pages for definitions).

Although we are working with simulated diseases, the combination of parameters that define a "super viral disease" is important because any of these combinations may be present in a future infection. Therefore, by knowing the most dangerous aspects of an infectious disease, we can better focus our resources to counteract it.

This project has four phases: 0, I, II and III. The model is developed in Phase 0, calibrated in Phase I and used to answer our scientific question in Phases II and III. The models use the susceptible-infected-removed model with a few more compartments to provide insight into the effect of each on the spread of diseases.

The deterministic model is a closed model. The flux in and out of the compartments is represented as a series of differential equations. In order to optimize this program for certain desired outputs, the L-BFGS-B method was implemented [14]. The stochastic model is also closed, but it relies on a matrix system instead. To optimize this program for desired outputs, the Bayesian Optimization package Spearmint was implemented.

Different sets of parameters can contribute to the same death rate; therefore, further analysis was done to find the trend in those combinations.

Procedure

Phase 0

Principle Objective: To create the deterministic and stochastic models Deterministic

Assumption 1: The parameters remain constant throughout the simulation.

<u>Justification</u>: This means the effects of borders, quarantines, cures, and other currently implementable disease-control tactics are unavailable. The implementation of these features would impede the observations on the spread of the disease amidst all of the other elements affecting it.

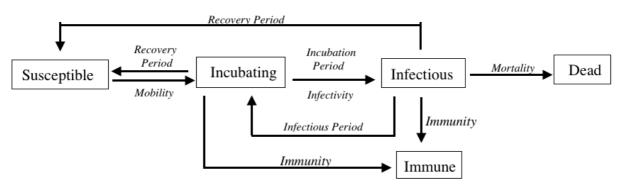


FIGURE 1: Flowchart of Deterministic Model. [For the complete code, refer to Appendix Pages 10-16]

Stochastic

-See also Assumptions 1 for the Deterministic Model-

<u>Assumption 1</u>: The disease can only spread between adjacent individuals.

<u>Justification</u>: While it is possible to simulate the disease spreading as a function of the total number of infected/incubating individuals regardless of their position in the simulated matrix, it defeats the point of having a stochastic process.

<u>Assumption 2</u>: The parameter values produced by optimizing the program are scalable and will produce around the same proportions between individuals of different states regardless of population size.

<u>Justification</u>: The spread of the disease overall have the same progression as long as the population is >9, since the disease needs to be spreading between unique individuals. This has been verified.

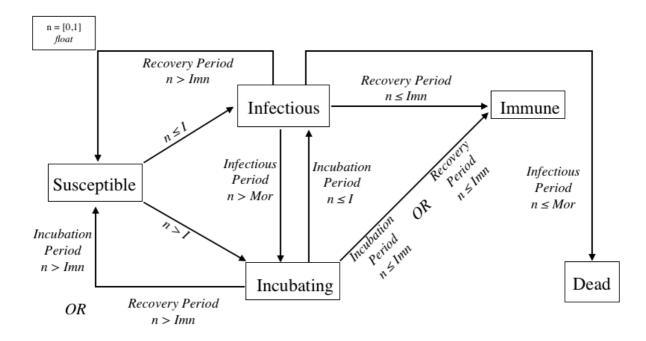


FIGURE 2: Flowchart of one individual's possible status within Stochastic Model [For the complete code, refer to Appendix Pages 21-32]

Phase I

Principle Objective: Fitting and calibrating the program to real disease data

Cumulative data on the number of cases, recoveries and deaths for SARS and cumulative data on the number cases and deaths for Ebola were collected from the World Health Organization (WHO) website [7, 11].

Target points were chosen for the simulations to fit. The best trend line for each category of data was found by minimizing the coefficient of determination (R^2) to a value below a biological alpha of 5% with respect to the population using minimize function L-BFGS-B. For each disease, the category of data with the highest number of data points on the trend line was selected, and target points were chosen from these points. The death data and infected data for SARS and Ebola were used, respectively. The selected data points were representative of the trend of the disease, and minimized the noise in the raw data. [For the raw data used to fit the data points, refer to Appendix Pages 1-7.]

Phase II

Principal Objective: Finding the Parameters that result in the most deadly pandemics In both models, the functions representing the simulation were reconfigured to return the negative maximum percentage of the population that is dead over the time frame of a year.

Deterministic - L-BFGS-B

The percentage mortality is maximized using the L-BFGS-B gradient evaluation method. The L-BFGS-B evaluates the derivative of the gradient from a given starting point and follows the slope to find a local minimum. To counteract the possibility of multiple minima within our function, multiple parameter sets were generated (~10000) to ideally produce as many minima

as possible. Among these, the ones with the highest death rates were selected for analysis.

Stochastic - Spearmint

The Spearmint package uses Bayesian Optimization in a global black-box operation in order to find the global minimum of a function. This experiment required no more than using Spearmint to find the global minimum of the Stochastic outputs while minimizing the noise that comes from the random factors that govern its processes.

Assumption: everyone was susceptible.

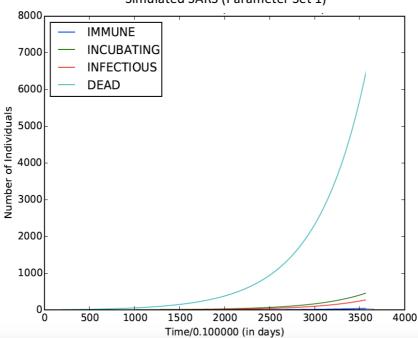
<u>Justification</u>: if a significant fraction of a population is pre-immune, the disease may not become an epidemic at all.

Phase III

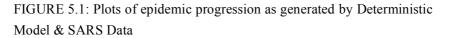
Principal Objective: investigating the effect of each parameter on percentage death independently.

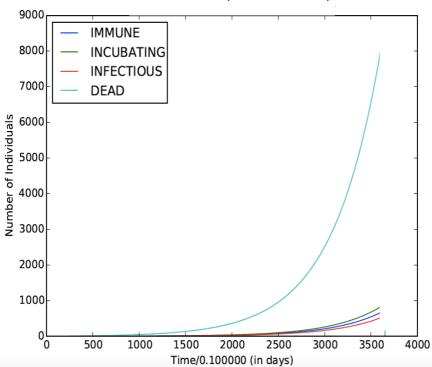
While keeping other parameters at the values that lead to the most deadly disease, each parameter in the deterministic program was varied independently from $0.1 \sim 1.0$, in increments of 10%. The output percentage death, defined by the percentage of the world population dying from the disease, was recorded.

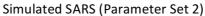
<u>Results</u>

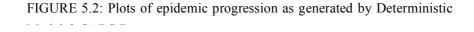

Each of the following sets of parameters fit the respective disease data collected from WHO with the sum of residuals squared indicated.

Deterministic Fitting	Results (<i>PHASE I)</i> (FIC	JURE 3)			
	EBOL	A	SARS		SARS	
Infectivity	62.913	3%	12.2454%		63.4744%	
Infection Rate	30.602	3%	98.3275%		37.0586%	
Mobility	99%		98.211%		76.4858%	
Incubation Period	1.395		101.01		150.443	
Incubation Rate	71.68%	0	99%		0.6647%	
Mortality	46.206	3%	42.6484%		29.8424%	
Percent Immunity	0.1%		0.1%		0.9516%	
Recovery Rate	10.624	3%	43.7013%		32.6739%	
Population	699000	00000	1795595082		1407579615	
Residual Sum	2.546%	6 of Pop	0.0083558% of	Pop.	0.0081459% of Pop	
Stochastic Fitting Res	sults (PH	ASE I) (FIGU	RE 4)			
		EBOLA		SAR	S	
Infectivity		99%		43.14%		
Infectious Period		25	25		11	
Mobility		27.6382%		40.22%		
Incubation Period		23		12		


PHASE I RESULTS


Deterministic Fitting Results (PHASE I) (FIGURE 3)


Mortality	36.72%	13.79%
Percentage Immunity	50.266%	85.85%
Recovery Period	28	11
Population	Any	Any
Standard Deviation	0.022747	0.022434



Simulated SARS (Parameter Set 1)

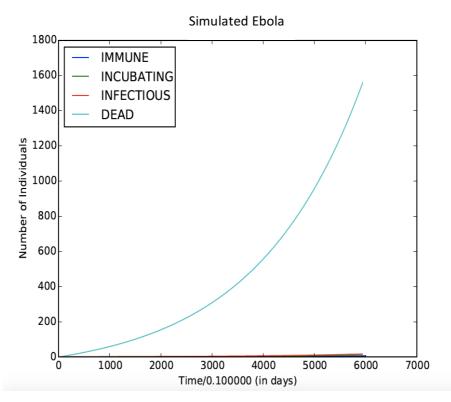


FIGURE 6: Plot of epidemic progression as generated by Deterministic Model & Ebola Data

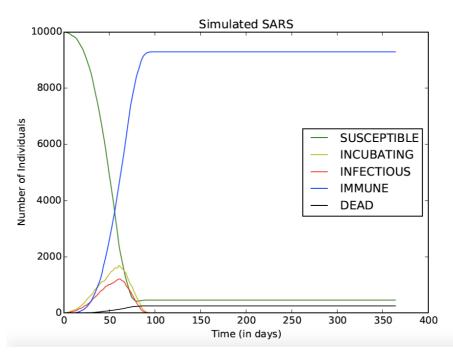


FIGURE 7: Plot of epidemic progression as generated by Stochastic Model & SARS Data

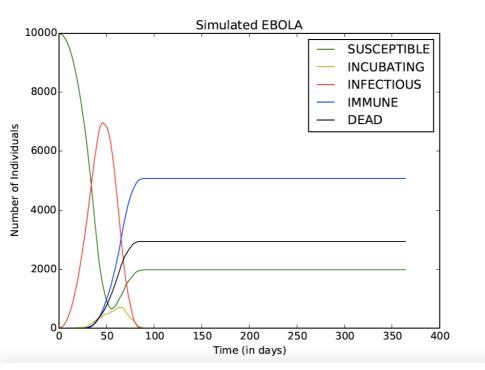


FIGURE 8: Plot of epidemic progression as generated by Stochastic Model &

Disease	Estimated Basic Reproductive Number	R ₀ from Literature [3, 15]		
SARS	2.25	0.24-2.47, 2.87		
SARS	1.13	2.4-3.6 (R _e)		
Ebola	2.88	1.50-2.67		
Ebola	1.12	1.30-2.07		
Stochastic SARS		0.24-2.47, 3.87 2.4-3.6 (R _e)		
	SARS SARS Ebola Ebola	DiseaseReproductive NumberSARS2.25SARS1.13Ebola2.88Ebola1.12		

FIGURE 9: Estimation of Basic Reproduction Number

PHASE II RESULTS

	Deterministic	Stochastic					
Infectivity	19.82%	Infectivity	99%				
Infectious Period	1.124	Infectious Period	14				
Infection Rate	90.53%	Infection Rate	7.14%				
Mobility	99.00%	Mobility	65.61%				
Incubation Period	7.731	Incubation Period	4				
Incubation Rate	18.65%	Incubation Rate	25%				
Mortality	99.00%	Mortality	90.45%				
Percentage Immunity	1.0%	Percentage Immunity	0.00%				
Recovery Rate	1.0%	Recovery Rate	4%				
Recovery Period	100	Recovery Period	25				
Percentage Dead	92.26%	Percentage Dead	98.76%				

FIGURE 10: Parameters that constitute the most lethal disease in each model

	Average	Standard	Maximum	Minimum
		Deviation		
Infectivity	19.82362286%	9.03404125%	37.5849%	1.5306%
Infectious	1.123803493	0.1633870674	1.6784099416	1.010101
Period				
Infectious Rate	90.53117143%	11.04190317%	99%	59.5802%
Mobility	99%	0%	99%	0.99
Incubation	7.7306150843	7.0662311461	38.6085479325	2.6623430216
Period				
Incubation Rate	18.64900571%	8.47061018%	37.5609%	2.5901%
Mortality	99%	0%	99%	99%
Percentage	1%	0%	1%	1%
Immunity				
Recovery Rate	1%	0%	1%	1%
Percentage	92.25818%	8.622e-4%	92.2588%	92.2555%
Dead				

FIGURE 11: PHASE II Deterministic Parameter Features

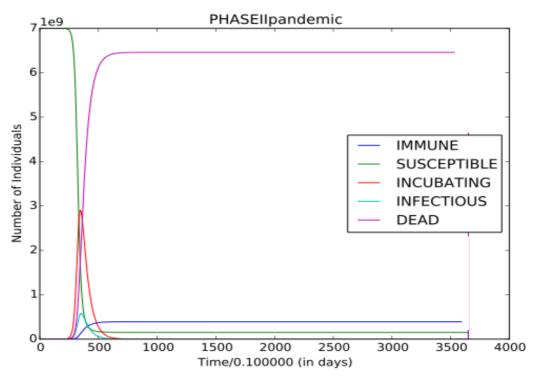


FIGURE 12: Trend of optimized pandemic (Deterministic)

Deterministic Model

The data shows parameter values that contribute to the most deadly disease predicted by the deterministic model. (Figure 10)

The disease is infectious slightly over 1 day. A diseased individual may infect 99% of the healthy people he meets. Only 19.82% of infecteds will display symptoms after infection. Other individuals do not show any symptom until 7.7 days after infection. 99% of infected individuals will die from the disease, and only 1% will gain immunity. Infected individuals, if capable of recovering from the disease, take 100 days to do so.

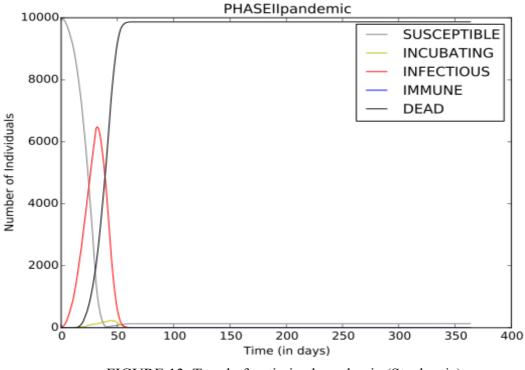
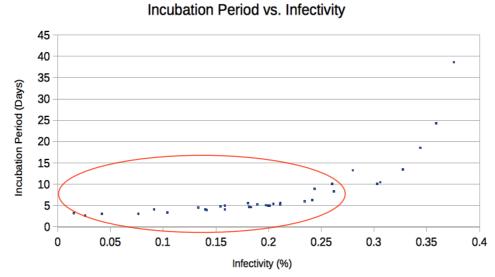
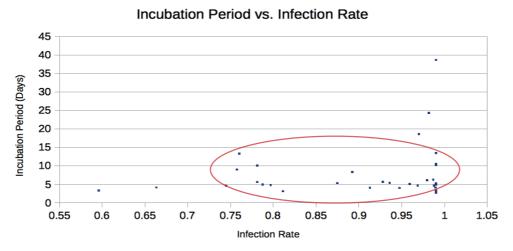
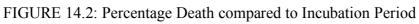
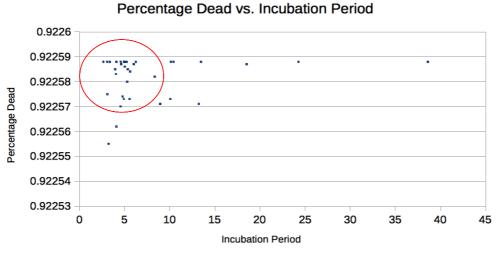
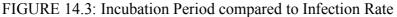



FIGURE 13: Trend of optimized pandemic (Stochastic)


Stochastic Model


The data shows parameter values that contribute to the most deadly disease predicted by the stochastic model. (Figure 10)


The disease incubates for 4 days. There is a 99% chance that an infected population will display symptoms of the disease, and the disease is infectious over a span of two weeks. A healthy individual has a 65.61% chance of contracting the disease from an infectious individual in close proximity. Infected individuals have a 90.45% chance of dying from the disease. No one can develop immunity against this disease, but individuals can recover from the disease over a period of 25 days.



PHASE III RESULTS

Infectivity	Infectious	Mobility	Incubation	Mortality	Percentage	Recovery
	Period		Period		Immunity	Rate
≤30%	1-2 days	≥20%	5-10 days	any	≤70%	≤70%

FIGURE 15: Table of criteria for a significant drop in population as a result of an epidemic

Analysis

Analysis of PHASE I Data

Estimation of Basic Reproduction Number

The basic reproduction number characterizes the ability of a disease to spread, and is calculated by dividing the infection rate by recovery rate. On the other hand, the effect reproduction number (R_e) represents the observed number of secondary infections from a primary infection. Since the two are sometimes used interchangeably in literature, both values were obtained from literature as references.

Two sets of parameters were selected for SARS because both provided R_0 that were within the literature range. No statistical comparison was feasible between our results and the literature values due to the limitations of the model. However, it is clear that the R_0 estimated by both models (Figure 9) generally adhered to what was reported from the literature. The deterministic model generally predicts a higher R_0 than the stochastic model.

Incubation Periods

The stochastic model predicted a more reasonable incubation period for each disease compared to the deterministic one. The actual incubation periods for SARS and Ebola are up to two weeks [16] and up to 21 days [17], respectively. Both of these adhere significantly more to the stochastic results.

Deterministic vs. Stochastic

Comparing the shapes of the graphs of simulated SARS and Ebola produced by both models to the graphs of raw disease data, the stochastic model is clearly a better model than the deterministic one. The stochastic model is a better fit for the randomness in the nature of disease spread, unlike the deterministic.

Combining this with analyses of estimated R_0 and incubation period, the stochastic model seemed to have produced a lower residual for each disease (See Appendix Graphs).

Analysis of PHASE II Data

A Holistic Analysis of PHASE II Deterministic Data

This is done to deterministic only due to the various sets of optimized parameters it produced, all of which produced the desired maximal death rate. Of the 10000 parameter sets, 34 representative ones were selected for analysis.

The standard deviation for each parameter was computed using 34 sets of parameters that yield a percentage death of 92.26%. Since the standard deviation of mobility, mortality, percentage immunity and recovery are zero, these parameters must be at a specific value to result in the most lethal epidemic. Therefore, any changes made to those parameters alone will result in a death rate deviating from 92.26%.

The disease has high mobility (99%), high mortality (99%), low immunity (1%) and low recovery rate (1%). Infectivity can range from 1.53% to 37.58%, infection rate can range from 59.58% to 99% and incubation period can range from $2.66 \sim 38.61$ days. A clear correlation between incubation period and infectivity can be observed below (Figure 14.1). When infectivity is below 20%, incubation period is less than a week. As infectivity goes beyond 20%, incubation period increases drastically and can be as high as 38 days.

Therefore, as shown in Figures 14.1-3, a combination of the following qualities is most likely to happen and will lead to a 92.26% death rate: $1.53\% \sim 26.21\%$ infectivity, a short infectious period of $1\sim1.33$ days, 99% mobility, within two weeks of incubation, 99% mortality, 1% immunity and 1% recovery.

Discussion

Accuracy & Precision

The accuracy of either models can be defined by how replicable the results are. The deterministic model is completely accurate since the same parameters will always yield the same output. Therefore, the accuracy of deterministic model is not representative of its uncertainty, since no model can have 0 uncertainty. However, for the stochastic model, standard deviations of outputs were determined. The standard deviation of the phase II result, (0.005512%), defines the uncertainty of the model since it is purely based on the outputs of the program and does not depend on any data. This small standard deviation indicates an accurate model.

The precision of either models can be defined as how well it fits to the real data in Phase I. This was obtained by fitting the simulation to the real data by minimizing the residuals. The stochastic model's precision cannot be determined through its precision due to the restraint in runtime as a function of population (it can only fit the trend), and is therefore not representative of its uncertainty. The deterministic model does yield a wide array of residuals, however. In our fitting of the data, the lowest residual was 2.546% of Population with Ebola, while the two SARS fittings yielded 0.0083558% of population and 0.0081459% of population respectively. Since the percentages are less than 5%, the model is likely precise.

Limitations

Limitations of Collected Data

Inconsistency in WHO data

The cumulative number of SARS cases fluctuated for the last few days for which data were collected. SARS is a diagnosis of exclusion; as previous cases were further investigated, some patients were re-examined and re-diagnosed [6]. Since the fluctuation only involved a few individuals, we disregarded the occasional decrease, and recorded further data by adding the number of newly dead people to the cumulative number.

Limitation of Obtainable Categories of Data

While there are 7 parameters, only the aforementioned 3 had available data.

Limitations of Model

1. Quarantine & Borders

In April 2003, the Chinese government started implementing quarantine and restricting social interactions by methods such as closing theatres and implementing border control [4]. Quarantine would limit the mobility of the disease; however, this is not accounted for in the model. (See Assumptions)

2. Parameters change with time

The parameters in both models are constant over time, while in reality they do change with

time. For example, the mortality of both disease increased with time.

Run Time Constraints

Deterministic

The deterministic model does not take long to complete one function evaluation (~ 0.1 s for Population = 700000000) due to its nature as a linear-time computation, but its optimization took much longer due to the methodology of the L-BFGS-B method of evaluating the function multiple times until it reached a local minimum. Therefore, a global optimization would have been better for this instance.

Stochastic

The stochastic model takes a lot longer than the deterministic (\sim 1s for Population = 400) to complete one function evaluation. With the Spearmint Optimization package, we were able to bypass that issue. Not only does Spearmint find the global minimum, it only takes around 5 hours to yield applicable and accurate results. However, it is still subject to the limitations of populations, since the run time increases linearly with the addition of an individual.

Inferences

Deterministic Phase II

Summary: The most deadly disease according to the deterministic model is a disease that doesn't show symptoms immediately (19.82% infectivity), transmits quickly from person to person (99% mobility), almost certainly and immediately kills its host upon infection (99% mortality), and is almost impossible to develop immunity from (only 1% of the population can become immune). This disease can kill 92.26 % of the world population in one year.

This set of parameters produces a greater incubating population than infectious population. There are many currently known viruses that can remain dormant in individuals (e.g Rabies, STDs) for a relatively long time before manifesting symptoms. The disease may cover its lethality by displaying nonlethal typical flu symptoms as fever, cough and diarrhea when individuals are first infected, thus creating a high incubating population. This feature of the simulated disease greatly contributes to the risk of unknowingly getting infected since the number of susceptible people becoming incubating is dependent on both the number of carriers (infecteds) and susceptibles.

Stochastic Phase II

Summary: The most deadly disease according to the stochastic model is one that shows symptoms almost immediately (99% infectivity), transmits at a moderate rate (65.61%) from person to person, is infectious over two weeks, and is develop immunity. This disease can kill 98.76% of the world population in one year.

Instead of a high mobility, the disease becomes highly infective with a small incubation period, which means the patients would immediately show symptoms upon infection. A zero percent immunity means that even if a patient did manage to survive, they would become susceptible again with another chance of being infected and eventually succumbing to the disease.

This disease resembles past epidemics such as AIDS, since it mutates very quickly and suppresses the immune system. The disease would exhibit symptoms that lead to more infection and eventually death, such as skin lesions (e.g smallpox), discharging fluids (e.g diarrhea), and even irregular behavior (e.g rabies patients may bite other individuals).

Deterministic Phase III results and inferences

Since the purpose of Phase III is purely making inferences, its results will be shown here along with the inferences.

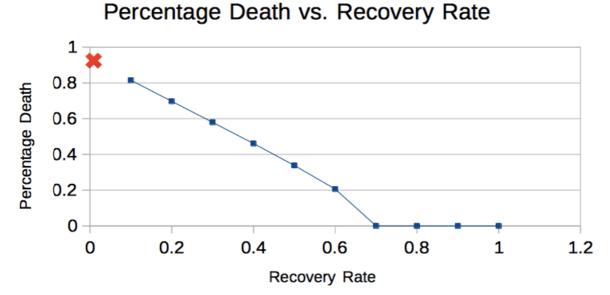


Figure 16.1 The percentage dead seems to decrease somewhat linearly with increased recovery rate when the recovery rate is lower than 70%. A recovery rate of 70% seems to be a threshold beyond which the disease is no longer an epidemic.

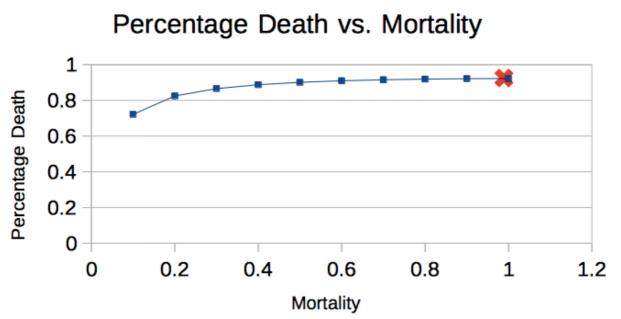


Figure 16.2 A disease with low mortality (10%) can have a high percentage death (\sim 70%). The percentage death increase by \sim 10% in response to a 10 fold increase in mortality.

This may indicate that the mortality of a disease is not the major determinant of its percentage death.

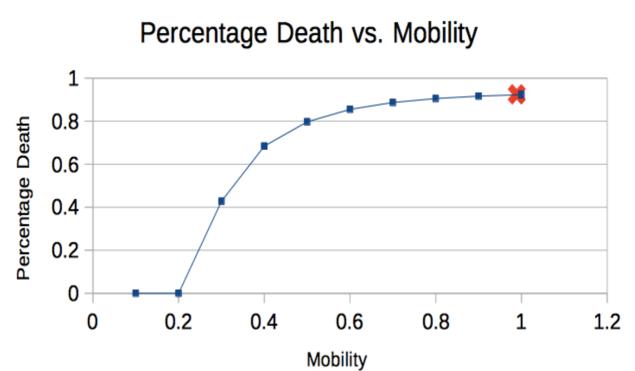


Figure 16.3 A disease for which an infected can only spread the infection to less than 20% of the people he contacts will not cause an epidemic. The percentage death increases drastically with the increase in mobility. This suggests that mobility is a major determinant in the spread of a disease.

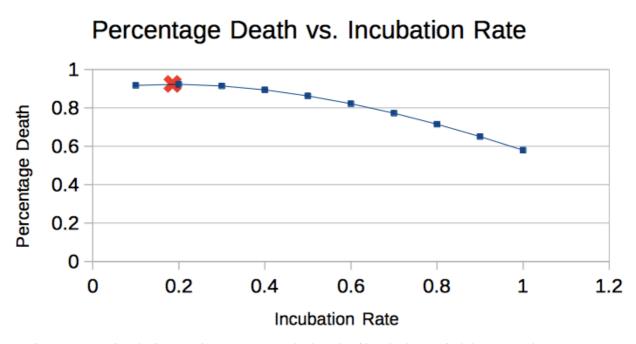


Figure 16.4 As incubation rate increases, or as the length of incubation period decreases, the percentage death decreases.

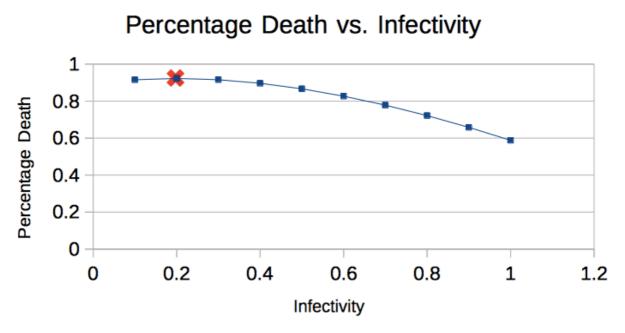


Figure 16.5 The larger the fraction of the infected population that shows symptoms, the less deadly the disease becomes. This may suggest that a disease must not let the patients display symptoms immediately in order to let it spread unknowingly, and eventually kill a large percentage of the world population.

Percentage Death vs. Percentage Immunity

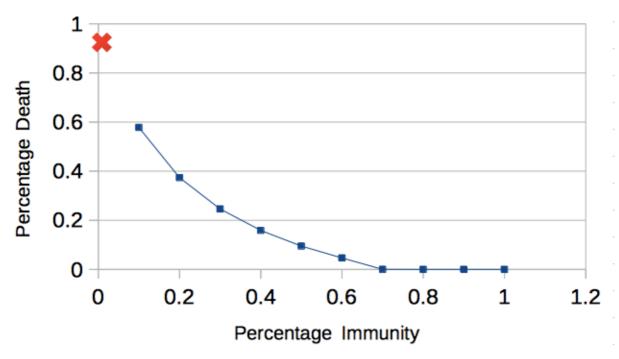
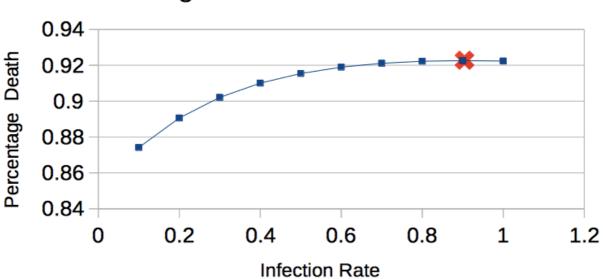



Figure 16.6 The disease is the most deadly when zero percent of the population is immune to it. The death rate decreases with increased immunity. There seems to be a threshold at 70% immunity, beyond which the disease is essentially no longer an epidemic.

Percentage Death vs. Infection Rate

Figure 16.7 A low infection rate such as 10% can lead to a death percentage of \sim 87%. The increase in infection rate from 10% to 70% causes the most increase in percentage death. Beyond that, the increase in infection rate has minute effect on percentage death.

Key Inferences and Observations

In agreement with what was observed in phase II, any deviation from the set of the most deadly parameters led to a decrease in percentage death. However, this phase allowed a closer investigation of the magnitude of such effect. For example, the mortality barely alters the percentage death while independent changes in mobility, recovery rate, and percentage immunity led to much greater changes. The effect of infection rate, incubation rate, and infectivity is somewhere in between. Some threshold values were observed in percentage immunity (\leq 70%), mobility (\geq 20%) and recovery rate (\leq 70%). These three parameters are the major contributors to the percentage death of an epidemic; however, they must reach a certain threshold level for a disease to become an epidemic. These three parameters need to be regulated in order to prevent or control the spread of epidemic most efficiently.

As a summary of phase III, a chart of criteria for the most lethal epidemic predicted by the deterministic model was produced (figure 15). If an outbreak is suspected and several of its parameters fall into these values, it is likely to develop into a fairly lethal epidemic. Such disease can then be most effectively regulated by controlling percentage immunity, mobility and recovery rate.

Conclusion

Both the deterministic and stochastic models developed are able to fit realistic disease data and predict combinations of parameters that would lead to the most deadly epidemic. Both models also predict a high death rate when the chances of developing immunity are low, indicating the threat of an immune-suppressive disease is especially high.

Ranges of values for each parameter that constitute the most lethal epidemic outlined can be used to assess the lethality of a real disease. With further development, future potentials of this pair of models include investigation of other viral diseases, predicting the outcome of a disease in real time, and modelling the effect of prevention and control methods on the epidemic.

<u>References</u>

[1]"Lesson 1: Introduction to Epidemiology." *Centers for Disease Control and Prevention*. Centers for Disease Control and Prevention, 2012. Web. 11 Mar. 2016.

[2]"Learning Basic Epidemic Models with Python." *Learning Basic Epidemic Models with Python*. Web. 11 Mar. 2016.

[3]"Estimating the Reproduction Number of Ebola Virus (EBOV) During the 2014 Outbreak in West Africa – PLOS Currents Outbreaks." *PLOS Currents Outbreaks*. Web. 11 Mar. 2016.

[4]"SARS Reference | SARS Timeline." SARS Reference | SARS Timeline. Web. 11 Mar. 2016.

[5]"The SIR Model for Spread of Disease - The Differential Equation Model." *The SIR Model for Spread of Disease*. Web. 11 Mar. 2016.

[6] "Cumulative Number of Reported Probable Cases of SARS." *WHO*. Web. 13 Mar. 2016. .

[7]"Cumulative Number of Reported Probable Cases of Severe Acute Respiratory Syndrome (SARS)." *WHO*. Web. 11 Mar. 2016.

[8]"WHO IRIS: Consensus Document on the Epidemiology of Severe Acute Respiratory Syndrome (SARS)." *WHO IRIS: Consensus Document on the Epidemiology of Severe Acute Respiratory Syndrome (SARS)*. Web. 11 Mar. 2016.

[9]Wallinga, J. "Different Epidemic Curves for Severe Acute Respiratory Syndrome Reveal Similar Impacts of Control Measures." *American Journal of Epidemiology* 160.6 (2004): 509-16. Web.

[10]"Epidemic." Wikipedia. Wikimedia Foundation. Web. 11 Mar. 2016.

[11]"Ebola Virus Disease." World Health Organization. Web. 11 Mar. 2016.

[12]Zhang, Zhibin. "The Outbreak Pattern of SARS Cases in China as Revealed by a Mathematical Model." *Ecological Modelling* 204.3-4 (2007): 420-26. Web.

[13]Zhou, Yicang, Zhien Ma, and F. Brauer. "A Discrete Epidemic Model for SARS Transmission and Control in China." *Mathematical and Computer Modelling* 40.13 (2004): 1491-506. Web.

[14]"Scipy.optimize.minimize¶." *Scipy.optimize.minimize* — *SciPy V0.17.0 Reference Guide*. Web. 11 Mar. 2016.

[15] Althaus, Christian L. "Estimating the Reproduction Number of Ebola Virus (EBOV)

During the 2014 Outbreak in West Africa." PLoS Curr PLoS Currents (2014). Web. 13 Mar. 2016.

[16] "Frequently Asked Questions About SARS." *Centers for Disease Control and Prevention*. Centers for Disease Control and Prevention, 2012. Web. 21 Mar. 2016. http://www.cdc.gov/sars/about/faq.html.

[17] "Ebola Virus Disease." *World Health Organization*. Web. 21 Mar. 2016. .

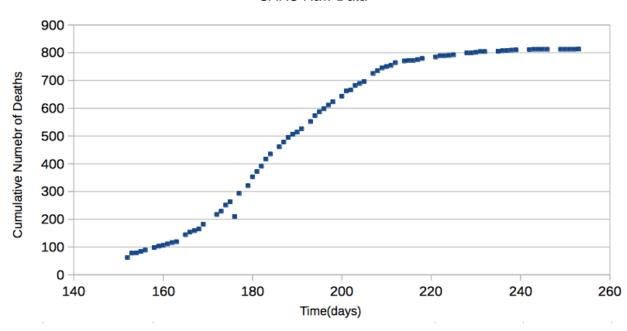
Special Thanks

James D. Berger for mentoring this project

Michael Gelbart for implementing Spearmint, suggesting fitting methods, and debugging

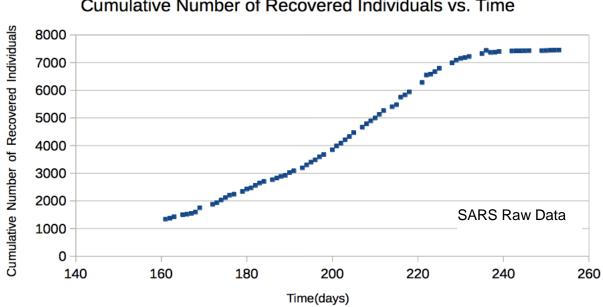
Pam Kalas for reviewing and advising this project

Omer Angel for providing insight on the data analysis

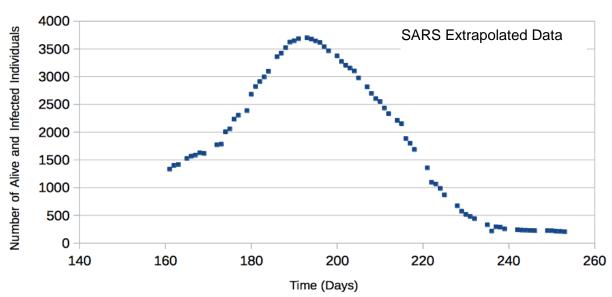

Costanza Piccolo for refining our parameters

Eric Cytrynbaum for refining the mechanics of the model

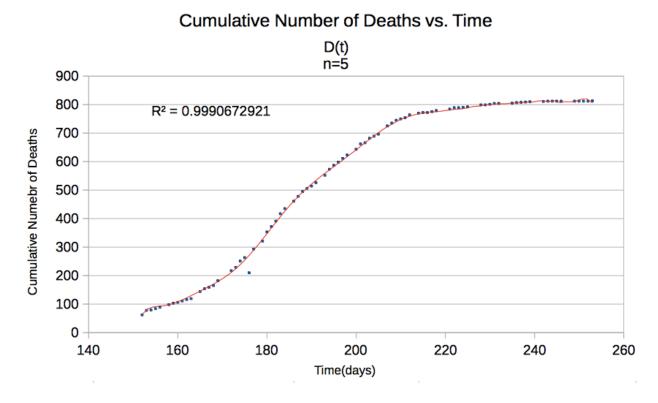
Appendix

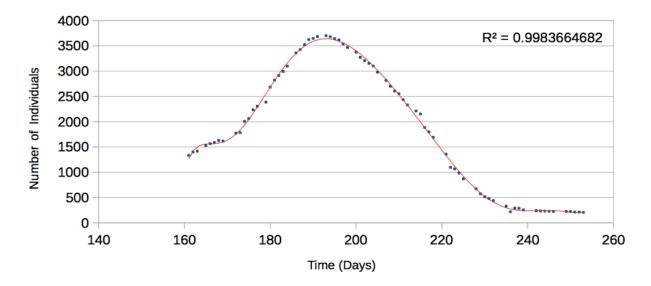

Table of Contents

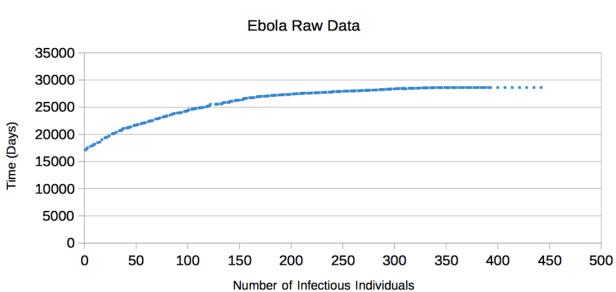
SARS Raw Data: Cumulative Number of Deaths vs. Time (Fig1)	1
SARS Raw Data: Cumulative Number of Recovered Individuals vs. Time (Fig2)	1
SARS Extrapolated Data: Number of Alive & Infected Individuals vs. Time (Fig3)	2
SARS Extrapolated Data: Cumulative Number of Deaths vs. Time Fitted (Fig4)	2
SARS Extrapolated Data: Currently Infectious Individuals vs. Time Fitted (Fig5)	3
EBOLA Raw Data: Cumulative Number of Infectious Individuals vs. Time (Fig6)	3
EBOLA Raw Data: Cumulative Number of Deaths vs. Time (Fig7)	4
EBOLA Raw Data: Cumulative Number of Deaths vs. Time Fitted (Fig7)	4
EBOLA Extrapolated Data: Cumulative Number of Infectious vs. Time Fitted (Fig8)	5
EBOLA Parameter Sets	6
SARS Parameter Sets	7
PHASE II Parameter Sets (Deterministic)	8
DeterministicEPIMOD PHASE I Model	10
DeterministicEPIMOD PHASE II Model	17
StochasticEPIMOD PHASE I Model	21
StochasticEPIMOD PHASE II Model	33
PHASE III Data Table	39
Definitions of Parameters	40
Phase I Target Points	41

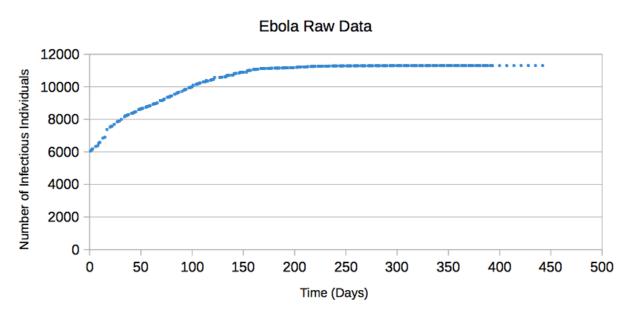


Cumulative Number of Deaths vs. Time SARS Raw Data

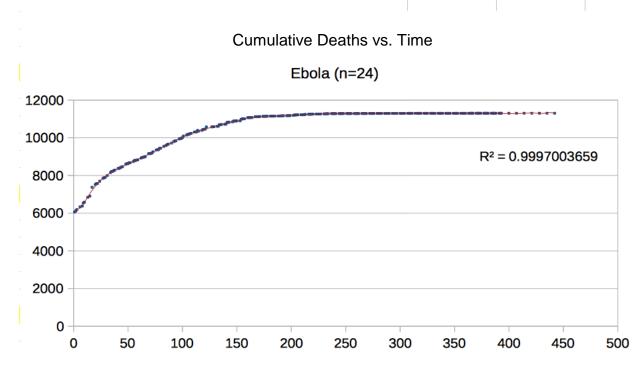

Appendix Fig1


Cumulative Number of Recovered Individuals vs. Time

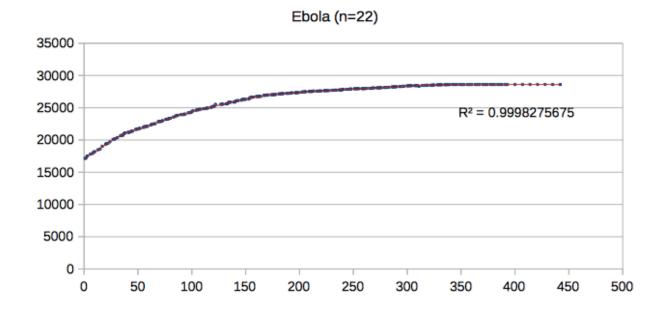

Number of Alive and Infected Individuals vs. Time


Appendix Fig4

Currently Infectious Individuals vs. Time



Number of Infectious Individuals vs. Time


Cumulative Number of Deaths vs. Time

Appendix Fig7

Appendix Fig7

				Ebola Par	ameter Sets				
	Infectivity	Infection Rate	Mobility	Incubation Rate	Mortality	Percentage Immunity	Recovery Rate	Population	ResidualSum
Average	0.99	0.001	0.988710041 7	0.989113625	0.8238342917	0.0010002083	0.0010002083	3470330353.2916 7	0.000287125
Standard Deviation	0	0	0.004447423 9	0.0030006973	0.0039407441	1.02062072615966 E-06	1.02062072615 966E-06	2126288880.6962 5	5.50345741132 434E-06
Maximum Population								6866802093	
Minimum Population								729407782	
	0.99	0.001	0.99	0.99	0.824537	0.001	0.001	2218138142	0.000285
	0.99	0.001	0.99	0.99	0.824537	0.001	0.001	2584033055	0.000285
	0.99	0.001	0.99	0.99	0.824537	0.001	0.001	1901057942	0.000285
	0.99	0.001	0.99	0.99	0.824537	0.001	0.001	3827085168	0.000285
	0.99	0.001	0.99	0.99	0.824537	0.001	0.001	5857301234	0.000285
	0.99	0.001	0.99	0.982891	0.82749	0.001	0.001	6114060146	0.00029
	0.99	0.001	0.99	0.99	0.824537	0.001	0.001	930036007	0.000285
	0.99	0.001	0.99	0.99	0.824537	0.001	0.001	729407782	0.000285
	0.99	0.001	0.99	0.99	0.824537	0.001	0.001	801051285	0.000285
	0.99	0.001	0.99	0.99	0.824537	0.001	0.001	6193655290	0.000285
	0.99	0.001	0.99	0.99	0.824537	0.001	0.001	2750261610	0.000285
	0.99	0.001	0.977391	0.99	0.81404	0.001	0.001	3354761252	0.000299
	0.99	0.001	0.99	0.99	0.824537	0.001	0.001	6205577078	0.000285
CHOSEN	0.99	0.001	0.971673	0.989046	0.809716	0.001005	0.001005	1040879429	0.000307
	0.99	0.001	0.99	0.99	0.824537	0.001	0.001	1737874180	0.000285
	0.99	0.001	0.99	0.97679	0.830056	0.001	0.001	6085799484	0.000295
	0.99	0.001	0.989994	0.99	0.824532	0.001	0.001	6866802093	0.000285
	0.99	0.001	0.99	0.99	0.824537	0.001	0.001	4768289329	0.000285
	0.99	0.001	0.99	0.99	0.824537	0.001	0.001	2566033336	0.000285

0.99	0.001	0.99	0.99	0.824537	0.001	0.001	3319300965	0.000285
0.99	0.001	0.989983	0.99	0.824523	0.001	0.001	1374802524	0.000285
0.99	0.001	0.99	0.99	0.824537	0.001	0.001	1356416950	0.000285
0.99	0.001	0.99	0.99	0.824537	0.001	0.001	6781393146	0.000285
0.99	0.001	0.99	0.99	0.824537	0.001	0.001	3923911052	0.000285

						SARS P	arameter Sets					
	Infectivity	Infection Rate	Mobility	Incubation Period	Incubation Rate	Mortality	Percentage Immunity	Recovery Period	Recovery Rate	Population	Residual Sum	Estimated Basic Reproductio n Number
Standard Deviation	0.32247140 94	0.23450121 31	0.097017 819		0.2934826 039	0.04951005 97	0.06366222 41		0.0496357966	2350778466.1 5791		1.72857633 31
	0.486726	0.253035	0.866356	1.11787924 89	0.894551	0.215118	0.029584	16.0815657012	0.062183	4930935930	0.456655	4.06919897 72
Chosen Parameter set#1	0.851473	0.187879	0.868682	10.0161259 628	0.099839	0.233785	0.024091	5.8622832421	0.170582	1959432004	0.492016	1.10139991 32
	0.644418	0.26588	0.944756	1.48991328 7	0.67118	0.245621	0.02129	7.9605158414	0.12562	114133266	0.370468	2.11654195 19
	0.200633	0.124275	0.796056	1.47475876 63	0.678077	0.249025	0.07947	21.1671570391	0.047243	781370871	0.276411	2.63054844 1
	0.942965	0.970427	0.973074	1.09729133 63	0.911335	0.265489	0.118805	6.096631611	0.164025	4384338355	0.980407	5.91633592 44
	0.08657	0.255206	0.706624	1.01201361 36	0.988129	0.283516	0.021446	20.461195343	0.048873	5630901875	0.317624	5.22181981 87
	0.033523	0.142002	0.853813	1.77943858 71	0.561975	0.322865	0.211555	7.2050781391	0.138791	1453683352	0.739969	1.02313550 59
	0.245728	0.430487	0.826955	1.36814439 94	0.730917	0.325093	0.117911	7.381544662	0.135473	3293913925	0.625295	3.17765901 69
	0.533429	0.364678	0.873111	1.23848058 25	0.807441	0.338197	0.001	8.5397825771	0.117099	1607023420	0.233318	3.11427083 07
	0.533066	0.387292	0.907111	1.58932734 9	0.629197	0.339495	0.148519	15.5265037419	0.064406	5784967215	0.348509	6.01329068 72
Chosen Parameter set#2	0.840515	0.539667	0.801637	13.8900463 928	0.071994	0.347849	0.098526	5.1692943913	0.19345	6631318516	0.819369	2.78969759 63
	0.095789	0.538563	0.62483	1.22433188 21	0.816772	0.349846	0.055587	9.1958250954	0.108745	73865743	0.724964	4.95253115 09

				PHASE II P	ARAMETER SETS					
	Infectivity	Infectious Period	Infection Rate	Mobility	Incubation Period	Incubation Rate	Mortality	Percentage Immunity	Recovery Rate	Percentage Dead
Max	0.375849	1.6784099416	0.99	0.99	38.6085479325	0.375609	0.99	0.01	0.01	0.922588
Min	0.015306	1.0101010101	0.595802	0.99	2.6623430216	0.025901	0.99	0.01	0.01	0.922555
Average	0.1982362286	1.123803493	0.9053117143	0.99	7.7306120843	0.1864900571	0.99	0.01	0.01	0.9225818
Standard Deviation	0.0903404125	0.163870674	0.1104190317	0	7.0662311461	0.0847061018	0	0	0	8.6221329420 5885E-06
	0.260417	1.2797854056	0.781381	0.99	10.059147789	0.099412	0.99	0.01	0.01	0.922573
	0.104144	1.0101010101	0.99	0.99	3.3601360183	0.297607	0.99	0.01	0.01	0.922588
	0.189311	1.1429681741	0.874915	0.99	5.2823132306	0.189311	0.99	0.01	0.01	0.92258
	0.262111	1.1204130291	0.892528	0.99	8.3298625573	0.12005	0.99	0.01	0.01	0.922582
	0.141358	1.0555983659	0.94733	0.99	3.9715162852	0.251793	0.99	0.01	0.01	0.922585
	0.243455	1.3201633834	0.757482	0.99	8.9630632165	0.111569	0.99	0.01	0.01	0.922571
	0.076546	1.0101010101	0.99	0.99	3.0750023831	0.325203	0.99	0.01	0.01	0.922588
	0.28003	1.3154761826	0.760181	0.99	13.23872061	0.075536	0.99	0.01	0.01	0.922571
	0.158479	1.2698122456	0.787518	0.99	4.9362970861	0.202581	0.99	0.01	0.01	0.922573
	0.139883	1.0952806547	0.913008	0.99	4.0586392194	0.246388	0.99	0.01	0.01	0.922583
	0.303098	1.0101010101	0.99	0.99	10.1366419333	0.098652	0.99	0.01	0.01	0.922588
	0.210875	1.0101010101	0.99	0.99	5.2390307793	0.190875	0.99	0.01	0.01	0.922588
	0.358884	1.0185975541	0.981742	0.99	24.2824534991	0.041182	0.99	0.01	0.01	0.922588
	0.199946	1.0101010101	0.99	0.99	4.9553031654	0.201804	0.99	0.01	0.01	0.922588

0.015306	1.6784099416	0.595802	0.99	3.2547951269	0.307239	0.99	0.01	0.01	0.922555
0.197484	1.0425093617	0.959224	0.99	5.0488730915	0.198064	0.99	0.01	0.01	0.922586
0.200874	1.0101010101	0.99	0.99	4.978245069	0.200874	0.99	0.01	0.01	0.922588
0.1805	1.2800475154	0.781221	0.99	5.5774625892	0.179293	0.99	0.01	0.01	0.922573
0.24139	1.0132061287	0.986966	0.99	6.2602119708	0.159739	0.99	0.01	0.01	0.922588
0.183169	1.0124039735	0.987748	0.99	4.5845692568	0.218123	0.99	0.01	0.01	0.922588
0.343787	1.0307875629	0.970132	0.99	18.5325895587	0.053959	0.99	0.01	0.01	0.922587
0.154238	1.2546358796	0.797044	0.99	4.7907175058	0.208737	0.99	0.01	0.01	0.922574
0.091475	1.5073748314	0.663405	0.99	4.0880233181	0.244617	0.99	0.01	0.01	0.922562
0.200875	1.0101010101	0.99	0.99	4.9782202862	0.200875	0.99	0.01	0.01	0.922588
0.32745	1.0101010101	0.99	0.99	13.458769061	0.074301	0.99	0.01	0.01	0.922588
0.375849	1.0101010101	0.99	0.99	38.6085479325	0.025901	0.99	0.01	0.01	0.922588
0.204574	1.0683144349	0.936054	0.99	5.3677153393	0.186299	0.99	0.01	0.01	0.922585
0.211214	1.0777011772	0.927901	0.99	5.6163052574	0.178053	0.99	0.01	0.01	0.922584
0.133185	1.3427378694	0.744747	0.99	4.5602338488	0.219287	0.99	0.01	0.01	0.92257
0.234127	1.0205143801	0.979898	0.99	6.0392308436	0.165584	0.99	0.01	0.01	0.922587
0.306	1.0101010101	0.99	0.99	10.4435370171	0.095753	0.99	0.01	0.01	0.922588
0.041942	1.2324423186	0.811397	0.99	3.0871724896	0.323921	0.99	0.01	0.01	0.922575
0.026141	1.0101010101	0.99	0.99	2.6623430216	0.375609	0.99	0.01	0.01	0.922588
0.181518	1.0322111822	0.968794	0.99	4.6306586649	0.215952	0.99	0.01	0.01	0.922587
0.158633	1.0106195907	0.989492	0.99	4.1150739273	0.243009	0.99	0.01	0.01	0.922588

..... 1 2 DETERMINISTIC EPIDEMIC MODEL PHASE I 3 Uma Wu & LiQing Wang 4 5 ~Ver.7 Updates~ 6 -began implementation of fitting model 7 8 9 **BLOCK DIAGRAM** 10 ######## ############# 11 12 #IMMUNE#<----**#SUSCEPTIBLE#** 13 Λ | -Imn-----|Mob ^RecP 14 Imn| 15 v 16 #INFECTIOUS#<-----IncP----#INCUBATING# 17 18 19 |Mor 20 v 21 ###### 22 #DEAD# 23 ###### 24 25 #####PARAMETERS##### I = Infectivity (percentage of people that move from INCUBATING to INFECTIOUS without IncP 26 27 [OVERRIDE]) InfP = Length of Infectious Period (rate of individuals moving from INFECTIOUS to INCUBATING) 28 Mob = Mobility (rate of individuals moving from SUSCEPTIBLE to INCUBATING) 29 IncP = Length of Incubation Period (rate of individuals moving from INCUBATING to 30 31 INFECTIOUS) Mor = Morbidity (percentage of infectious individuals that move from INFECTIOUS to DEAD) 32 Imn = Immunity (percentage of recovered individuals that move from INFECTIOUS to IMMUNE) 33 RecP = Length of Recovery Period (rate of individuals moving from INFECTIOUS and 34 **INCUBATING to SUSCEPTIBLE**) 35 36 37 #Note: Incubating refers to both the disease being dormant and the disease displaying 38 nonconsequential symptoms. Pop = Population (Total number of people in each compartment. Remains constant throughout 39 40 simulation) 41 #####INITIAL VALUES##### 42 43 Pop = Population

44 T = Time of Simulation in Days

```
IMMUNE = Pop*PImmune
45
     SUSCEPTIBLE = Pop - Pop*PImmune
46
47
     INCUBATING = 1
     INFECTIOUS = 0
48
     DEAD = 0
49
50
51
     #####DIFFERENTIAL EQUATIONS FROM BLOCK#####
52
     IMMUNE = IMMUNE + INFECTIOUS*Imn + INCUBATING*Imn
53
     SUSCEPTIBLE
                    =
                        SUSCEPTIBLE
                                       +
                                            INFECTIOUS*RecP
                                                                    INCUBATING*RecP
                                                               +
     SUSCEPTIBLE*(INCUBATING/Population)Mob
54
     INCUBATING = INCUBATING + SUSCEPTIBLE*Mob + INFECTIOUS*InfP - INCUBATING*Imn -
55
     INCUBATING*I - INCUBATING*IncP - INCUBATING*RecP
56
57
     INFECTIOUS = INFECTIOUS + INCUBATING*I + INCUBATING*IncP - INFECTIOUS*Imn -
58
     INFECTIOUS*InfP - INFECTIOUS*Mor
     DEAD = DEAD + INFECTIOUS*Mor
59
60
     .....
61
62
     import numpy as np
63
     import random
64
     from scipy.optimize import minimize
65
     import matplotlib.pyplot as plt
66
67
     68
69
     SusFit = False
70
     IncFit = False
     InfFit = False
71
     ImmFit = False
72
73
     DeaFit = False
74
75
     if SusFit:
76
         SUSCEPTIBLEquery = []
         with open("SUSCEPTIBLEfit.csv", "r") as SUSCEPTIBLEfit:
77
              for line in SUSCEPTIBLEfit:
78
79
                  SUSCEPTIBLEquery.append(tuple([int(x) for x in line[:-1].split(",")]))
         preset = SUSCEPTIBLEquery
80
         status = "SusFit"
81
82
     if IncFit:
83
         INCUBATINGquery = []
84
         with open("INCUBATINGfit.csv", "r") as INCUBATINGfit:
85
              for line in INCUBATINGfit:
86
87
                  INCUBATINGquery.append(tuple([int(x) for x in line[:-1].split(",")]))
```

88 preset = INCUBATINGquery

```
status = "IncFit"
 89
 90
       if InfFit:
 91
 92
            INFECTIOUSquery = []
            with open("INFECTIOUSfit.csv", "r") as INFECTIOUSfit:
 93
 94
                 for line in INFECTIOUSfit:
 95
                      INFECTIOUSquery.append(tuple([int(x) for x in line[:-1].split(",")]))
 96
            preset = INFECTIOUSquery
            status = "InfFit"
 97
 98
       if ImmFit:
 99
            IMMUNEquery = []
100
            with open("IMMUNEfit.csv", "r") as IMMUNEfit:
101
                 for line in IMMUNEfit:
102
                      IMMUNEquery.append(tuple([int(x) for x in line[:-1].split(",")]))
103
            preset = IMMUNEquery
104
            status = "ImmFit"
105
106
107
       if DeaFit:
108
            DEADquery = []
            with open("DEADfit.csv", "r") as DEADfit:
109
                 for line in DEADfit:
110
                      DEADquery.append(tuple([int(x) for x in line[:-1].split(",")]))
111
112
            preset = DEADquery
            status = "DeaFit"
113
114
       .....
115
       INPUTS:
116
            time: the current time value
117
            y: the current value of the function
118
            query: the list of points (t, value) to fit against
119
120
       OUTPUTS:
            dy: the deviation from the query
121
       .....
122
       fit = False
123
       if fit:
124
            def Fit(time, y, query = preset):
125
                 for i in query:
126
                      if time == i[0]:
127
                           dy = y - i[1] #Calculates the residuals
128
                           return dy
129
130
                      else:
                           return "NONE"
131
132
       else:
```

```
status = "SusFit"
133
134
      135
136
      def DeterministicEPIMOD1(Parameters, T = 365, Plot = True, Print = True, fit = fit, status = status,
137
138
      dt = 0.1):
           IMMUNE = np.zeros(int((T+1)/dt))
139
           SUSCEPTIBLE = np.zeros(int((T+1)/dt))
140
           INCUBATING = np.zeros(int((T+1)/dt))
141
           INFECTIOUS = np.zeros(int((T+1)/dt))
142
           DEAD = np.zeros(int((T+1)/dt))
143
144
           #PARAMETER VALUES (INITIAL VALUES)
145
           I = Parameters[0]
146
           InfP = Parameters[1]
147
           Mob = Parameters[2]
148
           IncP = Parameters[3]
149
150
           Mor = Parameters[4]
151
           Imn = Parameters[5]
152
           RecP = Parameters[6]
153
154
           Pop = Parameters[7]
155
           #INITIAL VALUES
156
           IMMUNE[0] = 0 #1213 #Pop*PImmune
157
           INCUBATING[0] = 1 #1516
158
           INFECTIOUS[0] = 0 #286
159
           DEAD[0] = 0
160
           SUSCEPTIBLE[0] = Pop - IMMUNE[0] - INCUBATING[0] - INFECTIOUS[0] - DEAD[0]
161
162
163
           #FITTING
           residuals = []
164
           n = 0
165
166
           for t in range(1, int(float(T)/dt+1)):
167
               SUSCEPTIBLEin = INFECTIOUS[t-1]*RecP*dt + INCUBATING[t-1]*RecP*dt
168
               SUSCEPTIBLEout = SUSCEPTIBLE[t-1]*(INCUBATING[t-1]/float(Pop))*Mob*dt
169
               SUSCEPTIBLE[t] = SUSCEPTIBLE[t-1] + SUSCEPTIBLEin - SUSCEPTIBLEout
170
171
                                   SUSCEPTIBLE[t-1]*(INCUBATING[t-1]/float(Pop))*Mob*dt
172
               INCUBATINGin
                               =
                                                                                          +
      INFECTIOUS[t-1]*InfP*dt
173
               INCUBATINGout = INCUBATING[t-1]*Imn*dt + INCUBATING[t-1]*I*dt
174
                                                                                          +
      INCUBATING[t-1]*IncP*dt + INCUBATING[t-1]*RecP*dt
175
176
               INCUBATING[t] = INCUBATING[t-1] + INCUBATINGin - INCUBATINGout
```

177	
178	INFECTIOUSin = INCUBATING[t-1]*I*dt + INCUBATING[t-1]*IncP*dt
179	INFECTIOUSout = INFECTIOUS[t-1]*Imn*dt + INFECTIOUS[t-1]*InfP*dt +
180	INFECTIOUS[t-1]*Mor*dt + INFECTIOUS[t-1]*RecP*dt
181	INFECTIOUS[t] = INFECTIOUS[t-1] + INFECTIOUSin - INFECTIOUSout
182	
183	DEADin = INFECTIOUS[t-1]*Mor*dt
184	DEADout = 0
185	DEAD[t] = DEAD[t-1] + DEADin - DEADout
186	
187	IMMUNEin = INFECTIOUS[t-1]*Imn*dt + INCUBATING[t-1]*Imn*dt
188	IMMUNEout = 0
189	IMMUNE[t] = IMMUNE[t-1] + IMMUNEin - IMMUNEout
190	
191	if fit == True:
192	if status == "SusFit":
193	y = SUSCEPTIBLE[t]
194	elif status == "IncFit":
195	y = INCUBATING[t]
196	elif status == "InfFit":
197	y = sum(INFECTIOUS)
198	elif status == "ImmFit":
199	y = IMMUNE[t]
200	elif status == "DeaFit":
201	y = DEAD[t]
202	else:
203	print "ERROR: I DON'T KNOW WHAT IT IS BUT SOMETHING IS NOT RIGHT."
204	
205	diffs = Fit(int(t*dt), y)
206	if diffs != "NONE":
207	
208	residuals.append(diffs**2) # plt.plot(t, preset[n][1], "*r")
209 210	# plt.plot(t, y, ".b")
210	# print preset[n][1]
211	# print preset(n)[1] $# n += 1$
212	$\pi \Pi = \mathbf{I}$
213	if Print == True:
214	Survivors = IMMUNE[t] + SUSCEPTIBLE[t] + INCUBATING[t] + INFECTIOUS[t]
215	print "TOTAL POPULATION = %i" %Pop
210	print "REMAINING POPULATION = %f" %Survivors
218	print "IMMUNE = %.0f" %round(IMMUNE[t])
210	print "SUSCEPTIBLE = %.0f" %round(SUSCEPTIBLE[t])
220	print "INCUBATING = %.0f" %round(INCUBATING[t])
_2	······································

221	print "INFECTIOUS = %.0f" %round(INFECTIOUS[t])
222	print "DEAD = %.0f" %round(DEAD[t])
223	
224	if Plot == True:
225	plt.plot(IMMUNE, label="IMMUNE")
226	plt.plot(SUSCEPTIBLE, label="SUSCEPTIBLE")
227	plt.plot(INCUBATING, label="INCUBATING")
228	plt.plot(INFECTIOUS, label="INFECTIOUS")
229	plt.plot(DEAD, label="DEAD")
230	
231	plt.legend(loc="best")
232	plt.title("PHASEIIpandemic")
233	plt.ylabel("Number of Individuals")
234	plt.xlabel("Time/%f (in days)" %dt)
235	
236	#plt.show()
237	plt.savefig("PHASEIIpandemicDET.pdf")
238	
239	if fit == True:
240	return abs(sum(residuals))
241	else:
242	return -np.log(DEAD[t])
243	#return abs(7452-(IMMUNE[-1])) + abs(831 - DEAD[-1])
244	
245	###############EXECUTING SIMULATION####################################
246	
247	#Parameters = [0.8515,0.1879,0.8687,0.09984,0.2338,0.02409,0.1706,1959432004]
248	Parameters = [0.1982, 0.9053, 0.99, 0.1865, 0.99, 0.01, 0.01, 7000000000]
249	print np.exp(-DeterministicEPIMOD1(Parameters))
250	
251	# print minimize(DeterministicEPIMOD1, [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 5000], method = 'L-
252	BFGS-B', bounds = $((0.01, 1), (0.01, 1), (0.01, 1), (0.01, 1), (0.01, 1), (0.01, 1), (100, 1), (0.01, 1), (0$
253	700000001)))
254	
255	# if status == "SusFit":
256	<pre># data = open('DeterministicPHASEI_EBOLAsus.csv', 'w')</pre>
257	# elif status == "IncFit":
258	<pre># data = open('DeterministicPHASEI_EBOLAinc.csv', 'w')</pre>
259	# elif status == "InfFit":
260	<pre># data = open('DeterministicPHASEI_EBOLAinf.csv', 'w')</pre>
261	# elif status == "ImmFit":
262	<pre># data = open('DeterministicPHASEI_EBOLAimm.csv', 'w')</pre>
263	# elif status == "DeaFit":
264	<pre># data = open('DeterministicPHASEI_EBOLAdea.csv', 'w')</pre>

```
# else:
265
                                      print "ERROR: I DON'T KNOW WHAT IT IS BUT SOMETHING IS NOT RIGHT."
                  #
266
267
                                 data.write("Infectivity,
                                                                                                      InfectionRate,
                                                                                                                                                      Mobility,
                                                                                                                                                                                        IncubationRate,
268
                  #
                                                                                                                                                                                                                                             Mortality,
                  PercentageImmunity, RecoveryRate, Population, ResidualSum")
269
270
271
                  # i = 0
                  # trials = 10000
272
                  # for n in range(trials):
273
                                     print "\n"
274
                  #
                  #
                                     print n
275
                                     guess = np.random.rand(8)
276
                  #
                                     guess[7] = random.randint(100, 700000001)
277
                  #
278
                  #
                                      Combination = minimize(DeterministicEPIMOD1, guess, method = 'L-BFGS-B', bounds
                  = ((0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (0.001, 0.99), (
279
                  0.99), (100, 700000001)))
280
                                     if Combination.fun <= 1:
                  #
281
                  #
                                                  i += 1
282
283
                  #
                                                   print "%i candidates found!" %i
                                                  I = Combination.x[0]
284
                  #
                                                  InfP = Combination.x[1]
                  #
285
                                                   Mob = Combination.x[2]
286
                  #
                                                  IncP = Combination.x[3]
287
                  #
                                                   Mor = Combination.x[4]
288
                  #
                                                   Imn = Combination.x[5]
289
                  #
                  #
                                                   RecP = Combination.x[6]
290
                                                   Population = Combination.x[7]
291
                  #
                                                   Residual = Combination.fun
292
                  #
                                                   293
                  #
                  RecP, Population, Residual**2))
294
```

295

DETERMINISTIC EPIDEMIC MODEL
Uma Wu & LiQing Wang
Discussed With: Michael Gelbart
~Ver.8 Updates~
-Began implementation of Spearmint
-Removed normalization
BLOCK DIAGRAM
#IMMUNE#< #SUSCEPTIBLE#
######### RecP>################################
^ -Imn Mob ^RecP
Imn v
#############<<
#INFECTIOUS# <incp#incubating#< td=""></incp#incubating#<>
#############InfP> ################################
Mor
V
#####
#DEAD#
######
#####PARAMETERS#####
PImmune = Pre-Immunity (percentage of population immune to disease at initial time)
I = Infectivity (percentage of people that move from INCUBATING to INFECTIOUS without IncP
InfP = Length of Infectious Period (rate of individuals moving from INFECTIOUS to INCUBATING)
Mob = Mobility (rate of individuals moving from SUSCEPTIBLE to INCUBATING)
IncP = Length of Incubation Period (rate of individuals moving from INCUBATING to
INFECTIOUS)
Mor = Morbidity (percentage of infectious individuals that move from INFECTIOUS to DEAD)
Imn = Immunity (percentage of recovered individuals that move from INFECTIOUS to IMMUNE)
RecP = Length of Recovery Period (rate of individuals moving from INFECTIOUS and
INCUBATING to SUSCEPTIBLE)
#Note: Incubating refers to both the disease being dormant and the disease displaying
nonconsequential symptoms.
#####INITIAL VALUES#####

44 Pop = Population

```
T = Time of Simulation in Days
45
     IMMUNE = Pop*PImmune
46
     SUSCEPTIBLE = Pop - Pop*PImmune
47
     INCUBATING = 0
48
49
     INFECTIOUS = 1
50
     DEAD = 0
51
     #####DIFFERENTIAL EQUATIONS FROM BLOCK#####
52
     IMMUNE = IMMUNE + INFECTIOUS*Imn + INCUBATING*Imn
53
     SUSCEPTIBLE = SUSCEPTIBLE + INFECTIOUS*RecP - SUSCEPTIBLE*Mob
54
     INCUBATING = INCUBATING + SUSCEPTIBLE*Mob + INFECTIOUS*InfP - INCUBATING*Imn -
55
     INCUBATING*I - INCUBATING*IncP
56
57
     INFECTIOUS = INFECTIOUS + INCUBATING*I + INCUBATING*IncP - INFECTIOUS*Imn -
     INFECTIOUS*InfP - INFECTIOUS*Mor
58
     DEAD = DEAD + INFECTIOUS*Mor
59
60
     .....
61
62
63
     import numpy as np
64
     from scipy.optimize import minimize
65
     import scipy.optimize
66
67
     def main(job id, params):
                                         params["InfP"],
          Parameters = [params["I"],
                                                          params["Mob"],
68
                                                                            params["IncP"],
     params["Mor"], params["Imn"], params["RecP"]]
69
70
          return -StochasticEPIMOD(Parameters)
71
     def DeterministicEPIMOD(Parameters, T = 365, Pop = 700000000):
72
73
          dt = 0.1
74
          IMMUNE = np.zeros(int((T+1)/dt))
75
         SUSCEPTIBLE = np.zeros(int((T+1)/dt))
76
          INCUBATING = np.zeros(int((T+1)/dt))
77
          INFECTIOUS = np.zeros(int((T+1)/dt))
          DEAD = np.zeros(int((T+1)/dt))
78
79
          #PARAMETER VALUES (INITIAL VALUES)
80
         I = Parameters[0] #0.1 #0.011 is the rate of infection from data
81
          InfP = Parameters[1] #0.12 #max 0.12
82
          Mob = Parameters[2] #11.0/30.0 #THIS SHOULD DEPEND ON THE NUMBER OF INFECTED
83
     INDIVIDUALS SOMEHOW AHHH
84
         IncP = Parameters[3] #7.0/15.0
85
          Mor = Parameters[4] #0.07
                                     #0.096 is the death rate from data
86
87
          Imn = Parameters[5] #0.397 #1.0 - Mor
88
          RecP = Parameters[6] #0.468 is the recovery rate from data
```

89	
90	#INITIAL VALUES
91	IMMUNE[0] = 0 #1213 #Pop*PImmune
92	INCUBATING[0] = 1 #1516
93	INFECTIOUS[0] = 0 #286
94	DEAD[0] = 0
95	SUSCEPTIBLE[0] = Pop - IMMUNE[0] - INCUBATING[0] - INFECTIOUS[0] - DEAD[0]
96	
97	
98	for t in range(1, int(float(T)/dt+1)):
99	SUSCEPTIBLEin = INFECTIOUS[t-1]*RecP*dt + INCUBATING[t-1]*RecP*dt
100	SUSCEPTIBLEout = SUSCEPTIBLE[t-1]*(INCUBATING[t-1]/float(Pop))*Mob*dt
101	SUSCEPTIBLE[t] = SUSCEPTIBLE[t-1] + SUSCEPTIBLEin - SUSCEPTIBLEout
102	
102	INCUBATINGin = SUSCEPTIBLE[t-1]*(INCUBATING[t-1]/float(Pop))*Mob*dt +
105	INFECTIOUS[t-1]*InfP*dt
104	INCUBATINGout = INCUBATING[t-1]*Imn*dt + INCUBATING[t-1]*I*dt +
105	INCUBATING[t-1]*IncP*dt + INCUBATING[t-1]*RecP*dt
100	INCUBATING[t] = INCUBATING[t-1] + INCUBATINGin - INCUBATINGout
107	
108	INFECTIOUSin = INCUBATING[t-1]*I*dt + INCUBATING[t-1]*IncP*dt
105	INFECTIOUSout = INFECTIOUS[t-1]*Imn*dt + INFECTIOUS[t-1]*InfP*dt +
110	INFECTIOUS[t-1]*Mor*dt + INFECTIOUS[t-1]*RecP*dt
111	INFECTIOUS[t] = INFECTIOUS[t-1] + INFECTIOUSin - INFECTIOUSout
112	
115	DEADin = INFECTIOUS[t-1]*Mor*dt
114 115	DEADout = 0
115	DEAD(t) = DEAD(t-1) + DEAD(t) - DEAD(t)
	DEAD[i] = DEAD[i-1] + DEADin - DEADout
117	IMMUNEin = INFECTIOUS[t-1]*Imn*dt + INCUBATING[t-1]*Imn*dt
118 119	IMMUNEout = 0
119	IMMUNE[t] = IMMUNE[t-1] + IMMUNEin - IMMUNEout
121	return -np.log(DEAD[t])
122	Tetum -np.log(DEAD[t])
123	def Normalize (Deremeters)
124	def Normalize(Parameters):
125	return np.sum(Parameters) - 1
126	
127	###############EXECUTING SIMULATION####################################
128	
129	#print minimize(DeterministicEPIMOD, [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], method = 'L-BFGS-B',
130	bounds = $((0.01, 1),)*7$
131	#print scipy.optimize.fmin_slsqp(DeterministicEPIMOD, [0.3, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1],
132	bounds = ((0.01, 1),)*7, f_eqcons = Normalize)

- #returns the seven best parameters if not printed 133 134 data = open('DeterministicPHASEII2.csv', 'w') 135 data.write("Infectivity, InfectionRate, Mortality, 136 Mobility, IncubationRate, PercentageImmunity, RecoveryRate, PercentageDead") 137 138 139 trials = 50000 140 for n in range(trials): 141 print n guess = np.random.rand(7) 142 Combination = minimize(DeterministicEPIMOD, guess, method = 'L-BFGS-B', bounds = 143 ((0.01, 0.99),)*7)144 I = Combination.x[0] 145 InfP = Combination.x[1] 146 Mob = Combination.x[2] 147 IncP = Combination.x[3] 148 Mor = Combination.x[4] 149 Imn = Combination.x[5] 150 151 RecP = Combination.x[6] Dead = np.exp(-DeterministicEPIMOD(Combination.x))/7000000000.0 152 data.write("\n" + "%f, %f, %f, %f, %f, %f, %f, %f, %f" %(I, InfP, Mob, IncP, Mor, Imn, RecP, Dead)) 153 154 **# TESTING PURPOSES ONLY** 155 # guess = np.random.rand(7) 156
- 157 # print scipy.optimize.fmin_slsqp(DeterministicEPIMOD, guess, bounds = ((0.01, 1),)*7,
- 158 f_eqcons = Normalize)

1		
2	STOCHASTIC EPIDEMIC MODEL	
3	Uma Wu & LiQing Wang	
4		
5	Discussed With: Noah Bayless, Michael Gelbart	
6		
7	#####PATIENT INFORMATION#####	
8	xLoc = range(0, x_Dim)	
9	yLoc = range(0, y_Dim)	
10	Status = IMMUNE, SUSCEPTIBLE, INFECTIOUS, INCUBATING, or DEAD	
11	tExist = time elapsed since start of simulation	
12	tInc = time incubating	
13	tInf = time infectious	
14	tRec = time recovering	
15		
16	####PARAMETERS#####	
17	PImmune = Pre-Immunity (Probable Percentage of Population that is Pre-Immune to Disease,	
18	float)	
19	I = Infectivity (Percentage Probability of Displaying Symptoms When Infected, float)	
20	InfP = Length of Infectious Period (Time Range in which the Disease is Infectious, array)	
21	Mob = Mobility (Percentage Probability of Contracting the Disease from an Adjacent Diseased	
22	Individual, float)	
23	IncP = Length of Incubation Period (Time Range in which the Disease does not produce	
24	Symptoms (In an Infective Individual), array)	
25	Mor = Morbidity (Percentage Probability of Infective Individuals Dying from the Disease, float)	
26	Imn = Immunity (Percentage Probability of Individuals of Gaining Immunity After Recovery,	
27	float)	
28	RecP = Length of Recovery Period (Time Range in which the Disease is Present in an Individual,	
29	array)	
30		
31		
32	#################################DEFINING PATIENT	
33	CLASS###################################	
34		
35	import random	
36	import matplotlib.pyplot as plt	
37	import numpy as np	
38		
39	class Dossier(): #Creates an object (like list or array) that has its own modules	
40	definit(self, x, y, PImmune, IncP, InfP, RecP): #Automatically run as soon as object is	
41	created	
42	#x and y - int	
43	#PImmune - float	
44	#IncP, InfP and RecP - lists	

45	self.xLoc = x #Stores the inputted x location in the object
46	self.yLoc = y #Same as above
47	
48	vaccination = random.random()
49	if vaccination <= PImmune: #If the "roll" is below the PImmune probability
50	self.Status = "IMMUNE" #The Individual becomes immune
51	else: self.Status = "SUSCEPTIBLE" #If not, the individual becomes susceptible
52	
53	self.IncLen = random.choice(IncP) #Picks a incubation rate out of the IncP list
54	self.InfLen = random.choice(InfP) #Same as above for infectious rate
55	self.RecLen = random.choice(RecP) #Same as above for recovery rate
56	self.IncState = False #Sets incubation state as false
57	self.InfState = False #Same as above for infectious rate
58	self.RecState = False #Same as above for recovery rate
59	
60	
61	def Incubation(self, I, Imn):
62	self.IncLen -= 1 #When the function is called, it first decreases the incubation period
63	by 1
64	if self.IncLen >= 0: #While the incubation period is more than 0, the IncState is set to
65	True
66	self.IncState = True
67	else: self.IncState = False #Otherwise, the IncState is False. In other words, the
68	patient stops incubating.
69	
70	if self.IncState == False: #Once the patient finishes incubating
71	luck = random.random()
72	if luck <= I: #If their "roll" is less than Infectivity
73	self.Status = "INFECTIOUS" #They become Infectious
74	else:
75	antibody = random.random() #If their "roll" is more than Infectivity
76	if antibody <= Imn: #If their "roll" is smaller than the Immunity
77	self.Status = "IMMUNE" #They become Immune.
78	else: self.Status = "SUSCEPTIBLE" #Otherwise, they become susceptible.
79	
80	
81	def Infection(self, Mor): #Same concepts as incubation.
82	self.InfLen -= 1
83	if self.InfLen >= 0:
84	self.InfState = True
85	else: self.InfState = False
86	
87	if self.InfState == False:
88	hopesndreams = random.random()

89	if hopesndreams <= Mor:
90	self.Status = "DEAD"
91	else: self.Status = "INCUBATING"
92	
93	
94	def Recovery(self, Imn): #Activated when patient goes into incubation or infection
95	self.RecLen -= 1
96	if self.RecLen >= 0:
97	self.RecState = True
98	else: self.RecState = False
99	
100	if self.RecState == False:
101	antibody = random.random()
102	if antibody <= Imn:
103	self.Status = "IMMUNE"
104	else: self.Status = "SUSCEPTIBLE"
105	
106	def Copy(self):
107	new_pat = Dossier(self.xLoc, self.yLoc, 0, range(2,7), range(2,7), range(2,7))
108	<pre>#^These input values doesn't matter cuz we're gonna update it anyway</pre>
109	new_pat.Status = self.Status
110	new_pat.IncLen = self.IncLen
111	new_pat.InfLen = self.InfLen
112	new_pat.RecLen = self.RecLen
113	new_pat.IncState = self.IncState
114	new_pat.InfState = self.InfState
115	new_pat.RecState = self.RecState
116	return new_pat
117	
118	###############################DEFINING
119	FUNCTIONS####################################
120	
121	def Spread(Mob, NBR):
122	if NBR.Status == "INFECTIOUS":
123	contagion = random.random()
124	if contagion <= Mob: #If the "roll" is lower than mobility, then the patient is infected
125	by the virus
126	return True
127	else:
128	return False
129	return False
130	
131	def Plot(Patient, Population):
132	for P in range(1, Population+1):

```
x = Patient[P].xLoc
133
                y = Patient[P].yLoc
134
135
                if Patient[P].Status == 'SUSCEPTIBLE':
136
                     colour = "white"
137
138
                elif Patient[P].Status == 'IMMUNE':
                     colour = "blue"
139
                elif Patient[P].Status == 'INFECTIOUS':
140
                     colour = "red"
141
                elif Patient[P].Status == 'INCUBATING':
142
                     colour = "yellow"
143
                elif Patient[P].Status == 'DEAD':
144
                     colour = "black"
145
146
                if colour == "white":
147
                     plt.plot(x, y, "wo")
148
                elif colour == "blue":
149
                     plt.plot(x, y, "bo")
150
                elif colour == "red":
151
                     plt.plot(x, y, "ro")
152
                elif colour == "yellow":
153
                     plt.plot(x, y, "yo")
154
                elif colour == "black":
155
                     plt.plot(x, y, "ko")
156
157
           plt.show()
158
      def DeepCopy(Old): #Takes in dict, returns deep copy
159
           New = dict()
160
           for i in range(1, len(Old)+1):
161
                New[i] = Old[i].Copy()
162
163
           return New
164
      ###########################FITTING
165
      166
      if name == " main ":
167
           SusFit = False
168
           IncFit = False
169
           InfFit = False
170
           ImmFit = False
171
           DeaFit = False
172
173
174
           if SusFit:
175
                SUSCEPTIBLEquery = []
                with open("SUSCEPTIBLEfit.csv", "r") as SUSCEPTIBLEfit:
176
```

177	for line in SUSCEPTIBLEfit:
178	SUSCEPTIBLEquery.append(tuple([int(x) for x in line[:-1].split(",")]))
179	preset = SUSCEPTIBLEquery
180	status = "SusFit"
181	
182	if IncFit:
183	INCUBATINGquery = []
184	with open("INCUBATINGfit.csv", "r") as INCUBATINGfit:
185	for line in INCUBATINGfit:
186	INCUBATINGquery.append(tuple([int(x) for x in line[:-1].split(",")]))
187	preset = INCUBATINGquery
188	status = "IncFit"
189	
190	if InfFit:
191	INFECTIOUSquery = []
192	with open("INFECTIOUSfit.csv", "r") as INFECTIOUSfit:
193	for line in INFECTIOUSfit:
194	INFECTIOUSquery.append(tuple([int(x) for x in line[:-1].split(",")]))
195	preset = INFECTIOUSquery
196	status = "InfFit"
197	
198	if ImmFit:
199	IMMUNEquery = []
200	with open("IMMUNEfit.csv", "r") as IMMUNEfit:
201	for line in IMMUNEfit:
202	IMMUNEquery.append(tuple([int(x) for x in line[:-1].split(",")]))
203	preset = IMMUNEquery
204	status = "ImmFit"
205	
206	if DeaFit:
207	DEADquery = []
208	with open("DEADfit.csv", "r") as DEADfit:
209	for line in DEADfit:
210	DEADquery.append(tuple([int(x) for x in line[:-1].split(",")]))
211	preset = DEADquery
212	status = "DeaFit"
213	
214	
215	INPUTS:
216	time: the current time value
217	y: the current value of the function
218	query: the list of points (t, value) to fit against
219	OUTPUTS:
220	dy: the deviation from the query

```
.....
221
222
          fit = False
223
          if fit == True:
224
               def Fit(time, y, query = preset):
225
226
                    for i in query:
227
                        if time == i[0]:
                            dy = y - i[1]
228
229
                        else:
                            dy = "NONE"
230
                    return dy
231
232
      else:
          fit = False
233
234
235
      236
237
      def main(job id, params):
238
239
           Parameters =
                           [params["I"],
                                          params["InfP"],
                                                          params["Mob"],
                                                                            params["IncP"],
      params["Mor"], params["Imn"], params["RecP"]]
240
           return StochasticEPIMOD(Parameters)
241
242
243
      def StochasticEPIMOD(Parameters, xDimension = 20, yDimension = 20, tElapsed = 365, flux =
244
      True, move range = 0.5, Plot = True, Print = True, fit = fit):
245
          #INITIAL VALUES
246
           Population = xDimension*yDimension
247
248
          #PARAMETERS
249
           PImmune = 0.0
250
251
          I = Parameters[0] #Percentage
252
          InfP = range(int(Parameters[1])-3, int(Parameters[1])+4)
           Mob = Parameters[2] #Percentage
253
           IncP = range(int(Parameters[3])-3, int(Parameters[3])+4)
254
           Mor = Parameters[4] #Percentage
255
           Imn = Parameters[5] #Percentage
256
           RecP = range(int(Parameters[6])-3, int(Parameters[6])+4)
257
258
           #PATIENTS
259
           Patient = dict()
260
          ID = 0
261
           Pos2Pat = np.zeros((yDimension, xDimension))
262
263
           for x in range(xDimension):
264
               for y in range(yDimension):
```

```
ID += 1
265
                    Patient[ID] = Dossier(x, y, PImmune, IncP, InfP, RecP)
266
                    Pos2Pat[y,x] = ID
267
268
           #GENERATING PATIENT ZERO
269
270
           x = xDimension/2
           y = yDimension/2
271
           for P in range(1, ID+1):
272
               if Patient[P].xLoc == x and Patient[P].yLoc == y:
273
                    Patient[P].Status = "INFECTIOUS"
274
275
276
           Record = DeepCopy(Patient)
277
           SUSCEPTIBLEtrend = []
278
           INCUBATINGtrend = []
279
           INFECTIOUStrend = []
280
           IMMUNEtrend = []
281
           DEADtrend = []
282
283
284
           residuals = []
285
           ##################################SIMULATION
286
      287
           for t in range(tElapsed):
288
289
               # Plot(Patient, Population)
               for P in range(1,ID+1):
290
                    #STATUS PRIORITY: DEAD = IMMUNE > INFECTIOUS = INCUBATING >
291
      SUSCEPTIBLE
292
                    if Record[P].Status == "SUSCEPTIBLE":
293
                         n = 8
294
295
                         x = Patient[P].xLoc
296
                         y = Patient[P].yLoc
                         while Patient[P].Status != "INFECTIOUS" and Patient[P].Status !=
297
      "INCUBATING" and n > 0:
298
                             if n == 8:
299
                                  infection = Spread(Mob, Record[Pos2Pat[y,(x+1)%xDimension]])
300
      #Right
301
                                  if infection == True:
302
                                      infection = random.random()
303
                                      if infection <= I:
304
                                           Patient[P].Status = "INFECTIOUS"
305
                                      else: Patient[P].Status = "INCUBATING"
306
307
                             elif n == 7:
308
                                  infection = Spread(Mob, Record[Pos2Pat[y,(x-1)%xDimension]])
```

309	#Left
310	if infection == True:
311	infection = random.random()
312	if infection <= I:
313	Patient[P].Status = "INFECTIOUS"
314	else: Patient[P].Status = "INCUBATING"
315	elif n == 6:
316	infection = Spread(Mob, Record[Pos2Pat[(y+1)%yDimension,x]])
317	#Above
318	if infection == True:
319	infection = random.random()
320	if infection <= I:
321	Patient[P].Status = "INFECTIOUS"
322	else: Patient[P].Status = "INCUBATING"
323	elif n == 5:
324	infection = Spread(Mob, Record[Pos2Pat[(y-1)%yDimension,x]])
325	#Below
326	if infection == True:
327	infection = random.random()
328	if infection <= I:
329	Patient[P].Status = "INFECTIOUS"
330	else: Patient[P].Status = "INCUBATING"
331	elif n == 4:
332	infection = Spread(Mob,
333	Record[Pos2Pat[(y+1)%yDimension,(x+1)%xDimension]]) #Upper Right
334	if infection == True:
335	infection = random.random()
336	if infection <= I:
337	Patient[P].Status = "INFECTIOUS"
338	else: Patient[P].Status = "INCUBATING"
339	elif n == 3:
340	infection = Spread(Mob, Record[Pos2Pat[(y-1)%yDimension,(x-
341	1)%xDimension]]) #Lower Left
342	if infection == True:
343	infection = random.random()
344	if infection <= I:
345	Patient[P].Status = "INFECTIOUS"
346	else: Patient[P].Status = "INCUBATING"
347	elif n == 2:
348	infection = Spread(Mob, Record[Pos2Pat[(y+1)%yDimension,(x-
349	1)%xDimension]]) #Upper Left
350	if infection == True:
351	infection = random.random()
352	if infection <= I:

353	Patient[P].Status = "INFECTIOUS"
354	else: Patient[P].Status = "INCUBATING"
355	elif n == 1:
356	infection = Spread(Mob, Record[Pos2Pat[(y-
357	1)%yDimension,(x+1)%xDimension]]) #Lower Right
358	if infection == True:
359	infection = random.random()
360	if infection <= I:
361	Patient[P].Status = "INFECTIOUS"
362	else: Patient[P].Status = "INCUBATING"
363	n -= 1
364	
365	elif Record[P].Status == "INFECTIOUS":
366	Patient[P].Recovery(Imn)
367	if Patient[P].RecState == True: #If the patient is still infectious
368	Patient[P].Infection(Mor)
369	
370	elif Record[P].Status == "INCUBATING":
371	Patient[P].Recovery(Imn)
372	if Patient[P].RecState == True: #If the patient is still incubating
373	Patient[P].Incubation(I,Imn)
374	
375	elif Record[P].Status == "IMMUNE": #Removed from population
376	pass
377	elif Record[P].Status == "DEAD": #Removed from population
378	pass
379	
380	
381	#UPDATE MOVING
382	if flux == True:
383	for x in range(xDimension):
384	for y in range(yDimension):
385	if Patient[Pos2Pat[y,x]].Status != "DEAD":
386	move = random.random()
387	if move <= move_range:
388	swap = random.randint(1, 4)
389	if swap == 1: #switch with above
390	oriID = Pos2Pat[y, x]
391	newID = Pos2Pat[(y+1)%yDimension, x]
392	Patient[oriID].yLoc = (y+1)%yDimension
393	Patient[newID].yLoc = y
394	Pos2Pat[y,x] = newID
395	Pos2Pat[(y+1)%yDimension, x] = oriID
396	

397	elif swap == 2: #switch with below
398	oriID = Pos2Pat[y, x]
399	newID = Pos2Pat[(y-1)%yDimension, x]
400	Patient[oriID].yLoc = (y-1)%yDimension
401	Patient[newID].yLoc = y
402	Pos2Pat[y,x] = newID
403	Pos2Pat[(y-1)%yDimension, x] = oriID
404	
405	elif swap == 3: #switch with left
406	oriID = Pos2Pat[y, x]
407	newID = Pos2Pat[y, (x-1)%yDimension]
408	Patient[oriID].xLoc = (x-1)%xDimension
409	Patient[newID].xLoc = x
410	Pos2Pat[y,x] = newID
411	Pos2Pat[y, (x-1)%yDimension] = oriID
412	
413	elif swap == 4: #switch with right
414	oriID = Pos2Pat[y, x]
415	newID = Pos2Pat[y, (x+1)%yDimension]
416	Patient[oriID].xLoc = (x+1)%xDimension
417	Patient[newID].xLoc = x
418	Pos2Pat[y,x] = newID
419	Pos2Pat[y, (x+1)%yDimension] = oriID
420	SUSCEPTIBLE = 0
421	INFECTIOUS = 0
422	INCUBATING = 0
423	IMMUNE = 0
424	DEAD = 0
425	
426	for P in range(1, ID+1):
427	if Patient[P].Status == "SUSCEPTIBLE":
428	SUSCEPTIBLE += 1
429	elif Patient[P].Status == "INFECTIOUS":
430	INFECTIOUS += 1
431	elif Patient[P].Status == "INCUBATING":
432	INCUBATING += 1
433	elif Patient[P].Status == "IMMUNE":
434	IMMUNE += 1
435	elif Patient[P].Status == "DEAD":
436	DEAD += 1
437	
438	SUSCEPTIBLEtrend.append(SUSCEPTIBLE)
439	INCUBATINGtrend.append(INCUBATING)
440	INFECTIOUStrend.append(INFECTIOUS)
· -	

441	IMMUNEtrend.append(IMMUNE)
442	DEADtrend.append(DEAD)
443	
444	if fit == True:
445	if status == "SusFit":
446	y = SUSCEPTIBLE
447	elif status == "IncFit":
448	y = INCUBATING
449	elif status == "InfFit":
450	y = INFECTIOUS
451	elif status == "ImmFit":
452	y = IMMUNE
453	elif status == "DeaFit":
454	y = DEAD
455	
456	diffs = Fit(t, y)
457	if diffs != "NONE":
458	residuals.append(diffs**2)
459	
460	Record = DeepCopy(Patient)
461	
462	if Plot:
463	plt.plot(SUSCEPTIBLEtrend, "0.5", label = "SUSCEPTIBLE")
464	plt.plot(INCUBATINGtrend, "y", label = "INCUBATING")
465	plt.plot(INFECTIOUStrend, "r", label = "INFECTIOUS")
466	plt.plot(IMMUNEtrend, "b", label = "IMMUNE")
467	plt.plot(DEADtrend, "k", label = "DEAD")
468	
469	plt.legend(loc="best")
470	plt.title("ebolaSTOinfSIM")
471	plt.ylabel("Number of Individuals")
472	plt.xlabel("Time (in days)")
473	# plt.show()
474	plt.savefig("ebolaSTOinfSIM2.pdf")
475	
476	if Print:
477	print "SUSCEPTIBLE = %i" %SUSCEPTIBLE
478	print "INFECTIOUS = %i" %INFECTIOUS
479	print "INCUBATING = %i" %INCUBATING
480	print "IMMUNE = %i" %IMMUNE
481	print "DEAD = %i" %DEAD
482	print "Percent Dead = %f" %(float(DEAD)/float(Population))
483	
484	return abs(sum(residuals))

- 485 # PercentDead = float(DEAD)/float(Population)
- 486 # return PercentDead

487

- 488 if _____name___ == "____main___":
- 489 StochasticEPIMOD([0.6834, 14, 0.0163, 19, 0.9512, 0.8861, 22])

1	ппп
2	STOCHASTIC EPIDEMIC MODEL
3	Uma Wu & LiQing Wang
4	
5	Discussed With: Noah Bayless, Michael Gelbart
6 7	#####PATIENT INFORMATION#####
8	xLoc = range(0, x_Dim)
9	yLoc = range(0, y Dim)
9 10	Status = IMMUNE, SUSCEPTIBLE, INFECTIOUS, INCUBATING, or DEAD
10	tExist = time elapsed since start of simulation
12	tinc = time incubating
13	tInf = time infectious
14	tRec = time recovering
15	
16	
 17	#####PARAMETERS#####
18	PImmune = Pre-Immunity (PERCENTAGE PROBABILITY of Population that is Pre-Immune to
19	Disease, float)
20	I = Infectivity (PERCENTAGE PROBABILITY of Displaying Symptoms When Infected, float)
21	InfP = Length of Infectious Period (TIME RANGE in which the Disease is Infectious, array)
22	Mob = Mobility (PERCENTAGE PROBABILITY of Contracting the Disease from an Adjacent
23	Diseased Individual, float)
24	IncP = Length of Incubation Period (TIME RANGE in which the Disease does not produce
25	Symptoms (In an Infective Individual), array)
26	Mor = Morbidity (PERCENTAGE PROBABILITY of Infective Individuals Dying from the Disease,
27	float)
28	Imn = Immunity (PERCENTAGE PROBABILITY of Individuals of Gaining Immunity After Recovery,
29	float)
30	RecP = Length of Recovery Period (TIME RANGE in which the Disease is Present in an Individual,
31	array)
32	
33	
34	from StochasticEPIMOD1 import Dossier
35	from StochasticEPIMOD1 import Spread
36	from StochasticEPIMOD1 import Plot
37	from StochasticEPIMOD1 import DeepCopy
38	
39	import random
40	import matplotlib.pyplot as plt
41	import numpy as np
42	from scipy.optimize import minimize
43	
44	

```
def main(job_id, params):
45
          Parameters =
                           [params["I"],
                                          params["InfP"],
                                                           params["Mob"], params["IncP"],
46
     params["Mor"], params["Imn"], params["RecP"]]
47
          return -StochasticEPIMOD(Parameters)
48
49
50
     def StochasticEPIMOD(Parameters, xDimension = 20, yDimension = 20, tElapsed = 365, flux =
     True, move range = 0.5, Plot = False, Print = False):
51
52
          #INITIAL VALUES
53
          Population = xDimension*yDimension
54
          #PARAMETERS
55
56
          PImmune = 0.0
          I = Parameters[0] #Percentage
57
          InfP = range(int(Parameters[1])-3, int(Parameters[1])+4)
58
          Mob = Parameters[2] #Percentage
59
          IncP = range(int(Parameters[3])-3, int(Parameters[3])+4)
60
          Mor = Parameters[4] #Percentage
61
          Imn = Parameters[5] #Percentage
62
63
          RecP = range(int(Parameters[6])-3, int(Parameters[6])+4)
64
          #PATIENTS
65
          Patient = dict()
66
          ID = 0
67
          Pos2Pat = np.zeros((yDimension, xDimension))
68
          for x in range(xDimension):
69
70
              for y in range(yDimension):
                   ID += 1
71
                   Patient[ID] = Dossier(x, y, PImmune, IncP, InfP, RecP)
72
                   Pos2Pat[y,x] = ID
73
74
75
          #GENERATING PATIENT ZERO
76
          x = xDimension/2
77
         y = yDimension/2
          for P in range(1, ID+1):
78
79
              if Patient[P].xLoc == x and Patient[P].yLoc == y:
                   Patient[P].Status = "INFECTIOUS"
80
81
          Record = DeepCopy(Patient)
82
83
84
          #################################SIMULATION
     85
86
          for t in range(tElapsed):
87
              for P in range(1,ID+1):
88
                   #STATUS PRIORITY: DEAD = IMMUNE > INFECTIOUS = INCUBATING >
```

```
SUSCEPTIBLE
 89
                     if Record[P].Status == "SUSCEPTIBLE":
 90
 91
                          n = 8
                          x = Patient[P].xLoc
 92
                          y = Patient[P].yLoc
 93
 94
                          while Patient[P].Status != "INFECTIOUS" and Patient[P].Status !=
 95
       "INCUBATING" and n > 0:
 96
                               if n == 8:
                                    infection = Spread(Mob, Record[Pos2Pat[y,(x+1)%xDimension]])
 97
       #Right
 98
                                    if infection == True:
 99
                                         infection = random.random()
100
                                         if infection <= I:
101
                                              Patient[P].Status = "INFECTIOUS"
102
                                         else: Patient[P].Status = "INCUBATING"
103
                               elif n == 7:
104
                                    infection = Spread(Mob, Record[Pos2Pat[y,(x-1)%xDimension]])
105
       #Left
106
107
                                    if infection == True:
108
                                         infection = random.random()
                                         if infection <= I:
109
                                              Patient[P].Status = "INFECTIOUS"
110
                                         else: Patient[P].Status = "INCUBATING"
111
                               elif n == 6:
112
113
                                    infection = Spread(Mob, Record[Pos2Pat[(y+1)%yDimension,x]])
       #Above
114
                                    if infection == True:
115
                                         infection = random.random()
116
                                         if infection <= I:
117
                                              Patient[P].Status = "INFECTIOUS"
118
                                         else: Patient[P].Status = "INCUBATING"
119
                               elif n == 5:
120
                                    infection = Spread(Mob, Record[Pos2Pat[(y-1)%yDimension,x]])
121
       #Below
122
                                    if infection == True:
123
                                         infection = random.random()
124
                                         if infection <= I:
125
                                              Patient[P].Status = "INFECTIOUS"
126
                                         else: Patient[P].Status = "INCUBATING"
127
                               elif n == 4:
128
                                    infection
                                                                                      Spread(Mob,
129
                                                                 =
       Record[Pos2Pat[(y+1)%yDimension,(x+1)%xDimension]]) #Upper Right
130
131
                                    if infection == True:
132
                                         infection = random.random()
```

133	if infection <= I:
134	Patient[P].Status = "INFECTIOUS"
135	else: Patient[P].Status = "INCUBATING"
136	elif n == 3:
137	infection = Spread(Mob, Record[Pos2Pat[(y-1)%yDimension,(x-
138	1)%xDimension]]) #Lower Left
139	if infection == True:
140	infection = random.random()
141	if infection <= I:
142	Patient[P].Status = "INFECTIOUS"
143	else: Patient[P].Status = "INCUBATING"
144	elif n == 2:
145	infection = Spread(Mob, Record[Pos2Pat[(y+1)%yDimension,(x-
146	1)%xDimension]]) #Upper Left
147	if infection == True:
148	infection = random.random()
149	if infection <= I:
150	Patient[P].Status = "INFECTIOUS"
151	else: Patient[P].Status = "INCUBATING"
152	elif n == 1:
153	infection = Spread(Mob, Record[Pos2Pat[(y-
154	1)%yDimension,(x+1)%xDimension]]) #Lower Right
155	if infection == True:
156	infection = random.random()
157	if infection <= I:
158	Patient[P].Status = "INFECTIOUS"
159	else: Patient[P].Status = "INCUBATING"
160	n -= 1
161	
162	elif Record[P].Status == "INFECTIOUS":
163	Patient[P].Recovery(Imn)
164	if Patient[P].RecState == True: #If the patient is still infectious
165	Patient[P].Infection(Mor)
166	
167	elif Record[P].Status == "INCUBATING":
168	Patient[P].Recovery(Imn)
169	if Patient[P].RecState == True: #If the patient is still incubating
170	Patient[P].Incubation(I,Imn)
171	
172	elif Record[P].Status == "IMMUNE": #Removed from population
173	pass
174	elif Record[P].Status == "DEAD": #Removed from population
175	pass
176	

177	
178	#UPDATE MOVING
179	if flux == True:
180	for x in range(xDimension):
181	for y in range(yDimension):
182	if Patient[Pos2Pat[y,x]].Status != "DEAD":
183	move = random.random()
184	if move <= move_range:
185	swap = random.randint(1, 4)
186	if swap == 1: #switch with above
187	oriID = Pos2Pat[y, x]
188	newID = Pos2Pat[(y+1)%yDimension, x]
189	Patient[oriID].yLoc = (y+1)%yDimension
190	Patient[newID].yLoc = y
191	Pos2Pat[y,x] = newID
192	Pos2Pat[(y+1)%yDimension, x] = oriID
193	
194	elif swap == 2: #switch with below
195	oriID = Pos2Pat[y, x]
196	newID = Pos2Pat[(y-1)%yDimension, x]
197	Patient[oriID].yLoc = (y-1)%yDimension
198	Patient[newID].yLoc = y
199	Pos2Pat[y,x] = newID
200	Pos2Pat[(y-1)%yDimension, x] = oriID
201	
202	elif swap == 3: #switch with left
203	oriID = Pos2Pat[y, x]
204	newID = Pos2Pat[y, (x-1)%yDimension]
205	Patient[oriID].xLoc = (x-1)%xDimension
206	Patient[newID].xLoc = x
207	Pos2Pat[y,x] = newID
208	Pos2Pat[y, (x-1)%yDimension] = oriID
209	
210	elif swap == 4: #switch with right
211	oriID = Pos2Pat[y, x]
212	newID = Pos2Pat[y, (x+1)%yDimension]
213	Patient[oriID].xLoc = (x+1)%xDimension
214	Patient[newID].xLoc = x
215	Pos2Pat[y,x] = newID
216	Pos2Pat[y, (x+1)%yDimension] = oriID
217	SUSCEPTIBLE = 0
218	INFECTIOUS = 0
219	INCUBATING = 0
220	IMMUNE = 0

221	DEAD = 0
222	
223	for P in range(1, ID+1):
224	if Patient[P].Status == "SUSCEPTIBLE":
225	SUSCEPTIBLE += 1
226	elif Patient[P].Status == "INFECTIOUS":
227	INFECTIOUS += 1
228	elif Patient[P].Status == "INCUBATING":
229	INCUBATING += 1
230	elif Patient[P].Status == "IMMUNE":
231	
232	elif Patient[P].Status == "DEAD":
233	DEAD += 1
234	
235	Record = DeepCopy(Patient)
236	
237	PercentDead = float(DEAD)/float(Population)
238	return PercentDead
239	
240	def Average(Parameters, tests = 1000):
241	total = 0.0
242	results = np.zeros(tests)
243	for n in range(tests):
244	results[n] = float(StochasticEPIMOD(Parameters))
245	print n
246	print np.mean(results)
247	print np.std(results)
248	print results
249	return np.mean(results), np.std(results), results
250	data = open("StochasticEPIMOD1SARSresultsDEAD.txt", "w")
251	uata – open StochasticePhiloDISARSIESuitsDEAD.txt , w)
252	Combination $= [0, 2860000, 0, 0, 256050, 5, 0, 24080, 0, 462240, 17]$
253	Combination = $[0.2860000, 9, 0.256050, 5, 0.34989, 0.462340, 17]$
254	average, stdev, results = Average(Combination)
255	data write ("Average, %f" %average)
256	data.write("Average: %f" %average) data.write("Standard Deviation: %f" %stdev)
257	
258	for i in range(len(results)-1):
259	data.write("%f" %results[i])
260 261	
261	

Infectivity	1	6.0	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1
Percentage Death	0.58794	0.65814	0.72177	0.7782	0.82672	0.86648	0.8965	0.91566	0.92258	0.91525
Infection Rate	1	6.0	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1
Percentage Death	0.92235	0.92258	0.92223	0.9211	0.91895	0.91542	0.91003	0.90209	0.89061	0.87414
Mobility	1	0.0	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1
Percentage Death	0.92314	0.91627	0.90518	0.88673	0.85485	0.79698	0.68413	0.4279	0	0
Incubation Rate	1	0.0	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1
Percentage Death	0.57929	0.65022	0.71465	0.77197	0.82146	0.86229	0.89352	0.91401	0.92245	0.91696
Mortality	1	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1
Percentage Death	0.9227	0.92123	0.91884	0.91513	0.9095	0.90095	0.88763	0.86564	0.82444	0.72152
Percentage Immunity	1	0.0	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1
Percentage Death	0	0	0	0.00002	0.0466	0.09498	0.15879	0.24622	0.37337	0.57796
Recovery Rate	1	6.0	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1
Percentage Death	0	0	0	0.00002	0.20618	0.33827	0.46093	0.57964	0.69716	0.81512

PARAMETERS	STOCHASTIC	DETERMINISTIC
Initially Susceptible Population/ Total Population (Pop)	N/A: There was not enough computational power to simulate population as a parameter.	(PHASE I only) Total number of people in each compartment. Remains constant throughout simulation
Infectivity (I)	Percentage Probability of Population that Displays Symptoms When Infected	Percentage of Population that Displays Symptoms When Infected
Length of Infectious Period (InfP)	(+/-3) Possible Time Range in which the Disease is Infectious	Time in which the Disease is Infectious
Mobility (Mob)	Percentage Probability of Contracting the Disease from an Adjacent Diseased Individual	Number of Healthy Individuals that a Diseased Individual may Infect
Length of Incubation Period (IncP)	(+/-3) Possible Time Range in which the Disease does not produce Symptoms (In an Infective Individual)	produce Symptoms (In an Infective
Length of Recovery Period (RecP)	(+/-3) Possible Time Range in which the Disease is Present in an Individual	Time in which the Disease is Present in an Individual
Mortality (Mor)	Percentage Probability of Infective Individuals Dying from the Disease	Percentage of Infective Individuals Dying from the Disease
Immunity (Imn)	Percentage Probability of Individuals of Gaining Immunity After Recovery	Percentage of Individuals that Gain Immunity Upon Recovery

SARS Data	a points for Fitting
153	78
158	98
159	103
165	144
166	154
186	461
187	478
188	495
189	506
202	666
204	689
210	750
211	754
216	772
221	784
228	799
229	799
231	804
238	809
239	810
242	811
243	812
244	812
249	812
252	812

Ebola Data F	Points for Fitting
7	24
279	12713
312	13697
347	14487
382	15151
413	15854
446	16236
479	16470
510	16763