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Abstract 

The solution to the brachistochrone – the curve of fastest descent – for a spherical steel bearing 

sliding and rolling down a low-friction plastic track is determined from experimental data and 

numerical analysis. It is hypothesized that the curve of fastest descent will be closely correlated 

to the cycloid. Analysis involves a spreadsheet simulation of model curves where the times of 

descent are predicted by an approximation formula derived using basic kinematics. Results 

display a positive correlation between a model curve’s deviation from the cycloid and the time of 

descent. 
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Introduction 

The original brachistochrone problem asks to find the curve of fastest descent between two 

points for a sliding body under frictionless conditions. It was first posed and solved in 1696 and 

1697 by Johann Bernoulli. He determined that the solution is the cycloid, which is a curve 

obtained by tracing the trajectory of a single point held on the edge of a circle as the circle rolls 

one circumference in a straight line [Appendix A]. A compact proof of Bernoulli’s proof is 

presented: 

The brachistochrone can be thought of as the path that light will follow through a medium of 

infinitely thin plates with increasingly higher indices of refraction [1]. According to conservation 

of energy without dissipative losses, the maximum velocity of an object falling in a constant 

gravitational field is given by:  

                                                        (1) 

Where g is a constant gravitational acceleration and h is the height “fallen.” The law of refraction 

gives the following relationship for a beam of light moving through a medium with different 

indices of refraction:  

    

 
 

 

 

  

  
 

 

  
                                         (2) 

Using equations (1) and (2) we can conclude that the curve of fastest descent is vertical at the 

starting point where the velocity is zero, and horizontal at the bottom of the curve, where the 

maximum velocity is reached. Rearranging terms in (2) and squaring gives:  

  
                                                              Solving for dx gives:    

   

   
    

. 

Substituting for v and vm from equations (1) and (2) gives the differential equation of an inverted 

cycloid generated by a circle of diameter D: 

    
 

   
                                                    (4) 

Integrating and substituting   
 

 
      

 

 
         we get the Cartesian equation of the 

cycloid [2]:  

           
 

 
 -                                          

Bernoulli’s proof is one of many that rely on mathematical rigor to solve the brachistochrone. In 

this paper, a numerical approach will be presented that aims to defend the cycloid as the solution 

to the brachistochrone. 
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Methods 

The experimental phase consisted of measuring descent times of a spherical steel bearing rolling 

down different tracks. All of the tracks were built using hard plastic tubing commonly used for 

plumbing. These have a coefficient of sliding friction in the range of 0.04-0.5, and a coefficient 

of rolling friction in the range of 0.001 – 0.005 [3]. Duct tape and tools such as a flat bar, 

protractor, and tape measurer were used in order to build the curves accurately. A standard 

stopwatch accurate to milliseconds was used in all measurements. 

The first set of experiments comprised of testing the descent times for tracks modeled after the 

cycloid, the exponential decay curve, and the straight line [Appendix A]. They were drawn with 

Microsoft Mathematics software, then enlarged, printed, and pasted unto flat wooden boards on 

which the tracks were glued. However, this method proved inconclusive in that it could only 

show qualitatively that the cycloid is the fastest curve, and minor alterations to the cycloid only 

led to descent times that were not significantly different.  

A new method was adopted with the idea being that numerous straight segments inclined at 

different angles would be joined together to form a model curve, and the times of descent could 

be predicted by using a numerical approach on Microsoft Excel 2007. Hence, the second set of 

experiments comprises of testing the descent times for straight track segments of length 90.5 cm 

with angles of inclinations ranging from 10  to 90  at 10  intervals. Note that the model curve is 

not built physically. Instead, the descent times for the model curves are predicted by a function 

which that takes into account the velocity picked up in the previous segments. A derivation of 

this additive time prediction formula follows: 

             
 

 
  

 
 
  

 
 

 
  

 
 
  

 
 
  

   
 

 
  

   
 
  

 

                        
 

        
    

 
 

                 
      

   

             
    

     
 

      
              

  
       

                  
                        

Where T = time (s) measured individually for each straight segment, and D = segment length 

(m).  

This time predicting formula only relies on the individually measured times for each segment. It 

has a recognizable pattern; in each term, the numerator consists of the product of the individual 

descent times of the current and previous segments, and the denominator can be thought of as the 

sum of all the combinations of choosing (n-1) descent times from (n) descent times. This pattern 

can then be used to derive subsequent terms; the composition of each individual term becomes 

very complex as the number of segments increases [Appendix B]. In the construction of this 

formula, the final velocity at a segment was assumed to be equal to the average velocity of that 
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segment. This assumption was justified by the idea that one of the segments is only a small 

portion of the bigger model curve, so that the small deviations from the actual velocities will not 

result in significant errors. The results support the use of this assumption.   

The model curves all start at the origin (0, 0), and have individual segments of different angles 

positioned in a way that satisfies the following constraints:  

0.905                                                          (11) 

0.905                                                          (12) 

Furthermore, a true cycloid is also graphed using the two equations below, and used for 

comparison.  

              
 

 
 -                                                *left half 

               
 

 
 +                           *right half 

Where the right half is a reflection of the left half in the y axis and undergoes a horizontal shift to 

line up with the left half. The point (13.98, -3.92) is found on this cycloid. The model curves are 

then compared to the cycloid qualitatively by graphical representation and quantitatively by 

statistical analysis. 

 

Results 

 

Fig. 1: Measured descent times for straight-line segments of 
length 0.905 meters, with different angles of inclination 

 

Angle (degrees) Measured Time (s) 

90 0.454   0.049 

80 0.475   0.044 

70 0.498  0.039 

60 0.528  0.042 

50 0.569  0.035 

40 0.621  0.032 

30 0.692  0.034 

20 0.843  0.027 

10 1.252  0.025 

The data from this figure represents the time of descent 
measured for the straight segments of track. Each angle was 
tested 25 times, and the times are represented with their 
mean and std. deviation.  
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Fig. 2: Descent times calculated for the simulated curves built with the straight line segments 
constrained to an overall length of 13.98 +/- 0.2 m and to an overall height of 3.92 +/- 0.2 m 

 Curve # 1 Curve # 2 Curve # 3 Curve # 4 Curve # 5 Curve # 6 

Number  of 
straight-

line 
segments 

 
21 

 
20 

 
19 

 
18 

 
17 

 
16 

Finishing 
Position 
(x, y) in 
meters 

 
(13.980,          
-3.920) 

 
(13.866, 
-3.942) 

 
(13.864,  
-4.114) 

 
(13.902, 
 -3.855) 

 
(13.859, 
 -3.874) 

 
(13.841, 
 -3.867) 

Sequence 
of straight 
segments 
by their 
angles 

(degrees) 
 

90 

80 

70 
60 
50 
40 
40 

30 
30 

20 
20 
10 

10 
10 
-10 
-20 
-20 

-30 
-40 

-40 

-50 
 

        90 

80 

60 

60 

50 

40 

30 
30 

20 

20 
10 

10 

10 

-10 

-10 

-20 

-30 

-30 

-40 

-40 
 

90 

60 

50 

50 

40 

40 

30 

30 

20 

20 

10 

10 

10 

-10 

-20 

-20 

-20 

-30 

-40 
 

80 

60 

50 

40 

30 

30 

20 

20 

20 

10 

10 

10 

-10 

-10 

-10 

-20 

-20 

-20 
 

60 

50 

40 

40 

30 

20 

10 

10 

10 

10 

10 

10 

10 

-10 

-10 

-10 

-10 
 

30 

30 

20 

20 

20 

20 

20 

10 

10 

10 

10 

10 

10 

10 

10 

10 
 

Simulated 
overall 
time (s) 

 
2.136 

 

 
2.091 

 

 
2.077 

 

 
2.149 

 

 
2.230 

 

 
2.594 

 

This figure shows the data compiled from the model using equations (8), (9), and (10). The curves have 
different number of straight segments, because they differ in length due to their unique curvatures. All 
of the curves are measured in meters, start at the point (0,0), and end at (13.98, 3.92) with an 
uncertainty of   0.2. The uncertainty is due to the fact that up to 21 straight segments are used in order 
to build a constrained curve. The sequence of angles is interpreted as the sequence of straight segments 
that make up the overall curve, and are read from (0,0) to the end point of each curve.. Also note that 
the negative angles represent segments for which the bearing is ascending; in this case, the times for 
such segments are taken to be negative, so that in the time predicting formula, it translates into a 
negative velocity being added on to previous velocities. 
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Fig.3 shows the curves obtained from the model. The thin black line represents the true cycloid. 

The curve of fastest descent is curve 3, and is almost identical to the cycloid. All of the other 

curves, which are either above or below curve 3 are slower. The statistical analysis of the curves 

is presented in the discussion.  

 

Discussion 

In order to show that the cycloid is the fastest curve, we show that the times of descent increase 

for curves as they deviate from the shape of the cycloid. 

Analyzing the brachistochrone in a realistic setting means having to deal with friction and rolling 

motion, which make an analytical approach to the problem much more complex. Our approach 

used experimental data in order to determine to a certain level of accuracy whether the curve of 

fastest descent in a realistic setting is the cycloid.  

The initial attempt to measure descent times for tracks of various shapes and reasonable size 

proved to be inadequate because the descent times for similar curves were nearly 

indistinguishable using the millisecond stopwatch. Hence, this inspired the kinematical 

approximation of a segmented model curve as a means of analyzing the brachistochrone from a 

new perspective.  

The model used an assumption that the average velocity of the metal bearing down any single 

straight segment was equal to its final velocity after that particular segment. The assumption 

seemed quite significant at the beginning, but the data showed that within our size constraints, 16 
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Fig. 3: Visual comparison of the simulated curves and the true cycloid     
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straight track segments were enough to produce good curves. The curve of fastest descent was 

achieved with 19 segments, and when comparing it to the true cycloid, it is evident that the 

assumption worked well, and the model has predictive power.  

In order to support the hypothesis that the fastest curve will be cycloid-like, a model curve is 

simulated so that each composing straight segment closely follows the trajectory of a cycloid. 

Subsequently, by using extra segments, two other model curves that went below the trajectory of 

the cycloid were simulated. In addition, by using less segments, three model curves that went 

above the trajectory of the cycloid were simulated.  

Calculations from the time prediction formula show that the curve modelled after the cycloid had 

the shortest descent time. These results support the hypothesis that the curve of fastest descent is 

almost identical to the cycloid. Well-known analytic mathematical models for the 

brachistochrone with friction [2],[4],[5],  predict that under low coefficients of friction, the curve 

of fastest descent will be extremely similar to the cycloid, and our data supports their findings.  

Having shown that the cycloid is the curve of fastest descent using our experimental data and 

numerical model, we quantified the similarities between each of the curves to the true cycloid 

using the S = (Sum of Squared Differences method) =                   
  

 . We found 

very low S values for the curves which were very similar to the cycloid.   

We then plotted each of the simulated curve’s overall descent time against their S values, and 

found a very strong linear correlation shown in Figure 4.  

 

Fig. 4 quantitatively displays the relationship between a curve’s resemblances to the cycloid and 

its descent time. The resemblance of the curves to the cycloid was measured using 
                                                

  
 . A larger value for the sum 

of squared differences translates into less resemblance to the true cycloid. 

y = 0.0049x + 2.0626
R² = 0.9875

2.000
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2.400
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Overall
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Figure 4: Relationship between descent time and resemblance of a 
curve to the cycloid as measured by the summed squared 

differences method
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It is clear that the overall descent time for a steel ball-bearing on our curves can be predicted 

from the curve’s resemblance to the cycloid as measured by the Sum of Squared differences 

method (S). It appears that this relationship can be then extrapolated to predict descent times for 

tracks with different shapes as long as the following circumstances are met:  

i) A cycloidal curve is the curve of fastest descent for the specific level of friction in 

that track. 

ii) The curves being compared are continuous, differentiable everywhere, and have a 

constant change in slope. 

We believe that some inconsistencies in our data are due to oversimplifying assumptions of the 

actual motion of the bearing. We assumed in our theoretical calculations that the steel bearing 

descends by rolling and encounters rolling friction. However, due to the steepness of the cycloid 

(or steep straight segments), the bearing may actually descend by a combination of sliding and 

rolling motion. Other errors can be attributed to the inaccuracy of the timing method, which we 

attempted to mitigate with more trials and longer track segments.  

It is important to note that the derived kinematical time prediction formula (10) is only an 

approximation. It has nonetheless proven to be more reliable than measuring descent times for 

actual model curves of reasonable size. It is recommended that if adequate computing is 

available, that the time prediction formula should be modified by including more segments of 

smaller length so that the approximation becomes analogous to taking a line integral. 

 

 

Conclusion 

A strong positive correlation was found between the curves’ deviation from the cycloid 

(measured by the summed squared differences method) and the descent times. Our experiment 

supports the hypothesis and the literature that the cycloid minimizes descent time for low-friction 

settings. Future experiments utilizing similar methods as presented can improve upon these 

results by simulating model curves constituted by more but shorter segments. Such numerical 

endeavours to determine the solution to the brachistochrone will be a great augmentation to the 

mathematical proof behind this elegant problem. 
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Appendix A 

 

Fig. 5: Creating a cycloid by tracing a point on the edge of a rolling circle 

 

Fig. 5 was obtained without permission from [6]. 

 

 

 

Fig. 6: On the left; a picture of the straight-line track segment used at different angles for the 

model, and an exponential curve used for comparisons. On the right; A scaled down cycloid 

used for comparisons.  
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Appendix B 

Fig. 5: Screenshot of the Spreadsheet used to compute overall times.  

 

 

Fig. 6: Part of the time prediction formula (10) showing the calculation performed to compute the 

descent time for a single straight track segment placed at the end of curve 1 (segment # 21). This 

shows how complicated the calculation becomes as the number of track segments increase  

D2*D3*D4*D5*D6*D7*D8*D9*D10*D11*D12*D13*D14*D15*D16*D17*D18*D19*D20*D21*D22/(D2*D3*D4*D5

*D6*D7*D8*D9*D10*D11*D12*D13*D14*D15*D16*D17*D18*D19*D20*D21+D2*D3*D4*D5*D6*D7*D8*D9*D1

0*D11*D12*D13*D14*D15*D16*D17*D18*D19*D20*D22+D2*D3*D4*D5*D6*D7*D8*D9*D10*D11*D12*D13*D

14*D15*D16*D17*D18*D19*D21*D22+D2*D3*D4*D5*D6*D7*D8*D9*D10*D11*D12*D13*D14*D15*D16*D17*

D18*D20*D21*D22+D2*D3*D4*D5*D6*D7*D8*D9*D10*D11*D12*D13*D14*D15*D16*D17*D19*D20*D21*D22

+D2*D3*D4*D5*D6*D7*D8*D9*D10*D11*D12*D13*D14*D15*D16*D18*D19*D20*D21*D22+D2*D3*D4*D5*D6

*D7*D8*D9*D10*D11*D12*D13*D14*D15*D17*D18*D19*D20*D21*D22+D2*D3*D4*D5*D6*D7*D8*D9*D10*D

11*D12*D13*D14*D16*D17*D18*D19*D20*D21*D22+D2*D3*D4*D5*D6*D7*D8*D9*D10*D11*D12*D13*D15*

D16*D17*D18*D19*D20*D21*D22+D2*D3*D4*D5*D6*D7*D8*D9*D10*D11*D12*D14*D15*D16*D17*D18*D19

*D20*D21*D22+D2*D3*D4*D5*D6*D7*D8*D9*D10*D11*D13*D14*D15*D16*D17*D18*D19*D20*D21*D22+D2

*D3*D4*D5*D6*D7*D8*D9*D10*D12*D13*D14*D15*D16*D17*D18*D19*D20*D21*D22+D2*D3*D4*D5*D6*D7

*D8*D9*D11*D12*D13*D14*D15*D16*D17*D18*D19*D20*D21*D22+D2*D3*D4*D5*D6*D7*D8*D10*D11*D12

*D13*D14*D15*D16*D17*D18*D19*D20*D21*D22+D2*D3*D4*D5*D6*D7*D9*D10*D11*D12*D13*D14*D15*D

16*D17*D18*D19*D20*D21*D22+D2*D3*D4*D5*D6*D8*D9*D10*D11*D12*D13*D14*D15*D16*D17*D18*D19

*D20*D21*D22+D2*D3*D4*D5*D7*D8*D9*D10*D11*D12*D13*D14*D15*D16*D17*D18*D19*D20*D21*D22+D

2*D3*D4*D6*D7*D8*D9*D10*D11*D12*D13*D14*D15*D16*D17*D18*D19*D20*D21*D22+D2*D3*D5*D6*D7*

D8*D9*D10*D11*D12*D13*D14*D15*D16*D17*D18*D19*D20*D21*D22+D2*D4*D5*D6*D7*D8*D9*D10*D11*

D12*D13*D14*D15*D16*D17*D18*D19*D20*D21*D22+D3*D4*D5*D6*D7*D8*D9*D10*D11*D12*D13*D14*D1

5*D16*D17*D18*D19*D20*D21*D22 


