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Abstract

An N -player nonzero-sum game was modelled on a computer and evolutionary algorithms
were used to determine whether the evolutionarily stable strategy coincides with the group
optimum behavior.

Introduction

This project aims to model and study the following game:

N players sit in a line and take turns standing up. Each player seeks to stand up at a
unique time. If two or more players stand up at the same time, they are all punished
(for example, made to do pushups) and the game ends. If the game continues until
only one player is left sitting, that last player is punished instead.

This game is nonzero-sum, meaning that the total gain (or loss, in this case) of all the players
depends on the choices that the players make: if all players stand up as soon as the game starts
then all will be punished, whereas if each player stands at a random time then probably at least
one player will pass unscathed. This is unlike a zero-sum game such as gambling, in which total
wealth is conserved and redistributed among the players. In contrast, the players of a nonzero-sum
such as that described above together determine how much joy or pain is created and shared.

The goal of this study is to determine the effects of evolution on the players of the game
described above. After having an initial population play a certain number of games, we mimic
natural selection, killing the losers and allowing the winners to reproduce. Many generations later,
we expect to be left with a homogeneous population consisting of the evolutionarily stable strategy
(ESS), that will be able to outcompete any minority groups in the population [1]. However, such
a selection procedure works only on an individual level. Well-known nonzero-sum games like the
prisoner’s dilemma exemplify a key feature of this class of games: maximization of individual gain
may result in suboptimal group gain. Thus the effective goal of this study is to determine whether
such a conflict between individualism and collectivism exists in the game described above.

Methods

In order to simulate the game on a computer, we created the following simplified model. The
times at which players may stand are represented as nonnegative integers, and each strategy is
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Type and Parameters pmf(k)

Fixed(t): always stand at time t ∈ {0, 1, 2, . . . } 1 if k = t, 0 otherwise
Uniform(n): stand before time n ∈ {1, 2, 3, . . . } 1/n if k < n, 0 otherwise
Geometric(p): at any time, if still seated, stand with prob-
ability p ∈ (0, 1]

p(1− p)k

Bell(q): probability of remaining seated starts at 1 and
decreases by a factor of q ∈ [0, 1) at each time

qk(k−1)/2(1− qk)

Uniform2(a, b): stand at or after time a ∈ {0, 1, 2, . . . } but
before time b > a

1/(b− a) if a ≤ k < b, 0 otherwise

Table 1: The types of strategies used in the initial populations, their parameters, and their prob-
ability mass functions (probabilities of standing at each possible time k)

Figure 1: pmf curves for strategies (a) Fixed(10), (b) Uniform(4), (c) Geometric(0.5),
(d) Bell(0.9), and (e) Uniform2(14, 17)

represented by a probability distribution on the set of nonnegative integers. In a game, each player
stands at a time randomly chosen according to his strategy’s distribution. If two or more players
choose the same time, the earliest such group of players is “punished” by a single point added to
their score; otherwise the player who chooses the latest time gains a single point.

Note that these assumptions fail to reflect many aspects of the real-life game, such as the
ability to change one’s strategy mid-game depending on when other players stand, the potential to
learn about other players’ strategies and improve one’s own strategy for future games, and various
psychological effects. While our assumptions were necessary to allow efficient simulation of the
game on a computer, they do mean that the results of this study are best interpreted only in
the context of our simplified model. Any extrapolation to the original game must take the above
factors into account.

For each simulation, we set up an initial population of strategies with simple discrete probability
distributions, listed in Table 1, with probability mass functions shown in Figure 1. Multiple
(M ∈ [100, 1000]) games were then played in order to reduce the random effects of the choices
of standing times. At the end of all the games, the total score of all the players was divided by
the number of games, M , to obtain the total loss per game L. The players were then ranked in
order of increasing score, and a certain fraction (E) of the highest-scoring strategies were removed.
An evolutionary algorithm (with parameter P ) was used to produce “children” of the surviving
strategies which fill the vacancies in the population; the algorithms used are shown in Table 2. All
of this constitutes one generation of the simulation. We call the initial population “generation 0”,
the population after one evolution “generation 1”, and so on. A minimum of 8 generations were
run, and then more generations were run until the population had “converged”. “Convergence” is
defined as the earliest generation when the mean standing time of the entire population has not
changed by more than 0.01 over the last half of all generations up to that point.
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Type and Parameter (P ) Description

evolve

P : # of parents per child
P parents are selected randomly (with replacement) and com-
bined into a child that plays according to each parent with a
uniformly randomly chosen probability

evolve2

P : # of children per parent
Parents’ pmfs are split at P -quantiles (median for P = 2, quar-
tiles for P = 4, and so on) into P new pmfs; the lowest-scoring
parent gives rise to the first P children, the second-lowest-scoring
gives rise to the next P , etc. until the population is filled again

evolve3

P : # of parents per child
Same as evolve, except parents are not combined at random;
rather, the first P are combined, the next P are combined, etc.
such that each group of P gets to procreate at least once (assum-
ing enough vacancies in the population)

Table 2: The types of evolutionary algorithms used

In order to determine the average total loss per game L of the convergent population, we took
the mean and standard error of the L of the last half of all generations. There were two exceptions.
First, if the last generation consisted of a single deterministic strategy (i.e. with a probability mass
function zero except at a single point), we took the L of that generation, with an uncertainty of 0,
since all future generations will have the same L. Second, for each individual population we ran
a control simulation in which no evolution occurred; in these control simulations, 100 generations
were always run, and the L of all 100 generations were averaged.

We conducted the simulations in two stages, with each simulation using an initial population of
size 64. In stage 1, we conducted 8 simulations, consistently using evolutionary algorithm evolve

(see Table 2) while varying the composition of the initial population. In any simulation, each type
of strategy present in the initial population was present in equal numbers, and the parameters of the
strategies of each type were distributed uniformly across the parameters’ domains. For example, an
initial population of Fixeds and Geometrics is the set {Fixed(t) : t = 0, . . . , 31}∪{Geometric(p) :
p = 1/32, . . . , 32/32}. In stage 2, we conducted 12 simulations, keeping an initial population of
{Uniform2(a, b) : 0 ≤ a < 8, a < b ≤ a + 8} while changing both the type and parameter P of the
evolutionary algorithm used.

Results and Discussion

The results of the stage 1 simulations are shown in Table 3. A quick glance at the Ls at convergence
and the ratios to the Ls of the controls reveals that while evolution effectively reduced the L value
in most of the simulations, there are three blatant exceptions to this trend. Note that these are
exactly the simulations that began with Fixeds in the initial population. Figure 2 shows the pmfs of
the strategies in the Fixed+Uniform simulation at four generations. In Fig. 2a we see the “spikes”
that are the pmfs of Fixed(0), . . . , Fixed(31), as well as the pmfs of the Uniforms clustered around
time 0. After 3 generations, as shown in Fig. 2b, the strategies that stand up early have killed each
other through competition, while the surviving strategies have successfully reproduced. However,
because children inherit from parents, this reproduction is effectively suicidal, for the parents end
up competing with their own offspring. Meanwhile, the late-standing strategies proliferate, such
that by generation 20 (Fig. 2c), the once-sparsest region on the pmf graph has become the densest.
This continues until the latest-standing strategy (Fig. 2d) is the only strategy left.
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Initial population L at convergence L of control L ratio

Fixed 44.8± 0.5 1± 0 44.8± 0.5
Uniform 2.413± 0.004 4.805± 0.006 0.5022± 0.0010

Geometric 2.394± 0.004 32.50± 0.02 0.07366± 0.00013
Bell 3.021± 0.009 32.49± 0.02 0.0930± 0.0003

Fixed + Uniform 40.4± 1.5 5.053± 0.005 8.0± 0.3
Uniform + Geometric 2.931± 0.005 3.17± 0.18 0.92± 0.05
Geometric + Bell 3.502± 0.008 16.495± 0.007 0.2123± 0.0005

all 4 types 39.5± 1.4 12.884± 0.006 3.07± 0.11

Table 3: Stage 1 simulation results, showing the types of strategies in the initial population, the
average total loss L at convergence, the L of the control, and the ratio of these two Ls. The exact
compositions of the initial populations were as described in the Methods section.

(a) 0 (b) 3 (c) 20 (d) 60

Figure 2: pmfs of strategies in Fixed + Uniform at generations 0, 3, 20, and 60

We can see, then, that in the simulations involving Fixed strategies, the ESS is the latest-
standing strategy because such a strategy avoids competition until all other strategies have died.
In fact, this also applies to the simulations in Table 3 not involving Fixeds, and explains the
reduction of L in those simulations just as well: for Uniforms, Geometrics, and Bells are all
strategies where the latest-standing strategy also has the most spread-out pmf curve (see Figure
1). Thus in an initial population lacking Fixeds, the ESS is far less likely to compete with itself,
which explains the effectiveness of evolution in reducing L.

Suppose that in some initial population including Fixeds, a lone early-standing strategy some-
how survives without competition until the rest of the population has converged to an ESS similar
to that shown in Figure 2d. The early-standing strategy has an enormous advantage, a near-
guarantee of neither competing with another strategy, nor being punished for being the last player
sitting – for a single turn. As soon as the early-standing strategy is rewarded with like-minded
offspring, competition kicks in and kills both parent and children. This ability of the equilibrium
to withstand invasion allows us to fully justify labelling the latest-standing strategy as the ESS of
any given initial population.

The results of the stage 2 simulations are shown in Table 4. There are a number of trends, the
most apparent being the common L value of 64± 0 for all of the simulations using evolve2. Since
the size of the population was 64, this was the maximum L possible. The uncertainty is 0 because
in each of the 4 simulations, the final population was completely homogeneous and consisted of a
single deterministic strategy. This is the worst possible collectivistic outcome, since the population
must maintain the maximum L for all future generations. This result makes theoretical sense, for
recall the pmf-splitting mechanism of evolve2 (Table 2): the only populations on which evolve2

does not act must consist of identical deterministic strategies.
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Algorithm P E L at convergence L of control L ratio

evolve

2
0.5

9.90± 0.05

3.279± 0.014

3.02± 0.02
5 8.83± 0.02 2.693± 0.013
8 9.26± 0.02 2.824± 0.014
2 0.25 8.66± 0.04 2.641± 0.017

evolve2

2
0.5

64± 0 19.52± 0.08
5 64± 0 19.52± 0.08
8 64± 0 19.52± 0.08
2 0.25 64± 0 19.52± 0.08

evolve3

2
0.5

8.50± 0.05 2.59± 0.02
5 8.77± 0.03 2.675± 0.015
8 10.61± 0.05 3.24± 0.02
2 0.25 8.51± 0.04 2.595± 0.016

Table 4: Stage 2 simulation results, showing the evolutionary algorithm used and its parameter
P , the selection rate E, the L at convergence, the control L, and the L ratio.

Examining the L ratios for the evolve and evolve3 simulations, we see that these two evolu-
tionary algorithms produced net increases in L that were largely independent of the evolutionary
parameters P and E. Furthermore, the effect of evolve3 on the pmf curves of the population looks
very similar to the sequence shown in Figure 2: a gradual but steady recession of early-standing
strategies that leads to a late-standing ESS. Thus it appears that the key features of both algo-
rithms are the same: the blessing/cursing of well-scoring parents with like-minded children. And
just as the detailed composition of the initial populations in stage 1 did not affect the general
“evolutionarily stable” = “late-standing” trend, such quantitative fine print as the parameter P
or the selection rate E seem unimportant to describing the general effects of evolution.

Conclusion

The effects of evolution on our modelled game were studied using different initial populations
and evolutionary algorithms and were found to optimize neither individualistic nor collectivistic
behavior. However, the latest-standing strategy became the ESS in all cases, irrespective of the
initial population and the evolutionary algorithm. It seems remarkable that a complex system
with many variables always behaves in the same way, independently of those variables.
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