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ABSTRACT 

This report presents some of the techniques used in designing 

the sector-focused magnet for the TRIUMF cyclotron. An empirical 

method is given for calculating the magnet pole tip shape required to 

contain a 500 MeV beam of H- ions. The method is good only for small 

changes in the shape. In the test case, the generated pole tip had 

a spiral angle correct to within ±5 deg, and a hill angle correct to 

±1 deg. The average field was found to be isochronous to ±70 G. 

An empirical solution to the problem of finding the field 

inside the magnet air gap is also given. The magnetic field resulting 

from a given pole tip contour is calculated at a point on the median 

surface by finding the perpendicular distance from the point to the 

edge of the pole and comparing this to an experimentally measured 

curve of field against distance. Fields generated by this technique 

have their averages correct to within 70 G and flutter to within 8%. 
Again, previous knowledge of similar pole tips is assumed. 

The method and results of calculating the pole edge position 

tolerances for the latest model magnet are given. The field strengths 

inside the steel return yoke as obtained from a series of flux 

measurements are also presented. Finally, it is shown that a simple 

approximation to the magnetic circuit of the magnet predicts the coil 

induction required to an accuracy of only 25%. 
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1. INTRODUCTION 

The problem of designing a magnet which will produce a magnetic 

field capable of containing a beam of charged particles is a very 

difficult one. Present-day numerical techniques are not adequate to 

solve Maxwell •s equations for the field inside a steel shape as complex 

as the TRIUMF magnet (see Figure 1), and hence different approaches 

must be used. Section 2 of this report is an attempt to calculate the 

pole geometry required to produce a cyclotron magnet. Section 3 is the 

reverse approach - given a magnet similar to the TRIUMF magnet, we can 

predict with some success the azimuthal field contours. Section 4 
gives tolerances on the dimensions of the pole tip, as derived from the 

conditions necessary to produce a contained beam of H- ions. Section 5 

gives the results of the flux measurements on the TRIUMF model magnet, 

and it also shows that the simple equivalent magnetic circuit cannot be 

easily applied here. 
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Figure 1. A photograph of the Mk Vl-1 model magnet 
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2. POLE TIP DESIGN 

2. 1 Introduction 

The method used for calculating the shape of a pole tip is basically 

that outlined in "Progress in Nuclear Techniques and Instrumentation••, 

by J.R. Richardson, 1 with some modifications. The modifications are an 

attempt at applying second order corrections to the square wave approxima­

tion to the azimuthal field, taking into account the geometrical shape of 

the sectored magnet and the complex interdependence of the various design 

parameters. From the measurements done on the model magnets, these 

corrections were found to be reliable only for small changes in the pole 

tip shape. 

2.2 Design Criteria 

There are three conditions which must be met if a 500 MeV, 100 ~A, 

CW H- beam suitable for extraction from the cyclotron is to be produced. 

These are: 

1) I soch ron ism 
2) Focusing 
3) lon Lifetime 

2.2.1 Isochronism 

The isochronous condition requires that the ion must rotate at a 

constant angular velocity w, and hence it defines the azimuthal average 

field required for any particle energy. We begin with the relativistic 

equations 

and 

E 
Y - mc2 = 

13 -
v 
c 

T 
+ -­mc2 ( 1 ) 

(2) 

where E = total energy of particle, T = kinetic energy, m = rest mass, 

v =velocity, and c =velocity of light. If we assume that the particle 

follows a circular orbit, we can use the equation for the Lorentz 

frequency of a particle with charge q in a magnetic field: 



or 
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w = s!= constant for any cyclotron ym 

(3) 

where B is the field averaged over one revolution. This equation defines 

the isochronism condition. The central field, or the field required at 

zero particle energy, is 

B = c 
wm 
q 

(4) 

from eqn. (3), letting y = 1. The radius at which a particle of energy E 

orbits is determined from 

Thus 

w = ~= ~ 
r r 

Sc r = -. 
w 

We can define the radius at which a particle of infinite energy would 

rotate: 

c 
r = 

00 w 

from eqn. (5). From eqns. (3) and (4) we have 

/1 - (r/r )2 
00 

(5) 

(6) 

The value of the orbiting frequency w is set by design criteria 1) 

and 3). 

2.2.2 Focusing 

In order to achieve an adequate extraction efficiency, the beam 

must be focused radially and vertically. The radial condition is satis­

fied automatically, since for any many-sectored isochronous cyclotron 

such as TRIUMF, the number of radial betatron oscillations of the beam 

per turn is v % y, and hence v > 1 .0. 8 Thus the beam is contained 
r r 
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radially. The only real problem is to avoid resonances such as the 

v = 1 resonance, but this will affect only details of the magnet, not 
r 

the overall general shape. Hence it will not be considered here. 

Vertical focusing is more difficult to achieve. The radially in­

creasing field required for isochronism produces a vertically defocusing 

force which must be compensated for by other properties of the magnet. 

Using the method of Smith and Garren, 2 we can express the radius of 

curvature ~(r,a) of the orbit in terms of a mixed Fourier and power 

series, as follows: 

00 

+ L (an cos na + bn sin na) 
1 

00 

+ x L (a~ cos ne + b' sin na) 
1 n 

x2 ~ 
+-- L (a~'cos n6 + bn''sin n6) + 

2 1 .. l (7) 

where x is defined by r = r 0 (1 + x), r
0 

is the radius at which the azi­

muthal average of~ is appropriate to the particle energy, i.e. 

r 0 ~(r 0 ,e) = 1, and an and bn are the standard Fourier coefficients. 

If we use this approximation to solve the equations of motion of 

the particle, we obtain the rather cumbersome expression for v2 given in z 
appendix 2 of Smith and Garren. This equation cannot be easily reduced 

to a useful form by approximations which are valid for TRIUMF. Hence it 

was decided to try the reverse approach - choose an approximate formula 

and see how accurate it is. The formula chosen was the smooth approxi­

mation for vi, as given by Symen et al. ,11 

(8) 

where F2 = 11 flutter 11 of field= (82- 82)/82, £=spiral angle of field 

(see Figure 4), and ~,=~a~= S2y2 if isochronism holds. This formula 
~ ar 

is comprised of a focusing and a defocusing term. The defocusing term, 

-~',is due to the inward 11bowing•• of the field lines in the radially 
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increasing field required in a relativistic cyclotron. The focusing 

term F2 (1 + 2 tan 2 E) is due to the three focusing forces arising from 

the spiral sector geometry of the magnet: the Thomas, alternating 

gradient, and Laslett forces. 8 At high energies, each of these two 

terms will be quite large, but the sum should be small and focusing. The 

limits on v will be discussed in Section 4.1. z 

From equilibrium orbit programs such as CYCLOPS, 3 v2 can be z 
determined within the necessary accuracy. Since F2 is known for a given 

field, we can use eqn. (8) to calculate the spiral angle E. The actual 

spiral angle of the field can be obtained directly from the Fourier 

harmonics of the field. If 

00 

B (8) = B + I A sin (n8 + <1> ) , 

n=l n n 

then En = r d<!>n 
Cir 

where A is the amplitude of nth harmonic, and 4> and En the phase and 
n n 

spiral angle of the nth harmonic, respectively. The spiral angle E of 

the field B(s) can be found by applying the relation 

Hence, by comparing the spiral angle obtained by eqn. (8) with the actual 

spiral angle of the field, we can estimate the accuracy of eqn. (8). The 

results from a typical model measurement are shown in Figure 2. It can 

be seen that for R > .250 in. the maximum deviation !J.E from the two 

curves is ±2 deg, and for R < 150 in., !J.E = 14 deg. These errors tn E 

can be translated into errors in v~ by the use of eqn. (8). The worst 

values of !J.v2 occur at R = 150 in. and R = 305 in., where !J.v 2 = ±0.022 z z 
and ±0.177, respectively. However, these numbers do not mean much by 

themselves. Since v2 is a difference of two relatively large numbers, we z 
should consider !J.v2 as a percentage of either the focusing term or the 

z 
defocusing term. We find that at both 150 in. and 305 in. radius 

!J.v2 = ±14%. An error was to be expected because of the ignored terms in z 
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Figure 2. Spiral angle vs radius for the Mk Vl-1 Mod 10 model magnet 
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the full expression for v2. These results give some confirmation that z 
the approximations implicit in eqn. (8) are sufficiently valid that the 

use of such an equation and the use of model magnet measurements are 

adequate to design a sector-focused, isochronous magnet. 

2.2.3 len Lifetime 

Considerations such as radiation levels in the cyclotron vault 

and residual activity in the component parts of the cyclotron have led 

us to limit the allowable beam loss in TRIUMF to 10 kW. This means that 

the beam loss should be less than 20% of the extracted beam. There are 

two major causes of beam loss, both of which result from the very low 

binding energy of the extra electron in the H- ion. First, the electron 

can be stripped by collision with gas molecules. This removes the charge 

of the ion, and since it will no longer be affected by the magnetic 

field, it will fly out of the machine. Hence we must have as low a. gas 

pressure as possible in the vacuum tank. A pressure of 10- 7 Torr was 

chosen for TRIUMF, as this is fairly easily achieved with present-day 

vacuum technology, and it results in a 4.6% beam power loss. 4 

The electrons can also be stripped by the electric field which 

results from the particle moving through a magnetic field. 

lent electric field in the rest frame of the H- ion is 

The equiva-

E = 0.3 SyB x 106 volts/em (9) 

where Bandy are as defined previously, and B is the magnetic field in 

kilogauss. The maximum electric field in the case of TRIUMF is about 

2.0 MV/cm. Theoretical calculations of the lifetime of the H- ion in 

this field have been made by Mullen, 5 Hiskes 12 and others, but they do 

not agree well with the experimental results of Stinson et al. 6 

a function of the form 

Stinson et al. found that C = 7.96 x lo-l4 sec-MV/cm 

and D = 42.56 MV/cm. 

Using 

( 10) 
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For £ << D, T(e) is a very rapidly decreasing function of £. In our 

case, halving the magnetic field raises T by a factor of 4 x 10 3 • Hence 

eqn. (9) sets a limit on the maximum field. Letting the maximum hill 

field equal 5.76 kG will give a beam power loss of about 11.2% for 

TRIUMF. 4 

2.3 Magnetic Field Design 

So far, for any given beam energy we can calculate y, 8, B, and 

R. Two tasks remain. One is to find the hill width n which is consis­

tent with B being less than 5.76 kG and T satisfying the isochronism max 
condition. The other is to obtain the flutter and spiral angle necessary 

to satisfy the vertical focusing criterion. The techniques applied to 

solving these two tasks are inexact, as the relationship between the 

required field shape and the shape of the magnet pole piece is a complex 

geometrical function. An empirical solution has been applied using the 

approximate formulae discussed previously. 

2.3. 1 Hill Width 

If the field were a square wave, we would have no problem 

lating n, the hill width in degrees. That is' if the hi 11 field 

valley field were flat and equal to BH and Bv respectively, then 

see from Figure 3 that, for an N-sector machine, 

or 

360 -6 = n-B + (360 _ J-6 N H N n V 

n = 360 (B - ivl_ 
N (BH - Bv) 

calcu-

and 

we can 

( 11 ) 

For TRIUMF, N = 6. The reasons are: 1) for N ~ 4, the beam will pass 

through the radial stop band resonances before it reaches 500 MeV; 10 

2) N > 8 will not yield enough flutter at large radii to permit adequate 

vertical focusing; and 3) N = 5 and N = 7 are inconvenient numbers to 

work with. Hence eqn. (11) becomes 

n = ( 12) 
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So if we know B, BH' and BV' then n is determined. The average field B 

is fixed by the isochronism condition and we assume we can obtain any 

desired BH by adding or removing steel to or from the return yoke. Hence 

the task is to find BV. 

A real field looks more like the 11 rounded 11 curve in Figure 3. 

What is needed is some parameter which depends solely on the geometry of 

the pole tip and provides some measure of the ''rounding'' of the corners 

of the field. Such a parameter is the hill-to-hill distance D. 9 This 

is defined for a given radius R as the diameter of the largest circle 

that can be drawn centred on R and just touching the edges of the adjac­

ent pole tips (see Figure 4). Figure 5 is a graph of D plotted against 

R for the Mk V-3 model magnet. 

The problem of finding the hill width would be solved if we could 

find some way of relating the minimum valley field Bv, the average 

valley field BV, and the average hill field BH to the maximum hill field 

BH via some parameter which depends only on the geometry of the pole tip. 

D has proven to be very useful for this. The ratio 

( 13) 

is a good, single-valued function of D, as can be seen in Figure 6. 

Although D first increases and then decreases with radius, ~ remains 

single-valued in D to within ±5% for radii within 0 to 14.5 in. on the 

model. At the 15 in. radius, the dependence of~ on D is not so good, 

as the abrupt cut-off of the pole tip at 15.5 in. begins to have an 

effect. 

To a lesser extent, the ratio 

is also single-valued in D. As shown in Figure 6, there is a definite 

difference between o for increasing D and for decreasing D. Fitting a 

curve between the two results in a determination of o to within ±3%. 
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The final parameter necessary to produce a square-wave field 

approximation is 

a. - BH 
B • 
H 

We find that a. is a function of the hill width in inches Rn' (see 

( 15) 

Figure 7), where n' is the hill width in radians. Three different pro­

cesses are in evidence here. For Rn' << s, where s is the gap length, 

a. is a decreasing function of Rn', because the steel is effectively so 

far from the median plane that the field contour does not follow the 

steel contour. For Rn' > s, a. increases with Rn' because the field is 

now flat except near the edges of the steel. For large Rn', saturation 

in the steel causes the field to droop farther in from the edge, and 

hence a. again decreases. In any case, since a. varies over such a small 

range, it can easily be determined to within ±1% . It is not as critical 

a parameter as either ~ or o. 

By means of the parameters ~' o, and a., we are now able to pro­

duce a square-wave approximation to the real field, given just BH and D. 

The necessary relations are: 

We can find n by substituting these values into eqn. (12) to get 

n = 60 (if - ~oBH) 

(a. - ~o) BH 
( 16) 

BH is an experimentally adjustable parameter. That is, we assume we can 

obtain any desired value just by removing or adding steel above the pole 

tip. The only restriction is that BH must be less than 5.76 kG, because 

of the electric dissociation of the H- ion. Hence, any reasonable­

looking curve of BH against radius can be used for designing a pole tip 

(some experience is required to determine what is a reasonable curve). 

The curve used in the Mk VI model magnet design is shown in Figure 8. 
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2.3.2 Flutter 

Once again, if the azimuthal field were square, computing the 

flutter would be trivial. However, it is not, and thus empirical tech­

niques were used. Two methods were tried. 

1) Fudge Factor 

The fudge factor FF is defined as: 

FF = actual flutter 
flutter calculated for 11square field· 

The flutter for a square field is 

F2 = _(""""'BH"----B_)_2 _n _+_(6_0~-_n_)_(B_-_B_,v'-)_2 

60 ~ 

= (aBH- B) 2n + (60- n)(B- £oBH) 
60 82 

( 17) 

Some actual values of FF were obtained from the Mk II I model 

magnet. An attempt was made to correlate them with some parameter 

of the magnet geometry. The best one seemed to beD, the hill-to­

hill distance, but even that did not result in FF being single­

valued, as can be seen in Figure 9. The solid line is a quadratic 

least-squares fit to the data points. An error of up to ±15% in 

the flutter can be expected by the use of this technique. 

2) <f>D 

It was found that the flutter is approximately a single-valued 

function of <f>D. <I>D is the product of D, the hill-to-hill 

distance, and <f>, the valley width in radians. Figure 10 shows a 

plot ofF vs <f>D, using data from two different models. The solid 

curve is a quadratic fitted via a least-squar~technique to the 

Mk V-3 data points only. This curve gives values of F correct to 

within ±0.02, or ±15% at the largest radius, which is the most 

c r i t i ca 1 po i n t. 
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The errors in either the fudge-factor or the ~D method are rough­

ly the same. The program to be described had an option whereby 

either technique could be used. 

2.3.3 The Design Program 

A computer program called 11MAGNET 11
, a listing of which can be 

found in lnt.Rep.l-70-4waswritten to assist in the design of a pole tip. 

It makes satisfactory predictions only for small changes in a pole tip. 

Its operation is as follows: The whole energy range of the machine is 

divided into many small increments. For each of these, y, S, r, and B 

are calculated. Next, a curve of D vs R is assumed from the last magnet 

pole piece. From this and from the model measurements, values of~. o, 
and a are found. Since we have assumed we can obtain any desired value 

of BH, a curve of BH vs R, which is similar to the last magnet, is used 

to obtain values of BH and hence n for each energy increment. The 

techniques given in Section 2.3.2 are now employed to yield the flutter, 

and then by eqn. (8) we can calculate the spiral angle£. The geometric 

relationship 

h = I a ta~ E dS 

0 

h=hillangle ( 18) 

allows us to compute the actual angular positions of the edges of the 

pole tip to give the desired spiral angle£. 

Following this procedure through for all the energy intervals re­

sults in a pole tip. We can now iterate the whole process by measuring 

the hill-to-hill distance of this pole tip and putting it back into the 

program. When the hill-to-hill distance of the designed pole tip is 

similar to that used in the calculations, then the design is complete. 

2.4 Mk VI Design 

2 . 4 . 1 Res u 1 t s 

It was decided to use the program to design the Mk VI pole tip. 

The Mk V pole tips had failed for various reasons. The Mk V-1 design, 

which had a hill width of 24.5 deg for R ~ 150 in., was unacceptable 
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because the high hill field required for isochronism at low radii was un­

attainable experimentally. The Mk V-3 pole piece had a central hill width 

of 26 deg, and although isochronism could be achieved, the pole tip was 

so wide that beam extraction became impossible. At large radii the pole 

tip overlapped the return yoke of the adjacent sector, resulting in a 

continuous vertical return yoke around the cyclotron. Also, the rather 

large hill width resulted in a low flutter, which gave rise to inadequate 

vertical focusing at low radii. On both the Mk V-1 and Mk V-3 models 

vertical focusing was sufficiently high for radii greater than 150 in. 

On the basis of these two models, it was decided that the Mk VI 

design should have a central hill width of 25 deg. The general shape 

should be somewhere between the Mk V-1 and Mk V-3 designs, and hence most 

of the magnet parameters, such as~. o, and F2 , should lie between those 

for the two Mk V models. At this point, the program was altered slightly. 

As mentioned in Sections 2.3.1 and 2.3.2, o can be predicted to within 

±3%, and F2 to within ±15%. Since these parameters should lie between 

those found for the Mk V models, it was felt that more accurate values 

could be found by choosing some value between the Mk V-1 and Mk V-3 

values for that particular radius. The formula used to find o was 

where n0 = 25 deg, n1 = 24.5 deg, n3 = 26 deg, o1 = Mk V-1, o3 = Mk V-3. 
F2 was found in a similar manner. It was hoped that this interpolation 

technique would reduce the error in o to ±1%, and F2 to less than ±5%. 

A pole tip was built using this design. The results are shown in 

Figures 11 and 12. Isochronism was excellent; the maximum difference was 

75 G. Figure 11 shows the difference between the isochronous field and 

the actual average field which has been normalized to the design hill 

field. The normalization was necessary because the steel return yoke was 

not the correct shape required to obtain the design BH. 

Unfortunately, v was inadequate (see Figure 12). The design v z z 
was 0.35, but the actual v reached 0.25 at only one radius. The reason z 
for this discrepancy is immediately apparent if we plot F2 vs E, as in 
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Figure 13. The program badly overestimated the flutter, and hence it did 

not allow enough spiral angle to maintain v . At 500 MeV, the error in z 
flutter ~F2 = 0.024. By the use of eqn.(8), we find that the error in v z 
caused by ~F2 is 

= 0.24. 

There is also a small contribution to ~v 2 arising from the inability of z 
the field to follow the pole tip shape. This appears as an error in the 

spiral angle. Figure 14 shows the design spiral angle of the pole tip 

plotted against energy, and the actual spiral angle of the magnetic field, 

as computed from the phase of the 6th harmonic. The two curves agree well 

except around R = 260 to 290 in. This discrepancy is due to the position­

ing of the return yoke steel above the valley (see Figure 1), causing the 

field to lag. At the worst point (R = 280 in.), ~£ = 5 deg, which 

corresponds to a change in v 2 of z 

0.16. 

However,~£ then decreases,and at 500 MeV~£= 1 deg, which corresponds to 

~v 2 = 0.10. z 

While this effect is annoying, it is not catastrophic, and can easily be 

corrected for by the use of shims. However, the error in flutter is more 

serious, as it cannot be shimmed out without ruining isochronism. 

The reasons for the large ~F2 are not hard to see in hindsight. 

The two curves of F2 vs R used in predicting the flutter were taken from 

two models, neither of which actually had an isochronous average field. If 

they had, their hill widths would have been different, resulting in diff­

erent flutter curves. Another, probably more important, reason is the 

zero error in the spiral angle, which will be explained in the next section. 

Although v was quite bad,this pole tip was sufficiently good that z 
it could be modified to obtain a pole tip which focused and was isochron-

ous out to 500 MeV. Another Mk VI design was done at the same time, but 
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wi'thout the use of this program. It proved to be unsatisfactory because 

of isochronism problems. Hence it is felt that the program, even in this 

state, served a useful purpose in the design of the magnet. 

2.4.2 Zero-offset in £ 

Once it was discovered that the flutter had been predicted badly by 

the interpolation technique, the program was rerun using the ~D technique 

described in Section 2.3.2. This produced a pole tip with a very large 

spiral. Extraction would be impossible with this magnet without drilling 

holes in the return yoke. 

At this point, the program was again modified. A zero-offset spiral 

angle was included in the formula for v2 (eqn. 8). The reason for this z 
can be seen in Figure 2. For R ~ 150 in., the actual spiral angle of the 

field was zero, but use of eqn.(8) gave a spiral angle of about 14 deg. 

Clearly, the assumption made earlier, that this error at low radii did 

not matter, was wrong. The hill angle h is effectively the integral of 

the spiral angle and is hence a cumulative parameter. Even though the 

spiral angle is wrong by only a little bit, its total effect on h is quite 

large. The modified form chosen for eqn.(8) is 

(19) 

where £0 = 14 deg. In this form, Eo has a large effect at low £, but a 

negligible effect at large£. That this does indeed approximate the full 

v2 expression somewhat better can be seen in Figure 15. Curve 2 is the z 
actual spiral angle of the field, curve 1 is calculated using eqn.(B), and 

curve 3 uses eqn.(19). The spiral angle is still overestimated by about 

2 deg for 200 in.~ R' 250 in., and underestimated by the same amount 

around R = 305 in. However, this is approaching the limits of our experi­

mental accuracy in determining £, and is certainly much better than the 

14 deg error previously for R' 150 in. 

At the time of writing this report, a working pole tip design had 

been achieved. It is basically the Mk Vl-1 design as described in the 

previous section, but with several modifications. Called the Mk Vl-1 

Mod 9 design, it is isochronous to within ±100 G, and focusing is good; 

v = 0.3 ± 0.1 except at R = 305 in., where v = 0.65. Hence we have a z z 
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pole tip which works, and we can check the results of program MAGNET by 

comparing them to this design. 

The program was modified to use eqn.(19) rather than eqn.(8). A run 

using the same input data as used for the Mk Vl-1 design produced a pole 

tip fairly similar to the Mk Vl-1 Mod 10 pole tip. (The Mk Vl-1 Mod 10 

pole tip is very similar to the Mod 9 tip. It was used because data on it 

were more readily available.) Figures 16 and 17 show the comparison. The 

spiral angles are within ±5 deg of each other. Although the Mod 10 pole 

tip seems to have a non-smooth spiral angle curve, most of the bumps will 

not appear in the field, as the field contour will not follow irregulari­

ties in the steel smaller than the gap width of 20 in. Hence the smoother 

pole tip predicted by the program should produce the same spiral angle in 

the field as the Mod 10 pole tip. The hill angles are within ±1 deg of 

each other, which is also encouraging. 

The hill width of the calculated magnet is much higher than that 

for the Mk Vl-1 Mod 10 pole tip. The reason is that this is not a finished 

design- i.e., the curve of D vs R has not been iterated. The hill width 

n is very strongly dependent on D. D in turn is strongly dependent on the 

amount and shape of the steel beyond 312 in., which is not set by the pro­

gram. Hence considerable work and a certain amount of judgement must be 

used when iterating D. On each iteration, the program sets the new hill­

to-hill distance out toR% 280 in., but for larger radii the programmer 

must choose an appropriate and physically-realizable D. Two or three 

iterations are usually sufficient. In the calculation above, only one it­

erationwas performed, using the hill-to-hill distanceof the MkV-3 model magnet. 

It is not to be expected that the program will generate a perfect 

pole tip. As can be seen in Figures 6, 9 and 10, the parameters ~ and F 

both depart from being single-valued functions of the magnet geometry as 

the radius approaches the 11 corner•• of the pole tip. The situation at this 

radius is very critical, as regards beam extraction. The main criterion 

for ease of extraction is n + h ~ 60 deg. Otherwise, the pole tip will 

bend over into the return yoke for the adjacent pole tip. For the Mk Vl-1 

Mod 10 magnet, n + h = 61 deg, and n must still be increased to correct 

for isochronism. Hence the point at which the program becomes least 

accurate is also the point where the design is most critical. A model 

must be used to check the design. 
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3. AZIMUTHAL MAGNETIC FIELD PREDICTION 

3.1 Introduction 

The problem of finding the magnetic field strength inside a complex 

magnet structure when high fields are involved has not been solved. The 

reason is that the permeability of the steel is a function of the field. 

This is in contrast to the electric field problem, where the dielectric 

constant is in general not dependent on the field strength, and hence 

Maxwe11 1 s equations can be solved. In this section, other less general 

techniques for finding the field will be investigated. 

3.2 Fits to Various Formulae 

An attempt was made to fit the azimuthal field contours with vari­

ous analytical expressions, and then relate the expressions to the magnet 

geometry. The first fit that was tried was of the form B = aen where B 

is the field and 6 is the azimuthal angle. The valley field only was fit 

by this formula, and the hill field was assumed to be flat. A good fit 

was obtained for 4 in.~ R ~ 10 in., but for large radii, the spiral 

angle caused an asymmetric valley field which could not be fit by our sym­

metric formula, and for small radii, the assumption that the hill field 

was flat did not hold. Also, no useful correlation could be found between 

the parameters a and n and the magnet geometry. 

A Saxon-Woods expression was also tried: 

B 
B 

B - 0 0 {e-e 0)/a · 1 + e 

The advantage of this formula is that it does have the right sort of curve. 

For our field contours, two independently-varied Saxon-Woods curves were 

added together. Figure 18 shows a least-squares fit to a typical field 

curve taken from the model magnet. Curves I I and I I I are the two curves, 

and curve IV is their sum. The fit is quite bad, especially at the 
11 corners 11

, where the error is ±500 G. No attempt was made to correlate 

the parameters to the magnet geometry. 

Other types of fits were tried, but they were even less successful. 
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3.3 Experimental Field Curves 

An experiment was performed to see how the field varies with 

distance from the pole tip. Figure 19 shows the experimental arrangement. 

Two steel plates were attached to the poles of a Varian V-4000 electro­

magnet. The gap was set to 1.000 ± 0.001 in. The steel was the same as 

that in the model magnet pole tips, both in composition and in thickness. 

It was hoped that the field along the median plane both inside and out­

side the gap would closely resemble the field produced by the model 

magnet. Readings were taken with a Hall probe, using the edge of the 

steel as the zero point (i.e. o~ = 0). Three sets of pole tips were used, 

the radii of curvature of the relevant edges being 5.5 in. concave, 

5.5 in. convex, and infinity (a straight edge). These curvatures are 

roughly those encountered in the model magnet. Three runs were taken for 

each set of pole tips, with the maximum field set at about 3, 6 and 10 kG. 

For each set-up, o~ was varied from -1.5 in. to +4.0 in. The fields 

obtained are plotted in Figure 20 (a,b,c). 

A computer program was then written to generate field contours of 

a real pole tip using this experimental data. The field at any point is 

computed by calculating the perpendicular distances to the nearest edges 

of the two closest pole tips, looking up in Figure 20 the field contribu­

tion from each pole tip, and adding the two together. By following this 

procedure for many points along a radius, one can obtain an azimuthal 

field contour. In this case, for ease of programming just one of the 

B vs D curves in Figure 20 was used - the 6 kG, R = oo curve. The diff­

erences between this curve and any of the others are just second-order 

effects, and we can at least find out how well the method works by using 

only one curve. The field contours obtained so far are now multiplied by 

the ratio of the maximum hill field of the real magnet, to the maximum 

field of our calculated contour. This is an acceptable procedure, as we 

can obtain virtually any desired hill field by adding or removing steel 

above the pole tip. 

The first results were not encouraging. Although the general 

shapes of the field contours were produced, the valley field was too high. 

The reason is that the close proximity of the coils and the supporting 
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structure in the Varian electromagnet causes the fringing field around it 

to be higher than that around a pole tip. This problem was overcome by 

the following technique. We know what the minimum field should be for a 
I 

given pole tip from the parameter~ (see Section 2.3.1). The generated 

field contours can now be expanded to get BH- BV correct, and shifted 

until the average field is correct. 

The modified program was run using the accurately measured data 

points for the Mk Vl-1 Mod 10 pole tip. The 1 isting of this program is given 

in Int. Rep. 1-70-4. Results were quite good. Table I compares the flutter 

and average field of the generated contour with that of the field actual­

ly obtained from this pole tip. Neglecting radii 14 in. or greater, the 

maximum error in B was 66 G, or 2%, and the maximum error in flutter is 

7. 9% at R = 2 in. The two radii with the greatest error in Bare plotted 

in Figure 21. In the 4 in. radius curve, the minimum valley field has 

been incorrectly predicted; that is, ~ is wrong by about 3%. In the 

12 in. radius curves, we see that the hill field of the actual model mag­

net is not flat. Thus, in a sense, the real field is not correct, since 

the field could have been made flat by changing the return yoke steel. 

The program will generate a field with a nearly flat hill. Even though 

we have these two error sources, we have still predicted B within ±70 G, 

and F2 within ±6% in the range 3 in. ~ R ~ 13 in. 

As with the magnet program, this program does not work well for 

very small or large radii. For small radii, the width of the pole tip is 

becoming less than the gap size, and hence the contour of the field will 

not conform to the geometry of the pole piece. At large radii, the 
11 corner 11 in the steel where the spiral has been abruptly cut off has an 

effect. Obviously the field a distance away from a 11corner11 will not be 

the same as the field the same distance from a straight edge. A two­

dimensional grid of points would have to be measured around an appropriate 

pole face, and then the program would have to be modified to mesh these 

points smoothly with the field contours obtained over other parts of the 

pole tip. The problem was not attempted. 
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TABLE I 

COMPARISON OF PREDICTED B AND F WITH ACTUAL 
B AND F FOR THE MK Vl-1 MOD 10 MODEL MAGNET 

Actual Mk Vl-1 Mod 10 
- F2 - F2 -B B liB 

(kG) (kG) (G) 

3.082 0.00123 3.061 0.00120 -21 

2.889 0.0215 2.920 0.0198 31 

2.932 0.0645 2.990 0.0613 58 

3.153 0.1203 3.219 0.1135 66 

3.215 0.1671 3.263 0.1612 48 

3.225 0.2089 3.241 0.2143 16 

3.269 0.2530 3.290 0.2572 21 

3.299 0.2871 3.299 0.2911 0 

3.351 0.3074 3.335 0.3096 -16 

3.489 0.2969 3.479 0.2958 -10 

3.675 0. 2712 3.645 0.2767 -30 

3.869 0.2306 3.831 0.2399 -38 

4.080 0.1825 4.067 0.1876 -13 

4.242 0.1324 4.373 0.1035 +131 

4.694 0.0635 4.547 0.0860 -147 

t~F2JF2 

% 

-2.4 

-7.9 

-5.0 

-5.7 

-3.5 

+2.6 

+1.7 

+1.4 

+0.7 

-0.4 

+2.0 

+4.0 

+2.8 

-21 .8 

+35.4 
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4. TOLERANCES 

4. 1 Theory 

The tolerances on the dimensions of the pole tip are determined 

from a) the isochronism condition on B, and b) the requirement that 

vertical focusing be real and not pass through any serious resonances. 

The method to be used here is that of Craddock and Richardson. 7 

The equation for vertical focusing, as in Section 2.2.2, is: 

(8) 

The limits on v 2 are set from the following considerations. The lower z 
limit is v 2 = 0, because v , the number of betatron oscillations the z z 
particle makes per revolution, must be real. The upper limit is set by 

the various resonances between the vertical oscillations and either the 

magnet structure or the radial oscillations. The closest, most serious 

vertical resonance is the v = 1/2 resonance. Hence the upper limit is z 
v~ = 0.25. The value chosen for the TRIUMF cyclotron is v~ = 0.125 ± 0.05. 

The tolerance quoted allows 2.5 standard deviations in v 2 before we reach z 
either limit. Hence v 2 should remain sufficiently far away from both 0 z . 
and 1/2 that the amplitude of the beam oscillations will not increase 

appreciably. 

We wish to find the allowable errors in F2 and£ by means of 

eqn.(8). The tolerance on~~ comes from the equation defining it: 

r dB 
=~-

B dr 

Differentiating, we find 

(20) 

since the permissible percentage error in B is negligible compared to 

that in dB/dr. The tolerance on dB/dr is set to ±2 G/ft because of trim 

coil considerations. Hence from eqn.(20) we can find~~~ for any rand 

if, and then from eqn. (8) we can find the allowable error in F2 (1+2 tan2£). 
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This error is now broken up arbitrarily such that 95.5% of it 

applies to the ( 1 + 2 tan 2£) term, since the spiral angle £ is the most 

critical parameter at large radii. This leaves 30% of the error to the 

F2 term, following the rules for addition of standard deviations. 

We are now able to find tolerances for F2 and £. We must now 

translate these into usable tolerances on the azimuthal positions of the 

focusing and defocusing edges of the pole tip. From geometry, we have 

2 tan £ = tan £f + tan £d 

(21) 

where £f and £dare the spiral angles of the focusing and defocusing 

edges, respectively. We now introduce a weighting factor A defined by 

This definition of A satisfies eqn. (21). If we assume that the work in­

volved in shimming is inversely proportional to the angular tolerance 

raised to the power n, where n is normally assumed to be 1, then minimiz­

ing the total work yields 

2n 
tan A = (cos £d12+n 

COS EfJ 

From this we can find A, and hence ~£d and ~£f. 

(22) 

To find a tolerance on the azimuthal value of the measured points, we 

have, from geometrical considerations, 

(23) 

where h~ =distance between the measured points, and ~yd =allowable azi­

mutal error in the measured point. The tolerances on the points in a 

direction perpendicular to the tangent to the spiral can again be found 

from geometry to be 
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Similar equations hold for the defocusing edge of the pole tip. 

We now have the necessary formulae to determine the required 

tolerances on the manufactured pole tip. 

4.2 Results 

(24) 

The Mk Vl-1 Mod 10 pole tip was measured with the aid of a milling 

edge-finder to an accuracy of ±0.002 in. on each point. A computer pro­

gram was written which differentiated the smooth curve approximation to 

these points to find Ed and ef. The pole tip tolerances were then found 

by the application of the formulae in the previous section. The whole 

program is listed in internal report TRI-1-70-4. 

The calculated tolerances appear in Table I I. These tolerances 

are beyond the contouring accuracy available in flame cutting large 

10 in. thick plate steel. Therefore, the pole piece will be cut under­

size, and shims will be added during assembly to achieve the correct 

contour. 



TABLE I I 

TOLERANCES FOR THE MK Vl-1 MOD 10 POLE TIP 

R t:.F2/F2 t:. ( (B-B) 2)~ E: E:d t:.E:d t:.ad t:.yd E:f t:.E:f t:.af /J.y f 
(in.) (%) (G) (deg) (deg) (mrad) (in.) (in.) (deg) (mrad) (in.) (in.) 

50 10.7 60.6 0 0 - - - 0 - - -
100 7.9 53.3 0 0 - - - 0 - - -
150 5.3 45.3 1.0 0.2 - - - 1.8 - - -
200 3.4 34.7 18.3 24.5 118.9 0.840 0.923 11.6 1 31 . 1 0.927 0.946 
250 2.0 19.8 43.0 46.9 33.0 0.233 0.341 38.4 39.6 0.280 0.357 
260 1.8 16.3 50.0 53.3 25.0 0.177 0.295 46. 1 30.4 0.215 0.310 
270 1.6 13.2 56.4 58.7 19. 1 0.135 0.260 53.7 22.8 0. 161 0.272 
280 1.5 10.6 62.0 61.2 16.2 0.115 0.237 62.7 15. 1 o. 107 0.233 
290 1.3 10 .0 62.7 60.3 15.0 0.106 0.214 64.7 . 12.3 0.087 0.203 

300 1.2 9.5 63.4 62.5 12.2 0.086 0.186 64.3 11.2 0.079 o. 182 

305 1.1 8.4 66.1 67.6 9.06 0.064 0.168 64.4 10.7 0.076 0.176 

310 1.0 6.7 70.7 74.7 5.48 0.039 0.147 63.9 10.9 0.077 0.175 

311 1.0 6.2 72.0 76.4 4.75 0.034 0.142 63.8 11.0 0.078 0.176 
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5. FLUX CALCULATIONS 

5.1 Flux Measurements 

A survey of the flux in the steel return yoke of the Mk Vl-1 Mod 9 

model magnet was taken. A single loop of fine wire was wrapped around 

the steel through which the flux was to be measured. The ends of this 

loop were connected to a digital voltmeter (DVM) which was set to read 

volts integrated over time (volt-sec). The magnet power supply was run 

up to its full rating and back down again, with the DVM being read and 

reset after both the up cycle and the down cycle. The two readings were 

averaged to eliminate zero drift in the DVM. 

The magnetic flux in the steel was then calculated by applying 

Faraday•s Law, which states that 

dct> v = -­dt (25) 

where Vis the electromotive force induced in the coil, and ct> is the 

flux flowing through the area enclosed by the coil. Solving for ct>, we 

find 

ct> = _ r VdT . 
0 

The term on the right is just the DVM reading. 

(26) 

If we know ct>, we can find B , the field strength inside the steel, 
s 

by using the definition of ct>: 

J 
B • ~ da = B A n 

(27) 

where B is the field normal to the coil, and A is the area of the coil. 
n 

We then have 

B 
s 

= /s2 + s2 + s2 
1 2 3 (28) 

where B1 , B2 and B3 are the field strengths at one spot in three mutually 

perpendicular directions. 

A series of horizontal yoke radial flux measuring coils were set 

up, as in Figure 22. See Figure 1 for a general view of the magnet. The 
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Scale: 1/211 = 111 

I 
5 I 8 I 

I 18 I 

~---~ 
6: 9 I 

19 I t-----? 
7 10 

Scale: 1/411 = 111 

Figure 22 

Radial Flux Measuring Coils 
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average fields inside each coil are given in Table I I I. All areas and 

radii are given in full-scale dimensions. Coils 18 and 19 show the 

existence of a vertical B component. Its contribution to the total field 

can be calculated by eqn.(28) as follows: 

Coi 1 5 Coi 1 6 Co i 1 7 

~ rs:: ~ 4.9 6.1 6. 1 
13.6 13.5 

Coi 1 8 Coi 1 9 Coi 1 10 

4.9 4.9 ~ 
114.6~ 

6. 1 ~ 17.0 

Hence the increase in IBI is of the order of 10%, and must be taken into 

account in any permeability calculations. 

Similarly, a series of vertical return yoke flux measuring coils 

were set up as shown in Figure 23, and the results are given in Table IV. 

Table V gives the results of the runs done on the eighth-scale central 

region model. 

The coils for measuring the transverse flux in the horizontal yoke 

are shown in Figure 24, and the results in Table VI. As expected, coils 

D and E show very little transverse flux, but the lower section of coil F 

has a 6.1 kG average field through it. Coil H demonstrates the extremely 

complex nature of the flux lines in the magnet. Figure 25 is a graph of 

the field flowing through coil H plotted against the potentiometer 

setting of the magnet power supply which is a linear function of the mag­

net coil excitation (940 corresponds to full excitation). This behaviour 

is difficult to explain, but it has to do with the variation of steel 

permeability with changing coil induction. Figure 25 also has a similar 

plot for coil 16. Note the change of scale for this curve. It can be 

seen that the steel in this region is highly saturated, as the incremental 

permeability is the same as that of air. 
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Figure 23. Vertical Return Yoke Coils 

Figure 24. Transverse Coils 
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TABLE I I I - HORIZONTAL YOKE RADIAL FLUX 

Approx. Approx. 
Coi 1 # Area Radius B Coi 1 # Area Radius B 

(in. 2 ) (in.) (kG) (in. 2 ) (in.) (kG) 

1 2680 354 18. 1 11 2380 114 14.7 

2 1790 354 22.9 12 1220 83 17.6 

3 2680 312 18 .9 13 1860 260 12.0 

4 1790 312 22.0 14 3030 312 11.5 

5 1790 218 12 . 7 15 1770 338 22.1 

6 1950 218 12 . 1 16 1930 338 28.1 

7 2380 218 12.1 17 2920 312 10.0 

8 780 187 9.7 18 2530 - 4.9 

9 1570 187 13.8 19 2600 - 6. 1 

10 1570 187 15.9 

TABLE IV - VERTICAL RETURN YOKE FLUX TABLE v - CENTRE REGION FLUX 

Coi 1 Area B Radius Area B 
(in. 2 ) (kG) (in.) (in. 2 ) (kG) 

A 4970 17.7 16 25.1 20.3 

B 4020 16.3 24 79.4 15.6 

c 2620 20.3 32 105.6 19.7 

36 173.4 16. 1 

TABLE VI - HORIZONTAL YOKE TRANSVERSE FLUX 

Coi 1 Area B Co i 1 Area B 
(in. 2 ) (kG) (in. 2 ) (kG) 

D 1280 -1 .08 F 2080 0.60 
upper upper 

D lower 805 0.14 F lower 2000 6.10 

D total 2080 -0.66 F total 4080 3.48 

E 2370 -1.48 upper G 813 -0.75 

E lower 1560 3.15 H 1460 -6.11 

Etotal 3920 0.35 



30 

25 

20 

15 

10 

5 

0 

-1 

I 

/t 
PERMEAB ILl TY = o- + 

-a-~ / (air) l_ ~ -- - -
0 

+ /-COIL 16 
scale) / /o (left-hand 

+ 

/-COILH 0 

/+\ 

i \ I + 

100 

(right-hand scale) 

+ 

/ 
/ 

+ 

/ 
+ 

400 500 600 700 Boo 900 
Power Supply Potentiometer Setting 

DESIGN EXCITATION ----+ I 

Figure 25. Field through coils Hand 16 as a function of the power supply potentiometer 
setting, which is proportional to the main coil excitation 

6 

- o-

5 

4 

3 

2 -""" 
0" 

100 



- 47 -

A small leakage flux exists around the main magnet coils. Figure 26 

and Table VI I show this. The leakage flux is due to the fact that the 

flux return path length between the coils is comparable to the magnet gap, 

and hence a shorting effect occurs. 

TABLE VII 

LEAKAGE FLUX 

Coi 1 Area (in.2) B (kG) 

J 247 1. 16 

K 2310 0.92 

5.2 Flux Calculations 

Let us assume that all the flux crossing the median plane of the 

magnet reached that point by traversing a path through the steel return 

yoke. Let us also assume that the flux crossing the median plane at any 

radius left the steel at that same radius. We can then find the total 

flux~ crossing the median plane inside radius R from 

J
R 

~ = 27T B r dr. 
0 

(29) 

By our first assumption,~ is also the flux flowing through the steel at 

radius R. If we know A' , the area of the steel return yoke as a function s 
of R, then we can use relation 27 to compute the field strength B in the s 
steel. The results of this calculation for the Mk Vl-1 Mod 9 model 

magnet are shown in Table VI I I. 

Table IX compares these results with the actual experimental B s 
values obtained in Section 4.1. The calculated values are too big by a 

factor of about 1 .2. Since the calculated flux crossing the median plane 

must be accurate to within one or two per cent, most of this discrepancy 

is due to flux leakage- some of the flux travels through the air rather 

than the steel. The ratio of the actual B to the calculated B is about s s 
0.85; hence about 15% of the flux takes a path through the air. 

5.3 Calculation of Magnet Reluctance 

The calculation of the magnetic reluctance of the cyclotron magnet 

is a very complex problem requiring several simplifying assumptions. 
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TABLE VIII 

CALCULATED FLUX DENSITY IN STEEL FOR MK VI-I MOD 9 MAGNET 

Radius 
(model in.) 

2 

4 

6 

8 

10 

12 

14 

15 

16.25 

R 

(in.) 

15 
10.5 

9 

5.5 

--
4> As 

(kG-in. 2 ) (in. 2 ) 

4.92 0.4 

25.3 1.2 

57.8 3.8 

106.0 6.5 

169.0 12.0 

254.0 16.5 

366.0 21.4 

432.0 23.5 

528.0 25.9 

TABLE IX 

CALCULATED FLUX DENSITIES COMPARED 
WITH ACTUAL FLUX DENSITIES 

B(measured) B(ca1c) 
(kG) (kG) 

14.8 18.4 
12.3 14.3 

13.8 15.9 

14.7 17 . 5 

Bs 
(kG) 

12.3 

21.1 

15.2 

16.3 

14 .I 

15.4 

17. I 

18.4 

20.4 

Ratio 

0.80 
0.86 

0.87 

0.84 
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First, let us assume a radial flux flow, with the field crossing the 

median plane at radius R coming from the steel at R. To a first-order 

approximation we can divide the magnet into N radial increments. Each 

increment has two components of reluctance - the steel and the gap. 

z = z + z . s g 
(30) 

The reluctance of the steel is just 

z = R.:ii 
s ( 1 + 11)a s 

(31) 

where R. is the effective path length through the steel (the radial incre­s 
ment in this case), a is the cross-sectional area of the steel, and 11 is s 
the steel permeability. The term 1 + 11 accounts for the possibility of 

the flux taking an air path, assuming that the length and area of the air 

path are the same as those for the steel flux path. The gap reluctance 

can be broken into two parallel components- the hill gap and the valley 

gap reluctances: 

z = g 
(32) 

(33) 

for a given magnet, we know the hill and valley areas ah and av, but we 

do not know the effective valley path length R. • We can estimate R. from v v 
the relationship 

which comes from the fact that the two reluctances are in parallel. Thus 

we have 

(34) 

The magnetic circuit is shown in Figure 27. Z is the vertical 
y 

return yoke reluctance, and Nl is the magnetomotive force of the main ex-

citation coils. The total reluctance of the magnet can be calculated as 

follows: 
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z1 = 2Zs + zh]ZV~ 
1 zh + v 1 1 

z2 = 2Zs2 + 
zhzzvzz1 

zh zv + Z (Zh + zv ) 
2 2 1 2 2 

This process is repeated until Z has been computed. Then the total 
n 

reluctance is 

+ z 
y 

Zt can be used to calculated Nl, via the relationship 

Nl = ~ zt. 
0.4~ -

(35) 

(36) 

(37) 

The calculation was carried out on the Mk Vl-1 Mod 9 model magnet. 

The program used for this is listed in lnt Rep. 1-70-4. The results were 

not encouraging. The calculated number of ampere-turns required was 

15,800, but the actual number is 33,650. One of the major causes of this 

discrepancy was the assumption implicit in the calculation that all the 

steel at any particular radius has the same permeability. The flux 

measurements in Section 5.1 show how bad an assumption this is. However, 

a calculation which takes this factor into account would be very diffi­

cult. A partial correction can be done by dividing the magnet azimuthally 

into two sections, calculating the reluctance for each section, and adding 

them in parallel . The natural division is along the line shown in 

Figure 28, as the height of the steel return yoke suddenly changes here. 

Also, since the return yoke plates are along a radius line, the air gaps 

between the plates will tend to prevent flux going from one section to 

the other. The flux measurements do tend to vindicate this approximation. 

This calculation was also performed using the Mk Vl-1 Mod 9 data, and 

resulted in an excitation of 25,500 ampere-turns. 

There are many major sources of error in a calculation of this 

type. For one thing, the steel permeability is very strongly dependent 

on the field strength- a small 6Bs results in a large 6~. The calcula­

tions assume that ~ is constant over the whole steel cross-section, but 
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this far from reality. The computed path lengths in the steel are also 

wrong, as the flux does not necessarily travel radially. Air leakage 

flux must produce some discrepancy. The two-section calculation does not 

allow any flux leakage from one section to the other, which is also not 

true. In general, then, the very complex geometrical shape of the TRIUMF 

magnet will make any fairly simple reluctance calculations accurate to 

only ±25% or so. 

The method described here is accurate enough for tolerance calcu­

lations, however. When the two-section calculation above was redone with 

the steel permeability changed by 10%, it was found that the magnet 

reluctance changed by 4%. Adding on 25% for the error in the calculation 

gives a maximum reluctance change of 5%. So we have 

l:q.t "' 2 !J.z (38) 
l.l z 

We can compare this with the results obtained by Craddock and Richardson.7 
!J.z 1 Since z-"' 200 for TRIUMF, then by eqn.(38), 

(39) 

This corresponds closely with Craddock and Richardson's result of 
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