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INTRODUCTION
These lectures are intended as an elementary introduction to some of 

the ideas of lattice quantum field theory1 for an audience already 
familiar with field theory in the continuum.

There are, I think, two not wholly unrelated reasons why one should 
know something about field theories on a lattice: Firstly for numerical
results in strongly interacting systems like QCD it seems to be the only 
procedure that works well enough to be implemented with some degree of 
control over the accuracy of the results. In the next few years 
practitioners of the art hope to be able to compute the hadron spectrum 
from essentially first principles (requiring only the quark masses and 
the QCD parameter as inputs). The results of this computation will 
either agree with what we see in nature or not. While I am sure that 
there will be much debate before a consensus is reached, first results in 
this direction seem promising.2

The second reason is more philosophical: When one first learns
field theory in a traditional course, from Bjorken and Drell for example, 
most people, myself included, feel ill at ease with the subject because 
of the infinities. In any perturbative calculation there is a well- 
defined procedure to follow which, provided one does the sums correctly, 
will give an answer that makes physical sense and will be the same no 
matter who does it. As soon as one moves away from perturbation calcu­
lations towards general arguments, however, it is no longer clear what 
the rules of the game are and there exist situations in which wise men of 
good faith will disagree about the answer. With a lattice and view of 
the continuum limit being taken in the sense of critical phenomena (a 
view due essentially to K.G. Wilson), one has a well-defined game in 
which questions such as "is (X^)^ a free theory" can be posed precisely 
(if not yet answered decisively). This does away with the feeling of 
skating on thin ice and restores one's belief that we know what we are 
talking about even if we do not know all the answers.

While the second reason adduced above is the aim of "constructive 
field theory" which is a very formal subject, I do not intend to be 
formal in the organization of this material. I do, however, hope that 
there is some logic in the order that topics are presented.
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LECTURE 1. SCALAR FIELDS - FREE AND INTERACTING

Throughout these lectures I am going to work in Euclidean space time 
[signature (+,+,+,+)]• Most of the time I shall be using a discrete 
lattice in all four directions with hypercubic symmetry (i.e.2?1*). I 
shall occasionally allude to the Hamiltonian formalism which uses a 
continuous ”time! variable ( I R ® ^ 3) and of course mention the connection 
with the real world which has continuous time and space and has Minkowski 
signature For the moment just visualize a four-dimensional
square lattice. I am also going to assume that you are all familiar with 
relativistic quantum field theory in the continuum, preferably in a 
a functional integral approach.

In this first lecture we will go back to basics and study the free 
scalar field theory on with the particular intention of exploring 
the particle/field duality which is a fruitful way to think in lattice 
theories.

We put a real 
at each point

scalar variable $(n) 
S = (n^.-.n^) on2.d.

We look at the integral
d

/ * j m  i V "  d l" 1 ( M n + i )  -  ^ ( n ) -) 2 m2= / d[<t>] exp]- > a  + -2- ,+,(£)
J  I L.2 a2 2

( 1 . 1 )

In this expression
d[<)>] =  I I  d f  <J>(n))

n
a = lattice spacing 
i = (0,... 1,0...)

it*1 space
One should think of Z as the partition function of some statistical 
system of springs and masses. The exponent is clearly to be thought of 
as a lattice approximation to

L  = / ^  ( 2  ( H ) 2  +  f ~  < t > 2 )  '  ( 1 > 2 )
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We are really interested in the Green's functions which can be 
thought of as the correlation functions of the <f>(n) with respect to the 
probability distribution in (1.1)

<tf)(n1) ... (n±)> = —  f d[(j>] c()(n1) ... (Kn^.) expj- ^  (...)(. (1.3)
Z J  I n,i=l >

We can evaluate these Green's functions by the simple but relatively 
unilluminating procedure of Fourier transforming <|>(n). Let

„"Hr
♦ (ft)

- /-TT

ddk
(2 i r )d

$(*) . (1.4)

Because of the discrete cubic lattice the t are restricted to lie in a 
Brillouin zone

The converse of this formula is

since
5>(k) = X )  e in * ^ <f)̂

ne 2 d

/
“ IT

ddk
(2TT)d

pit* (n-n ) - x , x , x ,e ' ' °n n' °n n' ••* “njnl
1 1  2 2 a  a

n me
In terms of $(k) (and setting a = 1),

- / d [i] exP ~ J 2 + 2 i  (1-coski) |Kk)

(1*5)

y i  eiS*(t £’) = ^2 (2 it) d 6d( t - t '  + 2irm) . (1 .6 )

(1.7)
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and we can read off

<i(tx) $(t2)> = 6d (61_^2) ------------  (1.8)
m2 + 2 2 (1-cosk-.)0 j 1

or, in configuration space,

<4>(\) 4>(n2 )> = / -----    -£------- , (1.9)
J  (2tt) + 2 2 (1-cosk^)

1
This is clearly the analog of the continuum propagator since 2(l-cosk) = 
k2 + OCk4).

To get more insight into this expression let us reorganize the 
exponent in (1.1):

Z =

Rescale

= Jd[<j>] exp | + ̂  <f>(n+i)(J>(n) ~  ̂(2d+m2) | • (1-10)

<J> -> V 2d+m2 <J> (1 .1 1 )

and absorb the Jacobean into the measure

z 'fi/t]exp!+̂  £ s<*+t>+<*> - e • (i-i2>
n,i h

If m2 is large it makes sense to expand out the first term in the exponent 
and obtain a typical "strong coupling" or "high temperature"^ expansion:

Z = d
n,i

If we use the formulae

<b2 / 2 = ir
J  /2tt
f  _ * L _  i j ) 2 n + l  e -<}>2 / 2  =  o 

J /2tt
f  -A t- 4,2 e -ct,2 / 2  = l

J /2tt
/* d<̂ - (j)14 e-^2/2 = 3 etc. , (1.14)

J /2 t t
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we can organize the expansion into diagrams which form closed loops

with a weight l/(m2+2d) for each link used. The factor of 3 in the ((A 
integral (1.14) means that a diagram such as this

has a weight of +3 which can be regarded as the sum of three diagrams

All the other n!, etc. in the expansion of the exponent in (1.14) 
lead to the plausible, and true, result that the expansion for Z is a gas 
(or solution) of closed, non-interacting, loops. If we were calculating 
Green's functions the <(>(n) act as sources where the lines can start or 
stop, so we have a Feynman diagram-like expansion for them together with 
vacuum loops. We will interpret these lines and loops as the world lines 
of the particles created and destroyed by the <j>(n) fields.

We will now sum these diagrams and recover the results we obtained 
from the Fourier transform method. [This is easy here but these methods 
can be used to solve non-trivial problems such as the d=2 Ising model.]1*

Random Walks

Let us temporarily forget about our field theory and just look at 
the theory of random walks on a hypercubic lattice. Let

r(n1,n2,t) = r(0,n2-n1,t)
= number of walks from n^ to n2

which are t steps long (1.15)
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Then it only takes a moment to see that

T(0,n,t) = coeff. of x^l x^2 ... xnd in

(X1 + ^~ + X2 + ^  + ••• + xd + ^ ) t * d * 16)

If we put x^ = e^ki we can extract this coefficient as a closed formula

r(<

If we then define G(0,n,p) by
/ddk

   e lk*n (2cosk + 2 cosk + ...)t . (1.17)
(2 i r ) a

G(0,n,p) = ^  e-ty r(0,n,t) (1.18)
t=0

we see that G is essentially the propagator (1.7)

ddk 1
G ( 0 ,h ,p) = I ------ e_lk*n-----------------l,n,u) - f

(2ir)d 1 - e~h 2 2 cosk.
1 1

>/;= (m2+2d) I  - 2 ^ -  e-1^  ------- ^ --------- (1.19)
(2ir)d m2 + 2 2 (l_cosk.)o l  i

provided e“h = (m2 + 2d)-1. The factor in front of the integral reflects 
the scaling made in Eq. (1.11). We have thus proved that the sum over 
paths from n1 to n2 with the weight (m2 + 2d)-1 per link does indeed 
produce the propagator.

If we want to sum up the closed vacuum loops we have to be a little 
bit more careful to avoid overcounting. If we fix a point on a loop and 
sum over all loops through that point of length t we find:

e-Ut r(n,n,t) = J e-^  £  cosk^ (1.20)

but if we want to sum on n to get all loops of length t we must divide 
by 2t. The factor t arises because all t vertices on the loop are 
equivalent and the factor of 2 occurs because the loop occurs twice with 
opposite orientation. (This factor would be absent if we were using 
complex <f> fields as there would be arrows on the loop just as for charged 
continuum fields.)

The total sum over all configurations of one loop is therefore
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N £ (J2coski e~“ )

= - —  / * ddk *n(l - e"W 5 ^  2008^  
2j(2Tr)d \ ^

= c onst / -- ---- Jtnlm2 + 2 > _ (1-cosk.)
2 J  (27v)d \ 0 1

(N = # of sites in the lattice). (1.21)
If we sum over a gas of n loops one must divide by n! to avoid over­

counting, so finally:

Z = exp - | ^ * n ( m 2  + £  (1-cosk.))

= det_1/2 fA2 + m2) . (1.22)

We could have obtained this directly from (1.7) of course, but I think 
it is rather nice to see the determinant expression for the vacuum loops 
come directly from the grand canonical ensemble of a "loop gas" with 
fugacity e-lJ for each "monomer" or link.

I hope everyone is familiar with the continuum expressions

z  =  < ° o u t l ° i n >  =  e x p j -  J -  J £ n ( k 2+ m 2 )  j

= exp(- E0T) (1.23)

d

Eo _ V j _ d _k £n(k2+m2 ) = —  j  ^ ^ V^2 + m2 (+ m indep. term)
2 J  (2ir)^ 2 J  (2x)3

= j  hv/degree of freedom) x number of states 

Putting in Interactions (1*24)

We have seen that a free scalar field theory - i.e. one whose 
functional integral is purely Gaussian - could be interpreted as a gas 
of non-inPeracting world lines (a better physical model would be solution 
of polymers). If we introduce a non-Gaussian X<jA term (X > 0) into the 
action

= j ' d [ 4>] e x p j -

n, l

<|>(n+i) - <|)(n) 2 mj^Z^) X<Jil+(n)' 
  + —   +

A! , (1-25)

the Xf))1* term can be used in the large m expansion when lines cross. It
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has the effect (because of the minus sign) of reducing the contribution 
to the sum over loops of configurations where lines cross. In other 
words it leads to a short-range repulsion between loops and between one 
part of a single loop and another. This type of interaction is actually 
used to model the effects of short-range repulsion in polymer solutions.

If one were to take X < 0 then the integral would diverge at large 
<j>(n). This is reflected in the force between polymers being attrac­
tive. The force does not saturate and if one has n walks close together 
the cost in action per unit length is proportional to

S = an - gXn2

for some a,8 (the factor n2 is because there are n(n-l)/2 pairs of lines 
to interact) . This is essentially the same as in the continuum where an 
n-particle bound state has mass:

mn - KXn2

and will become tachyonic if n is large enough. When this happens the 
the vacuum is filled with a tangled mess of world lines. A polymer 
precipitates out of solution if the interstrand forces become attractive.

If we return to the case X > 0 but now take m2 < 0 so that 
spontaneous symmetry-breaking occurs for small X, then a similar picture 
holds; having m2 negative means that:

e“U > (2d)"1 . (1.26)

At each step of a walk on a d dimensional hypercubic lattice one has a 
choice of 2d directions to go in. If (1.26) holds, the e-,J factor is not 
enough to discourage long walks and the vacuum fills with a spaghetti of 
vacuum lines now limited in the density they achieve by the interparticle 
repulsion. This is the world line picture of a Bose condensate.

Gauge and Electromagnetic Interactions

In order to discuss charged particles we must, just as in continuum 
physics, allow <f>(n) to be a complex field. This just has the effect 
of adding an arrow to the diagrams to distinguish the use of the now 
distinct hopping terms <J)*(ti+l)<|) (fi) and <j>(fi+t)(|)*(ft) .

To introduce an electromagnetic interaction we modify the action by 
replacing the exponent with

S = - e±eA(*+l>*)«),(£) 12 + m2<f,*j,} .

This means that the field at n+1 is compared with the field at n after it
has been "parallelly transported" by multiplication with the phase factor
on the link. For a non-Abelian gauge group the phase factor would be
replaced by a matrix living in the representation of the group to which 
<J)(n) belongs.
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Since
— ^  ̂  ~ e^e^(n^ > n ) 4>(n) |2 + m̂ij) =

t,S

- (2d + m2 )d>*4> + <()(n+1) eieA(fi+i^) «},(£)

+ <()(n+x) e_^eA(^+^>^) <J>*(ri)
the hopping terms are

<f>*(n+l) eieA(n+l,n) ^(n), <j,(£+l) e~ieA(n+i,n) ,),*(£) ,

which give rise to the diagrams:

(j) (j>* 4>* 4>
 > —  —

n+i n n+1 n

with weights for a world line of t steps of

 i  1 [ eieA(n+l,n) .
<2<‘+»«> links

For closed loops we find that each loop has a "Wilson loop” factor

eieA(n+l,n)

which is reponsible for the interactions. If we recollect that for a 
continuum

<W> = / d [ A ]  exp

Ju = e J " d t 64 (x-x(t))

<W> = exp - j  J Jy (x) Gyv(x-y)Jv (y) d'+x
we see that after integrating over gauge fields the effect is, for 
Abelian fields, of providing a Biot-Savart-like force between the world 
lines which carry a current proportional to their charge. The factor of 
"i" in the phase factor has the important effect of changing the sign of 
the interaction so that parallel conductors repel one another and anti­
parallel world lines attract.
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LECTURE 2. CONTINUUM LIMIT, RESTORATION OF ROTATIONAL 
SYMMETRY AND ASYMPTOTIC FREEDOM

To discuss the topics in the title of this lecture I am going to use 
a simple solvable model which illustrates them all in a very transparent 
way. This is the two-dimensional 0(N) symmetric non-linear a model in 
the large N limit.

The partition function is the same as the free scalar theory except 
for a constraint on <J>:

z = / d m  601,2-1 ) expj - I  [<t»a (?i+l) - <(,“ (£)]! ; (2 .1 )
* n,i ’

here $ = (<pa ) is an N component vector in some internal space. We can 
solve this model in the N -v <» limit just as we can in the continuum. We 
introduce a "Lagrange" multiplier X(n) to enforce the constraint

z = / d[X] f  <![<(>] exp J  [*(*+*) -4>(n)]2 + £  iX (*) [<|>2-1 ] J .

4 ,1  ( 2 . 2 ) 
If we put g2N = ot = const, X = NX we can use the method of steepest 
descent. If we assume X is a constant we can perform the <(> integrals to
get

f dx exp - N [jr (2-2coski) - 2iXa) + iX
/ (2tt )d

(2.3)

so the X saddle point equation is
,+ rr

2ia / ddk/ + i = 0

= 1 . (2.4)

2 J  (2ir)2 2(2-2cosk-j) - 2iXa-TT

or if we put -2iX = m2
vHr

a / ddk _________1_________
J  (2tt)2 2(2-2cosk.-) + m2-IT

Using this method to compute the correlation functions we find that

^ “ (ftj) <|)B(?i2 )> = 6ag ^  A(f!x ,#i2 ,m2 )

, A ,-> ■* o .  / ' " hTd d kwhere A(n ,n ,m2 ) = / ---- - ---------- ±— 3--- ^  (2 .5 )
1 2 J  (2ir )d 2 2 (1-cosk-,-) + m2

IT

and (2.4) can be written as
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N
< £  <j>2 -  1> = 0 . (2.6)

1

In two dimensions the integral on the LHS of (2.4) is infrared divergent 
as m2 + 0, so for all a we can find a solution with m2 > 0. In more than 
two dimensions A(0,m2 ) is bounded above by the finite number A (0,0) so 
for a < ac = [A(0,0)]_1 there is no solution of (2.4) for real m and we 
must set m2 = 0. There is a phase transition at ac •

In two dimensions, after some searching in Gradshteyn and Ryzhik, we 
discover that

A (0,m2 ) = —   J  k (  \ ^
2ir (1-fm2 /2 ) \(l+m2/2 )/

where K is a complete elliptic integral. As m + 0

(2.7)

1 32A(0,m2 ) = -—  £n —— + 0(m2 ) (2.8)
4tt m z

so we can solve for the connection between a and m2 when m2 is small:
1 1  32-  = —  £n —  . (2.9)
a  4 tv mz

This means that m2 is small when g2 is small.

When g2 and m2 are small most of the contribution to the propagator 
comes from small k where the integrand looks like (^-Hn2 )-1 which is 
rotationally invariant. Let us look in detail how this comes about:

(x,m2 ) = J
,+TT j. .

d2k e ^ ' X
A(x,m2 ) = / -----  ---- - j ------------ . (2 .1 0)

(2tt)2 m2 (2-2cosk)
Suppose 5 is becoming large in a particular direction specified by a
unit vector e

± - I-1* -2 = ! .x = | r | e e
We expect A to fall off exponentially:

A ( re ,m2 ) . e_,ĉ >  lr I . (2 *n )

The problem is to compute <(e), the inverse correlation length in the 
direction e. We expect it to be anisotropic at large m2 but to become 
isotropic as m2 becomes small.

Define „
f ( 0  = f  dr e_1^r A(re,m2 ) . (2.12)

o
This should be analytic in the lower half £ plane and the asymptotic 
behaviour at large |r| of A(re,m2 ) will be given by the nearest
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singularity to the real £ axis (which will be on the positive imaginary 
axis if A does not oscillate)

recall f  ^  - 2 —  S -  .  e"5or
J  2iri

Now
, d2k 6 (k‘ e - £ )

f(S)
■ * / ;

/d2k S(k»e - £)

(2tt) 2 m2 + ]T (2-2coski) 
1

(2.13)
(2ir )2 D(k)

For small m the singularity in f(5) is expected to be caused by 
zeros of D(k) pinching the contour of integration. [Just as in the 
continuum:

f ( i U  = Z*dk — -i— —  (2.14)
J  k2+m2-?2

where the integrand has poles at ± i/m2-^2 which pinch if £ = m. This 
makes the continuum propagator fall off as e-Itr as indeed we know it 
does. ]

The condition for a pinch singularity at i£0 is, if \  = it,

D(t) = 0 (2.15a)
9 D—  = 0 on K.e = 5 . (2.15b)
9R

One can impose the constraint in (2.15b) by means of a Lagrange 
multiplier

2- |D(t) - At*!} = 0 . (2.15c)
9K

These equations have a simple geometric interpretation. The set of 
points = E,0 is a straight line perpendicular to % and at a distance

from the origin. Equations (2.15) say that if there is a pinch 
singularity at i£0 then this line must be tangent to the curve D(K) = 0.
A more direct way to obtain this condition is to note that the points of 
intersection of e ?o with D(K) = 0 are the locations of the poles 
of the integrand in the complex 1c plane. Clearly they can pinch only 
if they are coincident and the line is tangent.

In our case:

D(K) = 4 + m2 - 2(cosh + cosh ) . (2.16)

For large m2 , D(fe) = 0 is essentially a square with sides at
±cosh-1 (2+m2 )/2.
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A little geometry shows that

£0 = (cosO + sine) cosh-1 (2-Hn2 )/2 

« (cos9 + sin8) £n(2+m2 )
1•• A(r£,m) ~ e~-o =

(2 + m 2 )  l n l  l +  l n 2 l

(2.17)

(2.18)

which means that at large m2 the propagator is dominated by the shortest 
route between 0 and n.

<----------------- ii)-i'------------

As soon as m2 is away from m2 = oo the corners of the curve round off and 
as m2 becomes small, the curve D(£) = 0 becomes circular and the 
correlation length becomes isotropic.

It is easy to see that on axis

k = cosh-1(l + m2/2)
while at 45° to an axis

k = /2 cosh-1(1 + m2/4) .

Both expressions are equal to m when m2 is small.
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We can now explain what is meant by the "continuum limit" of this 
lattice model: As we let the coupling constant g2 become smaller two
things happen

(i) The correlation length measured in units of lattice spacing 
grows and approaches infinity as g2 approaches zero.

(ii) The correlation functions become isotropic.
We can regard (i) and (ii) as meaning that if we take g2 to zero and the 
lattice spacing a to zero in such a way that the correlation length 
measured in physical units (fermi) stays the same, then the anisotropy 
due to the lattice disappears and we have a continuum theory. The 
inverse of the correlation length is the mass f the particle created by 
the <J> field and is given by

M2 = 4  = 32 exp - ( ^ - )  . (2.19)az az \gzN/

The mass M2 satisfies a renormaliztion group equation

' a -  + e(g2 ) - \ U 2(alg2) = 0  (2.20)
3a 9g2 /

where
p(g2 ) = + g4 *L . (2 .2 1)

2n

It is common in lattice theories and statistical mechanics to define the 
8 function this way (i.e. by varying a length instead of a mass) and we 
have a change of sign compared to the particle physics convention. Thus 
the plus sign in Eq. (2.21) means that this theory is asymptotically free.6

Finally, a brief word on A parameters. (I will touch on them later.) 
Suppose, instead of a lattice cut-off, we solved a continuum version of 
this model using a Fauli-Villars cut-off. Equation (2.4) would become

• 4«>

(2tt)2 |_k2+m2 k2+y2J 
s o  M2 =  p 2 e - ^  / g 2 ^

g2N f  r _ A _  _ _ i_ _ |  = !
s4  (2tt )2 Lk2+n

The quantities called the A parameters are defined by

ApV = P2 e-*"/g2N

‘lattice ' a ' 2 e‘W 8 2 N
and since the physical quantity M2 must be independent of the regulariza­
tion scheme we must have7

32 ‘lattice " »?v
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LECTURE 3. FRACTALS, SCALING AND RENORMALIZATION

We saw last time that to obtain a continuum limit of a lattice 
theory we need to find a "critical point" where the correlation length 
tends to infinity. I do not wish to discuss the formal theory of criti­
cal phenomena and field theory here as there are excellent discussions in 
the literature. What I do want to do is to be more intuitive and try to 
bridge the generation and culture gap that has grown up between those who 
learned renormalization in the traditional way and those who grew up on 
the work of Wilson. We all do the same sums but the language is often 
very different. I can paraphrase (parody?) the essentials of the two 
world views as follows:

1) "A field theory is a set of Feynman rules together with a pre­
scription (called renormalization) for getting rid of unwanted 
ultraviolet divergences.”

2) "A field theory is the large distance behaviour of a system near 
a critical point. Renormalization is the language in which to 
describe how infrared divergences miraculously make this 
behaviour independent of the details of the short distance 
interactions."

Perhaps not coincidentally most people who prefer world view #1 spend 
their working day in the Fourier transform of Minkowski space while those 
who favour world view #2 live and work in Euclidean space. Let me begin 
the discussion by asking

How Long is the Coastline of England?8

To be more mathematical let us ask how long is the curve generated 
recursively from a square by successively replacing each line element by 
another one as follows:

So we eventually obtain a figure with a "self similarity" property:
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The length of the limiting set 
is clearly infinite but if we measure 
with a fixed resolution we get a 
finite number that depends on the 
resolving power. If we increase the 
resolving power by a factor of four 
we find that the measured length has 
increased eight times. Such a set is 
called a fractal and the way in which 
the length scales with the resolving 
power is related to the Hausdorff 
dimension of the set. The Hausdorff 
dimension is defined by trying to 
cover the set with little discs of 
radius e. If the number of discs 
required to do this increases as

Number = (3.1)

then a is the Hausdorff dimension.
For a straight line a = 1, for a 
plane figure a = 2, etc. In our case

if we reduce e by 1/A we need eight times as many discs so a = 3/2. The
total length we estimate is:

Length = (3.2)

Notice the way that an additional length scale (renormalization point?) 
has crept into the length to soak up the extra "anomalous dimension".
This behaviour is very similar to the behaviour of Green's functions in a 
massless field theory. A propagator canonically varies as p-2 but when 
interactions are present it may vary as p-2-r' (e.g. the massless 
Thirring model).

Let us see if we can relate such an anomalous dimension to some sort
of self similarity in the field theory. Consider an Ising model near
Tc . We define a "renormalization group transformation" by letting 
blocks of nine spins vote9 :

In an Ising model the original spins S have a probability distribution 
given by the usual Ising Hamiltonian
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P(Si) = Z-1 exp SiSj . (3.3)

From this we can find the distribution P(S') for the new spins. If we
imagine this used to describe spins on a lattice 1/3 the size we can
compare it with the original P:

P(S) (vote, reduce by 1/3) p '(s ') * (3 *4)
In general P'(S') is not exactly of Ising form; it will contain

interactions and all sorts of junk. A very important feature of the 
critical point is, however, that if we keep iterating

P(S) P'(S') > P"(S") + ...

eventually we reach a fixed distribution which does not change under this 
process. If we are not at a critical point this does not happen. (This 
is very similar to the central limit theorem of probability - keep adding 
random variables from the same distribution and eventually the distribu­
tion of the sum is Gaussian.) This stability of the distribution is the 
analog of self similarity for the fractal. It essentially says that 
inside islands of up-spin there are smaller islands of down-spin and so 
on ad infinitum. Let us use this to obtain a power law for the spin-spin 
correlation functions:

L

I R .  G-. T
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A formal statement of this stability is as follows:
Let P(S' = y', S' = y ’; L) be the probability for two blocks of nine
spins on the*original lattice, separated by a distance L, to vote for the
values y ’ y '. Let P(S, = y' S = y', L/3) be the probability of indi­
vidual spins at distance L/3 to have the values y^ , y ^ • Then at the 
fixed (stable point)

P ( S 1 = yi ’ S2 = W2 ; L) = P ( S 1 = Wl’ S2 = W2 ’ U 3 )  * (3*5)
The spin-spin correlation function is

<S1S2>L = E  PiV12 P (S1 = V  S2 = V  L) * (3*6)
P 1 »lJ2~± 1

Now P(S 1 = V  S2 = W2 ; L) = E  P(S1 = yJ S ' = yP P(S2 = *̂2 IS2 =
Uiy 2

x PCSJ = yj, S?' = y^; L) (3.7)

= E  P(Sj = u J S *  = y ’)P(S2 = y2 |S2 = y ‘)
y iy 2
x P(S1 = y*, S2 = y2 ; L/3) . (3.8)

If the interaction is short range then P(S = y ^ | = y^) only depends on
the value of the Block spin. So

"£2 y1P(Sl = y J S J  = yj) = f(y') (3.9)
yl

is a function of y' only. From symmetry considerations

P(Si = wJSi = Wj) = Z U 2 V{ • (3* 1 0 )
yl

Thus we find from (3.10) and (3.6), (3.8) that

<8 ^ 2  > = Z <S1 S2>L/3 

<SlS2>L03n = zn<SlS2>L0 

or <S S> oc *
IL |71

n = -Jin z/tn(3) .

(Recall that anomalous dimensions in field theory are defined as

=  z )  \
Y d(Jln y)

We can rewrite this by introducing a lattice spacing a and a renormaliza­
tion point R0
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<S S> =
L

aL R

exp p £n
aL,'o

R R0

<S S> = <S S>renorma^£ze(} x Z(a,RQ )

As a 0 we have logarithmic divergences in the wave function renormali­
zation factor.

This is at Tc and corresponds to a massless theory. If we want a 
massive theory we would work close to, but not quite at, Tc and let T 
approach Tc as we take a to zero.

The idea that there is a fixed point in the probability distribution
has a number of consequences for continuum field theories which are worth 
appreciating:

1) There are many different lattice approximations to any given 
continuum theory. To give rise to the same theory they just have to be 
in the domain of attraction of that fixed point (so-called universality 
class).

2) Theories that are in the same universality class differ by what are 
called "irrelevant" interactions. These irrelevant interactions cannot 
affect the continuum theory. In the conventional language of field 
theory these irrelevant interactions were called "non-renormalizable” .

3) Operator ordering: We all know that in quantum mechanics it matters
in which order quantum operators appear in the Hamiltonian - but we never 
seem to worry about this in continuum field theory. This is essentially 
due to point 1). The operator ordering ambiguities come about in the 
functional integral formalism because of different ways of discretizing 
the functional integral. As the dimension of space time increases more 
interactions become non-renormalizable or irrelevant and the size of the 
universality classes increases. This means that most operator-ordering 
problems disappear as we take the continuum limit.
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LECTURE 4. GAUGE FIELDS, MONTE-CARLO AND STRING TENSION

We briefly mentioned in the first lecture how matter fields interact 
with background gauge fields via "parallel transport". We now need to 
discuss the form of the gauge field action.

The gauge field degrees of freedom live on the links of the hyper- 
cubic lattice and are elements of the gauge group. For an SU(2) group, 
for example,

It is less obvious than in the scalar field case what motivates this 
action. The basic idea is to parallel transport around the four sides 
of a plaquette and to look how far the resulting group element is away 
from the identity (measured in the intrinsic Riemannian geometry on the 
group manifold). For slowly varying fields we have

(4.1)

V * )  = \  as T± A*(£) = ~  ag t* A^(n) . (4.2)

When we need links in a backward direction we associate them with U^Cfo):

U_y (n-Hi) = U“l(fc) • (4.3)

The most commonly used action is the Wilson action1 which is made up 
out of a sum over plaquettes (y,v):

S (4.4)

Tr {uw (fc) Uy ffe+u ) Uyfctfrtf) U_y (n+v )^

„ e* "̂*"a^ V * ^  e-:̂ v

= ei(Bll+Bv+aailBv )-l/2[By ,Bv ] e-i(B|1+Bv+a3vBjJ )-l/2 [By ,BV ]

(using ex e^ = ex+y-1/2[x,y]+... ^

* eiaO p Bv-3vBp-[BpBv])

e (4.5)

where F = 3 A - 3 A -g[A ,A ] . yv y v v y  61 y ’ v J (4.6)

Now

(4.7)
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So 5252 — - Tr(u u U U) * - / d'+x -  F F , (4.8)
-  tT? 2g2 J  4 yv yv ’ vn yv

which is the usual continuum action and is proportional to the square of
the distance of the group elements from the identity.

The simplest quantity to study with some physical significance in a
pure gauge theory is the vacuum expectation value of a Wilson loop or
product of the U ’s around a closed curve. If we take a rectangular loop 
of sides T,R then the expectation value will give the vacuum-vacuum 
amplitude in the presence of a quark-antiquark pair from which we can
read off the extra energy the pair have above the vacuum:

<nu> = e-TV(R> (4.9)

V(R) = potential energy of the quark-antiquark pair at distance R. If 
there is a linear confining potential between the particles then

V(R) = oR + const , (4.10)

where a is the "string tension", i.e.

<riU> = e-aRT+c(R+T>+const (4.11)

or the logarithm of the Wilson loop has an area term - the string tension, 
a perimeter term which is the quark self energy and possibly a constant 
term. One can determine the string tension by Monte-Carlo procedures 
which I will now attempt to describe. We want to evaluate the integral

f  d[U] II U e"BS(U)
= < n u >  (4 .1 2 )

f d[U] e~$s(u )
by a stochastic method. One might try choosing sets of U's at random and 
weighting the result by e-$s. This is very inefficient and a better 
procedure is to let the action term play a role in the choice of the 
U's.10 We will choose a sequence of configurations U by a Markov process 
governed by a master equation for the probabilities Pn (U) at step n:

pn+l<u > = 5 2  P(U’+U)Pn (U') + P(U+U)Pn (U) . (4.13)
U'*U

Write
P(U*U) = 1 - / , P(U+U')

U'*U
Pn+i(U) = Pn (U) + (p(U'*U)Pn (U') - P(U+U')Pn (U)) . (4.14)

W U '

so that

We want to choose the transition probabilities P(U-»-U') so that as n 
increases the Pn converge to a stationary distribution:

P(U) = e_e S ( U ) / ^  e"SS(U) . (4.15)
U
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We can arrange this by making each term in the sum on U in (4.14) vanish 
(the principle of "detailed balance"), i.e.

There are two popular methods for satisfying (4.16):

1) The Metropolis algorithm11

One starts by generating a table of about 5C matrices chosen randomly 
from the gauge group. No particular distribution for these matrices is 
needed but one hopes that between them they will generate the whole 
group. (Just in case they do not, one occasionally generates a new set.) 
Then one proceeds, one link at a time, to try replacing the U on that 
link by U multiplied by one of the fifty matrices. If this new U' leads 
to a configuration with lower action, then one goes ahead and replaces U 
by it. If this U' leads to a larger action S(U') one may still accept it 
but with a probability

If one does not accept the change you just leave the original U in place 
and move on to the next link.

2) The heat bath12

This is similar to the Metropolis algorithm in that one proceeds one 
link at a time but now one chooses a new U' with no reference to the old 
value on the link. One chooses U' with a probability proportional to:

It is easy to check that both these procedures satisfy the detailed 
balance principle.

Suppose now that we have iterated our Markov chain enough times that 
Pn has settled down to its asymptotic distribution. We use this to 
estimate the Wilson loops by evaluating them for a sequence of configura­
tions and taking the time average

As N °° this should become equal to the expectation value of W with 
respect to the distribution P (this__is the content of the ergodic 
theorem) . One can easily see that W is an unbiased estimator for <W>:

P(U'*U) = P(U), „ e-e(S(U)-S(U')) (4.16)P(U+U') P(U')

p = e-fl(s(U’)-S(U)) .

e-BS(U') .

(4.18)

(4.19)

since the distribution for all the Un is equal to P. Provided that the 
W(Un ) are only correlated over a finite number of Markov steps:
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<W(Un )W(Un .> - <W>2 oc e ln~n ' I/t o (4.20)

one can see that the variance of W tends to zero:

<(W - <fi»2> = L- ^  i <W(Un )W(Un « )> - <W>2
N n,n'

“ T0/N . (4.21)

In this case we see that, almost certainly, as N +  ® the time average of 
the W(Un ) is equal to the ensemble average (4.12). We also find that 
the errors decrease as N 172 provided we take independent samples, i.e. 
at intervals greater than t0 * Unfortunately near a critical point t0 
becomes large and actually at a critical point the correlations decay 
algebraically making the errors decrease more slowly than N~1/2.

To estimate the string tension it is convenient to take combinations 
of Wilson loops in which the constant term and the perimeter term cancel 
out. For example:

provided W is of the form (4.11). Using this combination estimates of the 
string tension have been made for values of the couplings sufficiently 
small that o scales as any quantity of dimensions (mass)2 should:

for SU(N). By fitting (4.23), (4.24) to the Monte-Carlo data one can 
estimate c and find13 :

As this stands it is not much use but fortunately one can calculate the 
connection between the A l parameter and the A parameters for continuum 
schemes just as we did in Lecture 27 :

o (4.22)

a = c A2 (4.23)
where

e'1 /Bog2 (4.24)

(4.25)

/o = (79 ± 12) Al SU(2)

/a = (220 ± 66) AL SU(3) . (4.26)

Amom/AL = 83.5 in SU(3) . (4.27)
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Now one also believes that

~ 450 MeV (4.28)

from either potential models of quarkonia or from string models where 
there is a connection between a and the Regge slope a'

S i  = a • (4.29)
2 t t

From (4.26), (4.27), (4.28), we find an estimate for Amora

Amom = 180 MeV (4.30)

which is roughly consistent with what is seen in deep inelastic scaling 
violation.
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5

LECTURE 5. FERMIONS

We now come to the problem of incorporating fermions. Putting 
fermions on a lattice is a little tricky and there are a number of 
problems that have not yet been solved in a really satisfactory manner.

We will begin by looking at the "naive" fermion action:

s = ^ 2  |'Kn)'Kn) + K ’K n) Yu |'Kn+u) “ V ) ̂ V • (5.1)
n 1 p '

Comparing (5.1) with the usual continuum action

dl+x(^Y,J3p^ + nnp\p) (5.2)
shows that we need to take

’('continuum = '('lattice (5.3)

® = —  • (5.4)2K
I am using y matrices which are Hermitian and satisfy

| Y u , Y v |  =  2 6 y v  .  ( 5 . 5 )

We want to use this action in a functional integral. In order to get 
the correct Feynman rules we need to make the s into Grassman variables
and use the Berezin integral. So the i|>1 s and î 's anticommute

and
{'K^)'p(n* ) | = { t(n) ,iKn ' ) } = {\p(n) ,ip(n' ) } = 0 (5.6)

J "  d(i(>) = 0 / d( * »  = 1, etc. (5.7)

With these definitions one can see why I chose the coefficient of the 
ipi/-' term to be one. We can either use the ipij; term at each site, to 
satisfy the requirements for a non-zero answer, or a pair of hopping 
terms. In this way, just as in lecture one, we quickly see, at least as 
long as we do not try to use the same link twice, that we get a path 
expansion for the propagator:

<t(n')*(n)> = ^ 2  kIL I n • (5.8)
path

The yy here is shorthand for ±Yy depending on whether we traverse a link 
in the positive or negative direction. At first one may think, however, 
that the sum should be over self-avoiding paths or else we get in trouble 
with the i[j2 = ip = 0 conditions. The problem is actually illusory as 
there is a conspiracy between graphs contributing to the propagator and 
closed loop graphs contributing to the vacuum diagrams which allows us to 
sum over unconstrained paths in Eq. (5.8). To see how this comes about

x



let us look at a simple example. Consider the path in the figure below:

The part of the diagram where the two lines share the same link is for­
bidden in the expansion, but consider also the diagram where the propa­
gator goes straight through and there is a vacuum loop:

Again we cannot put the loop in contact with the propagator line but the 
closed vacuum loop has a minus sign while the figure with the coil in the 
propagator has a plus sign. Thus adding both forbidden diagrams changes 
nothing:
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That this conspiracy works in general is best seen from the identity for 
the diagonalized action

Z = J d[*]d[,[r] exp (  £  ^i'Piti = n  Xi) (5.9)

<^k^k> = J  J dt^JdtipJtk'Pk exP ( £  xî ±'f'i)

- ■ s i r  ( A * 1) " *  • ( 5 -10)

One can see that there is co-operation between the vacuum terms and 
the other integral, which leads to the propagator being the inverse of the 
matrix in the exponent. We can now sum E q . (5.8) with a trick similar to 
the one used on the scalar fields in lecture one:

■ /

ddk - i t . t  e
(2tt )d 1 - £ y y2i sinkp

P

ddk -ik* n 1 + u Yy2i sinkp 
1 4K^ sin^kp

This looks like the continuum propagator for small k:

f  ddk J.lv. „ _ —  ----
= / ---- - e ----  ̂ —  • (5.11)

J  (27T )d

/ d<*k -ik.n (m + i/k) T  e lfc n — ------------------------ (5.12)
(2tt )d m2 + k2

but there is a problem. If we were to try to compute, say, \pip:
r  ddk 1< M >  = /-----  r-------- (5.13)

J  (2x)d 1 +  4K2 2  sin2 kjj

Because sinir = 0 we get similar contributions from many other places in 
the domain of integration. We actually get 2d times the correct answer 
(16 time in 4 dimensions). This is the notorious "fermion doubling 
problem" - we thought we had only one species of fermion in our sums but 
we turn out to have 16.

There are several ways that have been proposed to circumvent this 
multiplication of degrees of freedom:

1. Wilson Fermions1
We replace the iy^ factors in the hopping terms by 1 ± y ^ . Then 

■/ ddk -ik.n f 1 +  2ik £  Y u  slnkp + 2 k  £  cosk^)
G = / -----  e  —  . (5.14)

(2tr )2 (l - 2 £  coskp)2 + 4k2 ̂  sinkp
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2. Staggered or "Kogut-Susskind" fermions11*

These are a little more arcane. The best route to understanding
them is due to Kawamoto and Smit . 15 We replace ip by ip1 where

K n x • •• i\) = Y ^  Y 3 3 Y^2 Y^1 ^ ' ( ^  * * * \ ) *

^ ( ^  ... n^) = ^ ' ( ^  ... n^JY^1 Y22 ^33 ^  

so (5.1) becomes

S = | * (n)ip * (n) +  ( - l ) ^  »n ) ip' (n) j ip(n+jj ) - ip(n-y)}| .
n * ’

The phases (-1 ^ » n ) arise from commuting the y ’s through one another, 
e.g.

^(n)Yx |'KT1+1) _ 'P(n_1)}

= ip (n) Yfl y " 2 Y 33 Y^4 (Yi ){y^ Y 3 3 Y^2 Y^1+ 1 4> (n+t) 

~ Y^1* Y 33 y " 2 y " 1+1 ip'(n-l)}

=  ( - l ) 1̂ 4 ^  xfT' ( n )  j i p '  ( n + 1 )  -  ip '  ( n - 1 )  |  .

Similarly
<p(2 ,$) = n3 + n^

<p(3 , ? i )  =

<p(4,n) = 0

The only remnant of the y algebra is now the fact that

n  ( - i ) Y  =  - 1
plaquette

which arises from yPyVyPyV = _1 if 11 ^ v. The action is now diagonal in 
the spin label and if we just keep one of the spins we reduce the number 
of fermi species by one quarter leaving, in four dimensions, four 
flavours of fermions. These are the Kogut-Susskind fermions.
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LECTURE 6. CHIRAL SYMMETRY-BREAKING

The Kogut-Susskind fermion action

S = |ip(n) M n) + i{;(n) ^  (_i)4>(n »u)  ̂̂  (n+p ) - ^(n-u)}| (6 .1 )
n v

has a number of symmetries. Two of them are continuous:

(a) "Vector" symmetry
i|>(n) *  e i0 i|;(n)

TfT(n) -► e-10  ̂ (n) . (6 .2)

(b) "Axial" symmetry (only good if m = 0)

n odd (i.e. n^ = odd)

n even . (6.3)

The first symmetry simply leads to fermion number conservation (i.e. con­
tinuity of world lines) while the second is only good when K -*• °° and the 
world-line picture is no use. This second symmetry can be broken 
spontaneously and leads to the existence of massless Goldstone bosons - 
"pions".

To discuss these symmetries it is easiest to go back to the naive 
fermion language where the "axial" symmetry takes the form

■ i0Yc , ip -*■ e 5 ip

ip -*■ ip . (6.4)

(It should be said that this formula is a trifle deceptive because the 
actual symmetry, in terms of the flavours that are really present, is not 
the U(l) axial symmetry. It is a U(l) subgroup of the axial symmetry but 
in a combination with a flavour matrix which is anomaly free.) From this 
one can derive a Ward identity by the usual methods. I shall, following 
the general spirit of the lectures, prove it by a diagrammatic argument.

The Ward identity is

<ip(n)\p(n)> = <t(n ')Y5'Kn ') 'Kn)Y5'Kn)> • (6.5)
n'

To prove it consider a graph contributing to <\[nj/>:
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Insert a y5 matrix at n and another at n' on the loop and slide n' round 
the loop. Since y 5 anticommutes with the Yp this gives rise to an 
alternation in sign. On adding all the terms they cancel except for one 
(where the two y ^ 's are coincident at 7i. In this way we get the LHS of
(6.5).) The terms which are being added can also be regarded as contri­
butions to the RHS of (6.5). By summing over all loops through n we get 
the whole of the (6.5).

Rescaling the fields by /2K, as in the last lecture, to make contact 
with the continuum field normalization gives:

< ^ >  = m<i{iY5\J>, ^y5ij)>p_0 • (6 .6)

If <3M>> *  0 and we take m ♦ 0 we must have a divergence in the zero 
momentum Green's function which will be caused by a zero mass pion.

There is a nice argument due to Brout and Englert^ which enables 
one to see how ipip becomes nonzero at strong coupling. When g2 * 0 the 
quarks and antiquarks have to pair up on each link so the diagrammatic 
expansion for is a sum of rooted trees:

We can sura these recursively

(NC) - 1 < M >  =  rr-   • (6.7)1 - x<H>(NC ) _1

The factors of N, C are the number of fermi components and the number of 
colours, respectively. The x is the factor for each link of the tree. 
Since each link has a +yp and a -y^ and can point in any of 2d directions 
we see that

x = -2dK2 . (6 .8)
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Thus:

<n> " ' l} • (6.9)

Again rescaling by / 2K and putting m = (2K) - 1 we can rewrite this as

<ujn|j> = |/m2+2d - m j (6 .1 0)

and as m 0 we find that (6 .1 0) goes to a finite limit of

1.1< n > n = 0 = NC /J ( 6 . 11 )

One can also see the existence of the zero mass pion in this limit. 
Diagrammatically the pion looks like

We can sum this by noticing that the effect of the y5,s at the ends 
cancels the (-1) for all the links in the "backbone" of the graph. Thus;

= NC

<yj>x2 

NC

^< W>X2

NC

p « h l

/

<jjnp>\2llL l 
NC /

ddk

(2ir)
ik*n

1 - K2 NC f  2 (2cosk1)
( 6 . 1 2 )

When m 0 (or equivalently K + 0) this goes on to

f  ddk 
»n ) 11 I   -3

J  (2tt )d
3ik* n

.d ~ ,   d

which is the propagator for a massless particle.

1 - l/2d ^ 2cosk^ 
1

(6.13)

A number of groups17 have performed Monte-Carlo simulations of chiral 
symmetry-breaking in the "quenched approximation" where the fermion 
determinant is ignored. In this case the chiral symmetry-breaking order 
parameter is obtained from the inverse of the Dirac operator in the
background gauge field:
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< M >  = Tr G(x x) (6.14)

= Tr <— — > • (6.15)y + m

In (6.15) the angular brackets can be read as averaging over gauge con­
figurations produced with the Wilson action. If the eigenvalues of the 
Euclidean Dirac operator are iXn we can rewrite (6.15) as

=  — N  --------------------  • ( 6 . 1 6 )V ^  iXn + m
As V becomes large the poles in (6.16) merge to form a branch cut and we 
can regard the large V limit of (6.16) as a dispersion relation

<n> =  f  dx P-(-X-}- , (6.17)
J  iX + m

where p(X) is the density of states with eigenvalue X. The symmetry 
breaking now comes about because the integral is discontinuous across the 
branch cut (i.e. as m changes from positive to negative) and we find

<i|>t>m=0 = irp(O) ♦ (6.18)

This branch cut is in evidence in Eq. (6.10) because of the square root 
sign. We can interpret Eq. (6.10) in the light of these remarks as a 
calculation of the strong coupling density of eigenvalues of the Dirac 
operator. We find

p(X) = / 2d-X2 . (6.19)
dir

This can be compared with the free theory where X = |k| and

p(X)dX = = |k|3 J l S -  (6.20)
( 2 tt ) ^  ( 2 tt) 4

so p(X) « X3 for small X. In the quenched strong coupling calculation 
the symmetry-breaking comes about because the eigenvalues slump towards 
X = 0 to make up the semicircle distribution which seems characteristic 
of many random matrix problems.
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