TRIUMF

THE PHASE SPACE ACCEPTANCE OF A HELICAL QUADRUPOLE CHANNEL OF FINITE LENGTH

by Shoroku Ohnuma

Yale University

ABSTRACT

The acceptance region in the four-dimensional phase space of a helical quadrupole channel has been investigated numerically. The two transverse directions are strongly coupled and the projection on the $\left(x, x^{\prime}\right)$ plane of the four-dimensional acceptance region is not independent of $\left(y, y^{\prime}\right)$. If such a channel is used as a pion or a muon channel, it has to be matched to quadrupoles and bending magnets so that its effective acceptance would become smaller than the acceptance region in the four-dimensional phase space.

In calculating the acceptance, a circular aperture has been assumed. Also, the axial magnetic field B_{z} is assumed to be small so that the transverse equations of motion are linear.

A nossibility of using a helical quadrupole as a muon channel has recently been discussed by R.M. Pearce ' By numerically integrating the equations of motion, he showed that, for a point source on the axis, the helical channel is stronger in the focusing action than an alternating-gradient channel. Since the construction of such a helical quadrupole seems to be technically feasible and the cost could be considerably less than that of an ordinary $A G$ channel ${ }^{2}$, it is interesting to investigate its acceptance in detail and to compare with the performance of a conventional $A G$ muon channel ${ }^{3}$.

The overall acceptance $A\left(x, x^{\prime}, y, y^{\prime}\right)$ of an infinitely long helical quadrupole in the four-dimensional phase space ($x, d x / d z, y, d y / d z$) has already been calculated by Salardi et al..4 for the case where the period λ of the pole tip rotation is much larger than the aperture R so that the axial component of the magnetic field, B_{z}, can be neglected. The acceptance $A\left(x, x^{\prime}, y, y^{\prime}\right)$ for a given aperture R is proportional to λ^{-2}. For a reasonable choice of $\lambda / R=20$, the four-dimensional acceptance of a helical quadrupole for the optimum momentum is about 20% larger than the corresponding acceptance of $A G$ channels ${ }^{5}$. One definite disadvantage of a helical channel is its low acceptance for momenta smaller than the optimum momentum, p (optimum). The lowest acceptable momentum is about 0.8 (optimum) compared to 0.6 to 0.7 p (optimum) for an $A G$ channel. The normalized four-dimensional acceptance calculated by Salardi, $A\left(x, x^{\prime}, y, y^{\prime}\right) \lambda^{2} / R^{4}$ is shown in Fig. 1 as

Abstract

a function of p / p (optimum). For a muon channel, it is usually desirable to choose channel parameters such that the acceptance for the pion momentum, p_{π}, and for the muon momentum, p_{μ}, is the same. Fig. 2 indicates the decrease of this acceptance as the ratio p_{π} / p_{μ} deviates from unity.

The most important difference of a helical quadrupole from $A G$ channels (and, at least in the first order in x, x^{\prime}, y and y^{\prime}, from bending magnets) is the strong coupling of two transverse directions, x and y. One cannot discuss the two-dimensional acceptance in (x, x^{\prime}) phase space independent of $\left(y, y^{\prime}\right)$. This situation is of course the same for solenoid channels ${ }^{6}$ and for coaxial channels ${ }^{7}$. When these channels are used together with ordinary quadrupoles and bending magnets, as is usually the case, perfect matching of acceptances is impossible and the acceptance of a helical quadrupole (or of a solenoid) diminishes effectively.

In the following sections, computer programs for studying the acceptance of a helical channel of a finite length are described together with some results. In particular, as a reasonable measure of the effective twodimensional acceptance, an acceptance area in (x, x^{\prime}) phase space common to all accepted values of y and y^{\prime} can be found by these programs. Throughout the following discussion, the axial magnetic field B_{z} is neglected and notations are the same (unless specifically explained) as in RMP ${ }^{\prime}$. For the sake of convenience, notations used in the article by Salardi et al. ${ }^{4}$ are listed in Table 1 together with corresponding notations used in RMP.

Table 1

List of Symbols Used in RMP ${ }^{1}$ and in Salardi et al. ${ }^{4}$.
RMP (also in this report)
Salardi et al
λ
k^{2}
K
$2 \pi / \lambda$
ω
a
$\left(1-a^{2}\right) /\left[4\left(1+a^{2}\right)\right]$
X, Y
$\underline{x}, \underline{y}$
X^{\prime}, Y^{\prime}
$(L / 4 \pi) \underline{x}^{\prime},(L / 4 \pi) \underline{y}^{\prime}$
z
$(4 \pi / L) z$
ψ
$\omega_{1} z$
ϕ
$\omega_{2} z$
$(2 \pi / \lambda) \sqrt{1}-4 a$
ω_{1}
$(2 \pi / \lambda) \sqrt{1}+4 a$
ω_{2}
$\sqrt{(1-4 a) /(1+4 a)}$
a

2. TRAJECTORIES AND THE FOUR-DIMENSIONAL ACCEPTANCE

Exact solutions for fixed transverse coordinates $x, x^{\prime}, y, x^{\prime}$ and for rotating coordinates $X, X^{\prime}, Y, Y^{\prime}$ due to L. Teng ${ }^{8}$ are given in RMP. Since the aperture is assumed to be circular, both coordinate systems should give the same acceptance. The rotating system is chosen such that the Y axis is always in the focusing direction. It is thus obvious that the maximum possible excursion of a particle will be in the Y direction.

From the expressions given by R.M. Pearce ${ }^{\prime}$, exact solutions for X and Y are
$x(z)=k_{1}(-D \cos \psi(z)+C \sin \psi(z))+\left(1 / k_{2}\right)(-B \cos \phi(z)+A \sin \phi(z))$
$Y(z)=A \cos \phi(z)+B \sin \phi(z)+C \cos \psi(z)+D \sin \psi(z)$
where $\quad k_{1}=(1-4 a)^{\frac{1}{2}} \quad, \quad k_{2}=(1+4 a)^{\frac{1}{2}}$

$$
\begin{align*}
& \psi(z)=k_{1} z / 2 \quad, \quad \phi(z)=k_{2} z / 2, \\
& A=y_{0}+x_{0}^{\prime} / 2 a \quad, \quad B=k_{2} y_{0}^{\prime} / 2 a, \quad, \\
& C=-x_{0}^{1} / 2 a \quad, \quad D=-\left(x_{0}+y_{0}^{\prime} / 2 a\right) / k_{1} . \tag{2}
\end{align*}
$$

Note here that $x_{0} \equiv X(z=0)$, etc. and z is the axial distance in units of $\lambda / 4 \pi$ so that x_{0}^{\prime} and y_{0}^{\prime} have the same dimension (length) as x_{o} and y_{0}. Stable motion exists only for $|a|<$ and a is positive when Y is the focusing direction. By rewriting the expression (1) in the form

$$
\begin{aligned}
x(z) & =\left[\left(A^{2}+B^{2}\right)^{\frac{1}{2}} k_{2}\right] \sin \left(\phi-\phi_{0}\right)+\left[k_{1}\left(C^{2}+D^{2}\right)^{\frac{1}{2}}\right] \sin \left(\psi-\psi_{0}\right) \\
Y(z) & =\left(A^{2}+B^{2}\right)^{\frac{1}{2}} \cos \left(\phi-\phi_{0}\right)+\left(C^{2}+D^{2}\right)^{\frac{1}{2}} \cos \left(\psi-\psi_{0}\right) \\
\text { with } \phi_{0} & =\tan ^{-1}(B / A) \text { and } \psi_{0}=\tan ^{-1}(D / C),
\end{aligned}
$$

one sees immediately that $\max .|Y(z)|=\max .|X(z)|$ since $k_{1} \leq 1$ and $k_{2} \geqslant 1$. The four-dimensional acceptance at $z=0$, when the aperture is R, is determined by the condition

$$
\begin{equation*}
\left(A^{2}+B^{2}\right)^{\frac{1}{2}}+\left(C^{2}+D^{2}\right)^{\frac{1}{2}} \leq R \tag{4}
\end{equation*}
$$

By evaluating the four-dimensional volume in $x_{0}, x_{0}^{\prime}, y_{0}, y_{0}^{\prime}$ space bounded by the condition (4), Salardi et al. ${ }^{4}$ obtained the analytic expression for the acceptance $A\left(x, x^{\prime}, y, y^{\prime}\right)$,

$$
\begin{equation*}
A\left(x, x^{\prime}, y, y^{\prime}\right)=\left(R^{4} / \lambda^{2}\right)\left(2 \pi^{4} / 3\right)(4 a)^{2}(1-4 a)^{\frac{1}{2}} /(1+4 a)^{\frac{1}{2}} . \tag{5}
\end{equation*}
$$

However, this is strictly true only for an infinitely long (that is, channel length >> λ / k_{1}) channel. For a channel of a finite length, $\cos \left(\phi-\phi_{0}\right)$ and $\cos \left(\psi-\psi_{0}\right)$ may not take the limiting value $(+1$ or -1$)$ at the same position within the channel so that the quantity on the left side of (4) could be larger than R. For example, with $\phi_{0}=0$ and $\psi_{0}=\pi, \max .|Y(z)|=|A|+|C|$ at $z=2 n \pi / k_{1}(n=1,2, \cdots)$ for $\left(k_{2} / k_{1}\right)=$ even integers but max. $|Y(z)|<|A|+|C|$ for any finite value of z when $\left(k_{2} / k_{1}\right)=$ odd integers. Corresponding values of a are, for example, 0.15 and 0.2 , respectively.

Although the four-dimensional region defined by (4) is generally of a complicated shape, its two-dimensional projection can be expressed in a simple analytic form for some special cases. Some of these are discussed in the Appendix.

3. ACCEPTANCE OF FINITE CHANNELS AND THE "EFFECTIVE" ACCEPTANCE

When the length of the channel is finite, the condition (4) is too restrictive in defining the acceptable phase space regiun. Since exact solutions for X and Y are given as a linear function of X_{0}, X_{0}^{\prime}, y_{0}, y_{o}^{\prime}, it is convenient to use polygons to represent acceptable areas in $\left(x, x^{\prime}\right)$ or $\left(y, y^{\prime}\right)$ phase space ${ }^{9}$.

Unless the channel is very short (channel length $\lesssim \lambda / k_{1}$), the largest excursion within the channel would always occur in Y direction so that the condition for the acceptable region is

$$
\begin{equation*}
R \geqq Y(z) \supseteq-R \text { for all values of } z \tag{6}
\end{equation*}
$$

For a given pair of $\left(y_{0}, y_{o}^{\prime}\right)$, the condition (6) defines two parallel lines in $\left(x_{0}, x_{0}^{\prime}\right)$ space. The true acceptance in (x_{0}, x_{0}^{\prime}) space is the envelope of these parallel lines evaluated at all values of z within the channel. For practical purposes, however, it is sufficient to take discrete values of z and regard the resulting polygon as a good approximation of the true acceptance. From Eq. (1), parallel lines evaluated at z are

$$
\begin{equation*}
u(z) x_{0}+v(z) x_{0}^{\prime}+w\left(z, y_{0}, y_{0}^{\prime}\right)=R \text { and }-R \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& u(z)=-\sin \psi(z) / k_{1} \\
& v(z)=(\cos \phi(z)-\cos \psi(z)) /(2 a) \\
& w=y_{0} \cos \phi(z)+y_{0}^{\prime}\left(k_{2} \sin \phi(z)-\sin \psi(z) / k_{1}\right) /(2 a) .
\end{aligned}
$$

The procedure is of course quite similar if one wants to find the acceptance in $\left(y_{0}, y_{0}^{\prime}\right)$ space for a given pair of $\left(x_{0}, x_{0}^{\prime}\right)$.

The condition (7) is invariant under the transformation

$$
\left(x_{0}, x_{0}^{1}, y_{0}, y_{0}^{\prime}\right) \rightarrow\left(-x_{0},-x_{0}^{\prime},-y_{0},-y_{0}^{\prime}\right)
$$

so that the acceptance has to be studied only for $y_{0}>0$ or $x_{0}>0$.

Furthermore, unless the channel is very short (channel length $\sum \lambda / k_{1}$), the transformation
or

$$
\begin{aligned}
& \left(x_{0}, x_{0}^{\prime}, y_{0}, y_{0}^{\prime}\right) \rightarrow\left(-x_{0}, x_{0}^{\prime}, y_{0},-y_{0}^{\prime}\right) \\
& \left(x_{0}, x_{0}^{\prime}, y_{0}, y_{0}^{\prime}\right) \rightarrow\left(x_{0},-x_{0}^{\prime},-y_{0}, y_{0}^{\prime}\right)
\end{aligned}
$$

would keep the acceptance unchanged. This can be seen from Eqs. (2) and (3) where these transformations merely change the sign of ϕ_{0} and ψ_{0} so that two oscillations, $\cos \left(\phi-\phi_{0}\right)$ and $\cos \left(\psi-\psi_{0}\right)$, are shifted in phase by at most 2π. Thus, the area to be studied in the fourdimensional phase space is $x_{0}, x_{0}^{\prime}, y_{0}, y_{0}^{\prime} \geqslant 0$.

When the channel is to be matched to quadrupole or bending magnets, only that portion of the $\left(x_{0}, x_{0}^{1}\right)$ polygons which are common to all values of (y_{o}, y_{o}^{\prime}) could be utilized effectively. In general, it is very difficult to shape a beam such that its distribution in (x_{0}, x_{0}^{\prime}) space depends in a specific manner on (y_{o}, y_{o}^{\prime}). As a measure of this effective acceptance, one can consider the overlapping portion of a polygon with the standard polygon (for $y_{0}=y_{o}^{\prime}=0$). This is illustrated in Fig. 3 where shaded areas are considered to be unacceptable even though they satisfy the condition (6).

4. COMPUTER PROGRAMS: HELIX 1 AND HELIX 2

4.1 HELIX 1 (see pages 21-26)

For given values of the channel length and the parameter a, this program calculates acceptance polygons and their areas in (y_{0}, y_{o}^{1}) space for mesh points in (x_{0}, x_{0}^{\prime}) space. It can also be used for obtaining polygons in (x_{0}, x_{0}^{\prime}) space for mesh points in (y_{0}, y_{0}^{1}) space.

Input parameters:
card 1 (215, 3F10.)
$\begin{aligned} 1 X Y= & 1 \text { for polygons in }\left(y_{0}, y_{0}^{\prime}\right) \text { space }, \\ & 2 \text { for polygons in }\left(x_{0}, x_{0}^{\prime}\right) \text { space } .\end{aligned}$
$N Z(\leq 500)=$ total number of points along z direction where two parallel lines (7) are to be evaluated.
$D Z \quad=$ interval of equally spaced points along z.

Parallel lines are calculated at

$$
z=D Z, 2(D Z), 3(D Z), 3(D Z), \ldots,(N Z)(D Z)
$$

and the channel length (in units of $\lambda / r \pi$) is ($N Z$) (DZ).
SA \quad parameter a (between 0 and 0.25).
$R \quad=$ aperture radius in meters (= 0.1).
The value of R is not really needed since $x_{0}, x_{0}^{\prime}, y_{0}, y_{0}^{\prime}$ are all proportional to R, due to the linear approximation for the equations of motion. The choice of 0.1 is purely for convenience.
card 2 (2I5, 2F10.)
NYNET $(\leqslant 50)=$ total number of mesh points in x_{0} direction ($1 X Y=1$) or y_{0} direction ($1 X Y=2$) including both end points.

NYPNET $(\leqslant 50)=$ total number of mesh points in x_{0}^{\prime} direction $(1 X Y=1)$ or Y_{o}^{\prime} direction ($1 X Y=2$) including both end points.
YMAX $\quad=$ largest value of $x_{0}(I X Y=1)$ or $y_{0}(I X Y=2)$ of the mesh; usually this is equal to R.

YPMAX $\quad=$ largest value of $X_{0}^{\prime}(I X Y=1)$ or $Y_{0}^{\prime}(1 X Y=2)$ of the mesh; with $R=0.1$, YPMAX $\cong 0.03-0.05$.

Total number of points in the mesh is (NYNET) (NYPNET) with $x_{0}=0, \operatorname{YMAX} /($ NYNET-1), $2($ YMAX $) /($ NYNET-1), , YMAX; $x_{0}^{\prime}=0, Y$ PMAX $/($ NYPNET-1) $, 2($ YPMAX $) /(N Y P N E T-1), \ldots, Y P M A X$ for $\mid X Y=1$.

Output parameters:

For each mesh point $\left(x_{0}, x_{0}^{\prime}\right)$ or $\left(y_{0}, y_{0}^{\prime}\right), \operatorname{coordinates}\left(y_{0}, y_{0}^{\prime}\right)$ or (x_{0}, x_{0}^{1}) of the acceptance polygon are given as well as its area. The maximum number of vertices is internally limited to 25 in the program.

$$
\begin{array}{lll}
I X Y=1 & X=y_{0}, & X P=y_{0}^{\prime} \\
& Y=x_{0}, & Y P=x_{0}^{\prime} \\
I X Y=2 & X=x_{0}, & X P=x_{0}^{\prime} \\
& Y=y_{0}, & Y P=y_{0}^{\prime}
\end{array}
$$

Note that the axial distance is in units of $\lambda / 4 \pi$ so that

$$
\begin{aligned}
& \left(d x_{0} / d s\right)=(4 \pi / \lambda) x_{0}^{\prime} \\
& \left(d y_{0} / d s\right)=(4 \pi / \lambda) y_{0}^{\prime}
\end{aligned}
$$

where $s \equiv(\lambda / 4 \pi) z$ is the real distance (in meters, for example).

4.2 HELIX 2 (see pages 27-35)

This is identical to HELIX 1 but polygons at mesh points are overlapping portions only. The effective four-dimensional phase space acceptance is then numerically integrated. If the aperture radius R is given in meters, the four-dimensional acceptance in $\left(x_{0}, x_{0}^{\prime}, y_{0}, y_{o}^{\prime}\right)$ space is in (meter) ${ }^{4}$. In order to get the acceptance in ($x_{o}, d x_{o} / d s, y_{o}, d y_{o} / d s$) space, one must multiply this by $(4 \pi / \lambda)^{2}$. Input cards are identical to those for HELIX I except that NYNET must be an odd number.

Both programs could be used for a number of different parameters by just adding two input cards for each case. There should be a blank card at the end of all input data cards.

5. RESULTS

So far, two programs have been used for the following choice of parameters:

$$
\begin{aligned}
& R=0.1, \quad a \\
& \text { NZ }=314, \quad D Z \\
&=0.05,0.1,0.15,0.2,0.215,0.23, \\
& \text { YMAX }=0.1, \quad \mid X Y=2, \\
& \text { NYMET }=11, \text { NYPNET }
\end{aligned}=11 \text { or } 13 .
$$

The channel is "long" for $a=0.05-0.2$ but "short" for $a=0.23$. Results for $a=0.215$ and 0.23 may not be as accurate as for smaller values of a. Total computer time with Yale IBM 7094 (DCS) was about 80 minutes.

All results are available in four IBM printouts. Normalized fourdimensional acceptances are shown in Fig. 4 as a function of a; the solid line is for an infinitely long channel, the dashed line is for a channel of length $31.4 \lambda / 4 \pi$ and the dotted line is the effective acceptance of the same finite channel. Although the finite channel gives a larger acceptance (dashed line) compared to an infinitely long channel (solid line), its effective acceptance (dotted line) could be as small as one-half of that.

It is interesting to compare the effective acceptance of a helical channel with the acceptance of a conventional AG channel. With a reasonable choice of the $A G$ channel parameters, $S / L=0.05 \quad S=$ distance between two adjacent quadrupoles
$L=$ length of each quadrupole
$R / L=\frac{1}{4} \quad R=$ radius of quadrupole aperture,

20							
Fig. 4 Normalized four-dimensional accedtance Length of the finl!e channe! is							

together with the assumption that two channels have the same period λ of the pole rotation,

$$
\begin{align*}
\lambda & =2 \times(\text { magnetic period of the } A G \text { channel }) \\
& =6 \mathrm{~L}, \tag{8}
\end{align*}
$$

one gets the relation

$$
R / \lambda=1 / 24
$$

This value is consistent with the assumption that the axial magnetic field B_{z} of the helical quadrupole is negligible. The maximum fourdimensional acceptance for each channel is *

$$
\begin{array}{ll}
\text { helical channel } & 10.4 \mathrm{R}^{4} / \lambda^{2} \\
\text { AG channel } & 16.2 \mathrm{R}^{4} / \lambda^{2} .
\end{array}
$$

The required field gradient of the helical channel is about 70% of what is needed for $A G$ channel quadrupoles. On the other hand, only 70% of the total length will be occupied by quadrupoles in the $A G$ channel. When the channel is to be used as a muon channel, it is desirable to have the same acceptance for pions and muons. For example, assume that $p_{\mu} / p_{\pi}=1.33$ (collection of forward-decaying muons). The acceptance one can get is then

helical channel	$9.3 R^{4} / \lambda^{2}$
AG channel	$15.3 R^{4} / \lambda^{2}$.

*

The AG channel is assumed to be infinitely long here. This is a good approximation when the channel has more than 8 magnets (four magnetic periods) and it is operated near the optimum momentum.

It is of course possible to increase the effective acceptance of the helical channel by taking a smaller value for λ than given by (8). The ratio R / λ is then increased and the effect of the axial magnetic field may not be entirely ignored. Although the axial field seems to increase the focussing action of a helical channel, the coupling of two directions x and y becomes more complicated (equations of motion contain x^{\prime} and y^{\prime}) and it is by no means obvious that this would cause an increase in the effective acceptance. Another disadvantage of the helical channel is its inferior performance for $p<p$ (optimum). The acceptance is zero at $p=0.75 p$ (optimum) whereas the $A G$ channel still maintains 57% of the maximum acceptance at this momentum. The low momentum cut-off of the $A G$ channel is $p($ cut-off $)=0.64 p$ (optimum).

The author is grateful to members of the TRIUMF Project at the University of Victoria for stimulating discussions.

1. R.M. Pearce, submitted to Nuclear Inst. and Methods, 1969.This will be referred to as RMP.
2. Roland Cobb, private communication.
3. For example, see "Stopped Muon Channel", Los Alamos Design StatusReport. V.W. Hughes, S. Ohnuma, K. Tanabe, H. Vogel (1969).
4. G. Salardi, E. Zanazzi, and F. Uccelli, Nuclear Inst. and Methods, $59(1968), 152$.
5. See, for example, Internal Report $Y-12$, Yale University,October 1964, p. IV-182.
6. R. Helm, SLAC-4 ("Red" Stanford Report), August 1962.
7. S. van der Meer, CERN 62-16, April 1962;E. Regenstreif, CERN 64-41, September 1964.
8. Lee Teng, ANAL-55, February 1959.
9. A. Citron, J. Fronteau and J. Hornsby, CERN 63-30, August 1963;
J. Fronteau and J. Hornsby, CERN 62-36, November 1962.

APPENDIX

The acceptable region in the four-dimensional space given by the condition (4) takes a complicated shape in general. However, its two-dimensional projection for some special cases can be represented by simple analytic expressions.

1. Parallel Beams $\left(x_{0}^{\prime}=y_{0}^{\prime}=0\right)$

$$
\left|y_{0}\right|+\left|x_{0}\right| / k_{1} \leq R
$$

Fig. 5a
2. Point Source $\left(x_{0}=y_{0}=0\right)$

$$
\begin{aligned}
& u=x_{0}^{1} /(2 a), v=y_{0}^{1} /(2 a) \\
& \left(u^{2}+k_{2}^{2} v^{2}\right)^{\frac{1}{2}}+\left(u^{2}+v^{2} / k_{1}^{2}\right)^{\frac{1}{2}} \leq R
\end{aligned}
$$

Fig. 5b
Since $k_{1} k_{2}=\left(1-16 a^{2}\right)^{\frac{1}{2}} \leq 1$, this area lies between two ellipses

$$
u^{2}+k_{2}^{2} v^{2} \leq(R / 2)^{2}
$$

$$
u^{2}+v^{2} / k_{1}^{2} \leq(R / 2)^{2} \quad \text { broken lines in Fig. } 5 b
$$

3. $y_{0}^{1}=0 \quad u=x_{0} / k_{1}, \quad v=x_{0}^{\prime} /(2 a)$

$$
\begin{aligned}
& v \leqq\left(R-y_{0}\right) / 2-\frac{1}{2} u^{2} /\left(R-y_{0}\right) \text { for } v \geqslant-y_{0} \\
& v \geqslant \frac{1}{2} u^{2} /\left(R+y_{0}\right)-\left(R+y_{0}\right) / 2 \text { for } v \leq-y_{0} \text {. Fig. } 5 c
\end{aligned}
$$

Note that, for $y_{0}=R$, the acceptable area in (x_{0}, x_{0}^{\prime}) space reduces to a line

$$
x_{0}=0, \quad-2 a R \leq x_{0}^{\prime} \leq 0
$$

- 20 -

NCKIERNAN
PHY500－2485
DATE 09／03／69
HELIXI
－EFN
SOURCE STATEMENT－IFN（S）

CINENSIGN C（50），D（500），（1（500），G2（5CC），Y（50），YP（50），AY（4），WXI（4），
1 WXPI（4），WX（10つ），wXF（100）
$10 C O$ FORMAT（2I 5,4 Fl：．t）
1 CC1 FORMAT $(1 H 1,5 x,: \Delta=+10.5,5 X, 3 H R=F 10.51 / / 1$

1003 FURMAT（5x， 1 OHAC CEPTANCE，E 20.5 ）
1004 FORMAT（5HO x／（5E Z．．）））
1005 FQRMAT（5H）XP／（bE，．．））
1006 FORMAT（／5X，14．FNAX．$\quad: \operatorname{ACF}=F 10.3)$
1007 FORMAT（ 215.4 F 10.5 ）
1008 FORMAT（ $5 \times, 15 H(N E A C, I P 1 A N C E) /)$ NXI＝4
500 REAU $(5,1000)$ IXY，AZ，LZ，SA，R
IF（IXY．EW．O）STI
WRITE（6．1001）SA，R
$h \times I(1)=R$
$h \times I(2)=R$
$h \times I(3)=-R$
$h \times I(4)=-R$
$h \times P I(1)=0 . b$
$W \times P I(2)=-1) .5$
$n \times P I(2)=-0.5$
hXPI（4）$=0.5$
$A 1=$ SQRT（1．． $4 . *$ S．）
$A 2=$ SORT（1．＋4．＊SA）
DO $10 \mathrm{~K}=1, \mathrm{~N}$ ？
$Z=F L U A T(K) \neq D L$
$3 \mathrm{COPS}=A 1$＊ $1 / 2$ 。
PH＝Aて＊212．
$C P S=C D S(P S)$
$S P S=S I N(P S)$
$C P H=C O S(P H)$
$S P H=S I N(P H)$
$C(K)=-S P S / A I$
$D(K)=(C P H-C P S) / C .15 A$
$C 1(K)=C P H$
$C 2(K)=(A 2 * S P H-S+S /=1) / 2 . / S A$
10 CCNTINUE
READ（5，1JOIINYAFT，NYPNEI，YMAX，YPMAX
CC $20 \mathrm{~K}=1$ ，NYNET
$20 Y(K)=F L C A T(K-1)$ Y YMAX／FLOAT（NYVET－1）
［O $70 \mathrm{~K}=1$ ，NYFNE？
$70 \mathrm{YP}(K)=F L$ CAT $(K-1)$ \％YFNAX／FLCAT（IYPNET－1）
CC $30 \mathrm{I}=1$ ，NYNET
$Y N G W=Y(I)$
CC $40 \mathrm{~J}=1$ ，NYPNE 1
YFNCW $=$ YP (J)
nRITE 16,10021 YACn，YPNON
$\wedge X=N \times I$
DC $51 \mathrm{~L}=1, N \times I$
$n \times(L)=N \times I(L)$
$\operatorname{hXP}(L)=W X P I(1$.
51 CCNTINUE
CO $50 \mathrm{~K}=1, \mathrm{NL}$

```
    NCKIEF\AN
        PFY500-2489
                        STURCE STATEN NT
                            -
                        IFN(S)
            HEL IXI
                - EFF
                        -
    AY(4)=R
    IF(IXY.EC.1)O,J TC.G%
    AY(1)=C(K)
    \DeltaY(Z)=D(K)
    AY(3)=YNUN*; L(K)+YF, NG* ; Z(K)
    GOTC %O
55 AY(1)=GL(K)
    \DeltaY(2)=U2(K)
    \DeltaY(3)=YNON*C(K)+YP)JW*O(K)
36 CALL CUTP\(ivx,mx, nx?,AY)
    IF(NX.GT.25) Sili EDUCE{ivx.w;.wXP,25)
    CALL AKEA(NX,N), X!,ACCEPI)
    IFIACCEPT.LE.O: I IC G)
5O CCNTINUE
60 hRITE (6,1003)AL. P1
    hRITE (6,1004)(n:(k),k=1,AX)
    hRITE (6,1)05)(r\cdots(k),k=1,NX)
    CC TC 40
9) hRITE(6,1003)
40 CCNTINUE
30 CCNTINLE
    GO TO 500
    END
```

NCKIERNAN
PHYSOC-2489
DATE $09 / 03 / 69$
LACUT - PFA SCUFCE STATEM:NT - IFN(S) -

```
    SLBRCUTINE CLTFL(M,X,Y,A)
    DIMENSION X(1O(1,Y(1))),a(4),V(100),W(100)
    ZXIF}(P)=-(\Delta2*C+(A3-P)*O)X)/DE!
    YYIF(P)=(AL*C-(AZ-P)*UY)/DET
    Al=A(1)
    A<=A(2)
    \DeltaZ=\Delta(3)
    \Lambda=C
    X(M+1)=X(1)
    Y(N+1)=Y(1)
NM=M+1
CC 50 I =2,MM
CX=X(I)-X(I-1)
CY=Y(I)-Y(I-1)
C=X(I)*Y(I-1)-Y(I)*X(I-1)
ELI=A(1)*x(I)+C(2)*Y(I)+A(3)
ELIP=A(1)*x(1-1)+\Delta(<)*Y(I-1)+A(3)
    CET=ELI-ELIP
    IF(A(4))5,55,5
b JJ=0
    IF(ELI-A(4))1O,1C,12
10 JJ=1
    IF(ELI+A(4)112,11,11
11 JJ=2
12 KK=0
    IF(ELIP-A(4))I5,15,20
1) KK=1
    IF(ELIP+A(4))20,16,1t
16 KK=2
21) }K=3*JJ+KK+
    GU TE (50,23,24,25,50,26,30,31,49),K
23 N=\Lambda+1
    V(N)= XXIF(-A(4))
    n(N)=YY[F(-4(4)]
24 N=N+1
    V(N)=LXIF(A(4))
    n(N)=YYIF(A(4))
    CC Tr 50
25 A=N+1
    V(N)=2XIF(A(4))
    n(N)=YYIF(A(4))
26 N=N+1
    V(N)=2XIF(-\Delta(4))
    h(N)=YYIF(-A(4))
    CO TC ちO
3.) }N=N+
    V(N)= LXIF(A(4))
    h(N)=YY\F(A(4))
    CU TO 4O
3) N=N+1
    V(N)= LXIF(-A(4))
    n(N)=YYIF(-\Delta(4))
    CC TO 4G
    55 .1.1=n
```

MCKIEPNAN
PHY500-2489
DATE $09 / 03 / 69$
LACUT - IFN SMURCF STATENENT - IFN(S) -
IFIELII57.56,50
$56 \mathrm{JJ}=1$
$57 \mathrm{KK}=0$
IF(ELIP) $59,58,5 \varepsilon$
$58 \mathrm{KK}=1$
$59 K=2 * J J+K K+1$
CO TO (50, $24,30,49), k$
$49 \quad N=N+1$
$V(N)=X(1)$
$n(N)=Y(I)$
5) CCNTINUE:
$N=N$
IF(N)75,75,60
$60 \times N I N=1 . E 10$
YMIN $=1 . E 10$
$X M A X=-1 . E 10$
$Y M A X=-1 \cdot E 10$
CC $68 \mathrm{I}=1, V$
IF(V(I)-XMIN)61, ヒ2, מ2
$61 \times M I N=V(I)$
62 IF (V (I) -X: $4 \Delta x) \in 4, t 4,63$
$63 \times M A X=V(I)$
64 IFIN(I)-Y4IN)65, tb,bt
65 YMIN=W(I)
66 IF(W) II -YMAX) $\in \mathcal{Y}, \in \varepsilon, 67$
67 YMAX $=$ (I)
68 CCNTINUE
SILEL =XMAX-XMIN
SILEZ $=Y M A X-Y M I N$
SIZ=SILEI+SIZEZ
IFISIZ.EG.O.O) $N=1$
$N=1$
$X(1)=V(1)$
$Y(1)=W(1)$
IF(N.LE. I) GO TC 75
CC 7 CI $=2$, N
IF (SIZEL.LE.O.O.ANL.SILEZ.GT.0.0) 万OTJ8O
IF (AES(V(I)-x(N))/S (LE1-.OOUCS) $81,70,70$
81 IF(SIZEZ.LE.O.C) GC TV, 72
80 IF (ABS(N) I) Y (N))/SI7EL-.000C5)72.70,73
7.) $N=M+1$
$x(M)=V(I)$
$Y\left(M_{1}\right)=W(I)$
72 CCATINUE
75 RETURN
END

```
    CKIt+N分
    LA抽:
    SUPRIJIMN VELL(E(N,X,, AAXPT)
    CINERSI: K(:)O),Y(1CO)
    IF(A.Lt."Ax01) -ETLRN
45 LIST=3. - 1((X(N)-X(1))**2+(Y(N)-Y(1))*&2)
    IK=N
    N=N-1
    LC 20 I = 1,N
    [ISTC=` < I (() (I+1)-x(I) ***2+(Y(I+I)-Y(I))**2)
    IF(DISI..):..IST) GC I: 2.O
    EIST=US,IC
    IK=I
2) CCNTINUE
    IF(IK.LT.N) |! 25
    x(1)=(x(1)+x(y))/Z.
    Y(1)=(Y(1)+1: )})//2
    GO TC: 35
25 X(IK)=(X(1K)+x(IK+1))/?.
    Y(IK)=(Y(Ini+讠(IK+1))/2.
    IF(IK.tQ.i) f: IC 35
    LL=IK+l
    CC 30 J=LI,1
    x(J)=x(J+1)
3) }Y(J)=Y(J+1
35 }N=n-
    IF(N.GT.MAXPT) (E TC 45
    FETURN
    ENC
```

```
NCKIERNAN
Ptr000-24:
LAREAE - ER \(\because: U R C E ~ I I T E M E N T\)
    SLBF[GT:AE AR A \((N, X, Y, A)\)
    CIMENSIU: X(1 , Y \(\mathrm{Y}(100)\)
    Z \(=0\)
    CO \(2 C\) I \(\therefore N\)
    \(Z=\angle+A, S S((x(1)-X(i-1)) *(Y(I-1)-Y(1))-(Y(1)-Y([-1)) *\)
- (X(I-ミ)-x(i)))/て。
20 CCNII UE
    \(A=2\)
    RETUK
    END
```

 N(く) -

UIMEASICN Y(ッ)), YP\{50), WXI(4), WXPI(4), ACCLP1(500), WXF(100),
IWXPF(1Cし)
LIMEASIUN Aみ1S(ら1), APINT(り), 51), AIY(5G)
1COO FOFMAT (LI5, 4116.0$)$
1001 FURMAT $(1 H 1,5 \times, 3110=F 1 C .5,3 \times .3 H K=F 10.5 / 1 / 1$

10C3 FERMAT (5x.16HAC EPTAIVCr/(5E20.5))
1004 FORMAT(5HO x /(52 2 . b))
1005 FCRNAT(bHO XP / (5EZU.5))
1006 FORMAT $\left(5 X, 14+H^{\prime} A X\right.$. SS TAMCI $\left.=+10.3\right)$
1Cし7 FCKMAT (215, 4i 1 •5)

NXI $=4$
501 REAU (5, 1CC,) IXY, AL, JL,SA, K
IF (IXY.EU.)) ST.!
WKITi(6, LCう1)SA,
$\therefore \times I(i)=R$
$w_{1} \times I(\bar{c})=?$
$\omega \times I(\Xi)=-R$
W× $\times(4)=-R$
$\operatorname{nxpI}(1)=0.1$
wXPI (2) $=-0.1$
WXPPI $(3)=-0.1$
WXPI $(4)=0.1$
$A l=S W T(1,-4 . * 5 A)$
$A Z=\operatorname{SORT}(1 .+4 . * S A)$
DO $10 k=1$, N
$L=r L C A)(N) \%$.
$3<0 \quad P S=A 1 * i 12$ 。
$\mathrm{PH}=\mathrm{A} \div ⿻ \mathrm{C} / 12$.
$[P S=0 . 今(P S)$
SpS=SIH(pS)
$C P_{H}=(. J) \therefore(p+)$
$S P_{H}=S\left[\begin{array}{l}\text { S } \\ \text { (}\end{array}\right.$
し(K) $=-$ - P J /iAL

GI(K) = CPRH

io CCNIDNUF

DO $2 \mathrm{C}=1, \forall \mathrm{~V}$ ■T
20 $Y(K)=F L$ リAT(K-1):YAAX/-LCAT(NY, 二T-1)
LO 7; K=1, WY:
70 YP $(K)=F L \| A T(r-1) * Y: A X / F L G A(I Y P V E T-1)$
YNON = 0.
YPNOA=0.
$N X=N X I$
LO $50 \mathrm{CO} \quad L=1$, NXI
$w \times(L)=\times I(L)$
$\left.500 \operatorname{wxp}(L)=\operatorname{nPl} \mid 1_{2}\right)$
[0] 6:0) $K=1, N .2$
CALL PULY(天)

```
MごIEK|AN
                    PHY5,0-2439
DATE \(09 / 03 / 59\)
HELIXC－IFN SUURCE STATEMENT－IFN（S）－
```

```
    CALL A, A(1X,NX,NXP,ACC)
    620 CONTINUE
    0:1 ^XFF=NX
    DO ELこ L=1,NXF
    WXF(I)=.X(L)
    002 *XPF(L)=nXP(L)
    APTS(1)=ACC
    WRITE1O. 20, OIACL
SUUO HGRMAT(//5x, aUHCENT,AL ACLEP1AVCE= = 12.5)
    WRITE(E, LO)<+)(AAF(L),L=L,NXF)
    NRITE(t,10:5)(W天)PF(L),L=1,N人F)
    DO 3C I=1,!Y vT
    YNOWW=Y(I)
    433 CO 4C J=1,NYPNET
    YPNUn=YP(J)
    WRITE(6,1CO2)Y& o, YONUn
    IF(YNOW.EW.C..A IL.YPNON.EW.C.)OUTO 4*
    NX=NXI
    ARAP=1(:)O.
    DC 5i L=L,NX!
    W\times(L)=w<I(L)
    WXP(L)=, XPIIL)
    5 1 ~ C C N T ~ I N U L ~
    CO 5: K=1,NZ
    CALL POLY(K)
    CALL ARE\(NX, NX,AXP,ACCEPT(K))
    IF(ACCcPT(K).LE.C.)!UU TO 90
    50 CCNT INUF
    GU CALL LINPOUNXF,..LF,WXPF,NX,WX.NXP)
    1F(Vx.Gíč)C4LL REUUCL(Vx,wx,wxP,25)
    (ALL AKEAIIX,AX, SXP,API)
    It(APr.LF..C)O 「:%0
    APTS(J)=APT
    JNOW-J
    #RITE(E,2001)APT
```



```
    w<11E(6,10:4)(ax(K),K=1,vx)
```



```
    40 C!MIIN!!:
    9) N2TT:(0,16,%)
    JLSI=J!:ja+1
    APTS(JL.,i)=0.
    JCK=Jv:&-2*(Jv)./L)
    IF(JC<.T.L.l)JLSI=JN*
    LO 4;j JJ=1,NLSi
400 APINT(J,JJ)=APTS(JJ)
    JTUT=JLらT-Z
    AIY(i)=?.
    B0 453 kKJ=1,JT,1,2
4ち3 AIY(I) =AIY(I) +APINT(I,KKJ)+!.*APINT(I,NKJ+L)+A!IMT(I,KKJ+2)
    AIY(I)=AIY(1)*A心S(YP(j)-Yp(1))/J.
    30 CONIITUE
    AIYYP=C.
    ITOT=.VYNET-2
    LU 454 I=1, I|T,?
454+AIYYP= &IYYi+AIYII)+4.*&IY(I+I)+AIY(I+2)
```

```
        MerItrinim
            | L|人!
            YYp-i|Y:" AOS! i .j %!:|1, &
        .,HITI|.,1:: ||A!
```



```
    AIYY:= S&&T(A)YY&
    wkIT,!c,111<゙Jん!r
```



```
    00 H: \Cl
    END
```

NCKIERNAN
PHY500-2489
DATE O9/03/09

> LACLT - ifN SUURCE STATEMENT - IFN(S) -

```
    SLBREUTINE CUTP (1, , , Y, A)
    LIMENSION X(1LO),Y(ICC),A(4),V(100),N(IOO)
    ZXIF(P)=-(A<*&+(A3-P)*DX)/DET
    YYIF(P)=(Al*C-1:3-P)*UY)/DET
    AL=A(1)
    A Z=A(2)
    Aj=\Delta(3)
    N=0
    x(i-1+1) = x(1)
    Y(M+1)=Y(1)
    NN=M+1
    C0 5C I=_, , ,
    DY = X (I ) - X ( i-1 )
    LY=Y(i)-Y(I-i)
    C=X(1)}=Y(I-1)-Y(1)*Y(I-1
    cLI=A(1)*x(I)+A(<) 2x Y(1) +A, (3)
    LLIP=A(1)*x(I-1)+A(2)*%(1-1)+A(3)
    CET=ILI-ELIP
    If(A(4))5,5!,5
5 JJ=0
    1F(EL1-f(4))L?,16,12
10 JJ=1
    If(ElI+A(4))\\therefore, :1,I:
11 JJ=2
12 kk=C
    IFIELIP-A(4):I5,15,LO
15 KK=1
    IF(ELIP+A(4))20,10,10
16 KK=2
20 K=3* jJ +KK+1
    GG TC 150,23, 24, 5,50,2t,3.3,31,49),K
    23 N=1+1
    V(iv)=LXIF(-A(+))
    n(:N)=YYIF(-A(+);
    24 N=N+1
    V(N)-\angleX!F(A(4))
    ri(iv)=YYiF(A(द);
    GU Tr 5:
    <) N=N+1
    V(iv)=LX!\Gamma(A(4))
    w(N)=YY{F(A(4))
    26 N=N+1
    V(N) = XXIt(-iA(4))
    n(N)=YYIt(-N(4);
    CO Tr 5%
    30 iv=N+i
    V(N)=LXI+(a(+))
    G(f:)=YYIF(i)(i+))
    GC 1C 4%
2 1 N=N+1
    V(N)=ZX|F(-N(4))
    r.(A) = YYIF(-A(4);
    CCTC 4')
    55 JJ=C
```

```
    MCK1%:A
                1H%:0-24%,
    S URCE \IPEU OT - FN\SI
    IF(1L.)',1..
56 JJ=1
57 kK=C
    IF(ELIP)Lc,
58 KK=1
59 K=2*jJ +RK +l
```



```
44 N=N+1
    V(iv)=x(I)
    W(N)=Y(1)
50 LCNT INIJE
    N=iv
    IF(N)75,7弓,\inC
60 XMIN=1.t10
    YMIN =1.E1O
    XNAX=-1.E10
    YMAX=-1.E10
    DO 6&I=1,N
    IF(V(I)-XMIT!)OL, EZ,ti
61 XMIN=V(1)
e2 If(V(I)-XMAX)&i+ :, &Z
63 XMAX=V(1)
t4 IF(W(I)-YM|N)bs., ,0
65 YMIN=N(1)
06 IF(wi(I)-YNAX);0,'&,07
07 yMAX=:(1)
* % CNT!NU:
    \thereforeILEI= - 4AX-X.*I.
    SIZEZ=YサAX-Y:
    IL=sIZEl+亏1Z<
    If(SIR.Ew.w.) ==1
    N=1
    *(1)=v(1)
    Y(1)=w(1)
    IF(N.LE.L) GU 1.73
    !C}7<I=\angle,
```



```
21 IFISIZEZ.L上.O.ONJTO T<゙
80 IF(AES(w1I)-Y(H1//3)/2Z-.6こ`5)72,70,7)
70 M=M+1
    X(M)=V(I)
    Y(M)=N( i)
72 CGNIINUE
75 RETUFV
    ENU
```



```
MCKIERTAN
HHY5 3-2489
LAEA - \(\because\) - SNMCE STATEMENT - IFN(S) -
SLBR[!JTINE HR:A (乡, Y, Y, i)
LIMENSIIN X(1.0), Y(1-6)
\(2=5\)
CO \(2 \mathrm{C} \quad 1=2, \mathrm{~N}\)
\(Z=Z+A 3 S!(X(1)-X(1-1)) *(Y(1-1)-Y(1))-(Y(1)-Y(1-1)) \%\)
- (x(1-1)-x(i)))/?。
20 C.ENT INUE
\(\Delta=Z\)
RETURN
END
```

DATE O9/03/69

```
    MCKIEKNA"
                PitY500-2489
                    OATE 09/03/69
            LAPBLY - EFN SOUKCE STATEMENT - IFN(S) -
    SLBRCUTINE PGLY(K)
```



```
        LF, NX,YN:W,YPNJW, IXY
        \(\Delta Y(4)=1\) ?
        IF(IXY。: Q. 1) OG T: 1
        \(\Delta Y(1)=\zeta(K)\)
        \(\Delta Y(\angle)=0(K)\)
```



```
        CO TC 25
10 AY( 1 ) \(=G 1(K)\)
    \(A Y(\bar{C})=G \subset(K)\)
```



```
20) CALL CUTPC(NX, wix AXPAY)
```



```
    RETUFV
    LND
```

```
    MCKIEFYAN
        PHY5)0-2489
        INTPEV - IFN SOUKCE STATEMLNT - IFN(SI -
    SLBRLUTINE IGTPC(NL,X,Y,N2,V,N)
    LIMLIVSI:N X(1, ) ,Y(1:0),V(100),w(100),a(4)
    J=NL+1
    X(J)=X(1)
    Y(J)=Y(1)
    LO 2C I=<,J
    A(1)=Y(I)-Y(I-1)
    A(z) =x(1-1)-x(1)
    A(3)=Y(1-1)*x(1)-X(1-1)*Y(1)
    A(4)=0.
    CALL CUTPE(No,V,N,A:
    IF(N゙心2%,21,<0
20 CLNTINUK
21 r゙ヒTU゙N
    END
```

 DATE 09/03/69