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1. Introduction

Particle motion through a beam transport system may be 

described, to first order, by using the well known matrix formalism"''.

We review this method, only considering aspects relevant to this report.

We choose an orthogonal Cartesian co-ordinate system where 

x denotes the horizontal displacement, 

y denotes the vertical displacement, and 

z denotes the displacement in the beam direction.

Beam handling elements (we consider only drift spaces and

quadrupole magnets) are represented by 2 x 2 transformation matrices 

which operate on particle displacement-divergence vectors. Thus, for 

motion in the xz-plane we have

The zero subscripts denote input values, and the resultant

vector on the left gives the particle displacement and slope at the 

exit of the element. A similar equation holds for motion in the 

yz-plane.
In a drift space the particles travel in straight lines and 

the transformation matrix is

where D is the length of the field-free region. This matrix is the 

same in both the xz- and yz-planes.

thwhere is the i element transformation matrix
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A quadrupole magnet consists of four magnetic pole pieces 

mounted on a common yoke as shown below.

If the co-ordinate system is oriented as shown (z is out of page) then 

the magnetic field B arising from such a pole configuration can be 

described, to good approximation, by

Bx - gy ,

Hy - gX ,

and B = 0z

3B 3Bxwhere g = is the field gradient

which is assumed to be constant over the effective length L of the magnet 

and zero outside of it (hard edge model).
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By substituting this field into the equations of motion

dt

we get, to first order, the differential equations

^  - k^y - 0 ,

with k2 = f -  = .003 |  ,

and where the particle momentum P is to be expressed in Gev/c and the 

units of g are Gauss/cm.

equations that the quadrupole is focussing in the xz-plane and de- 

focussing (with the same strength) in the yz-plane. If the magnet 

polarities are reversed, these focussing effects are interchanged.

The solutions to the two equations of motion can be written 

in matrix form as

It is apparent from the signs in the above two differential



These transformation matrices and may be factored^ into the product 

of three matrices describing two drift spaces separated by a thin lens; i

“h

, KL'1 K itan —

0

/l K 1tanh—^KL

0

i-K sin KL

K sinhKL

KLK 1 tan y ~

y_l .KL K 1 tanh—

In the "thin lens approximation", we take 

sin KL s. sinhKL = KL ,

KL ~ - iKL KL tan —  = tanhy- == —

Then both and can be written in the form

m. = / 1 ^ Y 1 "V1 L/2'
1 \ o  i /Vi/f i/ Vo i

where f = 1/K^L is the thin lens focal length which is

positive or negative depending on whether the effect of the lens 
is focussing or defocussing.

The transformation matrix T representing a transport system 

is found by computing the product of the individual element matrices; i.e.
N

T = n M. , 
i-1 1

where N is the number of elements in the system.

We note that this product matrix always has unit determinant 

since this is true for the matrices representing drift spaces and 
quadrupoles.



It is of interest to design "identity sections" for which the 

system transformation matrix in both xz- and yz-planes satisfies

T = ± I , 

where I is the unit matrix.

These systems change particle displacement-divergence vectors 

according to
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dxand thus any region in the input (x ,  o ) phase space which is
° dz

invariant under the operation of reflection through the origin is 

reproduced at the exit of an identity section. In particular, if 

the input beam is represented by a central ellipse in displacement- 

divergence phase space, then the output beam is represented by the 

same ellipse. An identity section is therefore useful for transporting 

such a beam effectively unchanged between tw<? points on the beam line.

The initial investigations of these identity sections were 

carried out using the thin lens approximation. It is shown in 

Appendices I and II that there exist no thin lens doublet or 

triplet systems but in the case of four thin lens quadrupoles there 

exist systems with two degrees of freedom. The corresponding four 

quadrupole thick lens systems are discussed in Section 2 using 

assumptions based on the thin lens analysis.



The systems found have the following characteristics:

- the system transformation matrix is equal to minus the unit matrix

- the systems have a symmetry property; that is, they consist of two 

identical symmetric doublets in succession

- the total system length D is taken as a design parameter and can 

easily be adjusted

- a system of a given length has three degrees of freedom. These 

can be taken as:

r, the ratio of the last drift length” co the first

£, the ratio of the central drift space for the system to D

d, the ratio of the quadrupole magnet effective length to D.

An expression is obtained which relates the quadrupole field gradient for 

the system to I  and d. This gradient is a minimum when the drift spaces

between the magnets are of equal length.

Identity sections with 4n (n is a positive integer) quadrupoles 

can be formed by using n of the above systems in succession. If the r-, 

Z - and d- values are the same for each identity section in the series, 

then when n becomes infinite, we obtain an infinite periodic system where 

any segment with length equal to a multiple of D is an identity section. 

The infinite and four quadrupole systems are discussed in Section 2. The 

phase space acceptances for a number of four quadrupole identity sections 

were calculated numerically. It was found that for a system of a given 

length the acceptance is a minimum when the system field gradient is a 

minimum; i.e., when the drift spaces between magnets are equal in length. 

It was also found that a maximum acceptance occurred for particles of 

momentum greater than the design momentum for the system. The details 

of these computations are given in Section 3.

* measured from the center of the magnet

- 6 -
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2. Thick Lens Identity Sections

a. Four Quadrupole Systems

It is demonstrated in Appendices I and II that there exist no 

doublet or triplet thin lens quadrupole identity sections but for the 

case of four thin lenses there exist a double infinity of solutions. 

Therefore the thick lens identity sections were investigated by studying 

systems with four thick quadrupole lenses.

We consider first a theorem taken from elementary matrix theory. 

This is the Hamilton-Cayley5 theorem which states that a matrix satisfies 

its characteristic equation. For a 2 x 2 matrix M the characteristic 

equation is

det = X2 -(trace M)A + det M = 0 ,
 ̂Mii—A M22 

\ M 2l M22~^

and hence we can write M2 - (trace M)M + (det M)I = 0 . 2.1

If M represents a system transformation matrix, then

det M = 1 ,

and from equation 2.1 M z = - I , 2.2

when we impose the condition trace M = 0 . 2.3

From equation 2.2 we conclude that if we can find a thick lens 

doublet satisfying equation 2.3, then a four quadrupole identity section 

can be formed by using two such doublets in succession.



To this end we consider the thick lens doublet shown below:

Here and g2 are the quadrupole field gradients and L the quadrupole 

effective length. The drift lengths D 1# D2 , D 3 are measured between 

magnet edges. From our thin lens calculations (Appendix II), we suspect 

that the magnets must be of equal strength and alternately focussing and 

defocussing. Accordingly we assume

8l = “82 - 8 .

The horizontal plane transformation matrix is then obtained from 

1 ® 3 \ /  costj) sincj>\ j  1 D2
H =

, , sinh<f>\ ,,coshcj; — v  \ (  1 Dj\K
.0 1 J V -K sin<{> cos<|,/ \ 0  1 /\K sinh<f> cosh<))/ \ 0 1

where, for brevity, <j> = KL ,

Multiplying out the above matrices we find that the diagonal components 

of H are given by

Hi 1 = -D 2D3K2 sin<j)sinh(J> +  D2Kcosc(>sinhcj) +  D3K(cos<t>sinh<f> -  sin<J>cosh<f>)

+ coscf>cosh<f> + sinc|>sinh<j)

and

H22 = -DiD2K2sin<J>sinh<t> + DiK(cos<}>sinh<f) - sin<}>coshcj))

- D2Ksin<j)cosh<}) + coscj>cosh<f) - sin<J>sinh<f> .

2.4

2.5

2. 6
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Now substituting equations 2,5 and 2.6 into equation 2.3 gives

D2(Di + D3)K2tanh(f)tan(() - K(D^ + D2 + D 3) (tanh<Ji - tantfi) - 2  = 0* 2.7

Also, setting trace V = 0, where V is the vertical plane transformation 

matrix for this doublet, leads again to equation 2.7.

Since the doublet is to represent one half of the identity section 

the expression for the total system length D is

D = 2 ( Dj + D2 + D3 + 2 L) . 2.8‘

It is convenient to take D and L to be fixed parameters. Then we have 

two equations (2.7 and 2.8) in the four unknowns Dj, D2 , D 3, K. We 

choose to solve for D2 and D 3 + D3 in terms of K. Then the complete 

identity section, shown below, will be specified, except for the ratio 

of the first drift length to the last, when the K-value is given.

We solve for D2 by rearranging equation 2.8 

D2 = |  - 2L - (Di + D3) , 

and substituting this into equation 2.7 yields

2.9

d 1+d3 = (T -L) ± /D tn2 2coth<j>cot<j) V. ~ " 1+K(-̂ - -L) (tanh^ - tan<())! 2 .10
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It is convenient to write these equations in terms of dimensionless 

parameters. We define

d E L/D ,

0 E KD ,
Dl1 = <L + _  ,£ i = d_

2 ' D
d 2

*2 = d + —  ,

d °3 
£3 = 2 + 3  ’

2.11

Di +  Dc
a e d + D = £i + 5,3 ,

r = £3/^1 •

From the last two defining equations we get

£1 = 1 + r ’
£ 2.12

1 + r ■1

Substituting from equations 2.11 into 2.9 gives

£2 = 1/2 - £ ,

and equation 2.10 becomes

2.13

£ - ±  + 4 -
,1 jXo 2cothd0cotd0 . „,1 ,w  ,

-  d)z - ------------- ĵ l + 0 - d) (tanhd0 - tand0) 2.14

Using this notation, the total system length is equal to unity. To scale 

to a system of length D we multiply all drift lengths by D and choose the 

system field gradient according to

P K 2 P  0 2g = .003 .003 p2 ‘ 2.15

We note that a four quadrupole identity section of a given length is 

completely determined when the three dimensionless ratios r, £, and d 

are specified.
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A typical system is shown below:

£-d-> r d— ^ -d—5

<--- S L--- . . . 1 „ V V 1
1+r 2 £ A j - t —7 * - >

1+r'1

In Fig. 1 we have plotted 0 as a function of £ for values of d equal to 

.01, .02, .03 and .04. As would be expected, we see that if we use 

longer magnets (larger d-values) the values of 0 become smaller, i.e. 

we can use weaker magnet gradients.

b. Minimum-Gradient-System

It is apparent that each curve shown in Fig. 1 goes through

a minimum at £ = 1/4. This means that for a system (with fixed D, d)

the minimum gradient occurs when the drift spaces between the magnets

are equal in length since from equation 2 .12, £ = 1/4 implies also that

SL2 = 1/4. These minimum gradient (maximum focal length) systems were

also predicted by the thin lens analysis of Appendix II. For these

systems, we can find a relationship between the total system length

and the quadrupole constant K. We set the quantity under the square

root sign in equation 2.10 equal to zero and obtain

/■D T\? _ 2 coth<j>cot<j> (, . „,D , x , . D(4 “ w    jl + K(-̂ - - L) (tanh<f> - tan<())> }

which can be put in the form

D = ^  |L + (cotcf) - coth<J>) + /coth2<f> + cotc)>2 ) . 2.15
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We can get a feeling for the strength of magnets required for 

typical identity sections by plotting K as a function of D. In Figure 2 

is shown such a curve with the parameter L fixed at 0.4 meters. The 

dashed lines represent the gradients required for a beam with average 

particle momentum of 1.09 Gev/c (corresponding to 500.0 Mev protons).

We see that for systems less than 5.5 meters gradients of greater than 

1000 Gauss/cm. will be required.

c. Infinite Periodic System

We can use the theory just developed to form a periodic system 

consisting of an infinite number of symmetric thick lens doublets as 

shown below.

is 9 9 0 _ is f N2 & A/ 2 X, X/ A ■2 7

6-d-s *d-S

Here, d and £ are the dimensionless parameters defined previously and the 

magnet field gradients are obtained from equation 2.15 where 0 satisfies 

equation 2.14. Any segment of length 1 unit is an identity section 

independent of where the start of the unit length section is taken (since 

the curves in Fig. 1 are symmetric about £ = 1/4). In fact any section 

of length m (m is a positive integer) has a transformation matrix T 

given by

T = M2™ = ( - 1 )m I , 2.14

where M denotes the matrix representing each doublet.
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It is known that the condition for overall focussing in a 

periodic system of quadrupoles is

| trace M | < 2 , 2.15

where M is the matrix for one period.

From the derivation given for the identity sections (recall 

equation 2.3) we note that the infinite system under discussion satisfies 

this criterion.*

d . Recovery of Thin Lens Formulae as L Approaches Zero

As L -> 0 the thick lens relationships established in this section 

reduce to those found in Appendix I using the thin lens approximation.

Thus equation 2.9 becomes

D2 as |  - (Dj. + D 3) , 2.16

and taking tanh q - tan <f> s KL ,

in equation 2.10 we get

D 1 + °3 = ~  ±D
4 !)2 K^L2

Squaring to remove the radical gives

or

D1 + d3 “ J

f =
K 2 L

7 1  K^L2 ’

( D i + D i )  ( d^  (D! + D 3).>} 2.17

where f is the thin lens focal length.

In addition, the second and fourth drift lengths of the identity 

section are equal, due to the assumption of symmetry (M2 = -I). Thus 

equations 2.16 and 2.17 are equivalent to the thin lens formulae found 

in Appendix II.

* Evidently, from equation 2.14, the trace of the periodic system 
oscillates between -2 and +2 with a period of length 2 units.
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3. Acceptance Calculations for Thick Lens Identity Sections

The acceptance of a beam transport system is defined as that 

area in displacement-divergence phase space which contains the initial 

conditions of all particles that will pass through the system. The 

UVic IBM 360/44 computer was used to calculate the acceptance, assuming 

a four inch diameter beam tube, for the four quadrupole thick lens 

identity sections described in Section 2. The computations were done 

using the following parameter values:

D = 7.0, 10.0, 13.0, 16.0, 19.0 meters ,

L = 0.4 meters (all magnet effective lengths were equal) t

r = 1.0 (first and last drift lengths were equal) .

The results for the xz-plane are shown in Fig. 3.* We see that in each 

case the acceptance is a slowly varying function of the independent 

variable £, with a minimum at £ = 1/4. These curves are a bit deceptive 

in that the actual acceptance area shapes change radically with changing 

£-values. This effect is seen in Fig. 4. The acceptance areas for both 

horizontal and vertical planes for a 10.0 meter identity section with 

£ = .05, .25, and .45 are shown. The acceptance areas in the two planes

are related to each other via a reflection through the ordinate or

abscissa.

*  The results for the yz-plane were the same. This can be predicted 
theoretically by noting that, for systems symmetrical about the 
midpoint, a particle traversing the system in one plane experiences 
the same focussing as one travelling in reverse order in the other 
plane.
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It can be seen from Fig. 4 that large acceptance areas with 

small divergences are obtained by using £-values close to 1/2. Acceptance 

shapes for identity sections of length other than 10.0 meters were 

investigated and similar results were obtained.

From Figs. 3 and 4 it is seen that there is no single value of 

£ which should be chosen in all design situations. If the phase space 

area representing the input beam is small (much less than the acceptance 

with £ = 1/4) then the minimum gradient system is the most economical.

When the input beam has a large phase space area (due to multiple 

scattering from a target, say), then one may have to increase or decrease 

the £-value in order to accommodate the beam using reasonable quadrupole 

apertures.

For the 10.0 meter identity section with £ = .25 a plot*was 

also made of acceptance as a function of particle momentum. It turns 

out that the maximum acceptance does not occur at the design momentum 

(1.09 Gev/c) but at a higher value. This indicates that identity 

sections would probably not be useful in designing a system (e.g. a 

muon channel) where maximum acceptance is required.

*  See Figure 5.
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Appendix I.

Non-Existence of Doublet or Triplet 

Thin Lens Identity Sections

a. Doublet

We consider the thin lens quadrupole doublet shown below.

Here, F3 and F2 are the focal lengths and Lx, L2 , L3 are the drift lengths 

for the system. The transformation matrix components for this system (for 

the xz-plane) are obtained from

T =
1 L3 \ / 1 0
0 1 J  I 1/F2 1

f 1+L2/F1+L3/Fi+L3/F2 

+L2L 3/(F1F2)

1/F1+1/F2+L2/(F1F2)

1 L2\ (  1 0

1/Fi 1 o 1

l 1+L2+L3+LiL2/Fi+LiL3/F2+L2L3/F2

+l 1l 3/f 1+l 1l 2l 3/(f 1f 2)

1+Lx/Fi+Li/F2+L2/F2+L1L2/(F!F2)

1-1

The transformation matrix components for the yz-plane are the 

same except that
F1 - F 1 ,
Fo — Fc
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If the system is to be an identity section, the off diagonal 

components of the matrix T must be zero. Applying this condition to 

component T2i in both planes gives

1 / F i  +  1/F2 + L2/(F1F2) = 0 , 1-2

- 1 / F i  - 1/F2 + L2/(FiF2) = 0 . 1-3

Adding equations 1-2 and 1-3 yields

L2/(F1F2) = 0 . 1-4

For finite F^ and F2 this equation has only the solution

L2 = 0 , 1-5

and putting this in equation 1-2 we get

F1 = - f2 . 1-6

Substituting equations 1-5 and 1-6 into 1-1 shows that the transformation 

matrix for both the xz- and yz-planes becomes

and we conclude that an identity section occurs only in the trivial 
case that

L-x = L3 * 0 .
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b. Triplet

We consider the thin lens quadrupole triplet shown below.

Here, Iq , L2 , L 3 , are the drift lengths and , Fg , F3 are the 

focal lengths for the system. To make the calculations easier we write 

the system transformation matrix as

T = SM ,

where M represents a doublet and S represents the last thin lens and 

drift space. For the xz-plane the components of M are given by equation 

1-1 and for S we have

1 L h \  I  1  0 \ / i + L4/F3 L4

0 1 / \i/f3 1  \  ' 1/Fg 1
S =

1-7

1-8

The transformation matrices for the yz-plane are the same 

except that
Fi ->■ - Fi »

f2 - F2 ,

f3 "*■ ~ F3 •

The condition for the system to be an identity section is

T = SM = ± I ,

or M =

where we have used

s 2 2 +  s 1 2

V*S 2 1 ±  s n

det S = 1
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In particular, we have

M 21 = + S2i ,

which for the horizontal plane is equivalent to (from equations 1-8 
and 1-1)

1/F! + 1/F2 + L2/(F1F2) = + 1/F3 , 

and similarily for the vertical plane

- 1/Fi - 1/F2 + L2/(F1F2) = ± I/F3 .

Adding equations 1-10 and 1-11 leads to

L2/(F!F2) = 0 , 

and for finite F^ and F2 we have

L2 = 0 .

Since L2 is zero, the first and second thin lenses are adjacent and we 

are effectively back to the doublet case which has already been treated. 

Hence there are no thin lens triplet identity sections.

1-10

1-11

1-12
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Appendix II.

Thin Lens Identity Sections

a. Four Thin Lens Quadrupole Systems

We consider the four thin lens quadrupole system shown below.

Here Fj , F2 , F3 , F^ are the focal lengths and Iq , L2 , L 3 , Li, , L 5 , Lg 

are the drift lengths for the system. D is the total system length. We 

note that this system has been divided at some arbitrary point P between 

the two middle thin lenses so that we have effectively two doublets. This 

division does not restrict the system in any way and will simplify the 

subsequent calculations.

If we label the transformation matrices for the two doublets by 

M and D then the condition for an identity section is

T = RM = ± I  ,

F3 pi+
P

<  I q   L 2 ----- SK— L 3 — — L 5 -—  L g -----------

D

or

where we have used det R = 1 •
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In terms of matrix components we get

M 11 “ ± R22 > II-l

Ml2 ~ + R12 , II-2

M21 = + r21 , 

M22 = ± R11 » II-4

II-3

where the upper sign is for T = + I.

Using the matrix components for a doublet (given in equation 1-1) 

we get for the xz-plane the following four equations:

- from equation II-l

1+ L 2 / F 1+ L3/ F 2+ L3/ F 1+ L 2L 3 / ( F 1F2) = ± (l+Li+/ F 3+Lit/Fit+ L 5 /Fit+LitL 5 /  ( F 3Fi+) ) , I I -5

- from equation II-2

L1+L2+L3+L1L2/F1+L1L3/F2+L2L3/F2

+ L i L 3 / F i + L i L2L 3 / ( F i F2 ) = +-(Li++L5+Lg+LitL5/F3+Li+L6/Fit+L5Lg/Fi+

- from equation II-4

1+ L 1 / F 1+ L 1 / F 2+ L 1L 2 / ( F 1 F2 ) = ± ( I + L 5 /F  3+ L 6/F ^+ L g/F 3+ L 5L 6/ (F 3F 4 )) . I I - 8  

Similarly, for the xz-plane we have

+LltL6/F3+LltL5L6/(F3Flf)) , II-6

- from equation II-3

1/F1+1/F2+L2/(F1F2) = ^(1/F3+1/F1++L5/(F3F1+)) , II-7

1-L2/F1-L3/F2-L3/F1+L2L3/(F1F2) = ±(l-Llt/F3-Lit/FIt-L5/F4+LltL5/(F3Flt)) , II-9

L1+L2+L3—LiL2/F3 —L^L3/F2 

- L 2L3 / F 2 - L i L3 / F i +L i L2L3 /  ( F i F2 ) = ^(Lit+Lg+Lg-LLtLg/Fs-L^Lg/F^-LgLg/F^

- L ltL 6 /F 3 + L ltL 5L6 / ( F 3 F l+) )  ,
11-10
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-1/F1-1/F2+L2/(F1F2) = +(-l/F3-l/Flt+L5/(F3F£t)) , 11-11

1-L1/F1-L1/F2-L2/F2+L1L2/(F1F2) = ±(1-L5/F3-L6/F4-L6/F3+L5L6/(F3F4)) . 11-12

It is useful to consider the total system length as a parameter.

We write

Li + L2 + L3 + L^ + L5 + Lg = D . 11-13

Since det M = det R = 1 only six of the eight

equations II-5 to 11-12 are independent. We have in total seven 

independent equations in the nine unknowns L 1} L2, L3 + , L5, Lg,

Fi, F2, F3 and F^. In the above, the central drift space for the

system (given by L 3 + L^) is counted as a single unknown since its

division into lengths L3 and Li+ was made only for convenience and has

no physical significance.

To solve this set of equations, we manipulate as follows: 

equation II-7 + 11-11 gives

F3Ftt/FiF2 = ̂ Lg/L;? , 11-14

equation II-7 - 11-11 gives

1/F]+ 1/F2 = + (1/F3 + 1/Fit) , 11-15

equation II-5 + II-9 gives

L2L 3/(F1F2) = (-1 ± 1 ± L1+L5/(F3Fit)) . 11-16

If we choose the upper sign we get

F3F4/(FiF2) = L4L5/L2L 3 = (L5/L2) L4/L3 ,

and from equation 11-14

L^/Ls = - 1 ■
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This result indicates that there are no feasible solutions since the 

middle drift space of the system, L3 + , is zero and we are back to

the three lens case. Hence there are no four lens identity sections 
with T = + I.

We will therefore consider only the case where T = - I.

Then in equation 11—16 we use the lower sign to get

L2L3/(FiF2) = - 2 - L^L5/(F3Ftt) .

From equation II-8 + 11-12

L 1L2/(F1F2) = - 2 - L5L6/(F3F J  , 

and from equation 11-18 - 11-17

F3Fit/(F1F2) = (Llt - L6)/(Ll - L3) .

Substituting equation 11-14 into 11-19 gives

Li* + L3 = L6 + 1^ .

We have also equation II-5 - II-9

(L2 + L3)/F! + L3/F2 = - L^/Fg - (L^ + L5)/Fit , 

and equation II-8 - 11-12

Li/Fi + (Li + L2)/F2 = - (l5 + L6)/F3 - Lg/Fj* .

Then equation 11-21 + 11-22 combined with 11-13 yields

(1/Fl + 1/F2) = (1/F3 + l / F O U  - D/dj+L^Lg)) . 

Taking equation 11-23 - 11-15 gives

0 = (1/F3 + 1/F1+)(D/(L1+L2+L3)) .

We ignore the trivial solution D = 0 and get

1/F3 + 1 ^  = 0 ,

and it follows from the above equation and 11-15 that

F3 = - Fit »

Fi = - F2 .

11-17

11-18

11-19

11-20

11-21

11-22

11-23

11-24
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We define F : F[ - - F2 )
11-25

and G = F3 = - F4. •

Now from equation 11-14 G/F = /L5/L2 . 11-26

Substituting equation 11-25 in 11-21 we find

G/F = L5/L2 ,

and from equation 11-26 we have

with solutions

^Ls/Lz = L5/L2 , 

L5/L2 = 0, 1 .

We discard the zero solution as this leads us back to the three lens case.

It is apparent from equations 11-25 that the four focal lengths for the 

system are equal in absolute value and alternate in sign.

We can determine L2 , L5 in terms of D and L3 + L^.

From equations 11-13 and 11-27 we obtain

L 2 +  L 5 = 2 L 2 = 2 L 5 = D - (Li +  L 3 +  L 4 +  L 6) , 

and using equation 11-20

Substitution of equations 11-27, 11-28, 11-25 and 11-29 into equation 11-16 

gives the system focal length also in terms of D and L3 + L^.

We are left with L5 = L2 , 11-27

and from equation 11-26 we get F = G . 11-28

L2 = L5 = D/2 - (L3 + Li*) • 11-29

It is 11-30
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We have now found the general solution for an identity section 

of length D. If we define the dimensionless quantities

i  = (L3 + l4)/d ,

£. = L./D , i = 1, 2, 5, 6

r = Lg/Li ,

f = F/D ,

then we can summarize the results obtained so far as follows:

- from equation 11-30 f = - ^  'fj ^ > 0  < SL < %

^ 2 = ̂-5 =  H  ~  SL ,

i l  +  I q  =  SL ,

- from equation 11-29

- from equation 11-20

with £l -

SL2 =

1 + r ’
I

0 < r

1 + r"1 '

Using this notation, the total system length is equal to unity and to 

scale to a system of length D we multiply all focal lengths and drift 

lengths by D. We note that an identity section of a given length is 

completely determined when the two dimensionless ratios SL and r are 

specified. The system is as shown below.

+f -f +f -f

^ ^  ^ ^ P ''S SLV 1+r 1 ^ " x, - ■ C '2 ~ ~ f K  1+r"1 ' >

We see that this system has a fundamental symmetry. It can be regarded 

as two identical symmetric doublets of length one-half a unit; i.e., if 

the doublet matrix is denoted by M, then the identity section trans

formation matrix is M2 .

11-31

11-32

11-33

11-34

11-35
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b . Maximum Focal Length System

We can fix the degree of freedom specified by £ by requiring 

that the system focal lengths be a maximum.

We have df_ _ d_
d£ d£ < k  -  SL) j = 0

which yields £ = 1/4 .

From equations 11-32 to 11-35 the rest of the system is then specified b]

£2 = £5 = 1/4 ,

£i + £6 = 1/4 ,

and f = 47T  -

11-36
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c. Infinite Periodic System

We now apply the results of the previous section to the periodic 

system consisting of an infinite number of thin lens quadrupole doublets 

all of length one-half unit. This system is shown below.

Here, f and £ are the dimensionless parameters defined in equation 11-31.

If we restrict f and £ by the relation

0 < SL < h  11-36

then from equations 11-32 to 11-34 any section of unit length is an 

identity section independent of where the start of the unit section 

occurs. In fact, any section of length n units (n is a positive 

integer) has the transformation matrix (-l)nI.
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d. Five Thin Lens Quadrupole System

A particular section of this periodic system has been discussed
3

by Wolfe . In this case, the end points of a unit length section lie on 

the "centers" of two thin lenses and a five quadrupole identity section 

is formed by "splitting" each of these end lenses into an adjacent pair, 

both of focal length 2f. The system obtained is shown below.

Wolfe considered the case of maximum focal length and obtained the 

value

A - 1/4 .

c
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