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Abstract 

The Nagorno-Karabakh conflict has had profound consequences for both the political and physical 
geography of the South Caucasus region. Since the fighting of the 1990s there has been a relative status 
quo, with a militarised line of contact separating the two sides; the Armenia-backed Nagorno-Karabakh 
Republic (Artsakh) and Azerbaijan. This changed on September 27 2020, when intense fighting erupted 
along the whole of the front, and especially in the south-east. After a month and a half, fighting 
concluded on 10 November 2020 which saw the implementation of a ceasefire which ceded large 
portions of the Nagorno-Karabakh (Artsakh) Republic to Azerbaijan. There has yet to be an 
investigation on the kinds of changes to human and natural systems that the most recent conflict (2020) 
engendered. 

In response to this research lacuna, this paper asked whether the effects of the 2020 armed conflict 
had a significant effect on the region’s agricultural systems. This paper approached the question by 
examining per-pixel NDVI metrics - derived from Landsat 8 composites from April through June - 
before and after the conflict. These per-pixel metrics were correlated with conflict data from ACLED. 
This approach aims to test the hypothesis that areas which witnessed the most intense fighting saw 
significant drops in NDVI, indicating land fallowness and abandonment. The results from this study 
indicate that conflict intensity has a significant effect on vegetation health (p-value < 2.2e-16), and 
supports the hypothesis that conflict leads to a decrease in NDVI, however conflict intensity on its own 
does not have strong explanatory power for estimating changes in NDVI (R2 0.09667) and future work 
ought to segment the study area in order to obtain a non-obfuscated regression coefficient (coefficient -
0.0057322). 
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Introduction 

Overt and silent forms of violence form a fundamental component of social ecological systems (SES) 
(Biggs, 2021). Armed conflict is a form of intense overt violence, which has the potential to cause 
devastation to more than just combatants engaging each other on the battlefield. Recent research has 
examined the complex relationship between warfare and the environment by investigating the various 
effects of conflict on the environment (Machlis et al., 2011). Despite the recent turn to focusing on 
armed conflict in ecological research, there are many historical and temporal contexts where conflict-
ecology analysis is still lacking. 

One such context is the 1991-1994 war between Azerbaijan, the Nagorno-Karabakh Republic, and 
Armenia. The war has had profound consequences for both the political and physical geography of the 
South Caucasus region. In their 2015 article, Baumann et al. examined these changes by studying the 
war’s effects on local land-use during the conflict period between 1987–2000 (Baumann et al., 2015). 
Their results uncovered that these changes consisted primarily of destroyed cities or settlements and the 
abandonment of agricultural lands in the vicinity of the conflict zone. Baumann et al. found a total of 
140 destroyed cities or settlements, and 29% rate of agricultural abandonment. Moreover, after the 
cessation of the conflict, only 17% of the abandoned agricultural areas were re-cultivated indicating that 
“the land use system may have transformed profoundly.” 

Since the fighting of the 1990s. there has been a relative status quo, with a militarised line of contact 
separating the two sides (de Waal, 2003). This changed on September 27 2020, when intense fighting 
erupted along the whole of the front, and especially in the south-east. After a month and a half, fighting 
concluded on 10 November 2020 which saw the implementation of a ceasefire which ceded large 
portions of the Nagorno-Karabakh (Artsakh) Republic to Azerbaijan. This ceasefire represents the most 
momentous shift in both the de-facto and de-jure political boundaries of the region since the fighting of 
the 1990s (Darbyshire, 2021). While there is substantial literature on armed conflict and changes to 
human and natural systems, including Baumann et al.’s article on Karabakh, there has yet to be an 
investigation on the kinds of changes that the most recent conflict (2020) engendered. In response to 
this research lacuna, this project presents a proof of concept for a remote sensing methodology which 
examines whether conflict is a significant driver of changes across the natural landscape. In particular, 
this project looks at whether conflict intensity has a significant impact on vegetation health, as measured 
by the normalised difference vegetation index (NDVI). Assessing the significance of changes to NDVI 
provides the foundation for future research into how human and natural systems have changed as a 
result of the 2020 armed conflict.  

Study Area and Data Description 

The research covers the areas of the Nagorno-Karabakh region which witnessed armed conflict from 
September 27 to November 10 2020. To demarcate the study area, Soviet military topographic maps at 
a 1:100,000 scale, from between 1972-1990, were sourced from a free and open source database, and 
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georeferenced in the Pulkovo 1942 coordinate system to establish the exact location of the border 
between the Armenian and Azerbaijan Soviet Socialist Republics (SSRs). This was a necessary step, 
because the current border is contested and existing shapefiles do not account for the intricacies of the 
boundary line. The north of the study area was traced to the ridgeline of the Murovdağ (Mrav) 
mountain range, while the south of the study area was traced to the Aras (Arax) river. The eastern 
boundary was more difficult to trace, as there is no de-jure boundary between the Nagorno-Karabakh 
Republic and Azerbaijan, but rather a de-facto militarised line of contact. This line has been frozen since 
the Bishkek Protocol was implemented in 1994, with some minor changes as a result of clashes in the 
past decade. To respond to the challenge of tracing an unmarked and shifting line of contact, the 
boundary in the east was traced to the districts that make up the Yukhari-Karabakh and Kalbajar-Lachin 
regions of Azerbaijan. Including the 12 districts within these regions ensured that the study area would 
overestimate the spatial extent of the conflict. These areas were dissolved together in ArcGIS Pro to 
create a single-part feature class (see Figure 1). Moreover, to ensure that the study area boundary 
overestimated areas with conflict, a 5 km buffer was also calculated using the Buffer Analysis tool in 
ArcGIS Pro. This study area was used as the input feature for the creation of a grid consisting of 1 km2 
plots, which was generated using the Grid Index Features tool in ArcGIS Pro. The resulting grid 
accounted for the entire study area, including areas outside the study area that were part of a 1 km2 plot 
that fell partially within the study area. As such, the resulting gridded study area included three 
safeguards for ensuring that all parts of the Nagorno-Karabakh region which witnessed armed conflict 
were accounted for. 

The data used for this analysis can be divided into two broad categories: social and ecological. The 
social data is concerned with the spatiality of the conflict, and was acquired from the The Armed 
Conflict Location & Event Data Project (ACLED). ACLED datasets are compiled by researchers who 
synthesise disparate sources to generate exhaustive lists of violent events. These violent events are 
subsequently georeferenced, and other contextual data is appended to the entries. To acquire this data, 
I downloaded the ACLED dataset for Armenia and Azerbaijan from between September 1st and 
December 1st 2020, filtering event types to include “Battles” and “Explosions/Remote violence” 
exclusively. This dataset was subsequently filtered using the Intersect Analysis tool in ArcGIS Pro to 
include only points which intersected the gridded study area. I used the Kernel Density analysis tool in 
ArcGIS Pro to generate values for conflict intensity. The conflict kernel was snapped to the grid of 1 
km2 plots to ensure that each plot had a single conflict density value assigned to it. The values for 
conflict intensity were vectorised using the Zonal Statistics as Table tool in ArcGIS Pro, and then joined 
to the study area grid. The ecological data is concerned with vegetation health on a landscape scale, and 
consequently Landsat 8 spectral reflectance (Level 2, Collection 2, Tier 1) imagery, with a 30 m 
resolution, was ideal. This imagery was acquired using Google Earth Engine, using the QA_PIXEL band 
to set bit 3 (cloud) and bit 4 (cloud shadow) to 0, indicating clear conditions (Gorelick et al., 2017). This 
cloud and shadow mask was applied to composite imagery collected from between April 1 and July 1 
2013-2021, indicating the full temporal range of Landsat imagery as of the completion of this analysis 
in March 2022.  
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Figure 1. The Nagorno-Karabakh study area, including the 5 km denoted in red. 
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Methods 

To understand how the Nagorno-Karabakh war of 2020 has affected agriculture in the conflict area, 
I examined the normalised difference vegetation index (NDVI) for 100 sample 1 km2 plots (n = 100). 
NDVI is calculated according to the formula: 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 −  𝑅𝐸𝐷)

(𝑁𝐼𝑅 +  𝑅𝐸𝐷)
 

whereby NIR is spectral reflectance of the near-infrared portion of the electromagnetic spectrum 
(0.851-0.879 μm, Landsat 8), and RED is the spectral reflectance in the red portion of the 
electromagnetic spectrum (0.636-0.673 μm, Landsat 8) (Rouse et al., 1974). The entire study was made 
up of 16,551 1 km2 plots. The per-pixel NDVI was obtained from the April 1st to July 1st Landsat 
composites, which were processed in Google Earth Engine as outlined in the above section.  The 
composite for 2016 was not included due to problems with atmospheric cloud cover. The NDVI value 
for each pixel was calculated using a script written in the R programming language (R Core Team, 
2022). The script sampled 100 random plots from within the study site grid, and masked the seven 
Landsat spectral reflectance mosaics to each of the 100 plots. The per-pixel NDVI values were 
subsequently calculated using the Terra package for each Landsat mosaic in each plot (Hijmans, 2021). 
Each plot-masked raster was then converted to a data frame, to allow for per-pixel analysis, and the 
average pre-conflict (2013-2020) per-pixel NDVI value was subtracted from the post-conflict (2021) 
per-pixel NDVI. This process was automated using nested for-loops to calculate the change in per-pixel 
NDVI for all 100 plots.   

To understand the relationship between changes in NDVI and conflict intensity, the R script 
extracted the conflict intensity value, obtained from the Kernel Density analysis, for all 100 plots. It then 
merged per-plot conflict intensity values with per-pixel NDVI change for each plot. The result was a 
two-column data frame, consisting of NDVI difference values and corresponding conflict intensity 
values (see Figure 2). To test for statistical significance, NDVI difference and conflict intensity were 
fitted to the following simple linear model:   

𝑦𝑖 = 𝛼 +  𝛽𝑥𝑖 + 𝜀𝑖  

where 𝑦𝑖  is the dependent variable (change in NDVI), 𝛼 is the y intercept, 𝛽𝑥𝑖  is the independent 
variable (conflict intensity), and 𝜀𝑖  is the error. A t-test was performed on the model, providing a 
statistical summary of the NDVI-conflict intensity data frame. 
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Figure 2. The analysis workflow, showing the processing of Landsat and ACLED to generate a per-
pixel data frame showing the relationship between NDVI change and conflict intensity.  
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Results 

The result of performing the t-test on the fitted linear model was a p-value of < 2.2e-16. The null 
hypothesis was that there is no relationship between the intensity of conflict and the changes in NDVI. 
The alternative hypothesis was that there is a relationship between the intensity of conflict and the 
changes in NDVI. The null (H0) and alternative (H1) hypotheses can be stated as the following 
parameters: 

𝐻0: 𝛽 =  0 

𝐻1: 𝛽 ≠  0 

where a slope of 0 in the null hypothesis indicates that, as per the model, that the independent variable 
𝛽𝑥𝑖  (conflict intensity) has no effect on the dependent variable 𝑦𝑖  (change in NDVI) (Seltman, 2012). 
The alternative hypothesis is that changes to the independent variable 𝛽𝑥𝑖  (conflict intensity) are 
associated with changes to the dependent variable 𝑦𝑖. The resulting p-value of < 2.2e-16 is lower than 
the confidence level of 95% (p-value 0.05), and allows us to reject the null hypothesis and affirm the 
alternative hypothesis. This result indicates that the probability that the relationship between NDVI 
difference and conflict intensity is random is very low. It is likely that conflict intensity has an effect on 
changes to NDVI. 

The R2 is 0.09667, which indicates conflict intensity on its own does not explain changes in NDVI 
well. The estimated regression coefficient is -0.0057322, indicating that as conflict intensity increases, 
there is an overall decrease in post-conflict NDVI values. The relationship between higher conflict 
intensity and lower post-conflict NDVI values can be seen in Figure 3. Figure 3 shows how as conflict 
intensity increases, the NDVI differences are lower. As seen in Figure 4, looking at the sampled plot with 
the second highest conflict intensity (CA139) reveals how the plot’s proximity to the line of contact has 
adversely affected the NDVI values of pixels. This is especially true for values in portions of the plot that 
appear to be cultivated agricultural areas. This mean decline in NDVI values is also reflected in Figure 
5, which shows how this negative trend in 2021 is shared by almost every single pixel in the plot.  



 

8 

 

 

Figure 3. The analysis workflow, showing the processing of Landsat and ACLED to generate a per-
pixel data frame showing the relationship between NDVI change and conflict intensity.  

 

  

  

Figure 4. The left figure 
shows the change in 
NDVI value per-pixel 
for plot CA139 from 
between 2014 and 2021.  
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Figure 5. The total number of pixels that have seen their NDVI increase or decrease in plot CA139. 

 

Discussion 

Armed conflict is an intense form of violence which has the potential to significantly disrupt social 
ecological systems (SES) in a given context. This paper picks up from the work of Baumann et al. 2015, 
and addresses the question as to how the Nagorno-Karabakh war of 2020 impacted the natural 
environment. As a first step to understanding how the conflict has affected the natural environment, I 
examined pre- and post-conflict changes to NDVI across the study area. This analysis found that the 
2020 conflict significantly affected vegetation health, as measured by NDVI.  

To answer this question, I generated a data frame which summarised NDVI difference values with 
corresponding conflict intensity values across 100 randomly selected sites. The result from conducting 
a t-test on a simple linear model was a p-value of < 2.2e-16 with a coefficient of -0.0057322, and an R2 
0.09667. This result suggests that areas of the landscape which have witnessed more conflict during the 
2020 war are likely to have also witnessed decreases in their NDVI.  

Figure 6, which depicts the annual changes to the NDVI of plot CA139 from the previous year, tells 
a fascinating story. In 2014 and 2015, there does not appear to be any anthropogenic activity in the plot 
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area. There are annual fluctuations that affect the entirety of the plot, likely caused by changes to annual 
precipitation. This changed in 2017, when a lambda shaped portion of the plot underwent a surge in 
NDVI, suggesting that it has been cultivated. This same portion of the plot underwent a decline in 
NDVI the following year (2018), and remained unchanged the year after (2019), indicating that the land 
has been left fallow. There was a surge of NDVI in an expanded portion of the cultivated land in 2020, 
indicating that the plot was being cultivated again. The following year (2021), in the aftermath of the 
war, the NDVI declined again, especially in areas proximate to the front line which is visible in Figure 6. 
This trajectory indicates that the conflict acted as a breakpoint for NDVI values in the cultivated portion 
of the plot. This phenomenon could be more strongly supported by expanding the temporal range of 
the Landsat composites in order to understand how much the pre- and post-2020 plot NDVI dynamics 
differ from the larger trends. 

 

 

Figure 6. Plot CA139 symbolised to show changes in NDVI value pre- and post- conflict with 
Airbus/CNES imagery from the Pléiades satellite (0.5 m resolution) on September 2nd 2020 as a 
basemap. 

The low coefficient acquired from the model t-test can be explained by the fact that the random 
sampling was not geographically stratified, meaning that different landscape features were included 
together in the regression analysis. It was initially hypothesised that the conflict would lead to an increase 
in NDVI for urban areas, due to their abandonment, and a decrease in NDVI in non-urban areas due 
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to fallowness and damage to vegetation from incendiary and explosive weaponry. The possible presence 
of abandoned settlements in the 100 random samples obfuscated the coefficient by introducing 
multiple phenomena - with oppositely hypothesised coefficients - into a single regression analysis.  

The low R2 indicates that there are more important variables for explaining the variability in NDVI 
values between pixels. This was expected from the outset, because other environmental variables such 
as temperature and precipitation are better explanatory variables for estimating NDVI (Hess et al., 
1996). Building a model with better explained variability would require conducting sub-plot level 
analysis, a method which would be incompatible with current conflict intensity analysis method. The 
use of kernel density analysis with an output cell size of 1000.0 (1 km) and a search radius of 1000.0 (1 
km) means that conflict intensity is overestimated in each plot. By having large cell sizes and search radii, 
pixels that possibly didn’t witness any direct conflict have conflict intensity values associated with them.  

Exploring the plots individually reveals how important conflict density cell size and search radii are 
for any analysis. Plot CA139, which is a randomly sampled plot with the second highest conflict 
intensity of all 100 random samples, witnessed a decrease to per-pixel NDVI in areas with proximity to 
the line of contact. Airbus / CNES imagery from the Pléiades satellite (0.5 m resolution) on September 
2nd 2020 reveals what appears to be artillery and trench instalments. While the correlation between a 
high conflict intensity value is validated by the Pléiades imagery, it also reveals just how narrow the front 
line is. Given the reality of the conflict dynamics, a finer resolution conflict intensity map is necessary 
for accurately correlating conflict with changes to spectral indices. 

Given the limitations discussed above, the current methodology could be deployed to conduct 
analysis in any study area in the world which has available ACLED data and clear Landsat 8 imagery. 
This study area would also have to be small enough to ensure there are not multiple landscape classes 
included. As discussed above, including multiple landscape classes, such as agricultural and urban areas, 
with opposite hypothesised regression coefficients would obfuscate the analysis results. With these 
conditions met, the methodology introduced in this paper could be used to establish whether conflict 
has had a significant effect on the natural environment of a given study area. This could prove 
particularly useful for laying the foundation for future research into political-ecology and social-
ecological systems. It is critical for researchers to understand whether conflict has affected their study 
area before they begin investigating how conflict has affected it. 

Future Directions 

As outlined above, there are two key problems with the current methodology. The first problem 
relates to the low regression coefficient as a result of the plot selection and analysis not distinguishing 
between landscape types. This could be solved by using object based image analysis (OBIA) to segment 
the study area into classes of interest (Blaschke, 2010). This would allow for a much more nuanced 
breakdown of results, where the correlation between conflict and spectral trends for urban and non-
urban areas could be analysed separately. The object-stratified analysis would provide models that are 
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free from obfuscation, and also include coefficients that are likely to be more pronounced. The second 
problem relates to the resolution of the conflict data. While an easy solution is to change the cell size and 
search radius of the kernel density analysis, there is another more innovative option available. Using a 
collection of multiple spectral indices, the ACLED conflict dataset could be divided into two halves and 
used as training and validation data for a machine learning model which predicts conflict intensity. The 
output from this conflict intensity machine learning model could be used to understand the effect of 
conflict on the environment across the whole of the study area in much finer detail. This analysis would 
not be limited just to ACLED data, which was collected using qualitative methods and as such is 
inherently limited.  

There are other potential avenues of analysis which go beyond testing for significance. An analysis 
which uses machine learning generated conflict data could be augmented by modelling individual 
indices using climatic and environmental variables such as precipitation, elevation, and temperature. For 
instance, research on modelling NDVI carried out by Hess et al. 1996 could form the basis of an analysis 
which looks at the difference between real and predicted values of indices. These results would be 
correlated with fine-scale conflict intensity, allowing for highly precise estimates of the impact of 
conflict on the environment. This analysis would have immense implications for conflict monitoring, 
as the destruction of the environment is recognised as a war crime by the International Criminal Court.  

This analysis could also be augmented by expanding the datasets being used in the analysis. The 
chronological range of Landsat composites could be expanded into Landsat 7, in order to get a better 
sense of the variability of spectral patterns in the pre-conflict period. Repeating this analysis in future 
years to incorporate additional post-conflict Landsat composites could also provide a better sense of 
how spectral patterns have evolved since the conflict. This is especially relevant for analysing individual 
plots, such as CA139, as additional future composites could allow for a breakpoint analysis using 
BFAST in R (Verbesselt et al., 2010).  
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