
Computational Geometry in High-Dimensional Spaces

Paul Liu

Abstract

In this project, we provide a review of efficient solutions

to a few high-dimensional CG problems, with particular

focus on the problem of nearest neighbour search. For

the problems we examine, the general approach will be

to either reduce the dimension (using the JL transform)

or to preprocess the data and group together points that

are close together (using locality sensitive hashing). Fi-

nally, we apply these techniques to a relaxed version

of the unit disc cover problem, an NP-Hard facility lo-

cation problem that has only been effectively approxi-

mated in the low-dimensional case.

1 Introduction

Over the past 30 years, research in computational geom-

etry (CG) have produced many fruitful and ingenious

data structures for geometrical problems in the low-

dimensional case. These data structures are typically

efficient in 2D or 3D but suffer from hidden constant

factors in the dimension d [10]. In many cases, these

hidden factors are dO(1) or even cO(d) for some c > 1

(this is often referred to as the curse of dimensional-

ity). Some of these problems, such as nearest neigh-

bour search, are commonly encountered in real world ap-

plications involving high-dimensional data sets. These

data sets are often impossible or extremely inefficient to

handle with low-dimensional methods. As such, high-

dimensional CG has received a fair amount of attention

in the past two decades, and approximate practical so-

lutions have been discovered for a variety of interesting

problems.

In this project, we provide a review of efficient so-

lutions to a few high-dimensional CG problems. The

paper is composed of two parts: exposition and explo-

ration. Section 2 is expository and explains some key

ideas in high-dimensional CG. As an example, we will

focus on the problem of nearest neighbour search in Rd

under the l1 and l2 norms. In particular, we will survey

the results of Indyk et al. [7, 8]. For the problems we

examine, the general approach will be to either reduce

the dimension (using the JL transform) or to prepro-

cess the data and group together points that are close

together (using locality sensitive hashing). Section 3

is exploratory and attempts to apply these techniques

to the unit disc cover problem, an NP-Hard facility lo-

cation problem that has only been effectively approxi-

mated in the low-dimensional case.

2 Nearest neighbour search

Given a set P of n points in Rd, the nearest neighbour

(NN) problem asks for the closest point in P to q under

some distance function d. In particular, we wish to pre-

process P as to quickly answer queries q which are not

known in advance. For the class of lp metrics, this can

be done naively in 〈1, dn〉1 time by checking the distance

of every point in P to q. In the plane, many provably

optimal 〈n log n, log n〉 data structures have been dis-

covered [9]. When the dimension is large2 however, the

similar “low-dimensional” ideas lead to running times

that are no better than the naive algorithm, or even

worse, have an exponential dependence on the dimen-

sion d. One such example is the kd-tree, which exhibits

time complexity
〈
n log n, dn1−1/d

〉
. The apparent dif-

ficulty of high dimensional NN has led to conjectures

that no efficient solution exists when the dimension is

sufficiently large [10].

However, in many cases of practical interest we only

require an ε-approximate nearest neighbour (ε-ANN):

Definition 1 Let d(q,Q) := minp∈Q d(q, p) denote the

distance of the closest point in Q to q. Given a set P of

1We say that an algorithm with preprocessing time O(p(n))
and query time O(q(n)) has complexity 〈p(n), q(n)〉.

2By large, we mean that the dimension d is nO(1).

1

2.2 (ε, r)-PLEB in the Hamming norm 2 NEAREST NEIGHBOUR SEARCH

n points in Rd and a parameter ε > 0, the ε-approximate

nearest neighbour (ε-ANN) problem asks for any point

p ∈ P such that d(q, p) ≤ (1 + ε)d(q, P).

That is, we wish to find any point with distance at

most (1+ε) times the distance to the nearest neighbour

of the query. Surprisingly, recent results have shown

that efficient data structures for ANN exist. These data

structures only have polynomial dependence on the di-

mension and sublinear dependency on n (usually on the

order of n
1

1+ε for a given ε), but possibly exponential

dependence on ε. We describe three such data struc-

tures for the Hamming, l1, and l2 norm in the Sections

below. The data structures we describe are due to [8],

and our presentation follows roughly that of [5].

2.1 The general approach

Instead of solving ε-ANN, we will first solve the follow-

ing similar problem:

Definition 2 Given a set P of n points in Rd, and

parameters ε, r > 0, the ε-point location in equal balls

((ε, r)-PLEB) problem asks for:

1. Any point p ∈ P such that d(q, p) ≤ (1 + ε)r if

d(q, P) ≤ r.

2. Nothing if d(q, P) > (1 + ε)r.

3. Otherwise either a point p ∈ P such that d(q, p) ≤
(1 + ε)r or nothing.

Note that any solution to the ε-ANN solves the (ε, r)-

PLEB problem by checking if the point p returned by

ε-ANN satisfies d(q, p) ≤ (1 + ε)r. More importantly,

the reduction also goes the other way when certain con-

straints are placed upon the query point, and we can

solve ε-ANN by constructing and binary searching on

multiple instances of (ε, r)-PLEB:

Theorem 1 Given a set P of n points in Rd , and a

query point q such that d(q, P) ∈ [a, b], we can solve ε-

ANN using O
(
ε−1 log (b/a)

)
instances of (ε, r)-PLEB.

Proof. First, we create O
(
ε−1 log (b/a)

)
instances of

(ε′, ri)-PLEB, by choosing ri = (1 + ε)ia for i =

0, 1, . . . ,m where m :=
⌈
log1+ε (b/a)

⌉
, and choosing ε′

so that (1 + ε′)2 = 1 + ε.

Since d(q, P) ∈ [a, b], there exists some i for which

ri−1 ≤ d(q, P) < ri. In this case, the first i instances

of (ε, r)-PLEB will return nothing while the i + 1-st

instance of (ε, r)-PLEB (with radius ri) must return a

point p such that

d(q, p) ≤ (1 + ε′)ri

≤ (1 + ε′)2d(q, P)

≤ (1 + ε)d(q, P).

Hence at least one instance of (ε′, ri)-PLEB will re-

turn an answer to ε-ANN. Furthermore, we can binary

search over the m instances of (ε′, ri)-PLEB in increas-

ing order of ri to answer ε-ANN in only O(logm) (ε′, ri)-

PLEB queries. �

It’s not difficult to further prove that we can solve

any ε-ANN problem with d(q, P) ∈ [a,∞) by taking

m =
⌈
log1+ε (∆(P)/ε)

⌉
in the proof above (where ∆(P)

is the maximum distance between any two points of P).

However, for query points q very close to the point set

P , the binary search above is not applicable, since fix-

ing a enforces a minimum separation between P and the

query point q. This makes the reduction above unsuit-

able for direct application to continuous metrics such as

l1 and l2.

One may wonder if there is a more efficient approach

that is applicable to continuous metrics, rather than the

binary search solution we developed above. Further-

more, we might need to use O
(
log1+ε (∆(P)/ε)

)
differ-

ent PLEB structures with binary search. When ∆(P) is

unbounded for the possible given inputs, this is unsatis-

fying. Indeed, Indyk et. al [8] make use of a ring-cover

tree to achieve an data structure that removes the de-

pendence on ∆(P) while only adding poly-logarithmic

factors onto the query time and space.

Regardless, the general approach to solving ε-ANN

will then be to develop solutions to (ε, r)-PLEB, and

then binary search on several instances of (ε, r)-PLEB

for the solution. We describe the approach for the Ham-

ming norm next.

2.2 (ε, r)-PLEB in the Hamming norm

In this section, let our point set P be drawn from the

d-dimensional hypercube {0, 1}d. That is, each point in

2

2 NEAREST NEIGHBOUR SEARCH 2.2 (ε, r)-PLEB in the Hamming norm

P is a d-bit binary string. Our distance function d(p, q)

will be the Hamming norm, i.e. the number of bits in

which two points p and q differ.

The binary search reduction developed in the previous

section is perfect for the Hamming norm, two points in

this space cannot be arbitrarily close without being the

same. We can use Theorem 1 with a = 1 and b = d

to get a data structure for ε-ANN that only requires

constructing O(ε−1 log d) instances of (ε, r)-PLEB and

O(log log d+log ε−1) (ε, r)-PLEB queries to obtain an ε-

approximate nearest neighbour. The case of d(q, P) = 0

for a query point q can be answered in O(1) time by

storing points of P in a hash table and checking if q is

present in the table.

To solve (ε, r)-PLEB in the Hamming norm, we use

a technique called locality sensitive hashing (LSH). The

approach will be create a hash function H for which

H(p) = H(q) if p and q are “close”. For each point

p ∈ P , we will then store p in a hash table using H(p)

as the index (we’ll actually use multiple hash functions

and hash tables). To query for a point q, we simply scan

through all points in the table located at index H(q).

Definition 3 Given parameters 0 < r < R, a family H
of functions (defined on {0, 1}d) is (r,R, α, β)-sensitive

if for any p, q ∈ {0, 1}d and any randomly chosen func-

tion h ∈ H,

1. Pr[h(p) = h(q)] ≥ α if d(p, q) ≤ r.

2. Pr[h(p) = h(q)] ≤ β if d(p, q) ≥ R.

The variables α and β are called the lower and upper

sensitivities respectively.

We want the hash function to group close points to-

gether and separate points that are far apart. In other

words, must satisfy α > β.

For the Hamming norm, there happens to be a very

simple family of locality sensitive hash functions:

Lemma 2 Let H = {h1, h2, . . . , hd}, where hi(p) re-

turns the i-th bit of point p. Then H is (r,R, 1−r/d, 1−
R/d)-sensitive for any r,R > 0.

Proof. Suppose d(p, q) ≤ r, then q differs from p in at

most r bits and so the probability that hi(p) = hi(q)

for a randomly chosen i is at least 1 − r/d. Similarly,

if d(p, q) ≥ R, then p and q have at most d− R bits in

common, which implies hi(p) = hi(q) has probability of

at most 1−R/d. �

In applying Lemma 2 to our applications, we chooseR =

r(1 + ε). When ε is large, we have a large ratio between

the upper sensitivity 1 − r/d and lower sensitivity 1 −
R/d. Unfortunately, when ε is small, the ratio shrinks.

Ideally, we’d like a way to increase the ratio between

the two sensitivities when ε is small.

Lemma 3 Given a family H of (r,R, α, β)-sensitive

hash functions, we can get another family H̃ of

(r,R, αk, βk)-sensitive hash functions for any given in-

teger k > 0.

Proof. Consider the hash function h̃σ(p) =

(hσ1(p), hσ2(p), . . . , hσk(p)) where σ is a randomly

chosen sequence of k integers from {1 . . . d}. Since the

hσi ’s are independent, for two points p and q we have

1. Pr[h̃σ(p) = h̃σ(q)] ≥ αk if d(p, q) ≤ r.

2. Pr[h̃σ(p) = h̃σ(q)] ≤ βk if d(p, q) ≥ R.

�

We now have a family H1 of hash functions with a large

ratio between the lower and upper sensitivity. Fur-

thermore, for a function h̃ ∈ H̃ the probability that

h̃(p) = h̃(q) for the case d(p, q) ≥ R can be made arbi-

trarily small. So we can now separate points far away

from each other. However, this has come at a cost: we

also want h̃(p) = h̃(q) to occur with high probability

when d(p, q) ≤ r, but αk could be disastrously small.

To fix this, we can construct L hash tables simulta-

neously, and insert each point p ∈ P into each table.

When inserting into table i, we store the point p at in-

dex h̃i(p). If the index h̃i(p) already contains another

point p′ ∈ P , then do not insert p at all. This way,

each of the L hash tables contain at most n points, and

each cell of the hash table contains at most 1 point. By

storing pointers to p instead of the actual point, we can

ensure that the storage cost is O(nL) and the setup cost

is O(nkL).

To query a point q, we look through all the tables.

On table i we check if there is a point stored at h̃i(q). If

there is, we compute the d(q, p) and return p if d(q, p) ≤

3

2.3 (ε, r)-PLEB in the l1 norm 2 NEAREST NEIGHBOUR SEARCH

r(1 + ε). If none of the tables yielded such a point, then

we return nothing. By choosing the right value of L,

the query can solve ε-ANN with decent probability:

Lemma 4 The query scheme above solves ε-ANN with

probability min
{

(1− βk)L, 1− (1− αk)L
}

. Further-

more, the query time complexity is O(kL+ dN), where

N is the number of points we encounter over all the

tables.

1. If d(q, P) ≤ r, we return a point with probability at

least 1− (1− αk)L.

2. If d(q, P) ≥ r(1 + ε), we return nothing with prob-

ability at least (1− βk)L.

Proof. Let pi(q) denote the probability that a point is

returned on table i for a query point q. If d(q, P) ≤ r,

then for a randomly chosen h̃ ∈ H we have

Pr[a point is returned] = 1−
L∏
i=1

pi(q)

≥ 1− (1− αk)L.

If d(q, P) ≥ r(1 + ε), then similarly

Pr[returns nothing] =

L∏
i=1

(1− pi(q))

≥ (1− βk)L.

The bound on the time complexity comes from the

fact that we must scan L tables, computing the hash

function at q in each table in O(k) time, and possibly

doing one distance computation per table in O(d) time

with N computations in total. �

To see the power of Lemma 4, suppose that we choose

k high enough so that αk = βk/10. Furthermore, we

choose L = 1/αk. Then the two probabilities above

work out to be roughly 1 − e and e1/10. Hence by

choosing k and L correctly, we may make our prob-

ability of success as large as we wish. It remains to

optimize our choice of k and L so that we retain fast

query time with constant probability of success. Then

we may build multiple instances of the 〈nkL, kL+ dN〉
data structure above to boost the probability of success

arbitrarily high.

As it turns out (see calculations of [5] for more de-

tails), the choice of k = log1/β n and L =
⌈
4/αk

⌉
is

optimal for obtaining a probability of success of at least

3/4. Using the family of (r,R, 1− r/d, 1− r(1 + ε)/d)-

sensitive hash functions from Lemma 5, we can fur-

ther show that the this data structure has complex-

ity
〈
n1+

1
1+ε log n, dn

1
1+ε

〉
with space O

(
n1+

1
1+ε log n

)
.

To boost the probability, we need to build O(log n) in-

stances of this data structure.

Theorem 5 There exists a data structure for

(ε, r)-PLEB that succeeds with high probability.

Furthermore, this data structure has complex-

ity
〈
n1+

1
1+ε log2 n, dn

1
1+ε log n

〉
with space usage

O
(
nd+ n1+

1
1+ε log n

)
.

Proof. By the paragraph previous. �

When ε is small, the data structure we’ve just developed

does hardly any better than brute force search. How-

ever, when ε is large (say ε > 1), the query complexity

is quite reasonable, and depends only linearly on the

dimension.

2.3 (ε, r)-PLEB in the l1 norm

To solve (ε, r)-PLEB in the l1 norm, we reduce it to the

Hamming norm case.

Let’s simplify the problem, and suppose the points of

P were at integer locations, with the maximum distance

(under the l1 norm) between any two points bounded an

integer M . Then we may express the coordinate of any

point as a d-tuple of O(logM) bits in each coordinate,

or more simply O(d logM) bits. For instance suppose

M = 3, the point (1, 2, 3) on the grid would be trans-

lated to the tuple (01, 10, 11) or more simply 011011.

It’s easy to confirm that after transforming each point to

their bit-representation, the Hamming norm on the set

of transformed points yields exactly the same distances

as the l1 norm of the original point set. Hence the re-

sults of the previous section implies an (ε, r)-PLEB data

structure for the l1 norm, when the points are at integer

location.

To get around the restriction of integer locations, we

round the given points to their closest points on a uni-

form grid of side length δ. Then we interpret each grid

4

3 THE UNIT DISC COVER PROBLEM

point as an integer point with a simple scaling. By

choosing δ = O
(
εr
d

)
, the distances between pairs of the

rounded points and pairs of the original points differ by

at most O (εr), and so we can still get an instance of

(ε, r)-PLEB data structure for the l1 norm, with extra

factors of log δ in the query and space complexity. One

may wonder if there is a way to get around the round-

ing to grid points and avoid incurring the extra factor

of log δ. Indeed, there exists LSH families that can be

used directly in the l1 norm ([2]), so that a similar anal-

ysis of the type we did in the previous Section could be

used.

2.4 (ε, r)-PLEB in the l2 norm

To solve (ε, r)-PLEB in the l1 norm, we reduce it to the

l1 case.

The crux of the reduction relies on the following

lemma:

Lemma 6 (Johnson-Lindenstrauss) Let P be an arbi-

trary point set of n points in Rd. There exists a t × d
linear map T , such that t = O(ε−2 log(n)) and with high

probability,

(1− ε) ‖p− q‖2 ≤ ‖Tp− Tq‖2 ≤ (1 + ε) ‖p− q‖2

for all p, q ∈ P , where || · ||p is the lp norm.

In fact, the linear map T is simply a matrix where each

entry is drawn randomly from {−1/
√
t, 1/
√
t}. The

proof of this lemma is out of the scope of this project,

but the reader can refer to [5] for more details. Fur-

thermore, this matrix can be applied in O(d log d + t3)

as opposed to O(td), our preprocessing and query com-

plexity is only increased by an addtive factor no more

than the query cost of our (ε, r)-PLEB structure in the

previous section.

We start by mapping the points of P onto Rt using

the linear map T . Once the input data is reduced to

dimension O(ε−2 log(n)), we can perform another map-

ping f to map each point to another dimension of size

Rt′ , where t′ = O(k/ε2). This mapping embeds the di-

mension reduced points into Rt′ with distortion (1± ε)
under the l1 norm. That is,

(1− ε) ‖p− q‖1 ≤ ‖f(p)− f(q)‖2 ≤ (1 + ε) ‖p− q‖1

for any p and q in the dimension reduced point set P .

This mapping is described in detail in [5]. Finally, we

apply the l1 norm solution described in the previous

Section.

Of particular interest is whether we could improve the

result by either improving the Johnson-Lindenstrauss

(JL) Lemma or avoiding it altogether through using

LSH in l2. Indeed, we can avoid the JL lemma by us-

ing the LSH families developed in [2, 8]. Unfortunately,

there is no simple way to improve the JL lemma as the

result is essentially optimal [1]. We provide a simple

packing argument below:

Theorem 7 Let 0 < ε < 1 and suppose that we have a

function f : P → Rt for which

(1− ε) ‖p− q‖2 ≤ ‖f(p)− f(q)‖2 ≤ (1 + ε) ‖p− q‖2

for all p, q ∈ P . Then t = Ω(log n).

Proof. Consider the set P in Rn of n-vectors ui :=

ei/
√

2 for i = 1, 2 . . . , n, where ei is the ith standard

unit vector. Since ||ui − uj ||2 = 1 for i 6= j, we have

||f(ui) − f(uj)||2 ≥ 1 − ε. Hence we may replace each

point f(ui) with a ball of radius (1 − ε)/2, such that

any two balls B(ui, (1 − ε)/2) and B(uj , (1 − ε)/2) are

disjoint. On the other hand, ||f(u1)− f(uj)||2 ≤ 1 + ε,

so all the balls are contained inside the ball B(u1,
3+ε
2).

This implies that n ≤
(

3/2+ε/2
(1−ε)/2

)t
, which implies that

t = Ω(log n) for fixed ε. �

The problem of approximate nearest neighbours is well-

studied and has received much attention in the last

decade. There are however, many more aspects of near-

est neighbours that we have not discussed. We refer the

reader to the thesis of Indyk [7] for more information.

3 The unit disc cover problem

Definition 4 Given a set P of n points in Rd, the

r-disc cover (r-DC) problem seeks to find a minimum

number of unit radius balls3 that covers all of P . Since

in most cases we can scale r to 1, the special case of

r = 1 is called the unit disc cover (UDC) problem.

3We will also use the word discs interchangeably with balls.

5

3.1 The general approach 3 THE UNIT DISC COVER PROBLEM

This problem arises in many applications to facility lo-

cation, motion planning, and image processing. For ex-

ample, one such scenario would be to interpret the n

points as houses, and the unit radius balls as cellphone

towers that broadcast to a fixed radius.

In both the l1 and l2 norm, UDC is NP-hard [3].

Regardless, there exist polynomial time approximation

schemes (PTAS) in arbitrary dimensions. In Rd dimen-

sions, it is possible to approximate UDC in l∞ to within(
1 + 1

`

)d−1
[6, 4] for any integer ` > 0. Since these algo-

rithms rely on optimally solving the problem in an `× `
hypercube through exhaustive enumeration, they tend

to have a slow time complexity that scales exponentially

with ` and d, making them impractical for large dimen-

sional data sets. Currently, all state of the art approxi-

mation algorithms for UDC use some sort of inherently

low dimensional packing argument to prove an adequate

approximation factor. In the case of the aforementioned

PTAS, one needs to find a covering of an `×` hypercube

by unit spheres in Rd. Since the covering size scales ex-

ponentially as d increases, both the running time and

approximation factor of the PTAS scales exponentially

as well. In low dimensional settings, this is not an is-

sue. However, since n unit balls trivially cover P , the

approximation factors of all known UDC algorithms are

impractical or ineffective when d = Ω(log n).

We will focus on the l2 case of UDC. Instead of tack-

ling the UDC problem head on, we look at a relaxed

version:

Definition 5 Given a set P of n points in Rd and a

parameter 0 < ε < 1, the ε-relaxed r-disc cover ((ε, r)-

RDC) problem seeks to find a minimum number of r

radius balls that covers all of P , with the condition that

there exists an optimal solution for which every radius r

ball can be shrunk to radius r
1+ε while still covering all

points of P .4 In the special case that r = 1, we call this

the ε-relaxed unit disc cover (ε-RUDC) problem

That is, all of the balls in the optimal solution have some

wiggle-room, and can be replaced with slightly smaller

balls.

To our knowledge, this paper is the first time UDC

4The odd radius of r(1+ε)−1 is used for the convenience of the
sections below. Using some simple inequalities, a simpler radius
of the form 1−Θ(ε) can be used in the definition instead.

is considered in a high dimensional setting, and the

first time an algorithm for ε-RUDC is given. We offer

an efficient approximation algorithm with running time

O(nd log d + k3 + n2/εO(k)) and approximation factor

O
(
ε−O(1) log5/2 n

)
, where k = O

(
ε−O(1) log n

)
.

3.1 The general approach

Our general approach will be to find an approximation

for the maximum number of points a single unit ball can

cover (we call these maximum coverage balls of radius

1). Then we greedily cover P by finding unit radius

maximum coverage (MC) balls, removing from P the

points they cover, and repeating this until there are no

more points in P . We prove that this provides a simple

O(log n) approximation algorithm.

To improve the running time of our algorithm, we will

use the JL transform to reduce the dimension, and some

basic hashing, at the cost of increasing the approxima-

tion factor.

3.2 An algorithm for ε-RUDC in low dimensions

First, let us develop an approximation algorithm for de-

termining an MC ball of P . Instead of approximating

the number of points in the ball, we approximate the

radius of the ball:

Lemma 8 In O
(
nε−d

)
time and space, we can deter-

mine a ball of radius (1+ε)r that covers at least as many

points as a radius r MC ball of P .

Proof. We do this by simple hashing. Partition the

space using a uniform grid of side length εr/
√
d, and

keep a counter initialized to 0 located at each cell of

the grid (we only store grid cells with counts at least 1).

For each point p in P , we increment the counter of every

grid cell overlapped by the ball B(p, r). Then we scan

through all the counters, and return an arbitrary point

in the grid cell with the maximum count. Clearly the

count in this grid cell is at least as large as the number

of points covered by the radius r MC ball. Furthermore,

any ball in this grid cell of radius (1 + ε)r will cover all

points that incremented this grid cell’s counter, since

the diameter of the grid cell is εr.

Since the number of cells overlapped by any ball

6

3 THE UNIT DISC COVER PROBLEM 3.3 An algorithm for ε-RUDC in high dimensions

B(p, r) is at most O(ε−d), we have the desired re-

sult. �

Algorithm 1 A procedure for computing ε-RUDC

Input: A point set P in Rd.
Output: A set S of the unit discs that cover P .

1: S ← ∅
2: while P is not empty do
3: C ← an approximate MC ball of radius 1
4: S ← S + {C}
5: P ← P − C
6: end while
7: return S

For convenience, let OPT denote the set of optimal

balls in an instance of ε-RUDC. Then we have the fol-

lowing result:

Theorem 9 In O
(
n2ε−d

)
time and O

(
nε−d

)
space,

Algorithm 1 gives an O(log n) approximation to ε-

RUDC.

Proof. Since each C on line 3 of Algorithm 1 covers at

least as many points as a radius 1/(1 + ε) MC ball of

P , this means that C covers at least as many points as

any ball from OPT . By the pigeonhole principle, this

means C covers at least n/|OPT | points.

We can now prove by induction that Algorithm 1

that on the m-th step of the algorithm, there are at

most (1 − 1/|OPT |)m uncovered elements.5 Once we

reach a step m with (1 − 1/|OPT |)m < 1/n, we are

done. Suppose instead we run the algorithm until

exp(−m/|OPT |) < 1/n. This will take just as many

steps, since (1 − 1/|OPT |)m ≤ exp(−m/|OPT |). Fur-

thermore, we have

exp(−m/|OPT |) < 1/n

m/|OPT | < log n

m > |OPT | log n.

Hence after the d|OPT | log ne-th step of the algorithm,

we will have covered all of P . Since we run the algorithm

of Lemma 13 at most n times, the running time of the

algorithm is O
(
n2ε−d

)
. �

5This result is well known in folklore.

3.3 An algorithm for ε-RUDC in high dimensions

Now we have a simple approximation in any dimen-

sion d. Unfortunately when d is large, the algorithm

of Lemma 8 is extremely inefficient. To solve this we

simply apply the JL transform to the input point set P

with distortion δ, and solve the
(

1+δ
1+ε

)
-DC problem on

a smaller dimension of size k = O(δ−2 log n).

We will first have to handle some issues of distortion.

For each ball C of OPT , there will be another ball in

the reduced space that covers the same points C did in

the original space (since the JL transform will preserve

the distance from the center of the ball to all points

of P inside the ball). However, since the JL transform

may increase distances by a factor of 1 + δ, this ball

may be radius 1+δ
1+ε in the reduced dimension. Hence any

solution to
(

1+δ
1+ε

)
-DC in the reduced dimension will use

at most |OPT | discs. Furthermore, any ball of radius

r in the reduced dimension might have radius r/(1− δ)
in the original dimension (since the JL transform may

decrease distances by a factor of 1 − δ). Hence if we

want to solve
(

1+δ
1+ε

)
-DC in the reduced dimension, we

are limited to balls of radius at most 1− δ.
To proceed further, we use the following result of

Verger-Gaugry [11]:

Fact 1 Any l2 ball of radius R in Rk can be covered by

O
(
k3/2(R/r)k

)
balls of radius r < R.

Now consider using (ε, r)-RDC to approximate the solu-

tion to R-DC when r < R. Since the discs in (ε, r)-RDC

are smaller, we know that (ε, r)-RDC will need to use at

least as many discs as R-DC. By a packing argument,

we can quantify exactly how many extra discs:

Lemma 10 Fix a point set P in Rk, and let OPT be

an optimal solution to the R-DC problem. Suppose an

optimal solution to (ε, r)-RDC for r < R uses at most

m discs. Then we know that

m ≤ O
(
k3/2(R/r)k|OPT |

)
Proof. By Fact 15, we can replace each unit disc

in OPT with O
(
k3/2(R/r)k

)
discs. This is a

disc cover with radius r discs that uses at most

O
(
k3/2(R/r)k|OPT |

)
discs, hence any optimal solution

to (ε, r)-RDC is upper bounded by this number. �

7

REFERENCES REFERENCES

By Lemma 10, we can approximate
(

1+δ
1+ε

)
-DC with(

1−δ
1+δ , δ

)
-RDC. We can also approximate

(
1−δ
1+δ , δ

)
-RDC

by Algorithm 1. Hence, we have the following:

Theorem 11 Given a point set P in Rd and a param-

eter ε, there exists an algorithm for ε-RUDC with run-

ning time O(nd log d+k3+n2/εO(k)) and approximation

factor O
(
ε−O(1) log5/2 n

)
, where k = O

(
ε−O(1) log n

)
.

Proof. By approximating
(

1+δ
1+ε

)
-DC with

(
1−δ
1+δ , δ

)
-

RDC and approximating
(

1−δ
1+δ , δ

)
-RDC with Algorithm

1, we have an algorithm with approximation factor

O

(
k3/2

(
1+δ
1+ε ·

1+δ
1−δ

)k
log n

)
. To minimize the approx-

imation factor, we choose δ such that (1+δ)2

1−δ = 1 +

ε. Since ε > 0, such a solution always exists with

0 < δ < 1. Furthermore, δ = O
(
εO(1)

)
for fixed ε.

Hence the approximation factor under this choice of δ is

O
(
k3/2 log n

)
= O

(
ε−O(1) log5/2 n

)
. The running time

comes from applying the JL transform to all points and

then using Algorithm 4 with tolerance δ. �

References

[1] N. Alon. Problems and results in extremal combi-

natorics. I. Discrete Math., 273(1-3):31–53, 2003.

EuroComb’01 (Barcelona).

[2] M. Datar, N. Immorlica, P. Indyk, and V. S. Mir-

rokni. Locality-sensitive hashing scheme based on

p-stable distributions. In Proceedings of the Twen-

tieth Annual Symposium on Computational Geom-

etry, SCG ’04, pages 253–262, New York, NY, USA,

2004. ACM.

[3] R. J. Fowler, M. Paterson, and S. L. Tanimoto.

Optimal packing and covering in the plane are NP-

complete. Inf. Process. Lett., 12(3):133–137, 1981.

[4] T. F. Gonzalez. Covering a set of points in multidi-

mensional space. Inf. Process. Lett., 40(4):181–188,

1991.

[5] S. Har-Peled. Geometric approximation algorithms,

volume 173 of Mathematical Surveys and Mono-

graphs. American Mathematical Society, Provi-

dence, RI, 2011.

[6] D. S. Hochbaum and W. Maass. Approximation

schemes for covering and packing problems in im-

age processing and VLSI. J. ACM, 32(1):130–136,

1985.

[7] P. Indyk. High-dimensional Computational Ge-

ometry. PhD thesis, Stanford, CA, USA, 2001.

AAI3000045.

[8] P. Indyk and R. Motwani. Approximate nearest

neighbors: towards removing the curse of dimen-

sionality. In STOC ’98 (Dallas, TX), pages 604–

613. ACM, New York, 1999.

[9] J. O’Rourke. Computational geometry in C. Cam-

bridge University Press, Cambridge, second edi-

tion, 1998.

[10] J.-R. Sack and J. Urrutia, editors. Handbook of

computational geometry. North-Holland, Amster-

dam, 2000.

[11] J.-L. Verger-Gaugry. Covering a ball with smaller

equal balls in Rn. Discrete Comput. Geom.,

33(1):143–155, 2005.

8

