An exploration of matrix equilibration

Paul Liu

Abstract

We review three algorithms that scale the infinity-norm of each row and
column in a matrix to 1. The first algorithm applies to unsymmetric ma-
trices, and uses techniques from graph theory to scale the matrix. The
second algorithm applies to symmetric matrices, and is notable for be-
ing asymptotically optimal in terms of operation counts. The third is an
iterative algorithm that works for both symmetric and unsymmetric ma-
trices. Experimental evidence of the effectiveness of all three algorithms
in improving the conditioning of the matrix is demonstrated.

1 Introduction

In many cases of practical interest, it is important to know if a given linear system is ill-
conditioned. If the condition number of the linear system is high, then a computed solution will
often have little practical use, since the solution will be highly sensitive to a perturbation in the
original system. To handle ill-conditioned systems, practitioners often preprocess the matrix of
the linear system by means of scaling and permutation. This preprocessing stage often betters
the conditioning of the matrix and is referred to as “equilibration”.

In the case of direct solvers, equilibration schemes have been devised as to make the solves
more stable. For example, the scheme used in [3] computes a reordering and scaling of the matrix
to eliminate the need for pivoting during gaussian elimination. In the case of iterative methods,
equilibration is used to minimize the given matrix’s condition number under some norm, as to
decrease round-off errors in matrix vector products. For this paper, we focus on equilibration
algorithms whose purpose is to minimize the condition number of a given matrix.

One way to lower the condition number is to “equilibrate” the matrix, by scaling and permuting
its rows and columns. For the condition number in the max-norm, optimal scalings have been
identified for various classes of matrices [1|. However, there is currently no known algorithm
to optimally equilibrate a general matrix and minimize its condition number, though several
heuristics have been identified that seem to work well. One such heuristic is to scale all rows
and columns of a given matrix to one under some given norm. This approach works well for
most ill-conditioned systems, as shown by the numerical evidence provided in [2]. This paper
will present three algorithms — each interesting in its own right — that scale the max-norm of
each row and column in a given matrix to one.

2 Three algorithms

For convenience, we will assume that the given matrix A is a real square matrix that only has
positive entries. Since we will only consider algorithms which scale and permute A, it is clear
that we can enforce positivity on A without loss of generality. We also assume that it has a
non-zero diagonal, though all of the algorithms described in this section works without that
restriction with minor or no modifications.

Figure 2.1: A bipartite graph on 8 nodes. Each edge (4, j') is weighted with a weight w;;.

2.1 An algorithm for unsymmetric matrices

The first algorithm we present is due to Duff and Koster [5] and is implemented as algorithm
MC64 in the widely used HSL Software Library. The algorithm is intended for unsymmetric
matrices, and attempts to make A as diagonally dominant as possible. To be precise, the
algorithm first finds a permutation matrix P such that the product of the diagonal entries of
PA is maximized. Then scaling matrices R and C are found so that

A= PRAC

has 1’s on the diagonal and all other entries less than or equal to 1.

This is achieved by modeling A as a bipartite graph, and then finding the minimum weighted
matching in that graph. Before we proceed further into the details of this algorithm, we introduce
the reader to the weighted bipartite matching problem.

2.1.1 Weighted bipartite matchings

Define a graph G to be bipartite if it can be partitioned into two node sets Vg = {1,2,...,n}
and Vo ={1",2/,...,m'}, where every edge of the graph connects a vertex in Vg to a vertex in
Ve (an example is shown in Figure 2.1). Each edge (i,j’) of the graph is directed and weighted
with a real number w;;. In Figure 2.1, the directions are shown by arrows and the weights are
shown by the edge labels.

The weighted bipartite matching problem then, is to choose a set M of edges in G, no two of
which are incident to the same vertex, such that

cost = E W5

(17]/)€M

is minimized. We refer to the optimal set M as a minimum matching.

If |Vr| = |Ve|, one can also impose the restriction that each vertex in Vg U Vo is incident
to an edge in M. This is called a minimum perfect matching. Note that M provides a 1-to-1
and onto map between elements of Vi and V. In Figure 2.1, the minimum perfect matching is
denoted by the bolded edges.

An interesting fact about weighted bipartite matchings is that if there is a minimum perfect
matching M, then there exists a set of dual variables {u;} and {v;} such that for all edges (4, j/),

{ui foj=wy, if(i,j)eM 1)

i + vy <wgy, if (i,5') ¢ M

This theorem, as well as a polynomial time algorithm of computing the minimum perfect match-
ing along with the dual variables, is outlined in [6].

2.1.2 Application to matrix equilibration

Suppose A has dimensions n X n, nnz non-zeros, and follows the restrictions we outlined at the
start of Section 2.
Then MC64 solves the equilibration problem in the following manner:

1. A bipartite graph G is created from A, with vertex i € Vg representing row ¢ of A and
vertex j' € Vo representing column j of A. An edge (i,5’) is then added to the graph if
A;; # 0. The weight of the edge is set to —log(4;;).

2. The minimum perfect matching M is computed. From the matching, we determine a
permutation matrix P by setting Pj; = 1 for each edge (4, j') in the matching, and P;; =0
everywhere else. Note that since the matching M is 1-to-1 and onto, P will have the effect
of permuting row ¢ to row j. Hence the diagonal of the permuted matrix PA will be exactly
the non-zeros of A that the edges in M correspond to.

3. Using the dual variables {u;} and {v;} from computing M, the scaling matrices R and
C are computed by setting R = diag(ri,r2,...,m,) and C' = diag(ci,c,...,c,), where
r; = exp(u;) and ¢; = exp(v;).
By weighing G in the manner described in step 1, we see that finding the minimum perfect
matching will be equivalent to minimizing

cost = E Wij

(i,5")eM

= Z —log(Aij)
(i,5")eM

= —IOg H Aij

(i,j")eM

which is the same as maximizing the product [](; ;yepr Aij-

By the permutation computed in step 2, the product we maximized in step 1 will be permuted
to the diagonal of PA, hence maximizing the product of the diagonal of PA over all possible
permutations P.

By setting R and C as described in step 3, we see from Equation 2.1 that for each non-zero
element a;; in RAC, we’ll have

aij exp(u;) Aij exp(v;)
exp(u; + v; + log(A;j))
exp(—log(A;;) +log(A;;))

1

IN

with equality when (4, ;') € M.

Hence A = PRAC will have 1’s on the diagonal and all other entries less than or equal to 1.

Since the most practical algorithm to compute a minimum perfect matching runs in O(V E)
time on a graph with V' vertices and E edges, this scaling algorithm runs in O(n - nnz) time
in the worst case. As noted in [5] however, the running time behaves more like O(n + nnz) for
most matrices.

Note that the key insight to MC64 is the reduction of matrix equilibration to minimum
bipartite matching. By choosing different weight functions for the edges of G, we open MC64 to
a wide variety of modifications. There are variants of MC64 which maximizes different quantities,

such as the smallest element on the diagonal [5], or the ratio of the largest and smallest element
in A [7]. Hence MC64 is interesting in that it provides a framework on which further algorithms
can be built. Furthermore, it introduces numerical analysts to interesting algorithms from graph
theory. As we’ll see in section 3, it also works well in practice.

2.2 An algorithm for symmetric matrices

In this section we assume that A is symmetric.

The second algorithm we present is due to Bunch [2] and is implemented in the soon-to-be-
released software package SYM-ILDL [8]. The algorithm is intended for symmetric matrices,
and computes a diagonal matrix D such that

A=DAD

has max-norm 1 on every row and column.
Before we dive into the details of Bunch’s algorithm, we first prove a helpful lemma.

Lemma 1. Let L be the lower triangular part (not including the diagonal) of A and let /\ be
the diagonal of A. If there exists a diagonal matriz D such that every row in D(L + A)D has
mazx-norm 1, then every row and column in DAD will have maz-norm 1.

Proof. If D(L+ A)D has max-norm 1 in every row, then D(LT + A)D will have norm 1 in every
column. Note that every entry in DLT D and DLD will be less than or equal to 1. Hence

DAD = D(L+A+L")D
= D(L+A)D+DL'D
= DLD+ D(L' + A)D.

The second equality shows that DAD has norm 1 in every row, and the third equality shows
that DAD has norm 1 in every column. O

Let T = L + A. In Bunch’s algorithm, we greedily scale one row and column of T in order,
starting from the first row to the last row of A. Let D = diag(di,ds,...,d,) be our scaling
matrix. Bunch’s algorithm is simply the following:

e For 1 <i<n,set
—1
d; == T 4T b)) .
i <maX{ “’1%'121?{71 5 zg})

The correctness of the algorithm is also easy to see: since d; < (maxlgjgi_l d;T;j)
row ¢ by d; ensures that

-1 1i
, scaling

diTijd; = (DTD);; < 1 (2.2)

for every element on the i-th row of DT D except possibly (DT'D);;. The diagonal element is
taken care of by ensuring d; < (\/Til)_l, where the square root comes from the constraint

(DTD);; = d;Ty; < 1. (2.3)

As d; is chosen to be the maximum possible value bounded by constaints 2.2 and 2.3, there will
always be at least one entry of magnitude 1 on the ¢-th row after we are done. Since we scale all
rows from 1 to n, DT'D will have max-norm 1 in every row. Hence DAD will have max-norm
1 in every row and column by our lemma.

Though there doesn’t seem to be any obvious extensions to Bunch’s algorithm, it is interesting
due to its simplicity and its asymptotically minimal runtime of O(n 4 nnz), where n is the
dimension of A and nnz is the number of non-zeros in A. As far as the author can tell, it is
the only equilibration algorithm for symmetric matrices that can be described by a single line
of code.

2.3 An algorithm for general matrices

The final algorithm we present is the author’s own creation, though it shares many similarities
with the one presented in [9].! For convenience, we refer to the final algorithm as ALG3. As
with Duff’s algorithm, this algorithm attempts to find matrices R and C such that

A= RAC

has max-norm 1 in every row and column. When A is symmetric, the algorithm is designed to
give R=C.

Let r(A,i) and ¢(A,1i) denote the ¢ -th row and column of A respectively, and let D(i,) to
be the diagonal matrix with Dj; = 1 for all j # ¢ and D;; = a. Using this notation, ALG3 is
shown in 2.3.

Algorithm 1 ALGS3 for equilibrating general matrices in the max-norm.

1: R:=1

2: Q =1

3: A=A

4: while R and C have not yet converged do:

5: fori:=1ton

6: 1= —t—
VIr(A)lleo

7 Qe = —1

[le(As8) oo

8: R:=R-D(i,o)

9: Q =C- D(i,qc)

10: A= D(i,0r)AD(i, o)

11: end for

12: end while

Given a tolerance €, the convergence criterion for ALG3 is that |1 —a,| < eand |1 —a.| <e
for every row and every column. When this criterion is reached, we terminate the algorithm.

As we can see above, each iteration of the for loop (line 5) attempts to fix a single row and
column of A. On iteration i, we take the maximum element «; in row 4, scale it to \/a;, and
then do the same for column 7. If the maximum of both row and column 7 is on the diagonal,
it is scaled to 1. Though we might undo some of the scaling we did for row and column ¢ when
we are scaling some other row and column j > 4, it seems from experiments that this does not
stop the algorithm from converging.

Heuristically, the norm of each row and column converges to 1 since on each iteration of the
while loop, we take the maximum element in each row and column to approximately square root
of their original value. Since the iteration Tj,.1 = \/T}, converges to 1 linearly for any initial
Ty, we expect to see this in the algorithm. In fact, as we can see in Figure 2.2, the maximum
element in A seems to converge linearly as expected. On a test of 1000 random 100 x 100
matrices, ALG3 successfully returned R and C for which RAC had max-norm 1 on every row
and column. Since each iteration of the while loop costs O(nnz) operations, this algorithm
seems to take O(nnz - loge) time if we assume linear convergence.

Furthermore, the algorithm seems to work for any norm, not just the infinity norm. That is, if
we switched the norm on lines 6 and 7 to the p-norm, then ALG3 returns matrices R and C such
that RAC has p-norm 1 in every row and column. This is also the behaviour of the algorithm
given in [9], for which they prove convergence results for the infinity norm and p-norm for any
finite p > 1.

!This algorithm can be seen as a variant of Ruiz’s algorithm, as the same proof of correctness will apply with
the same convergence rate.

Figure 2.2: Convergence of ALG3, with iteration plotted against loglog of the maximum of A.
Fach ‘iteration’ in the graph above is one iteration of the while loop. The flat part of
the plot past iteration 26 is the algorithm reaching the limits of machine precision.

25 -

log(logimazx element of AJ)
5
T

30

35+

A0 1 1 1 1 I
1]] 10 15 20 25 30

iteration nurmber

Another note of interest is that we did not need to use the square root function for this
algorithm. In fact, any function f with the property that the two sequences

Ynt1 = Yn/[f(yn) (2.4)
Tn+l = f(xn) (25)

both converge to 1 for any initial z¢ and yg seems to work in place of the square root. We do
not even have to use the same f for different iterations of the for loop, though this seems a
bit extreme. Equation 2.4 comes from the constraint that we when scale a row or column of
A during the course of ALG3, we want the elements /L-j of that row or column to converge to
1. For the max-norm, the largest element «; of row i will get scaled to a;/f(c;). So for the
algorithm to work in the max-norm, «;/f(c;) must approach 1. Equation 2.5 comes from the
constraint that a, and a, must converge to 1 for R and C to converge. Hence 1/f(z,) must
approach 1, which implies that f(x,) approaches 1. Though the convergence of 2.4 and 2.5 to
1 seem to be necessary conditions on f, they are actually sufficient. The proof of this follows
straightforwardly from the proof of the algorithm given in given in [9].

3 Results

3.1 For unsymmetric matrices

For the unsymmetric case, we took a set of real, ill-conditioned, non-singular matrices from
University of Florida’s sparse matrix collection [4], ranging from sizes 1157 to 8192 with a max-
imum of 83842 non-zeros. In addition, we generated some smaller dense matrices in MATLAB
(unsym-rand01 to unsym-rand5) using the built-in rand command (rand returns matrices
with entries picked uniformly from the open interval (0,1)). To make these random matrices
ill conditioned, half of its rows (randomly selected) were scaled by 10. The same was done for
the columns. The condition number in the 1-norm before and after equilibration with MC64
and ALG3 are shown in In Figure 1. These are listed as conderig(A), condycea(A4) , and
cond a1g3(A)) respectively. The epsilon tolerance for ALG3 was set to 1075.

Table 1: Condition numbers before and after equilibration for ALG3 and MC64

matrix n nnzof A condepig(A) condacea(A) condargs(A)
dw4096 8192 41746 1.50 - 107 9.63 - 10° 5.90 - 10°
rajatl3 7598 48762 1.46 - 10! 1.62- 10" 6.07 - 102
utm5940 5940 83842 1.91-10° 2.75 - 107 3.90 - 10°
t01s2000 2000 5184 6.92 - 106 1.08 - 102 1.11 - 102
rajat19 1157 3699 9.17 - 1010 5.87 - 10! 7.33-10%
unsym-rand05 1024 1048576 2.73-10% 1.77-10° 2.27-10°
unsym-rand04 512 262144 2.07- 10! 1.85-10° 5.66 - 10°
unsym-rand03 256 65536 1.26 - 1011 1.80 - 104 2.78 - 10*
unsym-rand02 128 16384 1.03-10° 1.18 - 10% 1.26 - 10%
unsym-rand01 64 4096 1.59 - 107 1.40 - 103 2.10 - 103

As we can see in Table 1, ALG3 and MC64 are comparable, though ALG3 is asymptotically
faster. For most matrices however, MC64 manages to obtain a lower condition number than
ALGS3.

For the utm5940 and rajatl9 matrix, both ALG3 and MC64 were unable to decrease the
condition number by much. These cases are to be expected, as MC64 and ALG3 are algorithms
based on heuristics. An interesting extension of this project would be to work out specific worst
cases for both algorithms, and see how to alter them as to make these worst cases less damaging.

3.2 For symmetric matrices

For the symmetric case, we again took a set of real, symmetric, non-singular matrices from
University of Florida’s sparse matrix collection [4], ranging from sizes 1806 to 11948 with a
maximum of 149090 non-zeros. In addition, we generated some smaller dense symmetric matrices
in MATLAB. As in the unsymmetric case, the matrices were generated with rand and then
scaled to be ill-conditioned. They were then made symmetric by adding each matrix to their
transpose. For each matrix, the condition numbers in the 1-norm before equilibration, after
equilibration with Bunch’s Algorithm, and after equilibration with ALG3 were computed. These
are listed as condorig(A), condgunch(A), and condargz(A)) respectively. The results are shown
in in Figure 2. As in the unsymmetric case, the epsilon tolerance for ALG3 was set to 1075,

Table 2: Condition numbers before and after equilibration for ALG3 and Bunch’s algorithm

matrix n nnz of A conderig(A) condpynch(A) condaras(A)
besstk18 11948 149090 6.48 - 101 1.21-10° 1.21-10°
c-44 10728 85000 1.14-108 1.47 -10° 2.15-10°
meg4 5860 25258 4.19-10% 1.73 - 10! 1.73 - 10!
sts4098 4098 72356 4.44 - 108 3.18 - 104 3.18 - 104
besstkl4 1806 63454 1.31-10% 9.91-103 9.91-103
sym-rand05 1024 1048576 1.79- 10U 2.81-10° 2.24 -10°
sym-rand04 512 262144 3.07-10° 9.63 - 104 7.42 104
sym-rand03 256 65536 1.93-10° 3.32-10% 4.20 - 10%
sym-rand02 128 16384 9.12- 10 2.19 - 10* 2.12-10*
sym-rand0l 64 4096 2.04 - 108 1.90 - 103 9.36 - 103

As we can see in Table 2, the resulting condition numbers between ALG3 and Bunch’s algo-
rithm are quite comparable, with ALG3 slightly better in most test cases. In all tests cases, the
condition number was successfully decreased.

4 Conclusion

We presented three algorithms that scale the max-norm of every row and column in a matrix to
1. In the unsymmetric case, MC64 seemed to be slightly better, though both ALG3 and MC64
were unable to decrease the condition number for some matrices. In the symmetric case, ALG3
seemed to be slightly better, though Bunch’s algorithm was much simpler and faster.

All three algorithms have unique strengths:

e MC64 handles unsymmetric matrices well, and is open to extension by reweighing the edges
of the bipartite graph described in Section 2.1.

e Bunch’s algorithm is simple to code, and achieves an asymptotically optimal runtime of
O(n + nnz).

o ALGS3 is general purpose, and can be used for both symmetric and unsymmetric matrices.
Furthermore, experimental evidence suggests that it can be extended to equilibrate the
p-norm, not just the max-norm.

Ultimately, the choice of an equilibration method will depend on the specific problem being
solved. What we demonstrated here however, is that there are many ways to equilibrate a
matrix: using techniques from graph theory (MC64), iterative methods (ALG3), and greedy
algorithm design (Bunch). The author hopes that the reader too will be inspired to create their
own equilibration technique, and looks forward to future techniques to come.

5 Acknowledgment

We thank Prof. Chen Greif, for his support and generous extension on the due date of this
project.

References

[1] F. L. Bauer. Optimally scaled matrices. Numerische Mathematik, 5:73-87, 1963.

[2] James Bunch. Equilibration of symmetric matrices in the max-norm. Journal of the ACM,
18:566-572, 1971.

[3] A.R. Curtis and J.K. Reid. On the automatic scaling of matrices for gaussian elimination.
J. Inst. Maths. Applics., 10:118-124, 1972.

[4] T. A. Davis and Y. Hu. The university of florida sparse matrix collection.

[5] Tain Duff and Jacko Koster. On algorithms for permuting large entries to the diagonal of a
sparse matrix. SIAM Journal on Matriz Analysis and Applications, 22:973-996, 2001.

[6] L. R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press, 1962.

[7] D. R. Fulkerson and P. Wolfe. An algorithm for scaling matrices. Siam Review, 4:142-146,
1962.

[8] Chen Greif, Shiwen He, and Paul Liu. SYM-ILDL, a package for the incomplete LDL”
factorization of indefinite symmetric matrices.

[9] Daniel Ruiz. A symmetry preserving algorithm for matrix scaling. Technical Report 7552,
INRIA, 2001.

