Efficacy and Effectiveness of Adaptive Seating on Sitting Posture and Postural Control in Children with Cerebral Palsy

Julie Chung Jessie Evans Corinna Lee Jessie Lee Yasha Rabbani

Supervisors: Lori Roxborough and Dr. Elizabeth Dean

Outline of Presentation

- Purpose
- Definitions
- Background
- Research Question
- Methodology
- Overall Results
- Study Results & Discussion
- Limitations
- Clinical Implications
- Conclusions
- Future Directions

Purpose

 To examine the current literature to determine the effectiveness and efficacy of adaptive seating on sitting posture and postural control in children with cerebral palsy (CP).

Definitions

Adaptive seating

 Any modifications to seating devices with the purpose of improving sitting posture and/or postural control in mobility-impaired individuals¹

Posture

A position of the limbs or the body as a whole^{2,3}

Postural control

 The ability to control the body's position in space to obtain stability and orientation^{2,3}

BACKGROUND

Cerebral Palsy

Cerebral palsy

 A broad term used to describe a group of nonprogressive disorders of posture and movement⁴

Incidence

1 in 500 children in Canada⁵

Causes

- Multi-factorial
- Attributed to factors during fetal or infant brain development⁴

Cerebral Palsy

Clinical features

- Decreased muscle strength
- Abnormal muscle tone
- Inability to maintain postural control
- Abnormal sensation, cognition, communication and/or behaviour

Classification

- Severity
- Motor disorder
- Secondary motor impairments

Interventions

Postural control interventions

- Balance training protocols/devices
- Ankle foot orthoses
- Neurodevelopmental treatment
- Whole-body Lycra[®] garments
- Adaptive seating

Previous Reviews

- Roxborough⁶ (1995) 8 studies
 - 3 positive results
 - pulmonary function
 - active trunk extension
 - performance on the Bayley Mental Scale
- Harris and Roxborough⁷ (2005) 12 studies
 - 7 positive results for postural outcomes

ICF Model

- Why is the ICF important for the field of CP?
 - Promotes a holistic approach to treatment
 - Educates family about the importance of relating function with socialization

Research Questions

Primary Question

 What is the effect of adaptive seating on sitting posture and postural control in children between 0 to 20 years of age, who are non-ambulatory with varying types and severity of CP?

Research Questions

Secondary Question

 What is the effect of improved sitting posture and/or postural control on participation and functional performance of activities in children with CP?

METHODOLOGY

Inclusion Criteria

- (P) Children with CP between 0 and 20 years of age
- (I) Adaptive seating
- **(C)** N/A
- (O) Sitting posture and/or postural control
- English language articles appearing in a peerreviewed journal (Jan 1980 – Dec 2006).

Exclusion Criteria

- (P) Children had co-morbidities
- (I) Co-interventions or non-seating related adaptive devices
- (O) Standing postural control
- A survey, anecdote, letter, or comment

- MEDLINE
- 2. CINAHL
- 3. EMBASE
- 4. PUBMED
- Database of Reviews of Effectiveness (DARE)
- 6. The Physiotherapy Evidence Database (PEDro)

- 7. OT Seeker
- 8. Cochrane Controlled Trials Register
- Cochrane Database of Systematic Reviews
- 10. Web of Science
- 11. Dissertation abstracts
- 12. Education Resources
 Information Centre
 (ERIC)

Key Terms

- Child
- Children
- Cerebral palsy
- Adaptive seating
- Assistive device
- Orthoses
- Positioning
- Seating

- Wheelchair
- Chair
- Infant equipment
- Posture
- Body posture
- Postural control
- Postural dysfunction
- Sitting posture

Grey Literature

- Reference lists
- Contacting experts in the field

Hand search (1995-2005)

- Journal of Pediatric Orthopedics
- Pediatric Physical Therapy
- Developmental Medicine and Child Neurology

Data Extraction

Our data extraction form included:

- Study designs
- Sample size
- Participant characteristics
- Interventions
- Outcome Measures
- Results
- Conclusions
- Relevant notes

Quality Assessment

Assessment Tools

- Group designs:
 - AACPDM Quality Assessment Scale
- Single subject designs:
 - The Quality, Rigor, or Evaluative Criteria

Description

- 7-item scales
- Scores are interpreted as: strong (6 or 7), moderate (4 or 5), or weak (3 or less)

Level of Evidence

Sackett's Level of Evidence for Group Design

1	Systematic review of randomized controlled trials (RCTs)			
	Large RCT (with narrow confidence intervals) (n > 100)			
l II	Smaller RCTs (with wider confidence intervals) (n < 100)			
	Systematic reviews of cohort studies			
	"Outcomes research"			
l III	Cohort studies (concurrent control group)			
	Systematic reviews of case control studies			
IV	Case series			
	Cohort study without concurrent control group			
	Case-control study			
V	Expert opinion			
	Case study or report			
	Bench research			
	Expert opinion based on theory or physiologic research			
	Common sense/anecdotes			

Level of Evidence

AACPDM Level of Evidence for Single Subject Design

I	N-of-1 randomized controlled trial
II	ABABA design Alternating treatments design Multiple baseline designs (concurrent or non- concurrent; across subjects, settings, or behaviours)
III	ABA design
IV	AB design (with replication on > subject)
٧	AB design (with 1 subject only)

Flow Chart

TITLE SCREENING

Potentially relevant citations identified through electronic and hand searches (n = 468)

Citations excluded after title screening (n = 325)

Abstracts retrieved for review (n = 143)

ABSTRACT SCREENING

Studies excluded after abstract screening (n = 126)

Full articles retrieved for review (n = 19)

FULL TEXT REVIEW

Studies excluded after full text review (n = 6)

Qualitative reviews (n=2)
Upper limb function (n=1)
Adult CP subjects (n=1)
No data for extraction (n=2)

Relevant studies included in systematic review (n = 13)

OVERALL RESULTS

Study Characteristics

	10 group designs
Research Design	1 single subject design
	2 case studies
Methodological	0 to 7 (median: 4)
Quality	
Level of Evidence	II to V (median: IV)

Participant Characteristics

No. Subjects	2 to 23 (total: 152)
Age	12 mos to 20.8 yrs
Motor Impairments	Diplegia (n=7), triplegia (n=2), tetrapelgia (n=6)
Motor Disorders	Spastic (n=12), dystonia (n=2), athetosis(n=2)
Severity of CP	Mild, moderate, severe

Interventions

- Saddle seats (n=3)
- Seat/backrest inclinations (n=4)
- Seat inserts (n=2)
- External supports (n=1)
- Modular seating system (n=4)

Outcomes

Outcomes	Studies	ICF Model
Sitting posture	6	Body structure
Sitting postural control	11	Body structure and function
Upper limb function	4	Activity
Mobility	1	Activity
Performance of ADLs	1	Activity
Social skills	2	Participation

STUDY RESULTS & DISCUSSION

Overview

Body Structure and Function

- Interventions:
 - A) Saddle Seating
 - B) Seat/Backrest Positional Angles
 - C) Seat Inserts
 - D) External Supports
 - E) Modular Seating Systems

Activity and Participation

- Outcomes:
 - A) Upper Extremity Function
 - B) Mobility
 - C) Social Skills & ADLs

Grades of Recommendations

Α	Level 1 studies	
В	Level 2 or 3 studies	
C	Level 4 studies	
D	Level 5 studies	

Body Structure & Function

Sitting Posture & Postural Control

- Maintains abduction and outward rotation of the hips
- Incorporates a forward slope to facilitate anterior rotation of the pelvis
- Encourages a midline posture
- Increases dynamic and equal weight bearing through the lower extremities

Pope et al.8 (1994)

- Pope et al.⁸ (1994)
 - Description:
 - Level IV evidence; 4/7 quality
 - Findings:
 - variable results no to little improvement in sitting posture and postural control
 - Major limitations:
 - Small sample size (n=9)
 - Lack of control of confounding variables eg. Environment
 - Poor adherence to intervention

Reid⁹ (1996)

Description:

Level IV evidence; 4/7 quality

- Significant decrease in abnormal postural responses = improved sitting postural control
- Significant increase in spinal extension = improved sitting posture

Major limitations:

- Did not control for postural cueing
- Did not operationally define mild and moderate CP

Saddle Position

- Stewart & McQuilton¹⁰ (1987)
 - Description:
 - Level V evidence; 0/7 quality
 - Findings:
 - Qualitative observation showed improved sitting postural control
 - Major limitations:
 - No reports of inter or intrarater reliability
 - Lack of details re: methods and intervention

Saddle Position

Author	Level of evidence	Quality	Results
Pope ⁸	IV	4	Variable
Reid ⁹	IV	4	Improved
Stewart ¹⁰	V	0	Improved

Saddle Position

- Overall recommendations:
 - Grade C: mixed evidence
 - Grade D: one study lends support

- Anteriorly- vs. Posteriorly tipped bases?
 - Anteriorly tipped seat bases:
 - more upright and stable sitting posture
 - reduce kyphosis
 - maintain lumbar lordosis
 - decrease posterior pelvic rotation
 - shift the centre of gravity forward

- Posteriorly tipped seat bases:
 - reduce EMG activity of hyperactive muscles
 - facilitates the development of functional movement in sitting

- Sochaniwskyj¹¹ (1991)
 - Description:
 - Level III; 3/7 quality
 - Findings:
 - 10° anterior tilt:
 - significantly increased back extension
 - 15° anterior tilt:
 - significantly decreased sitting postural control
 - greatest EMG activity of erector spinae muscles
 - Major limitations:
 - Non-equivalent control group
 - Poor construct validity

- McClenaghan et al.¹² (1992)
 - Description:
 - Level III; 5/7 quality
 - Findings:
 - Quiet sitting: 5° posterior tilt improved lower limb stability;
 5° anterior tilt decreased head stability
 - Active sitting: no differences
 - Major limitations:
 - High inter-subject variability
 - No interrater reliability reported

- Miedaner¹³ (1990)
 - Description:
 - Level III; 2/7 quality
 - Findings:
 - 20° forward tilted bench improved trunk extension in sitting
 - Major limitations:
 - No interrater reliability reported

- Nwaobi¹⁴ (1983)
 - Description:
 - Level V; 4/7 quality
 - Findings:
 - Lowest EMG muscle activity when back rest at 90° and seat inclined at 0°
 - Major limitations:
 - Only looked at low back extensors
 - Only recorded EMG muscle activity for 60 seconds

Author	Level of evidence	Quality	Results
Sochaniwskyj ¹¹	III	3	Improved with 10° anterior tilt
McClenaghan ¹²	III	5	Improved with 5° posterior tilt
Miedaner ¹³	II	2	Improved with anterior tilt
Nwaobi ¹⁴	V	4	Improved with neutral position

- Overall recommendations:
 - Grade B: mixed: two studies supported anterior tilt; one study supported posterior tilt
 - Grade D: one study supported neutral position

- Added to a child's adaptive seating device to improve postural control
 - Contoured foam seating (CFS)
 - Biofeedback

- Washington et al.¹⁵ (2002)
 - Description:
 - Level II; 7/7 quality
 - Contoured foam seating that is custom molded
 - Findings:
 - Significant increase in time spent in midline = improved sitting postural control
 - Parental report of improved postural alignment
 - Major limitations:
 - Small convenience sample (n=2)
 - Clinician who made CFS had 12 years of experience

- Bertoti¹⁶ (1988)
 - Description:
 - Level IV; 3/7 quality
 - Biofeedback seat insert

- Subjective report of improved sitting posture
- Major limitations:
 - Subjects were children with "normal intelligence"
 - ?? Amount of use needed to optimize gains, feasibility of compliance, long term effects

Author	Level of evidence	Quality	Results
Washington ¹⁵	II	7	Improved
Bertoti ¹⁶	IV	3	Improved

- Overall recommendations:
 - Grade B: one study supports use of CFS
 - Grade C: one study supports use of biofeedback

External Supports

- Lateral supports arranged in a 3-point force system
- 2 parallel forces opposed by a single force acting in the opposite direction

External Supports

Holmes et al.¹⁷ (2003)

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

- Description:
 - Level IV; 5/7 quality
 - 3-point lateral supports system

Findings:

 Significantly improved scoliosis = improved sitting posture

• Major limitations:

- only measured in 2-D, but scoliosis is 3-D
- ?? Long term effects, adherence

External Supports

- Overall recommendations:
 - Grade C: one study supports 3 point lateral support force system

- Combination of positional adjustments and orthoses
- Allows for a functional sitting position

- "Maxit" or "Real" Chair
 - Symmetrically weight bearing on ischial tuberosities
 - Line of gravity of the upper body anterior
 to axis of rotation at the ischial tuberosities
 - Hips fixated with a belt under the seat
 - Legs separated by an abduction orthosis
 - Seat base either horizontal or anteriorly tipped

- Myhr & von Wendt¹⁸ (1990)
 - Description:
 - Level V; 2/7 quality
 - Modular seating system
 - Findings:
 - longest duration of head control & least number of pathological movements = improved postural control
 - Major limitations
 - Small sample size (n=2)
 - Not standardized intervention
 - Poor construct validity

- Myhr & von Wendt¹⁹ (1991)
 - Description:
 - Level IV; 6/7 quality
 - "Maxit" or "Real" Chair

- Significantly improved overall sitting postural control
- Major limitations:
 - Non standardized intervention
 - Sitting Assessment Scale no reports of validity or reliability
 - Use of Spearman correlation coefficient

- Myhr et al.²⁰ (1995)
 - Description:
 - Level IV; 6/7 quality
 - 5 yr follow-up study
 - Findings:
 - 8 of 10 children:
 - maintained functional sitting position
 - significant improvement in sitting postural control
 - 2 children:
 - deteriorated and trunk control worsened
 - Major limitations:
 - Same methods a/a, thus limitations are similar

- Ther Adapt Posture Chair
 - Consists of adjustable:
 - Seat height
 - Kneepads
 - Lumbar support

Used to obtain a stabilized sitting posture

- Miedaner¹³ (1990)
 - Description:
 - Level III; 2/7 quality
 - Findings:
 - Ther Adapt Posture Chair improved trunk extension in sitting
 - Major limitations:
 - Intervention was not specified and standardized

Author	Level of evidence	Quality	Results
Myhr (1990) ¹⁸	V	2	Improved
Myhr (1991) ¹⁹	IV	6	Improved
Myhr (1995) ²⁰	IV	6	Improved
Miedaner	II	2	Improved

- Overall recommendations:
 - Grade B: one study support the use of Ther Adapt Posture Chair
 - Grade C: one study lends support to use of the "Maxit" or "Real" chair; one study reported long term improvements
 - Grade D: one study supports a modular seating system

Activity and Participation

Upper limb function, Mobility, Social Skills and Performance of ADLs

Upper Limb Function

- Saddle seat (Pope et al.⁸, Reid⁹)
 - No significant impact on improving:
 - fine motor
 - dexterity
 - upper limb function

Upper Limb Function

- Seat Positional Angles (McClenaghan et al.¹²)
 - 5° anterior tilt:
 - significant increase in thumb-press performance
 - 5º posterior tilt:
 - Reduction in linear tapping performance

- CFS (Washington et al.¹⁵)
 - No clear effects

Upper Limb Function

- Overall recommendations
 - More research is needed to examine the link between improved posture and postural control on increased upper limb ability

Mobility

- Saddle seat (Pope et al.⁸)
 - Overall increase in mobility

- Overall recommendations
 - More research is needed to examine the activity component of the ICF

Social Skills & Performance of ADLs

- CFS (Washington et al.¹⁵)
 - Subjective reports of improved:
 - social interactions
 - functional independence
 - feeding ability
 - functional performance

Social Skills & Performance of ADLs

- Overall recommendations
 - More objective measurements are needed to capture the magnitude of change in these outcomes

CLOSING REMARKS

Limitations of Current Review

- Heterogenous population
 - Difficult to compare in terms of severity, age, type of CP and motor impairment
- No standardization of outcome measures
- Low-level of evidence (Level II to V)
- Publication bias
- Lack of current research

English language

Clinical Implications

- Adaptive seating should be individualized to meet the needs of each child
- Therapists should be patient as developing an appropriate seating device requires multiple adjustments over a series of visits
- Appropriate use of adaptive seating can lead to improvements at the body structure/function, activity, and participation components of the ICF model.

Conclusions

- No single intervention has been shown to be more effective than others in improving sitting posture and/or postural control
- Limited evidence to suggest whether improved sitting posture and/or postural control will lead to improved functional abilities
- More research is needed

Future Directions

- Studies with stronger levels of evidence and rigorous research designs
- Use of validated classification systems to describe the motor function (e.g. Gross Motor Function Classification Scale)
- Standardized outcome measures for postural control
- Studies that examine the link between postural control to functional skills and level of participation.

Acknowledgements

- Lori Roxborough
- Dr. Elizabeth Dean
- Dr. Susan Harris
- Angela Busch
- Marie Westby
- Charlotte Beck
- Steve Ryan
- Tanja Mason
- Janice Evans

Thank you! Any questions?

References

- 1. Rehab Tools. Assistive Technology: Resources and Links. In; 2004.
- 2. Massion J. Postural control systems in developmental perspective. Neurosci Biobehav Rev 1998;22(4):465-72.
- 3. Stedman's Medical Dictionary. 27th ed. Baltimore, Maryland: Lippincott Williams & Wilkins; 2000.
- 4. Krigger KW. Cerebral palsy: an overview. Am Fam Physician 2006; 73(1)a:91-100.
- 5. Steultjens EM, Dekker J, Bouter LM, van de Nes JC, Lambregts BL, van den Ende CH. Occupational therapy for children with cerebral palsy: a systematic review. Clin Rehabil 2004;18(1):1-14.
- 6. Roxborough L. Review of the efficacy and effectiveness of adaptive seating for children with cerebral palsy. Assist Technol 1995; 7(1):17-25.
- 7. Harris SR, Roxborough L. Efficacy and effectiveness of physical therapy in enhancing postural control in children with cerebral palsy. Neural Plast 2005;12(2-3):229-43; discussion 263-72.
- 8. Pope PM, Bowes CE, Booth E. Postural control in sitting the SAM system: evaluation of the use over three years. Dev Med Child Neurol 1994;36(3):241-52.
- 9. Reid DT. The effects of the saddle seat on seated postural control and upper-extremity movement in children with cerebral palsy. Dev Med Child Neurol 1996;38(9):805-15.
- Stewart P, McQuilton G. Straddle seating for the cerebral palsied child. British Journal of Occupational Therapy 1987;50(4):136-8.
- Sochaniwskyj A, Koheil R, Bablich K, Milner M. Dynamic monitoring of sitting posture for children with spastic cerebral palsy. Clin Biomech (Bristol, Avon) 1991;6(3):161-67.

References

- McClenaghan BA, Thombs L, Milner M. Effects of seat-surface inclination on postural stability and function of the upper extremities of children with cerebral palsy. Dev Med Child Neurol 1992;34(1):40-8.
- Miedaner J. The effects of sitting positions on trunk extension for children with motor impairment. Pediatr Phys Ther 1990;2:11-14.
- 14. Nwaobi OM, Brubaker CE, Cusick B, Sussman MD. Electromyographic investigation of extensor activity in cerebral-palsied children in different seating positions. Dev Med Child Neurol 1983;25(2):175-83.
- Washington K, Deitz JC, White OR, Schwartz JS. The effects of a contoured foam seat on postural alignment and upper-extremity function in infants with neuromotor impairments. Phys Ther 2002; 82(11): 1064-76.
- Bertoti DB, Gross AL. Evaluation of biofeedback seat insert for improving active sitting posture in children with cerebral palsy. A clinical report. Phys Ther 1988;68(7):1109-13.
- Holmes KJ, Michael SM, Thorpe SL, Solomonidis SE. Management of scoliosis with special seating for the non-ambulant spastic cerebral palsy population--a biomechanical study. Clin Biomech (Bristol, Avon) 2003;18(6):480-7.
- Myhr U, vonWendt L. Reducing spasticity and enhancing postural control for the creation of a functional sitting position in children with cerebral palsy: a pilot study. Physiotherapy Theory & Practice 1990; 6(2):676
- Myhr U, von Wendt L. Improvement of functional sitting position for children with cerebral palsy. 1991
- Myhr U, von Wendt L, Norrlin S, Radell U. Five-year follow-up of functional sitting position in children with cerebral palsy. Dev Med Child Neurol 1995;37(7):587-96.

Background: ICF Model

- Definition of ICF Components (ref):
 - Body Functions: physiological and psychological functions of body systems
 - Body Structures: anatomical parts of the body such as organs, limbs and their components
 - Activity: the execution of a task or action by an individual.
 - Participation: involvement in a life situation.
 - Environmental Factors: physical, social, cultural, institutional or attitudinal in nature
 - Personal Factors: Gender, age, education and lifestyle

Results Outcomes

Outcomes	Measures	
Sitting	Subjective reports	
posture	Trunk, hip, and knee ROM	
	Spinous process angle measurements	
Sitting	Subjective reports	
postural	Displacement of head, trunk, and lower limbs	
control	Number of pathological movements	
	EMG activity of back extensors	
	Sitting Assessment Scale	
	Level of Sitting Ability Scale	
	The Sitting Assessment Scale for Children with Neuromotor Dysfunction	

Results Outcomes

Outcomes	Measures	
Upper limb function	Visual observation	
	Performance in fine motor and dexterity tasks	
Mobility	5 point scale	
Social skills and performance of ADLs	Subjective reports	