Efficacy of specific needling techniques in the treatment of myofascial pain syndrome

Candice Brunham
Kelly McNabney
Jody Wiebe
Jeff Norwood

Research Supervisors:
Dr. Darlene Reid
Dr. Babak Shadgan
Objectives

- To evaluate the efficacy of available invasive dry needling techniques for treatment of persons diagnosed with myofascial pain syndrome (MPS) and/or myofascial trigger points (MTrPs)
- Identify gaps in current research and provide guidance for future studies
- Relate findings to best practice
What is Myofascial Pain Syndrome?

- Myofascial pain syndrome (MPS) is a condition characterized by the presence of myofascial trigger points (MTrP’s)¹
- MTrP’s are hyper-irritable areas located on a taut band of skeletal muscle that illicit pain when stretched or compressed¹
Myofascial Trigger Points

• Exhibit sensory, motor and autonomic phenomenon1,2
 - **Sensory**: local tenderness and referral of pain which can lead to peripheral and/or central sensitization
 - **Motor**: disturbed function in muscle of origin and related muscles, muscle weakness, stiffness, restricted ROM, poor coordination, & muscle imbalance
 - **Autonomic**: localized sweating, vasoconstriction/vasodilation, & pilomotor activation
Common Treatment Methods

• **Step 1 = deactivate MTrP3,4**
 - Invasive Techniques:
 • Dry needling, acupuncture, wet needling
 - Non-invasive Techniques:
 • Ischemic compression, spray and stretch, laser, myofascial release

• **Step 2 = correcting or removing the precipitating/predisposing stimuli5**
Dry Needling Techniques

- **Dry Needling (DN)**
 - Simple insertion and removal of an acupuncture type needle following anatomical and biological principles\(^3,4\)

- **Acupuncture**
 - Needling at acupoints along meridians and extrameridians to relieve the associated pain\(^3,4\)

- **Intramuscular Stimulation (IMS)**
 - Manipulation of the inserted needle until a local twitch response is attained\(^3,4\)
Who is affected by MPS and how? (American Pain Foundation, 2007)

- Very common source of musculoskeletal complaints\(^6\)
- Increasing in prevalence\(^8\)
- The estimated cost of chronic pain in America is $100 billion per annum\(^9\)
- Increased morbidity and decreased quality of life in those suffering
Why is this Systematic Review (SR) needed?

- Needling therapies are growing in popularity amongst clinicians, resulting in a need for scientific support\(^{10}\)

- If strong evidence can support a positive effect of needling therapies, they may become accepted as standard form of treatment
Existing Systematic Reviews

- **Evidence Based Practice:**
 - Cummings and White (2001)\(^{11}\)
 - Wet needling therapy not therapeutically superior to dry needling in reduction of pain
 - Inconclusive evidence to support effect of needling therapies beyond placebo
 - Rickards (2006)\(^{12}\)
 - Non-invasive treatment of MPS
 - Unable to provide strong evidence for any treatment interventions
 - Furlan et al (2005)\(^{13}\)
 - Acupuncture or dry needling in treatment of non-specific low back pain
 - No firm conclusions as most studies were of low methodological quality
Database Search

- EMBASE
- MEDLINE
- PubMed
- CINAHL
- PEDro
- Cochrane Library Database of Systematic Reviews
- Hand Searching
Embase Search Strategy

1. myofascial pain syndrome.mp. or Myofascial Pain/
2. trigger points.mp. or Trigger Point/
3. Acupuncture/ or needling therapies.mp.
4. acupuncture.mp.
5. needle therapy.mp.
6. dry needling.mp.
7. intramuscular stimulation.mp.
8. IMS.mp.
9. invasive.mp.
10. needling.mp.
11. 1 or 2
12. 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10
13. 11 and 12
14. from 13 keep 3
15. from 13 keep 10, 14, 21, 23, 35, 54...
16. 14 or 15
Inclusion Criteria

- Adults over 16 years
- Diagnosis of MPS and/or myofascial pain with associated TrP’s
- Clear definition of myofascial pain and/or MTrP
- RCTs, CCTs, or quasi-experimental trials
- Assessment of outcome measures blinded if feasible
- Invasive dry needling technique
- At least one standardized measure of pain, including pre-and post-test values
Exclusion Criteria

- Patients with diagnosed temporomandibular joint dysfunction and/or fibromyalgia

- Patients diagnosed with myofascial pain as a direct result of a surgical procedure

- Wet needling therapies that involve the injection of substance into subject without dry needling comparison group (ie. injection of analgesic/saline/Botox)

- Patients with coexisting cognitive impairment (ie. acute stroke)

- Studies with a PEDro score of < 4
Quality Assessment & Data Extraction

- **PEDro**
 - 11 item quality assessment tool
 - Studies graded by two assessors independently
 - Assigned a grade of excellent, good, fair, poor

- **Data extraction tool**
 - Tool selected due to comprehensiveness and ease of use
 - Includes written description of trial and quantitative results (change in mean and SD)
 - Data extracted by two assessors independently
Results - Selected Studies

- 45 articles selected for full-text review
- 13 trials met the inclusion criteria14-26
 - Needling interventions included: Dry Needling, Intramuscular Stimulation (IMS), Acupuncture (Traditional Chinese and Japanese, superficial and deep), and other variations
 - Subject characteristics:
 - Average age range = 32-79 yrs
 - 9 trials in neck/upper trapezius region, 2 trials in lumbar region, 1 trial in gluteal region, and 1 trial did not specify
 - PEDro quality assessment scores:
 - 8 high quality, 4 moderate quality, and 1 fair quality
Data Synthesis - Effect Sizes

- **Effect Size:**
 - Measure of the strength of relationship between two variables
 - Small effect size: $d = 0.2-0.5$
 - Moderate effect size: $d = 0.5-0.8$
 - Large effect size: $d = 0.8+$

- **Calculated using REVMAN v.5.0**
 - 95% confidence interval
 - Standardized mean difference as effect measure
 - Hedges adjusted g

- **Calculated at two time periods:**
 - Baseline to end of treatment
 - Baseline to follow-up
Groupings for Data Synthesis

- Needling Intervention vs Control
- Needling Intervention vs Other Intervention
- Needling Intervention + Adjunct Therapy vs Adjunct Therapy vs Control
- Needling Intervention - no comparison group
Needling Intervention vs Control Group

- Studies comparing DN vs placebo control showed no significant difference at post treatment and follow up21, 20

- Three of four studies comparing acupuncture with placebo control had results favouring acupuncture at both end of treatment and follow up22-24,14
Forest Plots

End of Treatment – Pain Scales

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Experimental Mean</th>
<th>SD</th>
<th>Total</th>
<th>Control Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Std. Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birch 1998</td>
<td>7</td>
<td>3.42</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10.1%</td>
<td>-2.76</td>
<td>[-3.80, -1.72]</td>
</tr>
<tr>
<td>Huguenin 2005 (Glutea)</td>
<td>11</td>
<td>20</td>
<td>29</td>
<td>3</td>
<td>15</td>
<td>11.6%</td>
<td>0.45</td>
<td>[0.07, 0.86]</td>
</tr>
<tr>
<td>Huguenin 2005 (Hams)</td>
<td>4</td>
<td>16</td>
<td>29</td>
<td>11</td>
<td>29</td>
<td>11.6%</td>
<td>-0.29</td>
<td>[-0.81, 0.22]</td>
</tr>
<tr>
<td>Ilcolu 2004 (Activity)</td>
<td>3.71</td>
<td>2.33</td>
<td>20</td>
<td>3.65</td>
<td>2.03</td>
<td>20</td>
<td>11.4%</td>
<td>0.03 [-0.59, 0.65]</td>
</tr>
<tr>
<td>Ilcolu 2004 (Rest)</td>
<td>5.29</td>
<td>2.45</td>
<td>20</td>
<td>5.5</td>
<td>2.24</td>
<td>20</td>
<td>11.4%</td>
<td>-0.08 [-0.71, 0.53]</td>
</tr>
<tr>
<td>Imich 2001</td>
<td>24.1</td>
<td>4.025</td>
<td>34</td>
<td>35.13</td>
<td>4.35</td>
<td>45</td>
<td>11.3%</td>
<td>-3.05 [-3.71, -2.39]</td>
</tr>
<tr>
<td>Imich 2002 (CN)</td>
<td>29.2</td>
<td>21.9</td>
<td>33</td>
<td>28.19</td>
<td>36.34</td>
<td>34</td>
<td>11.7%</td>
<td>0.06 [-0.42, 0.54]</td>
</tr>
<tr>
<td>Imich 2002 (NLA)</td>
<td>19.1</td>
<td>4.16</td>
<td>34</td>
<td>29.18</td>
<td>36.34</td>
<td>34</td>
<td>11.7%</td>
<td>-0.40 [-0.88, -0.01]</td>
</tr>
<tr>
<td>Itch 2005</td>
<td>27.3</td>
<td>3.13</td>
<td>13</td>
<td>19.6</td>
<td>10.9</td>
<td>11</td>
<td>9.2%</td>
<td>-3.30 [-4.60, -2.00]</td>
</tr>
</tbody>
</table>

Follow up – Pain Scales

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Experimental Mean</th>
<th>SD</th>
<th>Total</th>
<th>Control Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Std. Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birch 1998</td>
<td>9</td>
<td>3.42</td>
<td>15</td>
<td>18</td>
<td>2.5</td>
<td>15</td>
<td>13.5%</td>
<td>-2.92 [-3.89, -1.85]</td>
</tr>
<tr>
<td>Huguenin 2006 (Glutea)</td>
<td>9</td>
<td>31</td>
<td>29</td>
<td>6</td>
<td>24</td>
<td>30</td>
<td>18.3%</td>
<td>0.11 [0.40, 0.63]</td>
</tr>
<tr>
<td>Huguenin 2006 (Hams)</td>
<td>11</td>
<td>24</td>
<td>29</td>
<td>11</td>
<td>34</td>
<td>30</td>
<td>18.3%</td>
<td>0.00 [0.51, 0.51]</td>
</tr>
<tr>
<td>Ilcolu 2004 (Activity)</td>
<td>4.24</td>
<td>2.93</td>
<td>20</td>
<td>4.22</td>
<td>3.06</td>
<td>20</td>
<td>17.4%</td>
<td>0.01 [0.61, 0.63]</td>
</tr>
<tr>
<td>Ilcolu 2004 (Rest)</td>
<td>2.59</td>
<td>2.18</td>
<td>20</td>
<td>2.80</td>
<td>2.63</td>
<td>20</td>
<td>17.4%</td>
<td>-0.12 [0.74, 0.65]</td>
</tr>
<tr>
<td>Itch 2006</td>
<td>49.5</td>
<td>18.8</td>
<td>13</td>
<td>68.3</td>
<td>11.4</td>
<td>11</td>
<td>15.2%</td>
<td>-1.14 [-2.02, -0.27]</td>
</tr>
</tbody>
</table>
Needling Intervention vs Other Intervention

• Comparison of two DN techniques:
 - Study by Fu (2007)17 showed no significant difference between treatment groups (no follow up measure)

• Comparison of two acupuncture techniques:
 • Study by Birch & Jamison (1998)14 favoured relevant Japanese acupuncture over irrelevant acupuncture at both post treatment and follow up
 • Study by Ceccherelli et al (2002)15 compared superficial and deep acupuncture
 - No significant difference between groups post treatment but favoured deep acupuncture at follow up

• Comparison of DN technique and acupuncture technique:
 - Study by Irnich et al (2002)22 favoured acupuncture over DN for reduction of motion related pain at end of treatment
Needling Intervention vs Other Intervention

- Comparison of DN and Wet Needling techniques:
 - Results of studies by Kamanli et al (2005) and Hong (1994) favoured lidocaine injection over DN at post treatment (for reduction of pain scores and increase in PPT)
 - Study by Hong (1994) retained significant treatment effect at follow up (for reduction of pain scores)
 - Ga et al (2007) favoured IMS over lidocaine injection for increase in PPT at follow up
Needling Intervention vs Other Intervention

• Comparison of acupuncture and conventional massage:
 - Study by Irnich et al (2001)23 showed significant difference in favour of acupuncture for reduction in motion related pain post treatment (no follow up)

• Comparison of DN and laser therapy:
 - Study by Ilbuldu et al (2004)21 showed significant difference in favour of laser therapy post treatment, but was not retained at follow up (VAS at rest, VAS with activity, PPT)
Forest Plots - End of Treatment

Pain Scales

Experimental vs. Other Treatment

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Experimental Mean</th>
<th>SD</th>
<th>Total</th>
<th>Other Treatment Mean</th>
<th>SD</th>
<th>Total</th>
<th>Std. Mean Difference</th>
<th>IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ga 2007</td>
<td>4.54</td>
<td>1.62</td>
<td>22</td>
<td>3.9</td>
<td>2.17</td>
<td>21</td>
<td>12.8%</td>
<td>0.32 [-0.38, 0.92]</td>
</tr>
<tr>
<td>Hong 1994</td>
<td>1</td>
<td>1.46</td>
<td>15</td>
<td>0.42</td>
<td>0.49</td>
<td>26</td>
<td>12.7%</td>
<td>0.59 [-0.05, 1.24]</td>
</tr>
<tr>
<td>Ilbuldu 2004 (Activity)</td>
<td>5.29</td>
<td>2.45</td>
<td>20</td>
<td>2.85</td>
<td>1.95</td>
<td>20</td>
<td>12.7%</td>
<td>1.08 [0.41, 1.76]</td>
</tr>
<tr>
<td>Ilbuldu 2004 (Rest)</td>
<td>3.71</td>
<td>2.39</td>
<td>20</td>
<td>2.05</td>
<td>1.43</td>
<td>20</td>
<td>12.7%</td>
<td>0.84 [0.10, 1.40]</td>
</tr>
<tr>
<td>Imich 2001</td>
<td>24.1</td>
<td>4.825</td>
<td>34</td>
<td>47.49</td>
<td>4.275</td>
<td>43</td>
<td>12.1%</td>
<td>-5.11 [6.08, -4.17]</td>
</tr>
<tr>
<td>Imich 2002</td>
<td>29.2</td>
<td>21.9</td>
<td>33</td>
<td>19.1</td>
<td>19.11</td>
<td>34</td>
<td>12.9%</td>
<td>0.52 [0.03, 1.01]</td>
</tr>
<tr>
<td>Kamaril 2005 Botox</td>
<td>5.12</td>
<td>2.94</td>
<td>10</td>
<td>2.68</td>
<td>1.04</td>
<td>19</td>
<td>12.0%</td>
<td>1.03 [0.00, 2.01]</td>
</tr>
<tr>
<td>Kamaril 2005 Lidocaine</td>
<td>5.12</td>
<td>2.94</td>
<td>10</td>
<td>1.95</td>
<td>1.67</td>
<td>10</td>
<td>12.0%</td>
<td>1.27 [0.23, 2.25]</td>
</tr>
</tbody>
</table>

Std. Mean Difference

- **Favours experimental**
- **Favours other treatment**

PPT
Forest Plots - Follow up

Pain Scales

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Experimental</th>
<th>Other Treatment</th>
<th>Std. Mean Difference</th>
<th>Std. Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
</tr>
<tr>
<td>Ga 2007</td>
<td>3.11</td>
<td>2.01</td>
<td>22</td>
<td>3.46</td>
</tr>
<tr>
<td>Hong 1994</td>
<td>4.93</td>
<td>1.44</td>
<td>15</td>
<td>0.86</td>
</tr>
<tr>
<td>Ilbuldu 2004 (Activity)</td>
<td>4.24</td>
<td>2.93</td>
<td>20</td>
<td>3.35</td>
</tr>
<tr>
<td>Ilbuldu 2004 (Rest)</td>
<td>2.59</td>
<td>2.18</td>
<td>20</td>
<td>2.12</td>
</tr>
</tbody>
</table>

PPT

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Experimental</th>
<th>Other Treatment</th>
<th>Std. Mean Difference</th>
<th>Std. Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
</tr>
<tr>
<td>Ga 2007</td>
<td>1.27</td>
<td>0.88</td>
<td>22</td>
<td>1.71</td>
</tr>
<tr>
<td>Hong 1994</td>
<td>-3.71</td>
<td>0.47</td>
<td>15</td>
<td>-3.69</td>
</tr>
<tr>
<td>Ilbuldu 2004</td>
<td>-2.24</td>
<td>0.73</td>
<td>20</td>
<td>-2.26</td>
</tr>
</tbody>
</table>
Needling Intervention + Adjunct Therapy vs Adjunct Therapy vs Control

- Comparison of superficial DN + stretching vs stretching vs control (Edwards & Knowles, 2003):¹⁶
 - No significant difference between groups immediately post treatment
 - Superficial DN + stretch favoured at follow up for increase in PPT
Needling Intervention without Control Group

- Effects of traditional Chinese acupuncture over 3 week course of treatment (Kung et al, 2001):26
 - Paired t-test analysis showed significant reduction in VAS pain scale at end of treatment
Discussion - Needling Intervention vs Control

- Studies that had a large effect size in favour of needling interventions shared a common trait of multiple needling treatments (at least 1x/week for 3 weeks)

- Birch & Jamison (1998)14 identified a high correlation between previous acupuncture treatments and reduction in VAS scores

- Many studies had design flaws which introduced confounding variables (i.e., attrition bias, additional non-controlled treatments, variable diagnoses)
Discussion - Needling vs Needling Intervention

- No trends seen due to heterogeneity of studies
 - Study by Irnich et al (2002)22 found acupuncture to be significantly more effective than DN
 - Ceccherelli et al (2002)15 found deep acupuncture to be more effective than superficial acupuncture
 - Birch & Jamison (1998)14 found relevant acupuncture to be more effective than irrelevant acupuncture

- Future studies comparing needling techniques are needed to determine the most effective technique
Discussion - Needling vs Other Intervention

- Studies which favoured lidocaine injection over DN techniques involved only one treatment session
- Study by Ga et al (2007)18 which favoured IMS over lidocaine injection had 3 treatments over 3 weeks
- The form of dry needling may play a role in treatment efficacy
- Study by Ilbuldu et al (2004)21 favoured laser over DN, but subjects received a greater number of laser treatments
Limitations of this Review

- **Publication bias**
 - Translation of foreign studies not feasible, timing of literature search
- **Quality assessment tool**
 - High quality studies had serious design flaws
- **Heterogeneity of studies**
 - Difficult to perform meaningful meta-analysis
- **Manipulation of data**
 - Interpretation of some data by reviewers led to increased risk of translation error
- **Diagnostic criteria of MPS**
 - Not all studies based on Travell & Simon’s criteria¹
Implications for Research

• Need for additional high quality studies
• Standardization of research and treatment methods
• Real-life treatment plans incorporated into study designs (ie. 2 treatments per week for 4 weeks)
• Consistent timing of outcome measures (including end of treatment and long-term follow up measures)
Implications for Practice

• Best practice involves a structured interdisciplinary approach including physical and cognitive behavioral strategies.

• The national institute of health (USA) consensus statement on acupuncture (1997) concluded that it may be useful as an adjunct treatment\(^{27}\).

• This review indicates a need for future investigation of dry needling therapies as part of a comprehensive program.
Conclusions

- No clear evidence that Dry Needling techniques are more efficacious than placebo, sham, or alternative treatment techniques

- No clear recommendations can be made regarding the most effective needling technique or optimal length and frequency of treatment

- Results suggest that multiple treatment sessions are more effective on pain outcomes than single treatment sessions

- Level of evidence does not exceed moderate
Thank you! 😊

Acknowledgements:
Dr. Darlene Reid, Dr. Babak Shadgan, Charlotte Beck, Dr. Angela Busch, & Meredith Wilson
References

