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ABSTRACT 

Urban forests represent a considerable financial investment for cities. Despite the efforts and resources 

expended on the maintenance of trees, cities often lack comprehensive information on their condition. 

Light detection and ranging (LiDAR), a remote sensing technology already employed in commercial 

forest management, shows significant potential as a tool for monitoring urban forests. Automated data 

processing algorithms are required for extracting information at an individual tree basis from LiDAR 

data. Here, two methods for detecting and delineating trees, variable window filtering (VWF) and multi-

scale segment integration (MSI), are applied to two urban plots. The accuracy of both methods is 

reported in terms of the frequency of errors of omission and commission. Results show a broad 

variation in the performance between the two methods depending on tree age, species and location. On 

average, the MSI approach produced fewer errors, which make it a potentially stronger candidate for 

applications in urban forest management. 

INTRODUCTION 

Light detection and ranging (LiDAR) is an emerging remote sensing technology capable of producing 

precise three-dimensional models of terrain over broad spatial scales. By emitting a laser pulse and 

recording the time elapsed until its return, the distance between a LiDAR sensor and a terrestrial feature 

can be recorded with an extremely high degree of accuracy. Discrete-return airborne LiDAR systems can 

emit hundreds of thousands of pulses per second which, when combined with the sweeping motion of 

the scanner and the movement of the aircraft, can sample distances over large swaths of terrain. 

LiDAR’s capacity to penetrate vegetation has drawn particular interest from the field of natural resource 

management (Hudak, Evans, & Smith, 2009). LiDAR has been used to characterize forest structure 

(Coops et al., 2007), estimate carbon stocks (Patenaude et al., 2004), quantify fuel volume (Seielstad & 

Queen, 2003) and create habitat models (Vierling, Vierling, Gould, Martinuzzi, & Clawges, 2008). From a 

forest management perspective, perhaps its most promising use is for producing forest inventories 



(Woods, Lim, & Treitz, 2008). Area-based approaches (ABA), wherein LiDAR point cloud metrics are used 

to estimate forest attributes at a stand level, have already been operationalized. ABA have the benefit of 

requiring data with relatively low point densities, and are thus less costly. However, many modern LiDAR 

systems are capable of collecting data at densities sufficient to detect and measure individual trees. 

Many individual tree detection (ITD) techniques were originally developed using optical imagery (Dralle 

& Rudemo, 1996; Pouliot, King, Bell, & Pitt, 2002; Wulder, Niemann, & Goodenough, 2000). With its 

recent introduction into forestry applications, however, LiDAR has become the focus of a large number 

of studies on ITD. These techniques are either applied to LiDAR point clouds directly, or to products 

derived from LiDAR data, such as rasterized canopy height models (Jakubowski, Li, Guo, & Kelly, 2013). A 

common hurdle for ITD is the difficulty of distinguishing separate trees from within continuous canopies. 

This complication can manifest as errors of omission, when distinct trees are missed, or commission, 

when non-existent trees are identified. Many different approaches have been tested to locate, and 

sometimes delineate, individual trees while minimizing both types of errors. Falkowski et al. (2006) used 

spatial wavelet analysis to extract location, height and crown diameters from a mixed conifer forest. 

Other methods rely on the integration of LiDAR and other sources of remotely-sensed data. Approaches 

such as valley following and object-oriented classification have been applied to coregistered LiDAR data 

and multispectral imagery to detect and isolate individual trees in coniferous forests (Leckie et al., 2003; 

Suárez, Ontiveros, Smith, & Snape, 2005).  

Kaartinen et al. (2012) performed a comparison of several tree detection methods and reported a wide 

range in the quality of the compared approaches. The study also found that several automated methods 

outperformed manual processing of LiDAR data in terms of accuracy. It was noted that ITD approaches 

generally detect dominant or co-dominant trees more consistently than suppressed trees. Jakubowski et 

al. (2013) compared a vector-based method, which acted on a 3D point cloud, and a raster-based 

method, which was applied to a canopy height model derived from raw LiDAR data. The study found 

that the raster-based method tended to detect and outline spurious trees, while the vector-based 

method presented the opposite problem by under-detecting existing trees. 

Most ITD methods were developed for natural or semi-natural forest structures. Previous research has 

shown that certain ITD techniques perform best in homogenous or near-homogenous stands (Popescu & 

Wynne, 2004; Schardt, Ziegler, Wimmer, & Wack, 2002). ITD methods requiring calibration based on 

expected tree morphology are thus best suited for even-aged forests with a narrow range of species. 



While forests that are managed for commercial timber may fit this criteria, such conditions are generally 

not found in urban forests, which may be composed of a wide variety of species and age classes. 

While considerable research has been conducted on LiDAR’s uses in forestry, its applications in urban 

forestry are nascent. LiDAR has been used to model solar radiation effects (Tooke, Coops, & Voogt, 

2009), map urban tree canopy (MacFaden, O’Neil-Dunne, Royar, Lu, & Rundle, 2012) and estimate 

citywide carbon storage (Schreyer, Tigges, Lakes, & Churkina, 2014). As LiDAR’s utility in the field of 

urban forestry expands, the need for automated tree detection routines adapted to the urban landscape 

is likely to increase. Accurate methods for locating and outlining trees are a prerequisite to the 

extraction of metrics at an individual tree level, such as height or crown density. These metrics can be 

used for a variety of higher-level analyses, like growth monitoring or the assessment of tree condition.  

Here, the performance of two automated tree detection and delineation methods are compared in an 

urban context. The first is a combination of variable window filtering, used to detect tree tops (Popescu, 

Wynne, & Nelson, 2002; Popescu & Wynne, 2004) and a marker-controlled watershed segmentation 

algorithm (Serge Beucher, 1994; Chen, Baldocchi, Gong, & Kelly, 2006), which delineates each tree top’s 

crown. The second is a method that applies Gaussian smoothing to a rasterized canopy height model at 

multiple scales. The resulting segmentation maps are then integrated to produce a tree crown map that 

contains segments of multiple sizes (Jing, Hu, Noland, & Li, 2012). Both methods are applied to two 

urban test plots: a municipal park and a suburban street. The accuracy of both methods is reported in 

terms of error frequency, and the number and size of the resulting crown outlines are compared.  

TEST SITE 

Surrey, British Columbia 

The city of Surrey is located in the Metro Vancouver Region of British Columbia, Canada. It covers an 

area of 316.41 km2. With a 18.6% increase in population between 2006 and 2011 (Statistics Canada, 

2011), it is one of the fastest growing cities in Canada.  

The city actively manages over 90,000 trees, with an additional 3,500 to 5,000 being planted every year.  

As part of its annual tree maintenance budget, the city spends C$750,000 on watering alone. Despite 

the sizeable financial resources expended on its trees, the city’s has limited information on the condition 

of its urban forest at its disposal. City workers currently rely on limited sources of information such as 

soil condition spot checks when applying watering regimes to drought-stressed trees. Comprehensive 



information on tree condition at the citywide scale is required to optimize the use of city resources and 

plan maintenance programs effectively. 

Test plots 

Two test plots within the city of Surrey were used in this study (Figure 1). The first is a 10 hectare area 

centered at 48.1142°N and 122.8603°W which contains segments of avenues 61 and 61A in Surrey’s 

Newton subdivison. This plot contains 142 trees maintained by the city. These trees are mostly planted 

on the sides of low-volume suburban streets. The second plot is centered at 49.1217°N and 

122.8652°W, and covers the 2 hectare area of M.J. Norris Park. The 147 city trees in this plot are planted 

in open, grassy parkland, with the exception of a dense cluster of mature Western redcedar near the 

middle of the park. 

Figure 1. (A) Street plot containing avenues 61 and 61A in Surrey’s Newton subdivision. (B) Park plot coterminous 

with M.J. Norris Park. (C-D) Canopy height models of both plots. 



DATA 

Field inventory 

A geographical information system (GIS) of the city’s park, road and tree assets were made available for 

this project. Included were entries for 90,133 trees maintained by the city. Each entry contained 

information on the tree’s location, age and species. An unquantified degree of error was known to be 

associated with this database, as field crews had recorded the location of certain trees incorrectly.  

LiDAR data 

Between April 1st and 11th, 2013, airborne LiDAR data, hyperspectral imagery and digital 

orthophotography covering the city of Surrey’s boundaries were acquired under contract by Airborne 

Imaging (Calgary, Alberta). The LiDAR system utilized was a Leica ALS70-HP attached to a Cessna 

Caravan. Average single pass flight line swath was 688m in width, with a 50% overlap between swaths. 

The LiDAR data was acquired at 1000m above ground level at a pulse rate of 500 KHz, which resulted in 

an average point density of 25 points per square meter.  

The sensor was configured to record up to four discrete returns, which were then separated into 

different class covers, such as ground, building or vegetation, using TerraSolid software. The contractor 

delivered a 1m2 rasterized digital elevation model (DEM) interpolated from classified ground points 

using a triangular irregular network (TIN). A canopy height model (CHM) was computed using FUSION 

software by recording the difference in elevation between the highest return of classified vegetation 

points and the underlying DEM within each cell of a continuous 0.5m2 grid. The cell value of the CHM 

corresponds to the maximum above-ground height of vegetation at that location. 

METHODS 

Watershed segmentation 

Both tree delineation methods used in this study incorporate watershed segmentation, an image 

processing technique developed to outline drainage basins from topographic terrain maps. 

Conceptually, this technique can be understood as gradually filling basins with water. Where the water 

of two adjacent basins connects, a boundary is drawn. As the water rises, these boundaries become the 

outlines of each drainage basin (S. Beucher & Lantejoul, 1979). Because of the morphological similarity 



between terrain models and tree canopies, this technique has been applied to delineate individual tree 

crowns from inverted canopy height models (Chen et al., 2006). 

Marker-controlled segmentation using a variable window filter 

A common problem with watershed segmentation is the issue of over-segmentation, wherein each local 

maxima of the canopy is outlined, whether it corresponds to a tree top or not. To adjust for this, a 

variation of the technique known as marker-controlled watershed segmentation can be used (Serge 

Beucher, 1994). This method constrains the segmentation algorithm using a set of predefined point 

locations (markers). Segments are drawn around each marker, thus limiting the number of resulting 

outlines. For this technique to be applied correctly, each marker should correspond to the location of a 

tree top. 

Here, a variable window filter (VWF) was used to determine the point locations of tree tops. VWF has 

been used to detect tree tops by Popescu et al. (2002) and Falkowski et al. (2006), while (Schardt et al., 

2002) and Chen et al. (2006) used it in tandem with a watershed segmentation algorithm to locate and 

delineate individual trees. This technique applies a moving window to a canopy height model to filter 

out pixels corresponding to the apexes of trees. A pixel is tagged as a tree top if it has the highest height 

value within the window. The size of the window varies according to the pixel on which it is centered: a 

high pixel value will produce a large window and vice versa. This is based upon the positive relationship 

between tree height and crown width (Popescu & Wynne, 2004).  

A set of 30 manually-delineated sample trees were used to obtain the formula for calculating the size of 

the moving window. The crown of each sample tree was outlined through visual interpretation of the 

canopy height model. A linear model was then fitted to the average radii of the tree crowns versus their 

height: 

𝐶𝑟𝑜𝑤𝑛 𝑟𝑎𝑑𝑖𝑢𝑠 (𝑚) = 1.746 × 𝑇𝑟𝑒𝑒 ℎ𝑒𝑖𝑔𝑡 (𝑚) + 2.32 

Using this formula, a VWF was applied to each test plot, which generated a series of tree top point 

locations. These locations were then used as markers for a marker-controlled watershed segmentation 

algorithm that generated a set of segments (SVWF). 

Integration of multi-scale segments 

Another solution to over-segmentation is to apply a Gaussian filter to the canopy height model. The 

blurring effect of the filter removes many spurious, non-tree local maxima. However, determining the 



optimal filter size for a given set of forest conditions can be problematic, particularly in an urban setting 

with a wide variety of tree crown shapes and sizes. Multi-scale image analysis, wherein a single image is 

blurred at multiple scales, can be used to resolve this difficulty (Hay & Marceau, 2004). Previous studies 

have successfully used multi-scale approaches to delineate tree crowns from high resolution imagery of 

forest canopies (Brandtberg & Walter, 1998; Jing et al., 2012; Wang, 2010). 

The application of multi-scale segmentation to LiDAR data consists of four steps (Jing et al., 2012). First, 

the canopy height models of the two test plots are blurred using Gaussian filters of varying intensity 

levels. Here, sigma values of 0.5, 1 and 2 were used.  A watershed segmentation algorithm is then 

applied to the filtered canopy height models to create multi-scale segmentation maps. The segment 

boundaries of the coarse-scale segmentation maps are then refined, which is to adjust the boundaries 

based on the unfiltered canopy height model. This is accomplished by selecting all the unfiltered 

segments with more than half of the area covered by a given coarse segment. These unfiltered 

segments are then merged into a new segment, which is used to substitute the boundaries of the coarse 

segment. This process ensures that the segment boundaries at all scales line up. 

Finally, the segments generated at different scales are integrated. This process works under the 

assumption that irregularly-shaped segments are more likely to represent errors of commission or 

omission. The integration process aims to minimize the irregularity of the final set of segments. This can 

be measured using a segment’s thinness ratio, which is calculated using  the area (A) and perimeter (p) 

of the segment’s polygon (Costa & Cesar, 2009): 

𝑘 =
4𝜋𝐴

𝑝2
 

A k value of 1 represents a perfect circle, while lower k value corresponds to more complex shapes. A 

given coarse segment is compared to overlapping finer-scale segments. If at least two of these finer-

scale segments are larger than a threshold Am, which is the minimum tree crown size expected in the 

plot, and the coarse-scale segment’s k value is lower than a threshold km, which is the minimum thinness 

ratio considered to represent a realistically-shaped crown, then the coarse-scale segment is regarded as 

representing an error of omission (i.e.: a single segment representing a cluster of trees) and is replaced 

by the finer-scale segments. Here, a Am value of 2m2 and a km value of 0.85 were used. This process is 

applied iteratively over each segmentation map, beginning with the coarsest scale, to ultimately 

generate a final set of segments (SMSI). 



 

Figure 2. Flow chart of variable window filter (approach 1, left) and multi-scale integration (approach 2, right). 

Evaluating delineation performance 

Reference data was required to evaluate the performance of the VWF and MSI algorithms. The 30 

manually-delineated reference trees were separated into coniferous and deciduous groups (15 trees in 

each group), and linear models were fitted to each group with tree crown radii as the response variable 

and tree age as the predictor: 

𝐶𝑜𝑛𝑖𝑓𝑒𝑟𝑜𝑢𝑠 𝑐𝑟𝑜𝑤𝑛 𝑟𝑎𝑑𝑖𝑢𝑠 (𝑚) = 0.07 × 𝑇𝑟𝑒𝑒 𝑎𝑔𝑒 (𝑦𝑒𝑎𝑟𝑠) + 0.65 

𝐷𝑒𝑐𝑖𝑑𝑢𝑜𝑢𝑠 𝑐𝑟𝑜𝑤𝑛 𝑟𝑎𝑑𝑖𝑢𝑠 (𝑚) = 0.2 × 𝑇𝑟𝑒𝑒 𝑎𝑔𝑒(𝑦𝑒𝑎𝑟𝑠) − 1.25 

Using the tree species and ages recorded in the city’s GIS database, tree crown radii were computed for 

each tree in both plots. These radii were then used to generate a set of circles centered on each tree’s 



point location. While these circles were poor approximations of the tree crowns’ actual shape, they 

could be used to detect basic errors in the delineation algorithms. The test segments SVWF and SMSI were 

compared to the reference circles, and errors were recorded using the following set of rules: 

1) If no test segment has ≥50% of its area within a reference circle, the tree corresponding to that 

circle is reported as having been missed by the algorithm. 

2) If more than one test segment has ≥50% of its area within a reference circle, the tree is 

considered to be overly segmented, and an error of commission is recorded (Figure 3a). 

3) If a single test segment occupies ≥50% of the area of more than one reference circle, then the 

trees corresponding to these circles are considered to be included within a single segment, 

indicating an error of omission (Figure 3b).   

 

 

Figure 3. (A) Errors of commission: tree crowns are segmented into multiple segments. (B) Errors of omission: 

multiple tree crowns are delineated by a single segment. 

To investigate the performance of each algorithm on various types of trees and in different locations, 

errors were reported by dividing the 289 trees between species group: deciduous or coniferous; plot 

location: park or street; and age class: young trees of less than 20 years of age, and mature trees which 

are 20 years or older. 



RESULTS 

Across both plots, the VWF and MSI approaches produced 377 and 270 segments respectively. The 

average crown size produced by VWF is 58m2, with a standard deviation of 53.2m2. MSI produced an 

average crown size of 110m2, with a standard deviation of 88m2. 

Table 1. Delineation errors for the variable window filter (VWF) and multi-scale integration (MSI) automated 

algorithms by tree and location category 

  VWF MSI 
    Errors % Errors % 

Deciduous Missing 3 0.02 3 0.02 
n = 193 Omission 21 0.11 34 0.18 

 Commission 63 0.33 8 0.04 
 Total errors 87 0.45 45 0.23 
      

Coniferous Missing 0 0.00 0 0.00 
n = 96 Omission 33 0.34 30 0.31 

 Commission 0 0.00 3 0.03 
 Total errors 33 0.34 33 0.34 
      

Park Missing 2 0.01 2 0.01 
n = 147 Omission 48 0.33 54 0.37 

 Commission 3 0.02 8 0.05 
 Total errors 53 0.36 64 0.44 
      

Street Missing 1 0.01 1 0.01 
n = 142 Omission 6 0.04 10 0.07 

 Commission 60 0.42 3 0.02 
 Total errors 67 0.47 14 0.10 
      

Young (<20 years) Missing 1 0.02 1 0.02 
n = 61 Omission 3 0.05 4 0.07 

 Commission 1 0.02 7 0.11 
 Total errors 5 0.08 12 0.20 
      

Mature (≥20 years) Missing 2 0.01 2 0.01 
n = 228 Omission 51 0.22 60 0.26 

 Commission 62 0.27 4 0.02 
 Total errors 115 0.50 66 0.29 

 

 



 

Figure 4. Performance comparison between variable window filter (VWF) and multi-scale integration (MSI) by tree 

and location category. Size of circles are proportional to the number of trees in each category. 

Delineation errors for both methods are reported in Table 1. VWF produced errors on 45% of deciduous 

trees across both plots, most of which were errors of commission (63 out of 87 errors).  MSI produced 

less errors for deciduous trees (23%) but generated more errors of omission than commission (34 and 8 

errors out of 45, respectively). Both approaches produced the same percentage of errors for coniferous 

trees (34%), most of which were errors of omission. VWF produced a higher percentage of errors for 

trees in the street plot (47%) than in the park plot (36%), while the opposite was true for MSI, with 44% 

errors in the park plot and 10% for the street plot. The majority of errors in the park plot for both 

approaches were errors of omission (48 out of 53 errors for VWF and 54 out of 64 for MSI), while in the 

street plot, commission was the most common error type for VWF (60 out of 67 errors) and omission 

was most common for MSI (10 out of 14 errors). MSI had a higher percentage of error for young trees 

(20%) than VWF (8%), although both methods had a higher percentage of error for mature trees than 

young trees (50% for VWF and 29% for MSI). Omission was the most common type of error for MSI for 

mature trees (60 out of 66 errors), while omission and commission errors were evenly spread for VWF 

(51 and 62 out of 115 errors, respectively). In all categories, VWF and MSI missed the same number of 

trees. 



DISCUSSION 

VWF performance 

Across both plots, the VWF approach generated 377 segments, which is 88 more than the number of 

actual trees present (289). This indicates over-segmentation of the trees, which is associated with errors 

of commission (the segmentation of non-existent trees). Commission errors produced by the VWF were 

especially common for deciduous trees and for trees in the street plot (which contained mostly 

deciduous trees). The accuracy of the VWF approach is contingent on the successful identification of 

tree tops. Although the purpose of the search window is to filter non-tree top local maxima, VWF is still 

susceptible to misidentifying branches as tree tops, particularly for deciduous trees with uneven 

horizontal crown profiles (Popescu & Wynne, 2004).  

When divided according to category, however, omission errors were the most common type of error for 

coniferous trees and trees in parkland. If two tree tops are located close to one another, there is a 

chance that the shorter of the two will be missed by the search window (Chen et al., 2006). As such, 

trees with a single apex and trees in dense clusters are sources of omission errors for VWF. This is 

reflected by the high number of omission errors for conifers and for trees in the park plot, where a 

cluster of tightly-spaced Western redcedar was located. 

MSI performance 

The MSI approach generated 270 segments, 19 less than the total number of trees. This signals the 

occurrence of omission errors, where a single segment captures multiple tree crowns.  Omission errors 

were the most common type of error for MSI in all categories except for trees under 20 years of age. 

From a methodological perspective, omission errors occur when the MSI algorithm fails to replace 

coarse-scale segments with fine-scale ones (Jing et al., 2012). This can be because the fine-scale 

segments were too small or because the coarse-scale segment’s shape sufficiently resembled that of a 

tree crown. In this respect, the algorithm’s performance can be adjusted by raising its km parameter 

(minimum allowable thinness ratio for a coarse segment), or by lowering its Am parameter (minimum 

allowable area for a fine-scale segment). 

The sharpest difference in the MSI’s performance was between the two test plots, which suggests that 

the accuracy of the MSI approach is strongly affected by the level of clustering in urban trees. Street 

trees, which are planted at regular intervals along roadways and which are submitted to frequent 



pruning, form wide, evenly-shaped crowns that are mostly detached from each other. These appear to 

be ideal conditions for MSI, which detected trees in this plot with a high rate of success (90%). Within 

the dense cluster of trees in the park plot, many irregularly-shaped crowns were not distinguished from 

each other, resulting in an error rate of 44%. 

Comparisons between both methods 

By generating a number of segments closer to the actual number of trees, and by producing fewer total 

errors, the MSI outperformed the VWF approach in this study. The exceptions to this was for trees in the 

park plot and for trees under 20 years of age, where 8% and 12% fewer trees were associated with 

errors than for the MSI method respectively; and for coniferous trees, where both algorithms produced 

the same number of errors.  

The MSI algorithm produced half as many errors for deciduous trees than the VWF. These results 

support previous research into MSI approaches, which have shown it to be an effective method for 

delineating deciduous trees (Jing et al., 2012), whose irregular crown outlines and horizontal profiles 

make them challenging for methods such as VWF (Chen et al., 2006). Given the relative abundance of 

deciduous trees planted in urban environments, this may make MSI an appealing method from a 

management perspective. 

An important consideration when applying automated detection algorithms in an urban environment is 

the wide variety of tree species that are planted in cities. Previous research into VWF has noted that its 

effectiveness is reduced when used on mixed forest types (Popescu & Wynne, 2004). This drawback can 

be attenuated by using multiple sets of calibration parameters, each adapted to a specific species or 

group of species. In this study, GIS data maintained by the city authorities could supply the information 

needed for species-specific calibration, although such data may not be available in all urban areas. In 

these situations, MSI, which is less sensitive to variations in species, may be preferable.  

Both algorithms performed better for young trees than mature trees. These results contrast with the 

performance of automated detection and delineation algorithms in forest stands, where young trees are 

often overshadowed by mature ones, making them difficult to detect (Koch, Heyder, & Weinacker, 

2006). While this may hold true for smaller urban trees located near clusters of mature trees, planting 

crews may try to provide young trees with favorable growing conditions by placing them in open areas. 

One potential impediment to the detection of juvenile trees is the resolution of the canopy height 

model and the point density of the LiDAR from which it is derived. While the high point density of the 



data used in this study (average of 25 points/m2) was sufficient to detect trees with crowns as small as 

1m2, lower point densities may be an obstacle to successful urban tree detection in other situations. 

CONCLUSION 

Many aspects of urban forest management are conducted at an individual-tree level, making successful 

detection and delineation of individual trees critical if LiDAR is to be used as a viable source of 

information for city managers. A wide range of detection and delineation algorithms have been 

developed for forest stands, but few of these techniques have been tested in urban settings. Here, two 

such algorithms, variable window filtering (VWF) and multi-scale integration (MSI) are applied to two 

urban tests plots. Their accuracy is evaluated in terms of producing errors of omission (including 

multiple trees in a single segment), commission (generating multiple segments for a single tree) and 

missing trees. Their performances are then compared across various tree categories. 

MSI performed better, on average, than VWF, although substantial variation existed in their 

performances across different categories. MSI generated fewer segments (270) than the actual number 

of trees (289), indicating a tendency for MSI to under-segment urban trees. The opposite was true for 

VWF, which generated 377 segments. For both methods, mature trees were more problematic than 

juveniles. MSI performed substantially better for deciduous trees, which may make it particularly 

suitable for urban applications where the number of deciduous trees is high. VWF produced less errors 

in the park plot, while MSI was more accurate in the street plot. 

The relative strengths and weakness of both algorithms are revealed through this comparative study.  

Although both methods require parameterization, which has a strong effect on accuracy, the need to 

calibrate VWF based on species-specific allometric relationships may be a limiting factor in its use in 

urban forestry. Based on the results presented here, MSI may be a preferable approach to urban tree 

detection and delineation. While the wide range of tree species and age classes present in urban areas 

present a challenge to the successful application of these algorithms, further research into the 

possibility of data fusion with GIS data could reveal opportunities to improve their accuracy. 
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