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Abstract 

 

Objectives: This dissertation aims to compare the risk of multiple sclerosis (MS) in anti-tumor 

necrosis factor alpha (TNFα) users with nonusers among patients with rheumatic disease (RD) or 

inflammatory bowel disease (IBD). It also aims to uncover methodological biases in existing 

research and explore statistical strategies to address these biases, with a particular focus on the 

issue of sparse data bias. 

 

Methods: Utilizing population-based health administrative data from four Canadian provinces, a 

nested case-control study was conducted among patients with RD and IBD (2000 to 2018). Any 

anti-TNFα dispensations in the two years prior to the index date (MS onset) were identified. 

Causal directed acyclic graphs (cDAGs) were utilized to illustrate biases like confounders, 

mediators, and collider-stratification bias, which may influence the relationship between anti-

TNFα therapy and MS risk. Advanced statistical techniques were applied to mitigate sparse data 

biases. These techniques included Firth bias adjustment, data augmentation, Markov Chain 

Monte Carlo (MCMC), Least Absolute Shrinkage and Selection Operator (LASSO), and Ridge 

regression, and their results and performance were compared against traditional models via 

simulation studies. 

 

Results: 1) The study found that anti-TNFα therapy was associated with an increased risk of MS 

in RD patients (pooled incidence rate ratio [IRR]=2.05 [95% confidence interval {CI}, 1.13-

3.72]) after adjusting for potential confounders. The number needed to harm was calculated at 

2,268 for RD patients. While an increased risk was also observed in IBD patients, the CI was 
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wider (pooled IRR=1.35 [95% CI, 0.70-2.59]). Sensitivity analyses and the computation of E-

values were conducted to strengthen the findings. 2) When applying various statistical methods 

to address sparse data issues, data augmentation and MCMC approaches demonstrated superior 

performance in bias and mean squared error reduction in simulation studies. 

 

Conclusions: The use of anti-TNFα was associated with an increased risk of MS compared with 

nonusers, especially among patients with RD. The innovative use of cDAGs offers a new 

perspective on assessing causal relationships and addressing methodological challenges in 

pharmacoepidemiology. Data augmentation and MCMC approaches should be considered in 

pharmacoepidemiologic studies with sparse data to avoid drug effect overestimation, which can 

influence clinical decision-making and public health policies. 
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Lay Summary 

 

This research investigates whether medications aimed at reducing inflammation, 

specifically anti-tumor necrosis factor alpha (TNFα) therapy used in inflammatory diseases like 

arthritis and inflammatory bowel disease (IBD), could increase the risk of developing multiple 

sclerosis (MS), a nervous system disorder. By analyzing patient data from four Canadian 

provinces, the study meticulously examines the relationship between the therapy and MS, while 

also identifying and correcting biases in previous studies. The study found that patients with 

arthritis who were treated with anti-TNFα therapy were more likely to develop MS compared to 

those who did not use the therapy. For those with IBD, the increased risk was also observed but 

with less certain. Given the rarity of MS, the research employed advanced statistical methods to 

address issues associated with small sample sizes. These insights are vital for healthcare 

practitioners to weigh the benefits and risks of anti-TNFα therapy, ultimately guiding safer 

medical decisions. 
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feedback from all coauthors.  
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Chapter 1: INTRODUCTION 

 

1.1 Thesis Organization 

 

This thesis is on the subject of multiple sclerosis (MS) risk associated with the use of 

anti-tumor necrosis factor alpha (TNFα) in patients with rheumatic diseases (RD) or 

inflammatory bowel diseases (IBD). The thesis is organized in a manuscript-based format. It 

consists of five chapters. Chapter one is the introductory chapter and provides the background 

information and basic concepts for the following chapters within the thesis. First, it reviews the 

state of knowledge on topics, including a) anti-TNFα; b) MS; c) anti-TNFα and MS; d) causal 

directed acyclic graphs (cDAGs); e) sparse data bias; f) the use of health administrative datasets; 

g) purpose; and h) review of thesis chapters. Chapter two presents a methodological review of 

potential biases of published studies assessing the association between anti-TNFα and MS. It 

describes how cDAGs can be used to determine those biases when depicting anti-TNFα and its 

potential to contribute to MS onset. Chapter three evaluates the risk of MS among users of anti-

TNFα using population-based cohorts. This chapter quantifies the risk of MS in anti-TNFα users 

with RD and IBD using population-based health administrative databases from four Canadian 

provinces. Given the rarity of MS, epidemiological studies examining the association between 

anti-TNFα and MS often encounter issues of sparse data bias. Chapter four is focused on further 

discussion of sparse data bias. It evaluates different analytical methods in addressing sparse data 

bias and compares their performance through simulation studies based on real-life data. The 

concluding chapter summarizes the findings of the three manuscripts and offers a critical 
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discussion of the strength, the limitations as well as the relevance of the findings of research in 

this thesis.  

 

1.2 Anti-Tumor Necrosis Factor Alpha 

 

1.2.1 History and Discovery of Anti-Tumor Necrosis Factor Alpha 

 

In the 1970s, researchers observed certain molecules produced by immune cells with the 

capability to kill tumor cells, leading to its naming as the TNF (1). This discovery garnered 

interest in its potential therapeutic applications for cancer patients. However, its clinical use was 

limited due to severe systemic side effects (2). By the 1980s, advancements in molecular biology 

and protein purification techniques allowed scientists to isolate and identify a specific molecule 

named TNFα (3,4). Subsequent research revealed that TNFα is a cytokine intricately involved in 

systemic inflammation, and it is a member of a group of cytokines that induce the acute phase 

reaction (5).  TNFα is primarily produced by activated macrophages, although other cell types 

can produce it as well (5). Elevated levels of TNFα have been identified in patients with 

autoimmune diseases like rheumatoid arthritis and IBD (6,7). Recognizing the role of TNFα in 

inflammation made it a logical therapeutic target for diseases marked by excessive inflammation 

(8). This understanding of TNFα's role in inflammation and the subsequent development of 

therapeutic agents targeting, epitomizes how scientific research can lead to groundbreaking 

medical treatments. 

Infliximab (Remicade®) was one of the first anti-TNFα therapy to be developed, initially 

approved for use in Crohn's disease in the late 1990s (9). Etanercept (Enbrel®) received Food 
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and Drug Administration (FDA) approval for the treatment of rheumatoid arthritis later in the 

same year (10). Other anti-TNFα agents soon followed, including adalimumab (Humira®), 

golimumab (Simponi®), and certolizumab pegol (Cimzia®). Each of these agents has slight 

differences but all target and inhibit TNFα function (11). With the success of these agents in 

treating IBD and rheumatoid arthritis, their use was expanded to other inflammatory conditions 

such as ankylosing spondylitis, psoriatic arthritis, and plaque psoriasis (12,13). The indications 

for different types of anti-TNFα are summarized in Table 1.1.  

Table 1.1 Indication for different types of anti-tumor necrosis factor alpha 

Anti-TNFα Indications 

Infliximab rheumatoid arthritis, inflammatory bowel 

disease, ankylosing spondylitis, psoriatic 

arthritis, psoriasis 

Etanercept rheumatoid arthritis, juvenile idiopathic 

arthritis, ankylosing spondylitis, psoriatic 

arthritis, psoriasis 

Adalimumab rheumatoid arthritis, inflammatory bowel 

disease, ankylosing spondylitis, psoriatic 

arthritis, psoriasis, juvenile idiopathic arthritis 

Golimumab rheumatoid arthritis, ankylosing spondylitis, 

psoriatic arthritis, ulcerative colitis 

Certolizumab pegol rheumatoid arthritis, ankylosing spondylitis, 

psoriatic arthritis 
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1.2.2 Action of Anti-Tumor Necrosis Factor Alpha and Adverse Events 

 

Anti-TNFα agents work by neutralizing the action of TNFα (14). By binding to TNFα or 

its receptors, these agents prevent the cytokine from promoting inflammatory responses, thus 

offering relief in diseases with RD and IBD (15). 

Infliximab is a mouse-derived chimeric antibody that targets all forms of human TNFα, 

effectively preventing TNFα from binding to its soluble and membrane-bound receptors (7,16). 

Treatment with infliximab enhances the breakdown of cells that produce TNFα, resulting in 

decreased inflammation (17). Infliximab not only induces cell death but also halts the production 

of interferon gamma (IFN-γ, i.e., a type of cytokine that plays a vital role in the immune system) 

in certain T cells (15), leading to reduced inflammation. Additionally, infliximab lowers the 

levels of specific cell-binding molecules (18). However, the use of infliximab is linked to the 

occurrence of serious side effects, such as pneumonia, liver toxicity, lymphoma, and a 

reactivation of tuberculosis (19).  

Etanercept is a combined protein containing two similar external regions of tumor 

necrosis factor receptor (TNFR) 2 connected to a part of the human immunoglobulin G1 (IgG1) 

(20,21). Although there are multiple versions of etanercept, they differ minimally. Etanercept 

attaches itself to specific forms of TNFα, rendering them inactive by preventing them from 

connecting to their receptors (17). It can also bind other members of the lymphotoxin family, 

such as TNFß, which is a cytokine involved in the regulation of bowel immune cells (22). 

Etanercept establishes fragile bonds with its target, leading to unstable complexes (23). This is 

attributed to the absence of a hinge region in its fragment crystallizable (Fc) portion, rendering 

etanercept being weaker than other blockers (23). It is important to highlight that prolonged use 
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of etanercept can result in serious infections and sepsis, potentially leading to hospital admission 

or even fatality (20).  

Adalimumab is a fully human IgG1 monoclonal antibody (7,24). Its role is to prevent 

TNFα from binding to its receptors. The structure of adalimumab is identical to that of natural 

human IgG1 (24). In patients with rheumatoid arthritis, adalimumab reduces TNFα and 

interleukin (IL)-6 levels as well as other markers of inflammation (25). Furthermore, 

adalimumab treatment has been observed to reduce the overproduction of IL-17 by certain cells 

and increase the number of regulatory T cells (26). Due to its superior tolerance and reduced 

immunogenicity, adalimumab is effectively utilized for Crohn’s disease patients and can be 

given to those who have experienced infusion reactions to infliximab. Nonetheless, patients 

undergoing adalimumab treatment have shown various adverse effects, such as 

thrombocytopenia, leukopenia, the onset of malignancies, and a resurgence of tuberculosis 

(5,27). 

Golimumab is a fully humanized antibody specifically designed to act against TNFα 

(7,28). Compared to infliximab and adalimumab, golimumab binds more tightly and neutralizes 

certain TNFα types more effectively, thereby hindering TNFα's biological actions (29). 

Furthermore, it prevents white blood cells from entering certain areas of inflamed tissue and 

reduces the production of molecules and proteins that cause inflammation (30). There is less 

evidence on its potential long-term adverse events in the real-world setting.  

Certolizumab pegol is a specially designed antibody that is attached to a polyethylene 

glycol (PEG) fragment and lacks the Fc region (31). This absence means it does not engage in 

certain types of cell killing. Its distinctive way of working differentiates it from other TNFα 

inhibitors. The addition of PEG enables certolizumab pegol to distribute more effectively in 
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inflamed tissues than infliximab or adalimumab (32). This specialized structure might be the 

reason behind its heightened effectiveness (33). Furthermore, the attachment of PEG 

significantly extends the half-life of certolizumab pegol in the body (up to two weeks), 

potentially due to its increased concentration in inflamed regions (34). Without PEG, the half-life 

of similar biologic agents is generally shorter (ranging from about 3 days to 20 days) (13). 

Similar to golimumab, it is less known on potential adverse events on certolizumab pegol (35).  

 

1.2.3 Anti-Tumor Necrosis Factor Alpha Treatment in Rheumatic Diseases and 

Inflammatory Bowel Diseases  

 

The introduction of anti-TNFα treatments has heralded a revolutionary phase in the 

treatment of RD and IBD. In the context of rheumatoid arthritis, particularly for those suffering 

from moderate to severe diseases, it is crucial to understand that rheumatoid arthritis typically 

involves continuous inflammation, causing joints to become swollen and sensitive (36). Without 

appropriate treatment, this can evolve into lasting joint damage (37). Therefore, the disease often 

impairs the social, psychological, and occupational facets of a patient's life (38). The therapeutic 

response to traditional disease-modifying antirheumatic drugs (DMARDs), though beneficial, 

often had limitations. For example, these drugs often have a slow onset of action and can lead to 

potential side effects, including liver toxicity (39). With the emergence of anti-TNFα agents, the 

landscape of rheumatoid arthritis treatment witnessed a paradigm shift. Beyond the evident relief 

from pain, these agents have demonstrated a remarkable ability to retard the relentless 

progression of joint erosion associated with rheumatoid arthritis (40). Improved physical ability, 

stemming from this treatment approach, has given patients a rejuvenated sense of independence, 
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rendering daily tasks and self-care more manageable and elevating their quality of life (41). 

Additionally, by curbing the systemic inflammation inherent to rheumatoid arthritis, some 

studies also showed that anti-TNFα could potentially reduce the risk of cardiovascular risks, a 

critical concern for many rheumatoid arthritis patients (42,43). 

 In the realm of psoriatic arthritis, the therapeutic advantages of anti-TNFα are manifold. 

Not only do patients witness substantial relief in joint discomfort, characterized by diminished 

pain, inflammation, and rigidity, but these therapies also adeptly mitigate the skin complications 

tied to psoriasis (44). This dual-action approach addresses both the skeletal and skin-related 

symptoms, providing a holistic remedy. Patients were also able to resume previous work and 

leisure activities (44).  

 Ankylosing spondylitis, yet another formidable RD challenge, has exhibited marked 

therapeutic progress with consistent anti-TNFα administration. The use of anti-TNFα has yielded 

significant improvements over baseline values for various measures of disease activity, including 

morning stiffness, spinal pain, physical functioning, quality of life, enthesitis, chest expansion, 

erythrocyte sedimentation rate, and C-reactive protein (45). Furthermore, studies have indicated 

that the use of anti-TNFα is linked to positive effects on lipid profiles and a decrease in sub-

clinical atherosclerosis (46). 

Similarly, anti-TNFα agents have been shown to be effective in reducing symptom 

burden and inflammatory activity in both Crohn’s disease and ulcerative colitis, and can induce 

healing of the intestinal mucosa, which is thought to prevent the development of IBD-related 

complications and reduce the risk of future flares (47). Additionally, research indicates that 

employing anti-TNFα therapy leads to fewer hospitalizations and surpasses conventional 

treatments in enhancing health-related quality of life, including diminishing the necessity for 
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intestinal resections (48,49). Although anti-TNFα agents are generally well tolerated and have 

been shown to significantly improve patients’ quality of life (50,51), an increased risk of MS has 

been suspected after their use (52–54). 

 

1.3 Multiple Sclerosis 

 

1.3.1 Epidemiology of Multiple Sclerosis 

 

MS is a chronic, progressive inflammatory disease of the central nervous system (CNS) 

(55–57). MS is marked by demyelination, where the protective myelin sheath covering nerve 

fibers gets damaged, leading to axonal loss (55–57). This process of demyelination is 

fundamental to the onset and progression of MS. As a result, patients with MS often suffer from 

physical and cognitive impairments, depression, and fatigue, all of which can markedly 

deteriorate their quality of life (55–57). MS typically presents in young adults and is one of the 

world’s most common neurologic disorders with an estimated global prevalence of 35.9 [95% 

confidence interval (CI): 35.87-35.95] per 100,000 people in 2020 (58). The number of people 

with MS worldwide has reached to 2.8 million in 2020 (58). In Canada, the prevalence of MS is 

one of the highest in the world, estimated at 159 per 100,000 for men and 418 per 100,000 for 

women (56). As such, MS may affect men and women differently. In the last decade the MS 

prevalence ratio of women to men has been increasing at a ratio of 2.3-3.5 (59). Some studies 

have shown that the onset of MS may be earlier in women, and the disease progresses at a lower 

rate than in men (60). A retrospective study that used survey data from the United States in 2019 

estimated that the estimated total economic burden of MS was $85.4 billion, with a direct 
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medical cost of $63.3 billion and indirect and nonmedical costs of $22.1 billion in the United 

States (61). According to meta-analyses on the overall economic burden of MS, it is estimated 

that the lifetime treatment of each MS patient is  around $4.1 million dollars (62). Although MS 

is typically not a fatal disease, patients with MS are estimated to live approximately seven years 

less than non-MS individuals of similar age (63). Its rising prevalence, combined with relative 

longevity of patients afflicted with MS, means that MS is projected to cost the Canadian health 

care system nearly $2.0 billion annually by 2031 (64). 

 

1.3.2 Multiple Sclerosis Prodrome 

 

The MS prodrome refers to early signs and symptoms that manifest before the clinical 

onset of the disease (65,66). This prodromal phase, which can vary among individuals, might 

span 5-10 years or more. Notably, individuals in this phase demonstrate increased healthcare 

utilization, manifesting in more frequent physician visits, hospitalizations, and usage of mental 

health services (67). Common symptoms during this period include fatigue, pain, migraines, and 

sleep disturbances. Women might show reduced pregnancy rates and increased hormonal 

preparation prescriptions (67). Given the MS prodrome, several challenges arise when 

conducting epidemiological research using health administrative datasets. For example, the gap 

between the emergence of prodromal symptoms and classical MS onset (which precedes the 

diagnosis of MS) can be substantial. Administrative datasets might not always capture this 

latency, skewing the perceived onset or duration of the prodrome. 
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1.4 Anti-Tumor Necrosis Factor Alpha and Multiple Sclerosis 

 

Initially, the rationale for employing anti-TNFα treatments, such as infliximab and 

lenercept (another TNFR fusion protein investigated for MS treatment), in patients with MS 

stemmed from their success in other inflammatory conditions, such as rheumatoid arthritis (68). 

However, clinical trials and subsequent treatments in MS patients resulted in increased disease 

activity and exacerbated symptoms. These outcomes indicated a disease-specific response to 

TNF inhibition that is unique to MS. Treatments that target TNF were not only unsuccessful in 

managing multiple sclerosis, but they were also associated with a heightened risk of inducing 

MS in individuals who were administered anti-TNF therapies for conditions other than MS (69). 

 

1.4.1 Postulated Mechanism 

 

The mechanism for anti-TNFα potentially causing MS in persons with RD and IBD is not 

fully understood. Current hypothesized mechanisms behind this adverse effect lie in the nuanced 

roles that TNFα plays within the immune system and its signaling pathways. The detrimental 

impact of anti-TNFα is partly due to their broad action on TNF signaling (69). These treatments 

inhibit both soluble and membrane-bound TNFα, thereby disrupting the communication through 

both TNFR1 and TNFR2 (23). This widespread blockade of TNF signaling is problematic 

because while TNFR1 signaling seems to be associated with beneficial effects like the promotion 

of remyelination and axonal survival, TNFR2 has been identified as neuroprotective (23). It 

supports the maturation of oligodendrocytes, which are essential for myelin repair, and fosters 

the activity of regulatory T-cells, which are vital for controlling the immune response (23). 
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 Genetic factors also appear to influence the response to anti-TNFα (68). Certain genetic 

variants, particularly those found in the tumor necrosis factor receptor superfamily (TNFRSF)1A 

gene (70), which codes for the TNFR1, have been linked with an elevated risk of MS. The 

rs1800693 variant is significant because it increases the production of a soluble form of TNFR1 

that naturally neutralizes TNFα (71). While this might seem beneficial, it alters the delicate 

balance of TNF signaling, which is crucial in the pathophysiology of MS. 

 Other hypotheses have been put forward to explain the negative outcomes of MS 

observed among users of anti- TNFα (72). One suggestion is that the inability of anti-TNFα to 

cross the blood-brain barrier prevents them from directly suppressing demyelination within the 

CNS. Conversely, these agents may inadvertently promote demyelination by facilitating the 

entry of peripheral autoreactive T-cells into the CNS. This phenomenon, often referred to as the 

"lack of entry theory," offers insight into why anti-TNFα might fail to halt demyelination and 

could even induce MS, as they do not address the CNS pathology directly (73). Moreover, while 

anti-TNFα may effectively inhibit TNFα activity in the peripheral system, their inability to cross 

the blood-brain barrier could lead to an accumulation of TNFα within the CNS. This proposed 

"sponge effect" suggests that, as TNFα is neutralized in the periphery, the gradient across the 

blood-brain barrier shifts, potentially resulting in increased TNFα concentrations in the CNS, 

thereby contributing to neuroinflammation and demyelination (73). Another theory is that 

treatment with anti-TNFα might inadvertently skew cytokine profiles towards a pro-

inflammatory state. This is characterized by a reduction in IL-10, which is known for its anti-

inflammatory properties, and an increase in IL-12 and IFN-γ, both of which are associated with 

inflammatory responses. Such alterations in cytokine levels could resemble the cytokine milieu 

observed in patients with MS, potentially contributing to disease progression rather than 
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amelioration (74). Additionally, the dysregulation of TNFα has been observed in patients with 

relapsing-remitting MS, A study (75) highlighted an increased serum capacity to neutralize 

TNFα in patients with relapsing-remitting MS. These findings suggest that the body's response to 

TNFα might be altered in relapsing-remitting MS, and that blocking TNFα could trigger 

demyelinating events by interfering with this delicate balance. Lastly, the administration of anti-

TNFα could reveal previously latent infections due to their immunomodulatory effects. Such 

reactivation of latent infections could, in turn, trigger autoimmune responses within the CNS, 

leading to demyelination. This risk underscores the complexity of using anti-TNFα in clinical 

settings, particularly in individuals with underlying infections that could be implicated in the 

pathogenesis of demyelinating diseases (76). 

 

1.4.2 Summary of Evidence 

 

1.4.2.1 Case Reports and Case Series 

 

A number of case reports and case series have been published on the risk of anti-TNFα 

and new-onset demyelinating diseases including MS (52,53,72,77). One case series identified a 

patient presenting with symptoms of MS after using anti-TNFα for only two months (72). In 

addition, several other case reports have been published documenting demyelinating disease 

occurring after anti-TNFα treatment, with the affected patients showing neurological symptoms 

resembling MS (52,53). A case report described a female Caucasian patient affected by psoriatic 

arthritis from the age of 35 who started on the anti-TNFα etanercept at the age of 53 (78). After 

18 months of use, the patient presented with vertigo, gait ataxia, limb incoordination and upper 
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limb postural and kinetic tremor, bilateral retro-orbital pain, and visual loss. Similar case reports 

have been published on the risk of demyelinating events (including MS) in patients with IBD 

who used anti-TNFα (79,80). While case reports on their own cannot demonstrate a clear 

association between anti-TNFα use and MS, they contribute to forming a robust hypothesis that 

can be further assessed in the comprehensive epidemiologic study proposed here. 

 

1.4.2.2 Epidemiological Studies and Clinical Trial 

 

To identify epidemiologic studies that have examined the effect of anti-TNFα on the risk 

of demyelinating diseases including MS, we undertook a search of the literature and used 

Medline (Ovid) from its inception (1966) to May 2021. We also searched reference lists from 

retrieved articles and searched for publications from scientists known for publishing in the field 

of anti-TNFα and demyelinating diseases including MS. The following search terms were used 

alone and in combination: tumor necrosis factor inhibitors, anti-TNF, biological agents, 

biologics, adalimumab, certolizumab pegol, etanercept, infliximab, golimumab, rheumatoid 

diseases, rheumatoid arthritis, psoriatic arthritis, spondylarthropathies, ankylosing spondylitis, 

inflammatory bowel diseases, autoimmune diseases of the nervous system, demyelinating 

autoimmune diseases, multiple sclerosis, neuroinflammatory events, and demyelinating events. 

We selected peer-reviewed articles that met the following inclusion criteria: 1) clearly stated case 

definition of outcome (e.g., MS, self-reported case was not included), 2) reported adjusted odds 

ratios (ORs), rate ratios (RRs), or standardized incidence ratios (SIRs) with 95% CIs to calculate 

them and 3) cohort or case-control study designs. Seven epidemiologic studies have investigated 

the association between anti-TNFα and demyelinating diseases including MS (81–87). Some 
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results were conflicting and underpowered with the ORs, RRs, or SIRs ranging between 0.56 

(95% CI: 0.34-0.90) and 3.48 (95% CI: 1.45-8.37).  The summary of these studies is listed in 

Table 1.2.
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Table 1.2 Description of epidemiologic studies on the association between anti-tumor necrosis factor alpha and demyelinating 
diseases including multiple sclerosis 

Authors Year Data source Event Study 

Design 

Sample 

size 

Incident 

cases? 

Relative risk/odds 

ratio/standardized 

incidence ratios 

(95% CI) 

Main limitations 

Kunchok 

et al. (84) 

2020 Medical records 

data from 3 

Mayo Clinic 

locations for 

patients with 

RD/IBD 

Demyelinating 

events  

Nested 

case-

control 

study 

106 cases 

and 106 

control 

individuals 

No 3.01 (1.55-5.82) 1. small sample 

sizes 

2. residual 

confounding 

3. Not population-

based 

Kopp et 

al. (81) 

2020 Administrative 

datasets from 

Sweden and 

Multiple 

sclerosis 

Cohort 

study 

175,520 Yes 0.44 (0.18-1.05) in 

Sweden and 1.02 

1. small sample 

sizes 
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Denmark for 

patients with 

RA, PsA, AS 

without 

matching 

(0.23-4.46) in 

Denmark 

2. residual 

confounding 

 

Dreyer et 

al. (82) 

2016 Administrative 

datasets from 

Denmark for 

RA, PsA, AS 

Multiple 

sclerosis 

Cohort 

study 

without 

matching 

53,723 Yes 1.38 (0.69-2.77) 

For male: 3.48 

(1.45-8.37) 

1. small sample 

sizes 

2. residual 

confounding 

 

Bernatsky 

et al. (83) 

2009 PharMetricx: 

health claims 

database in the 

United States 

for RA only 

Demyelinating 

events 

Nested 

case-

control 

study 

81 cases 

and 810 

control 

individuals 

Yes 1.31 (0.68-2.50) 1. small sample 

sizes 

2. residual 

confounding 

3. Not population-

based 
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Taylor et 

al. (85) 

2021 British Society 

for 

Rheumatology 

Biologics 

Register for RA  

Demyelinating 

events 

Cohort 

study 

13,489 Yes 1.38 (0.96-7.92) 1. small sample 

sizes 

2. residual 

confounding 

 

Andersen 

et al. (86) 

2015 Danish Civil 

Registration 

System 

for IBD  

Demyelinating 

events 

Cohort 

study 

84,843 Yes 2.19 (1.02-4.71) 1. small sample 

sizes 

2. residual 

confounding 

3. Not population-

based 

Avasarala 

et al. (87) 

2021 Truven Health 

Market Scan 

administrative 

claims database 

Multiple 

sclerosis 

Cohort 

study 

208,681 Yes 1.43 (0.062-3.32) 1. small sample 

sizes 

2. residual 

confounding 
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in the United 

States for IBD 

 

3. Not population-

based 

RD=rheumatic diseases; IBD=inflammatory bowel diseases; RA=rheumatoid arthritis; PsA=psoriatic arthritis; AS=ankylosing 

spondylitis 
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One study (86) analyzed data from the Danish Civil Registration System involving 

54,843 IBD patients (1999-2012). This study compared the occurrence of central demyelinating 

diseases in patients who had been exposed to anti-TNFα with those who had not. The study 

outcome was the diagnosis of a demyelinating disease like MS, optic neuritis, transverse 

myelitis, and other central demyelinating diseases. Patients who had a prior history of 

demyelinating disease or those who used anti-TNFα before 1999 were excluded. The study 

found that the age-, sex-, and duration of IBD matched hazard ratio for central demyelinating 

disease comparing anti-TNFα-exposed and unexposed patients was 2.19 (95% CI, 1.02-4.71) 

among IBD patients, without further adjustment of potential confounders.  

Another study (82) examined the risk of MS during anti-TNFα treatment for arthritis. 

Using the Danish Multiple Sclerosis Registry, the study linked MS patients to the nationwide 

registry that covers >90% adults with RD treated with biological drugs in Denmark. The study 

found an increased risk of MS in males with RD (RR=3.48 (95% CI: 1.45-8.37) and in patients 

with ankylosing spondylitis [RR=5.32 (95% CI: 1.72-16.49)] who were treated for arthritis with 

anti-TNFα compared to those not using anti-TNFα. However, the study included a very small 

sample size (only five men with MS had used anti-TNFα) and may have underestimated the risk 

of MS. Moreover, the study did not control for disease latency (i.e., the possibility that there is a 

latency period in MS whereby the disease process may have preceded anti-TNFα use leading to 

reverse causality bias).  

A research group (83) conducted a case-control study within a cohort of 104,958 patients 

with rheumatoid arthritis. Using PharMetrics (1995-2005), a health claims database in the US, 

patients were entered into the cohort at the date of the first prescription of either a traditional 

DMARD or a biological agent and were followed until an incident demyelinating event occurred, 
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death or the end of the study, whichever occurred first. Cases with a demyelinating event and 

controls were matched on age, sex, and calendar time of cohort entry. Anti-TNFα use during the 

year before the demyelinating event was defined. The authors reported an adjusted RR of 1.31 

(95% CI: 0.68-2.50) in individuals not at high risk for demyelinating events. In addition to 

matching variables, the conditional logistic regression model was further adjusted for the number 

of physician visits per year, the use of anakinra, methotrexate, leflunomide, antimalarial agents, 

other DMARDs, glucocorticoids, non-steroidal anti-inflammatory drugs (NSAIDs), and selective 

cyclo-oxygenase inhibitors. In that study, PharMetrics is not an optimal database to address the 

risk of demyelinating events among anti-TNFα users as subjects might drop out of the database 

upon termination of health coverage. In addition, unnecessary adjustment (i.e., adjustment other 

than confounders) can also introduce a biased total effect estimation.  

A nested case-control (NCC) study (84) that used the medical records of patients with RD 

or IBD treated at one of three Mayo Clinics, United States of America (USA) (2003-2019) found 

an OR of 3.09 (95% CI: 1.19-8.04) for the association between anti-TNFα use and incident 

inflammatory demyelinating events. Cases were matched with controls on sex, year of birth, and 

autoimmune disease type. They also adjusted for disease duration in the conditional logistic 

regression model. However, confounding might have been present. Specifically, smoking and 

comorbidities were not adjusted for in their analysis or considered in the sensitivity analysis. A 

cohort study (81) using the nationwide clinical rheumatology registers in Sweden and Denmark 

(2000-2017) suggested no significantly increased risk of MS in anti-TNFα users compared with 

non-users among RD patients with RR=0.44 (95% CI: 0.18-1.05) in Sweden and RR=1.02 (95% 

CI: 0.23-4.46) in Denmark. Their multivariable regression model adjusted only for age, sex, and 

calendar time. In addition to the lack of power, it is possible that residual confounding bias 
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existed. A more recent study (85) that used data from the British Society for Rheumatology 

Biologics Register in Rheumatoid Arthritis found an age- and sex-corrected SIR of 1.38 (95% 

CI: 0.96-1.92) for the association between the use of anti-TNFα and incident demyelinating 

events without further adjustment when compared with the general UK population. In another 

study (87), by using the Truven Health Market Scan administrative claims database, it was found 

that the age- and sex-adjusted RR for IBD patients who used anti-TNFα, in comparison with 

non-users, was 1.43 (0.062-3.32).  

Beyond epidemiological studies, in a double-blind, placebo-controlled trial (88), the anti-

TNFα lenercept was administered to 124 patients with relapsing-remitting MS. After 24 weeks, 

the group who received lenercept reported more MS-related exacerbations than the placebo 

group (p=0.007). Due to the higher rate of MS flare-ups in the lenercept group, the study was 

prematurely terminated.  

In summary, most studies focus on the outcomes of demyelinating events, which include 

MS, but do not exclusively examine MS itself. Among those that do treat MS as the outcome, 

there are several common methodological issues present in the existing epidemiological research 

regarding the association between anti-TNFα therapy and MS. These include: 

(1) Failure to adjust for confounders, residual confounding, and overadjustment for unnecessary 

covariates (81–87), 

(2) Sparse data bias due to limited sample sizes (81–87), and 

(3) A lack of population-based studies (83,84,86,87). 

To address the bias of residual confounding or overadjustment, we propose using a 

cDAG to clearly identify all common causes and other pertinent variables related to the anti-

TNFα and MS causal question (Section 1.5). Additionally, we suggest employing sparse data 
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bias analysis techniques to address the challenges posed by small samples (Section 1.6). Finally, 

we propose utilizing administrative health datasets from four Canadian provinces to remedy the 

current absence of population-based studies (Section 1.7). 

 

1.5 Causal Directed Acyclic Graphs 

 

CDAG is a graphical tool used primarily to represent and elucidate causal relationships in 

epidemiologic studies (89). It is directed without cycles, meaning it proceeds in one direction and 

it never loops back on itself. In a cDAG, the nodes represent variables, such as exposure, 

outcome, confounder, mediator, and collider (89). Arrows represent the direct causal effects from 

one variable to another. Alternatively, no direct arrow between two variables suggests no direct 

causal relationship (89). It helps in study design by identifying which variables should be 

adjusted for in the analysis and assists in result interpretation, especially in understanding 

potential biases or alternative explanations for the findings.  

 

1.5.1 Identifying Bias Structures  

 

1.5.1.1 Confounding 

 

Confounding bias is a widespread issue that can distort the results of epidemiological 

studies (90). To illustrate, imagine a research group conducting an observational study using 

extensive health records to investigate the risk of heart attacks among users of a new blood 

pressure medication. Previous randomized trials had shown that this medication lowered the risk 
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of heart attacks. However, in the observational study, the researchers find that people taking the 

medication appear to have a higher risk of heart attacks. This inconsistency could be because of 

something known as confounding. In this case, the primary reason people are given the 

medication, like having high blood pressure or other health issues, is the same reason they are at 

higher risk for heart attacks. So, in the observational study, it might seem like the medication is 

causing more heart attacks, when in reality, it is the underlying health conditions that are 

responsible. The basic structure of confounding in cDAG is shown in Figure 1.1, where E is the 

exposure and Y is the outcome, the confounding variable C is associated with both the exposure 

and the outcome but is not on the causal pathway between the two. Adjustment for C is 

necessary to control for confounding bias (90).   

 

Figure 1.1 The structure of confounding bias using the causal directed acyclic graph. 

 

C=confounder; E=exposure; Y=outcome 
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1.5.1.1.1 Backdoor Path 

 

In the context of cDAGs, a backdoor path between two variables (often an exposure and 

an outcome) is an alternative, non-causal route that can introduce confounding bias if not 

properly accounted for (91). It starts from the exposure and ends at the outcome, has at least one 

arrow pointing towards the exposure (which is why it is “backdoor”) (91). As illustrated in 

Figure 1.2, with E as the exposure and Y as the outcome, the only backdoor path is E ← C1→C2

→ Y, influenced by confounders C1 and C2. On the other hand, paths E → M1 → Y and E → M2 

→ Y are not backdoor paths. The goal is to block all backdoor paths between the exposure and 

the outcome without opening any new biasing paths (e.g., by adjusting for a collider or a 

mediator). If backdoor paths exist and are not properly controlled for, they can introduce 

confounding bias, making it difficult to determine the true causal relationship between the 

exposure and the outcome.  
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Figure 1.2 Illustration of backdoor path using the causal directed acyclic graph. 

 

E=exposure; Y=outcome; C1=confounder1; C2=confounder2; M1=mediator1; M2=mediator2 

 

1.5.1.1.2 Least Adjustment Criterion  

 

With a cDAG that depicts our assumptions about causal relationships among variables, it 

is essential to select variables for adjustment efficiently (92). The least adjustment criterion 

provides guidance, pointing us to the smallest set of variables necessary to control for, ensuring a 

direct causal effect estimation between exposure and outcome without confounding bias (92). 

Referring to Figure 1.2, either adjusting for C1 or C2 effectively blocks the backdoor path E ← 

C1→C2→ Y. It is unnecessary to control for every variable on the backdoor path (92).  
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1.5.1.2 Collider Stratification Bias 

 

A collider, in epidemiological terms, is a variable that is influenced by two or more other 

variables (93). Conditioning on a collider or the descendant of a collider (e.g., stratifying by, 

adjusting for, or selecting based on) can introduce a bias into a study. This bias is known as 

collider stratification bias, which is also referred to as selection bias. It can distort the observed 

relationship between other variables (93). To illustrate, imagine a study examines the 

relationship between sleep and the occurrence of a common cold, but researchers only look at 

data for people who report having low energy (i.e., by conditioning on energy levels). This can 

be problematic because among the people who report low energy, there might be those who sleep 

well but have a cold (hence they feel tired). Also, among the low energy group, there might be 

those who do not have a cold but just did not sleep well (and therefore feel tired). By only 

focusing on the low-energy group, the researchers are mixing up the effects of both these reasons 

for feeling low on energy. In other words, by conditioning on the collider energy levels, the 

researchers might inadvertently introduce a spurious association between sleep and occurrence of 

colds (which did not exist before conditioning by energy level as the path between sleep and the 

occurrence of a common cold was blocked). The structure of a collider is shown in Figure 1.3, 

where E is the exposure and Y is the outcome, and C is the collider. Conditioning on a collider 

can introduce a biased estimate between the exposure and the outcome (93).  
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Figure 1.3 The structure of collider bias using the causal directed acyclic graph. 

 

E=Exposure; Y=outcome; C=collider 
 
 
1.5.1.3 Overadjustment Bias 

 

Mediation, in epidemiological terms, means that an exposure affects an outcome through 

a third variable, called a mediator (94). When the mediator lies on the causal pathway between 

the exposure and the outcome, it can be responsible for some or all of the observed relationship. 

To illustrate, consider an observational study investigating the relationship between physical 

activity and heart attacks. Researchers notice that individuals who engage in more physical 

activity have a reduced risk of heart attacks. To understand why this happens, they explore the 

relationship further and find that regular physical activity also significantly reduces blood 

pressure. Now, since high blood pressure is a known risk factor for heart attacks, it might be that 

part of the reason physical activity reduces heart attack risk is through its effect on lowering 

blood pressure. In this scenario, blood pressure acts as a mediator, as it is a part of the causal 

pathway through which physical activity affects heart attack risk. The total effect is decomposed 



 

 

28 

into the natural direct effect (i.e., the effect of physical activity on heart attacks not through 

blood pressure) and the natural indirect effect (i.e., the effect of blood pressure on the association 

between physical activity and heart attack) (95). When the aim is to examine the total effect of 

physical activity on heart attack in observational studies, one should never restrict the study 

sample to patients with high blood pressure as this approach blocks the indirect effect and leads 

to an underestimation of the total effect of physical activity on heart attack (95). In this case, the 

bias of adjusting for a mediator is referred to as over-adjustment bias (94). This can be seen in 

Figure 1.4; M is a mediator between the exposure (E) and the outcome (Y). Its adjustment will 

bias the total effect of E on Y.  

 

 

Figure 1.4 The structure of over-adjustment bias using the causal directed acyclic graph. 

 
E=Exposure; Y=outcome; M=mediator 
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1.6 Sparse Data Bias 

 

As mentioned earlier, sparse data bias in the study of anti-TNFα and MS is mainly due to 

the small number of MS events. Even outside the context of anti-TNFα and MS, this bias stands 

out. Historically, it has been overshadowed by more conventional biases in epidemiologic 

studies, such as confounding, selection bias, and measurement error. In general, sparse data bias 

emerges when calculating maximum likelihood (ML) estimates with minimal case counts across 

various exposure, covariate, or outcome levels (96). This can lead to effect estimates that deviate 

from the null value, giving rise to the term "sparse data bias" (96). Notably, few studies have 

delved into this bias within the context of matched case-control studies. While conditional 

logistic regression, employed in matched case-control studies, was initially crafted to counter 

sparse data bias in logistic regression analysis, achieving this aim demands sizable sample sets 

(97). Additionally, conditional logistic models might still exhibit significant bias when the 

events-per-variable ratio (determined by dividing events by covariates) is exceptionally low (96). 

 Several techniques have been suggested to tackle sparse data bias. These include: (1) 

Firth bias adjustment (98); (2) penalization via the approximate Bayesian method-data 

augmentation (99); (3) Markov Chain Monte Carlo (MCMC) Bayesian analyses (100); (4) Least 

Absolute Shrinkage and Selection Operator (LASSO) regression (101); (5) Ridge regression 

(102). 
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1.6.1 Firth Bias Adjustment 

 

Firth's method is particularly useful in the presence of separation, a situation where one 

or more categories of the predictor variable perfectly predicts the outcome (103). This scenario 

can lead to infinite ML estimates (103). For illustration, consider an educator analyzing the 

relationship between students' participation in extracurricular sports, especially chess, and their 

math exam scores. The data shows that every member of the chess club scored a perfect 100% on 

their math test, with no students in this group receiving any other score. This uniformity in 

outcomes can complicate traditional statistical analyses. Using standard methods might overstate 

the relationship between joining the chess club and excelling in math, implying an infinite or 

immeasurable effect size. Here, Firth's method steps in, tempering this "infinite impact." Rather 

than assigning an implausible OR to the chess club's effect on math scores, Firth's method 

moderates this perfect prediction by adding a penalty term to the likelihood function (103), 

advocating for a more measured interpretation when confronted with uniform or consistent 

patterns. 

 

1.6.2 Bayesian Analyses 

 

In the realm of medical research, imagine a scenario where a scientist is keen on 

understanding the effectiveness of a new drug on a rather rare health condition. The traditional 

statistical methods might grapple with this because the event, given its rarity, does not provide 

ample data points which makes it difficult to draw definitive conclusions using regular statistical 

methods. Enter Bayesian analysis. Unlike conventional techniques that mostly lean on the data at 
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hand, Bayesian methods have an edge (104). The investigator starts with an existing belief or 

understanding about the drug’s effects. This belief, often born out of previous research or expert 

insights, is termed as the 'prior' (105). It serves as a backdrop against which the new data is 

compared. As the research unfolds and the drug is administered to patients, any resulting 

observations form the 'likelihood'. When this newly acquired data melds with the prior belief, a 

revised, more informed perspective emerges, termed the 'posterior' distribution (105). 

Essentially, Bayesian analysis provides a balanced viewpoint, amalgamating both historic 

insights and fresh data. 

 

1.6.2.1 Markov Chain Monte Carlo Bayesian Analyses 

 

In situations of sparse data bias, MCMC Bayesian analyses usually offer a robust solution 

(96,105,106). At its core, MCMC is a computer-aided technique that generates samples from a 

distribution, eliminating the need to understand all its intricate mathematical properties. 

Therefore, MCMC offers a way to construct the posterior distribution by combining the prior 

beliefs with the likelihood from the data, effectively painting a spectrum of possible outcomes 

(107). 

 The algorithm starts with an initial point, and subsequent points are generated by a 

predefined stochastic process. As the process iterates, these points form a chain, and under the 

right conditions, the distribution of points in this chain converges to the desired posterior 

distribution (100). The beauty of MCMC is its ability to explore high-dimensional parameter 

spaces and generate samples from intricate posterior distributions, providing comprehensive 

insight into the possible outcomes and their likelihoods (100). By repeatedly sampling from this 
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process, MCMC allows for the construction of detailed representations of the posterior 

distribution, bridging the gap between prior beliefs and observed data (107). 

 

1.6.2.2 Approximate Bayesian Method-Data Augmentation 

 

Data augmentation, in the context of Bayesian analysis, is a powerful technique 

especially tailored to address challenges arising from sparse data (99). This method involves the 

addition of latent or unobserved data (referred to as pseudo-data) to the existing dataset, making 

it richer and more amenable to analysis (99). By integrating this additional structure, data 

augmentation can streamline the computation and estimation process, particularly in intricate 

models (99). 

The algorithm for data augmentation initiates with the establishment of a prior 

distribution rooted in background knowledge or expert insights (105). This prior distribution is 

then transformed into prior data, or pseudo-data. Once this pseudo-data is generated, it is blended 

with the actual data, providing a combined dataset that facilitates the estimation of the posterior 

distribution (105). In essence, like MCMC Bayesian analysis, data augmentation serves as a 

bridge, seamlessly fusing prior beliefs with the observed data, offering a more comprehensive 

and insightful perspective in situations where data may be scarce (105). While MCMC Bayesian 

techniques are also adept at addressing sparse data biases, data augmentation often presents a 

more computationally convenient approach (105), particularly beneficial in scenarios involving 

non-conjugate priors, where the prior does not neatly align with the likelihood contribution from 

a dataset (108).  
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1.6.3 Least Absolute Shrinkage and Selection Operator  

 

Another efficient technique to address this challenge is the LASSO method. Unlike 

traditional linear regression, LASSO introduces a penalty term to the objective function that is 

proportional to the absolute values of the coefficients (109). This unique feature of LASSO 

serves a dual purpose: it not only prevents overfitting by constraining the model's complexity but 

also promotes sparsity of coefficients by shrinking certain coefficients to exactly zero (101). 

To illustrate with an example, imagine researchers are studying the factors affecting 

house prices in a vast city. They collect data on numerous variables: distance to the city center, 

number of bedrooms, proximity to schools, age of the house, and so on. However, not all these 

factors are equally influential. In a typical regression model, researchers might end up with small 

but non-zero coefficients for many variables, making the model complex and hard to interpret. 

With LASSO, many of these coefficients would be shrunk to zero, effectively suggesting that 

those variables do not play a significant role in determining house prices. Thus, a simpler, more 

interpretable model that focuses on the truly influential variables is derived. LASSO is more 

useful when the purpose is to predict and it is a modification of the linear regression model (96). 

It is not surprising that some important confounders in the effect size model would be eliminated 

by the LASSO regularization. 
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1.6.4 Ridge Regression Model 

 

The Ridge regression method, like LASSO, is a technique designed to enhance the 

prediction accuracy and interpretability of statistical models, particularly when dealing with 

sparse data or multicollinearity (where predictor variables are highly correlated) (110). While 

LASSO adds a penalty to the absolute value of the coefficients, Ridge regression adds a penalty 

to the squared value of the coefficients (101). This distinction is fundamental in how the two 

methods operate. 

Imagine a medical researcher aiming to understand the impact of multiple risk factors on 

a particular health outcome. With a plethora of potential predictors – from age and gender to 

various biomarkers – the researcher might run into multicollinearity issues. This is where Ridge 

regression shines. By imposing a penalty on the size of coefficients, Ridge helps in reducing the 

model's complexity without completely eliminating any predictor, as LASSO might. In 

mathematical terms, the penalty in Ridge regression is added to the sum of the squared 

coefficients. This ensures that while some coefficients may be reduced, none are completely set 

to zero. The end result is a model that balances between fit and complexity, providing a more 

stable and generalized prediction when dealing with intricate datasets. The choice between 

LASSO and Ridge will often depend on the specific characteristics and requirements of a given 

dataset and research question. 
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1.7 The Use of Health Administrative Datasets 

 

High-quality, comprehensive health administrative data can address the previously 

mentioned lack of existing population-based studies. The datasets from four western Canadian 

provinces—British Columbia (BC), Alberta, Saskatchewan, and Manitoba—collectively 

encompass over 11 million people, nearly one-third of Canada’s population. Each province 

captures nearly 100% of registered residents and their health-related information through 

comprehensive population-based linked databases. The datasets encompass all provincially 

funded health care services, which include every healthcare professional visit (111), hospital 

stays (112), demographic information (113), cancer registry (114), vital statistics (115), and all 

outpatient or community dispensations of prescription medication (116). Numerous population-

based studies have been successfully conducted using these datasets (117–123). The overview of 

the provincial datasets and population sizes used in our study is listed in Table 1.3.  
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Table 1.3 Overview of the provincial datasets and population sizes 

 British Columbia Alberta Saskatchewan Manitoba 

Population 

(2015) 

4,848,055 4,067,175 1,098,352 1,278,365 

Years of 

Data 

Available 

1990-2015 

(prescription data from 

1996) 

2008-2015 1998-2017 1984-2018 

(prescription 

data from 

1995) 

 

1.8 Purpose 

 

The primary goal of this thesis was to assess the risk of MS among anti-TNFα users, 

particularly those with RD and IBD, by leveraging population-based health administrative 

databases from four Canadian provinces. Initially, we aimed to address potential biases from 

existing epidemiological studies by crafting a cDAG to illustrate the potential impact of anti-

TNFα use on the onset of MS. Subsequently, we evaluated the MS risk among anti-TNFα users 

with RD and IBD across four Canadian provinces. Given the emergence of sparse data bias in 

existing studies and some of our analyses, our next steps were twofold. Firstly, we compared the 

risk estimations of MS linked to anti-TNFα use in real-life data, following the application of 

various methods like Firth bias adjustment, MCMC Bayesian analyses, data augmentation, 

LASSO regression, and Ridge regression in comparison to conditional logistic regression in 

sparse data scenarios. Secondly, we appraised the efficacy of these sparse data bias adjustment 

techniques via simulation studies. 
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1.9 Overview of Thesis Chapters 

 

This thesis is structured into three main manuscript chapters, situated between an 

introductory (Chapter 1) and a concluding chapter (Chapter 5). Collectively, they delve into the 

implications of anti-TNFα use on MS while factoring in potential biases. A brief overview of the 

primary focus of each chapter is provided below: 

Chapter 2 offers a methodological review of observational studies that discuss the 

risk of multiple sclerosis among anti-TNFα users. This chapter seeks to address: Do prior 

epidemiological studies conclusively link the risk of MS demyelinating events with anti-TNFα 

use in patients with RD or IBD? If these findings are inconclusive, where do the shortcomings 

lie, and how might we identify and avoid potential biases? 

Chapter 3 is an epidemiologic study of a population-based analysis from four 

Canadian provinces exploring the relationship between anti-TNFα use and MS in cohorts 

of RD and IBD patients. This chapter probes: Does anti-TNFα use elevate the risk of MS 

among patients with RD and IBD? If it does, how significant is this risk? 

Chapter 4, grounded in real-world data, undertakes a simulation study to contrast 

various methods for addressing the challenge of sparse data bias. This chapter inquires: 

When applying methods such as Firth bias adjustment, MCMC Bayesian analyses, data 

augmentation, LASSO regression, and Ridge regression, how do the outcomes concerning the 

association between anti-TNFα and MS differ? Which techniques perform the best on sparse data 

analysis?  
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Chapter 2: MULTIPLE SCLEROSIS RISK AMONG ANTI-TUMOR 

NECROSIS FACTOR ALPHA USERS: A METHODOLOGICAL REVIEW 

OF OBSERVATIONAL STUDIES BASED ON REAL-WORLD DATA 

 

2.1 Introduction 

 

TNFα agents have been shown to significantly improve the quality of life in patients with 

several chronic immune-mediated inflammatory diseases (16,124–126). However, an increased 

risk of MS or demyelinating events has been suspected after their use (52,53,72,127,128). One of 

the first studies that postulated an association between anti-TNFα and MS pathogenesis was a 

randomized trial that was stopped early due to an increased rate of MS exacerbation among 

patients who received the drug lenercept (88).  

To identify epidemiologic studies that have examined the effect of anti-TNFα on the risk 

of MS, we undertook a search of the literature and used Medline (Ovid) from its inception (1966) 

to December 2021. We also searched reference lists from retrieved articles and searched for 

publications from scientists known for publishing in the field of anti-TNFα and MS. The 

following search terms were used alone and in combination: tumor necrosis factor inhibitors, 

anti-TNF, biological agents, biologics, adalimumab, certolizumab pegol, etanercept, infliximab, 

golimumab, rheumatoid diseases, rheumatoid arthritis, psoriatic arthritis, spondylarthropathies, 

ankylosing spondylitis, inflammatory bowel diseases, multiple sclerosis, neuroinflammatory 

events, and demyelinating events.  
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We selected peer-reviewed articles that met the following inclusion criteria: 1) clearly 

stated case definition of MS, 2) reported adjusted ORs, RRs, or SIRs with 95% CIs, and 3) 

cohort or case-control study designs. Seven epidemiologic studies are included (81–87). Some 

results were conflicting and underpowered with the ORs, RRs, or SIRs ranging between 0.56 

(95% CI: 0.34-0.90) and 3.48 (95% CI: 1.45-8.37) (81–87). These results can be misleading to 

clinicians, policymakers, and patients, leading to unnecessary prescribing of anti-TNFα or 

withholding the anti-TNFα from patients at heightened risk of MS who otherwise might benefit 

from these drugs.  

To better understand the conflicting results and identify the structure of potential biases 

that influence the conflicting results, one can use cDAGs (92,129–131). In this article, we first 

demonstrate the principles behind how cDAGs work and how they can be used to determine 

whether there is a confounder, a mediator, or collider-stratification bias and when to 

appropriately adjust for them in a statistical model. Then, we discuss a case study to show how to 

control for potential biases by drawing a cDAG. Finally, we critically discuss potential biases 

that might have led to contradictory findings from previous studies, including confounding, 

confounding by contraindication, and bias due to measurement error. 
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2.2 Use of Causal Diagrams in Assessing the Structure of Confounders, Mediators, and 

Collider-Stratification Bias 

 

cDAGs can provide a roadmap of all common causes involved in a causal research 

question by connecting variables using a series of arrows (92,130). An arrow starting from one 

variable (A) and pointing to another variable (B) means that A causes B (132). Here we describe 

how cDAGs can be used to demonstrate the structure of confounders, mediators, and collider-

stratification bias.  

 

2.2.1 Confounders 

 

Variables that are on a common cause structure are called confounders. Suppose we are 

interested in the causal effect of anti-TNFα on MS onset (Figure 2.1 a). The dotted arrow from 

anti-TNFα to MS onset shows that this is the causal question under investigation. In addition, 

there is an arrow pointing from psoriasis to anti-TNFα use (133) and an arrow pointing from 

psoriasis to MS onset (a backdoor path or an undirected path) (134). Thus, for anti-TNFα use and 

MS onset, psoriasis is a common cause variable. The presence of a common cause variable can 

demonstrate a biased association, making it seem like anti-TNFα use is associated with MS onset 

(135). When researchers are interested in a causal association between anti-TNFα and MS risk, 

the backdoor path (i.e., the association due to the common cause variable or confounders) should 

be blocked (91,136), indicated by placing a square box around the common cause variable (137) 

- psoriasis in the cDAG (Figure 2.1 a).  
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Figure 2.1 Example of a confounder, a mediator and a collider. 

 

a. Example of a confounder. The dotted arrow from anti-TNFα to MS onset shows that this is the 

causal question under investigation. The causal effect of anti-TNFα on MS onset can be 

confounded by psoriasis, making psoriasis a confounder. When researchers are interested in the 

causal effect of anti-TNFα on MS, the association due to the confounder needs to be adjusted for, 

indicated by placing a square box around the common cause variable - psoriasis in the causal 

directed acyclic graph. b. Example of a mediator. The variable MS onset acts as a mediator 

because it mediates, at least partially, the effect of smoking on MS progression. The causal effect 

of smoking on MS progression is biased if the mediator is adjusted for. c. Example of a collider. 

Physician visits act as a collider as it is the common effect of psoriasis and Epstein-Barr virus 

infections. The effect of anti-TNFα on the risk of MS onset is biased if the data are restricted to 

those who have visited physicians.  

MS=multiple sclerosis; TNF=tumor necrosis factor 
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2.2.2 Mediators 

 

Mediators are variables that lie along the causal pathway between the exposure and the 

outcome (138). Suppose we are interested in the total effect of smoking on MS progression. 

Studies have shown that smoking can increase the risk of developing MS (i.e., MS onset) and 

smoking is associated with more severe disease and rapid disease progression (139). In the 

cDAG, there is an arrow pointing from smoking to MS onset and an arrow pointing from MS 

onset to MS progression (Figure 2.1 b). The variable-MS onset acts as a mediator because it 

mediates, at least partially, the effect of smoking on MS progression. The total effect is 

decomposed into the natural direct effect (i.e., the effect of smoking on MS progression not 

through MS onset) and the natural indirect effect (i.e., the effect of MS onset on the association 

between smoking and MS progression) (95). When the aim is to examine the total effect of 

smoking on MS progression, one should never restrict the study sample to patients with incident 

MS as this approach blocks the indirect effect and leads to an underestimation of the total effect 

of smoking on MS progression. In this case, the bias of adjusting for a mediator is referred to as 

over-adjustment bias (130,140). When the objective is to examine the direct effect of smoking on 

MS progression, a mediation analysis is needed to answer this research question (141). One 

advantage of cDAGs is that they can demonstrate the temporal relationship of variables with 

respect to their role (e.g., a confounder or a mediator) (142). For example, sometimes a variable 

can be a mediator if measured after the exposure but a confounder if it is measured before the 

exposure, in which case, unlike a mediator, it must be adjusted (142).  
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2.2.3 Collider-Stratification Bias (Selection Bias) 

 

A collider is defined as a variable that is a common effect of two other variables (130). 

Consider researchers wanting to examine the risk of MS onset subsequent to use of anti-TNFα 

(Figure 2.1 c). There are two causal paths from anti-TNFα to MS onset, a direct path and an 

undirected path or backdoor path. In the undirected or backdoor path, two arrows originate from 

psoriasis and go to anti-TNFα use and physician visits (the number of physician visits per year), 

as psoriasis causes both outcomes. Similarly, two arrows originate from Epstein-Barr virus 

infection and go to MS onset (54) and physician visits. The effect of psoriasis and Epstein-Barr 

virus infection collide on physician visits, making physician visits a collider. The presence of the 

collider initially blocks the backdoor path from anti-TNFα to MS onset and means that the 

blocked backdoor path is not a biasing path (143). However, when a collider is conditioned, 

collider-stratification bias occurs (144). Suppose researchers want to examine the causal 

association between anti-TNFα and MS onset, and the data are restricted to those who had 

physician visits (Figure 2.1 c). Conditioning on physician visits makes anti-TNFα and MS 

associated with each other because a backdoor path previously blocked by the collider is now 

open from anti-TNFα to MS onset (144). The collider-stratification bias is also known as 

selection bias in epidemiology (145).  
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2.3 A Case Study on the Causal Effect of Anti-Tumor Necrosis Factor Alpha Use on the 

Risk of Developing Multiple Sclerosis 

 

We now illustrate a case study on the causal effect of anti-TNFα use as a trigger of MS 

onset among patients with autoimmune diseases and show how a cDAG can help us identify 

potential biases (126). The cDAG for the total effect of anti-TNFα use on MS risk is shown in 

Figure 2.2. To avoid adjusting for mediators, we assume all covariates are measured before the 

anti-TNFα use. 

 

Figure 2.2 Causal directed acyclic graph for the study examining the risk of multiple sclerosis 
with use of anti-tumor necrosis factor alpha. 

 

The dotted straight arrow indicates the causal relation under investigation; solid arrows indicate 

known causal relations. To avoid adjusting for mediator variables, we assume all covariates are 

measured before the start of exposure. TNFα=tumor necrosis factor alpha; MS=multiple 

sclerosis; DMARDs= disease-modifying anti-rheumatic drugs; NSAIDs=non-steroid anti-

inflammatory drugs  
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 A box has been placed around autoimmune diseases to indicate that the cohort was 

restricted to patients with autoimmune diseases. Several studies have shown that the risk of MS 

might be higher in patients with autoimmune diseases, including psoriasis and IBD 

(134,146,147), so we added the arrow between autoimmune diseases and MS onset. All causes 

shared by anti-TNFα and MS must be included in a cDAG; we have therefore added the variable 

comorbidities that the commonly used Charlson Comorbidity Index (CCI) could represent (148). 

Modification of disease severity is a cause of anti-TNFα use. Disease severity can further 

influence the risk of comorbidities (149,150). Moreover, disease severity is also a cause for an 

increased number of physician visits. More frequent physician visits can lead to more intensive 

use of glucocorticoids, DMARDs/immunosuppressive drugs, NSAIDs, and anti-TNFα. Using 

glucocorticoids, DMARDs/immunosuppressive drugs, and NSAIDs can further increase the risk 

of comorbidities (151–154). Smoking is associated with both autoimmune diseases and MS risk 

and can further cause more severe disease and an increased risk of comorbidities (155,156). 

Epstein-Barr virus infection can cause the onset of MS (157), an increased number of physician 

visits, more intensive use of NSAIDs, and can influence the risk of comorbidities (158) (Figure 

2.2).  

The fundamental goal of the cDAG is to adjust or block all the biasing paths and keep 

open the causal path between anti-TNFα and risk of MS onset, but not to condition on colliders 

or mediators (159) (Table 2.1). Age and sex should be adjusted because they are classic 

confounders. However, to keep the cDAG simple, these two variables are not shown in Figure 

2.2. Comorbidities and Epstein-Barr virus infection are common cause variables and need to be 

adjusted. By adjusting for comorbidities, the open backdoor paths such as anti-TNFα¬physician 

visits¬comorbidities®MS onset can be eliminated. However, comorbidities are also a collider, 
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as smoking and DMARDs/immunosuppressive drugs collide on comorbidities. Conditioning on 

comorbidities would make smoking and DMARDs/immunosuppressive drugs associated with 

each other. Thus, some undirected biasing paths are now open. For example: anti-TNFα¬ 

physician visits® DMARDs/immunosuppressive drugs®comorbidities¬smoking®MS onset. 

All these backdoor paths are created because of the variable smoking. Therefore, one needs to 

adjust for smoking to block both existing and new backdoor paths caused by conditioning on a 

collider. For other variables, such as disease severity, physician visits, use of 

DMARDs/immunosuppressive drugs, glucocorticoids, and NSAIDs, no biasing paths were 

created without adjusting for these variables. In addition, these variables are also colliders; 

adjusting for them would cause extra backdoor paths to open (Table 2.1).  
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Table 2.1 Description of pertinent covariates in the study of anti-tumor necrosis factor alpha use 
and multiple sclerosis risk, the type of variables in the causal directed acyclic graph structure, 
and the need for adjustment 

Variables Type of variables Adjustment,  

Yes/No 

Smoking A potential confounder that will create biasing paths Yes 

Comorbidities A potential confounder that will create biasing paths Yes 

Autoimmune diseases A potential confounder that will create biasing paths Yes 

Epstein-Barr virus 

infection 

A potential confounder that will create biasing paths Yes 

Physician visits A confounder, also a collider.  

No biasing paths were created without adjusting for it. 

No 

Glucocorticoids A confounder, also a collider.  

No biasing paths were created without adjusting for it. 

No 

NSAIDs A confounder, also a collider.  

No biasing paths were created without adjusting for it. 

No 

DMARDs A confounder, also a collider.  

No biasing paths were created without adjusting for it. 

No 

Disease severity A confounder, also a collider.  

No biasing paths were created without adjusting for it. 

No 

NSAIDs=non-steroid anti-inflammatory drugs; DMARDs= disease-modifying anti-rheumatic 

drugs.  
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While the cDAG might incorporate some elements of a mechanistic understanding (for 

example, by including variables that are known to be causally related based on prior knowledge), 

it is primarily a statistical tool that is used to guide the analysis and interpretation of data. The 

relationships represented in the cDAG are typically estimated and tested using statistical 

methods, which forms the core of the biostatistical approach. 

To summarize, for estimating the total effect of anti-TNFα use on the risk of developing 

MS among patients with autoimmune diseases, other than age and sex, the minimal sufficient 

adjustment set contains smoking, comorbidities, and Epstein-Barr virus infection (Table 2.1).  

 

2.4 Potential Biases in Previous Studies of Multiple Sclerosis risk Among Users of Anti-

Tumor Necrosis Factor Alpha 

 

2.4.1 Confounding 

 

Confounding is one of the most prevalent types of bias affecting previous observational 

studies' validity (160). An NCC study (84) that used the medical records of patients treated at 

one of three Mayo Clinics, USA (2003-2019) found an OR of 3.09 (95% CI: 1.19-8.04) for the 

association between anti-TNFα use and incident inflammatory demyelinating events. Cases were 

matched with controls on sex, year of birth, and autoimmune disease type. They also adjusted for 

disease duration in the conditional logistic regression model. However, confounding might have 

been present. Specifically, smoking was not adjusted for or considered in analyses. A cohort 

study (81) using the nationwide clinical rheumatology registers in Sweden and Denmark (2000-

2017) suggested no significantly increased risk of MS in anti-TNFα users compared with non-
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users among patients with RD with RR=0.44 (95% CI: 0.18-1.05) in Sweden and RR=1.02 (95% 

CI: 0.23-4.46) in Denmark. Their multivariable regression model adjusted only for age, sex, and 

calendar time. In addition to the lack of power, it is possible that residual confounding bias 

existed. A more recent study that used data from the British Society for Rheumatology Biologics 

Register in Rheumatoid Arthritis found an age- and sex-corrected SIR of 1.38 (95% CI: 0.96-

1.92) for the association between the use of anti-TNFα and incident demyelinating events 

without further adjustment when compared with the general UK population (85). To identify 

potential bias due to confounding, in addition to adjusting for known confounders based on the 

cDAG, an E-value can be calculated as a sensitivity analysis that permits calculation of the 

magnitude of an unmeasured confounder that could explain away the specific exposure-outcome 

association (161).  

Although under-adjustment can usually cause residual confounding bias, unnecessary 

adjustment can also introduce a biased total effect estimation (140). An NCC study was 

conducted using a United States health claims database from 1995 to 2005 (83), involving a 

cohort of 104,958 patients diagnosed with rheumatoid arthritis. Patients entered the cohort upon 

their first prescription of a traditional DMARD or a biological agent and were followed until the 

occurrence of an incident demyelinating event, death, or the end of the study period, whichever 

came first. Cases with a demyelinating event and controls were matched on age, sex, and 

calendar time of cohort entry. Anti-TNFα use during the year before the demyelinating event was 

defined. The authors reported an adjusted RR of 1.31 (95% CI: 0.68-2.50) in individuals not at 

high risk for demyelinating events (83). In addition to matching variables, the conditional 

logistic regression model was further adjusted for the number of physician visits per year, the use 

of anakinra, methotrexate, leflunomide, antimalarial agents, other DMARDs, glucocorticoids, 
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NSAIDs, and selective cyclo-oxygenase inhibitors. Based on our cDAG in the previous section, 

some of the variables adjusted for are not confounders. For example, the number of physician 

visits per year is a collider. Figure 2.3 shows part of the cDAG demonstrated in Figure 2.2; 

adjusting for the number of physician visits per year would open the biasing path: anti-TNFα 

¬disease severity® physician visits¬comorbidities®MS. The unnecessary adjustment could 

further augment the bias when the event is rare.  

These biases were identified based on the information available in the studies we 

reviewed without having access to the study protocols or actual data. Thus, we cannot state with 

certainty if these biases affected the results. 

 

Figure 2.3 A partial causal directed acyclic graph in the study of anti-tumor necrosis factor alpha 
use and multiple sclerosis risk, physician visits are a collider 

 

The dotted straight arrow indicates the causal relation under investigation; the solid arrows 

indicate known relations. TNFα=tumor necrosis factor alpha; MS=multiple sclerosis 
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2.4.2 Confounding by Contraindication 

 

Confounding by contraindication is another form of confounding (162). It usually occurs 

in observational studies that examine a known adverse drug event. For example, taking 

glucocorticoids is contraindicated in people with a high risk of myocardial infarction (MI) 

because of the concern that there is an increased risk of cardiovascular diseases associated with 

glucocorticoids (154,163) . As such, clinicians may hesitate to prescribe glucocorticoids to 

patients with a high risk of MI, making it seem like glucocorticoids do not have an effect on MI 

when in fact it is potentially due to confounding by contraindication. Similarly, as an increasing 

number of case reports have been published on the risk of anti-TNFα use and new-onset MS over 

the past 20 years, anti-TNFα use is contraindicated for people with MS-like symptoms or with a 

family history of MS because of the concern that anti-TNFα can potentially worsen MS (162). 

Therefore, some clinicians might be withholding anti-TNFα therapy from patients at high risk of 

MS (164). An observational study attempting to quantify the association could be biased because 

the anti-TNFα user group would not usually include all patients with MS-like symptoms or with 

a family history of MS. Ignoring such confounding by contraindication would result in the non-

user group appearing to have an artificially higher rate of MS, given the inclusion of patients 

with a higher risk in the non-user group (162). This bias is reflected in Figure 2.4, where the 

arrow from a family history of MS to anti-TNFα use suggests that patients’ family history of MS 

could affect anti-TNFα use. One way to mitigate this bias is to look at the association between 

anti-TNFα and MS during the period when the adverse effect was not known. For example, since 

most case reports that indicated an increased MS risk associated with anti-TNFα were published 
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after the year 2006 (72), for observational studies, one could estimate the association before the 

year 2006 to reduce the bias.  

 

Figure 2.4 Causal directed acyclic graph for confounding by contraindication in the anti-tumor 
necrosis factor alpha and multiple sclerosis study. 

 

The dotted straight arrow indicates the causal relation under investigation. Same as the causal 

directed acyclic graph for confounding, family history of MS can affect the use of anti-TNFα, 

and creates a confounded association between anti-TNFα use and MS. TNF=tumor necrosis 

factor; MS=multiple sclerosis 

 

2.4.3 Bias Due to Measurement Error 

 

It is common to have measurement errors in studies using health administrative datasets 

with available and reliable diagnostic coding of disease, but limited information on actual 

symptom or disease onset (165). Sometimes diagnoses may happen years after early symptoms. 

Recent studies have shown that the prodromal phase of MS might present 5 or more years prior 

to the typical symptoms of demyelinating disease (66,166). As such, individuals with early MS 

symptoms who have not yet been formally diagnosed might be misclassified as not having the 

disease. Therefore, the association between anti-TNFα and MS diagnosis could be a biased 

estimate of the association between anti-TNFα and actual MS symptom onset.  
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The bias due to measurement error may be more profound if the onset of MS affects the 

use of anti-TNFα. Specifically, clinicians and patients might have decided to discontinue anti-

TNFα or not use anti-TNFα, upon patients experiencing early MS symptoms. This bias is also 

called reverse causality bias or protopathic bias (167), which refers to a situation where early 

symptoms of the outcome can affect drug use. Like confounding by contraindication, the non-

user group might include more persons with MS than would be normally expected, which would 

bias the effect of anti-TNFα towards the null for the risk of MS. Reverse causality bias or 

protopathic bias can also be represented by cDAGs (135). In Figure 2.5, MS* was used to 

represent the measurement of MS (i.e., MS diagnosis), as used in some studies using health 

administrative datasets, and MS was used to represent clinically recognized MS symptom onset 

(e.g., optic neuritis). Reverse causality bias is usually hard to avoid in studies using health 

administrative databases, although it can be mitigated by use of all relevant demyelinating 

disease-related codes to identify the earliest recorded sign of MS onset. One way to reduce the 

latency of MS diagnosis and to factor in the prodromal phase of MS, is to disregard the period 

(e.g., 5 years) prior to the date of MS diagnosis or MS onset (168).  
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Figure 2.5 Causal directed acyclic graph representing the reverse causality bias or protopathic 
bias in the anti-tumor necrosis factor alpha and multiple sclerosis study. 

 

MS represents the disease onset, MS* represents the measured MS (i.e., MS diagnosis) from 

utilizing health administrative health databases. This bias is introduced when the onset of MS 

symptoms affects anti-TNFα use, before the actual diagnosis of MS. TNF=tumor necrosis factor; 

MS=multiple sclerosis 

 

2.5 Conclusion 

 

In this paper, we have discussed the principles of cDAGs and how cDAGs can allow 

researchers to visualize the different types of biases. We also discuss potential biases in the 

literature that might have affected the results of published studies related to the use of anti-TNFα 

and MS risk (81–86). The novelty of this review lies in its unique application of cDAGs to 

investigate the relationship between anti-TNFα use and MS, a valuable resource particularly for 

those in the research and clinical fields who are not well-acquainted with these methods. 

Additionally, by examining potential biases present in prior research on anti-TNFα and MS, this 

review not only illuminates past discrepancies but also provides vital guidance that can enhance 

the validity of future investigations in this area. Clinicians and researchers should be cognizant 

of these biases when reviewing future studies on this topic.  
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Chapter 3: RISK OF MULTIPLE SCLEROSIS AMONG USERS OF 

ANTITUMOR NECROSIS FACTOR ALPHA IN 4 CANADIAN 

PROVINCES 

 

3.1 Introduction 

 

MS is one of the world’s most common neurologic disorders (169), affecting an 

estimated 2.8 million people worldwide in 2020 (58). Anti-TNFα agents are a class of biologic 

drugs used for the treatment of several chronic immune-mediated inflammatory diseases such as 

moderate to severe RD [rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis] and 

IBD. Although anti-TNFα agents are generally well-tolerated and have been shown to 

significantly improve patients’ quality of life (51,170–172), an increased risk of MS has been 

suspected after their use (52,53,72,127,128). 

One of the first studies that postulated an association with MS pathogenesis was a 

randomized controlled trial that was stopped early due to an increased MS exacerbation rate 

among lenercept-treated patients (88). Epidemiologic data suggesting anti-TNFα use may trigger 

new-onset MS are scarce and contradictory (81–85), mainly due to potential biases such as 

sparse data bias (82). A 2020 study found that the use of anti-TNFα was associated with an 

increased risk of overall inflammatory demyelinating events among RD or IBD patients 

receiving medical care at three Mayo Clinics, USA (84). However, MS was not studied 

specifically due to the study’s small sample size. The use of data from a tertiary referral center 

also limits its generalizability to the general population.  
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With the increase in the incidence and prevalence of both RD and IBD worldwide (173–

176), the number of anti-TNFα users is also expected to increase. A potential risk of MS among 

users of anti-TNFα, a drug class for which there might be other safer alternatives (e.g., emerging 

biologics), could further increase the burden of disease in patients already afflicted with a 

moderate to severe chronic disease. We aimed to quantify the risk of MS in anti-TNFα users with 

RD and IBD using population-based health administrative databases from four Canadian 

provinces.   

 

3.2 Methods 

 

3.2.1 Data Sources 

 

This study was undertaken in four western Canadian provinces: BC, Alberta, 

Saskatchewan, and Manitoba, which collectively encompassed over 11 million people; nearly 

one-third of Canada’s population. Each province captures nearly 100% of registered residents 

and their health-related information through comprehensive population-based linked databases. 

Personal identifiers are used to link records belonging to the same individual across files and 

over time. Canadian provinces administer publicly funded, universally available health care 

systems and maintain computerized records related to the provision of these services. These 

records capture all physician visits (111), hospitalizations (112), demographic data (113), and all 

outpatient or community dispensations of prescription medication (116). Numerous population-

based studies have been successfully conducted using these data sources (120–122,149). An 
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overview of each province’s databases is shown in the Appendix A. Table 1. Data for RD and 

IBD cohorts within each province are saved in different server and can only be analyzed in-

house.  

 

3.2.2 Study Design 

 

We undertook two NCC studies for RD and IBD patients age≥18 years, separately, in 

each province between January 2000 and up until March 2018. The NCC has been deemed the 

ideal design for drug safety studies in large populations with long follow-ups as it mitigates some 

of the complexities that might arise when large cohorts are followed for a long period (177). 

Cohort studies require much larger sample sizes when the outcome is rare (177).  

 

3.2.3 Cohort Definition 

 

Due to data availability, RD cohorts were available in two provinces, BC and Manitoba; 

each province utilized its internally validated case definition that has been employed previously 

to identify persons with rheumatoid arthritis (International Classification of Diseases [ICD]-9 

714.X) (121,149), ankylosing spondylitis (ICD-9 720.X; ICD-10 M45.X) (178), and psoriatic 

diseases (ICD-9 696.X; ICD-10 L40.X) (179). Case definitions for RD have a positive predictive 

value (PPV) of up to 82% (121,149) and are detailed in Appendix A. Table 2.  

IBD cohorts were identified in the four provinces, selected within each province by 

internally validated case definitions, using ICD-9 555, 556; ICD-10 K50, K51 (see Appendix A. 

Table 2 for details). Case definitions for IBD have a PPV of up to 97% (180,181). 
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The date after meeting the validated case definition of RD or IBD was defined as the 

cohort entry date. After identifying the disease cohorts, patients with previous diagnostic codes 

for MS or any demyelinating events were excluded (the relevant codes are listed below under 

‘Case and Control Definition’). Patients were followed from the cohort entry date to (i) death, 

(ii) MS onset, (iii) termination of health coverage, or (iv) last date of available data.  

 
3.2.4 Case and Control Definition 

 

Cases were identified separately for the RD and IBD cohorts in each province between 1 

January 2000 and up to March 2018, and were ascertained using a previously validated and 

successfully applied algorithm using health administrative data (122). A MS case was defined as 

a subject who had at least three records related to MS from physician visits (ICD-9 340), 

hospitalizations (ICD-9 340 or ICD10 G35), or prescription claims specific for MS (Appendix A 

Table 3) in any combination using all available data. This algorithm has a PPV of 99.5% (122). 

The date of the first ICD-9/10 code for MS or the first code for a demyelinating event (optic 

neuritis [377.3/H46], acute transverse myelitis [323.82/G37], acute disseminated 

encephalomyelitis [323/G36.9], demyelinating disease of CNS unspecified [341.9/G37.8], acute 

disseminated demyelination [G36], or neuromyelitis optica [341.0/G36.0]) was deemed the 

index date (MS onset). To ensure MS cases were incident, we required all newly diagnosed MS 

individuals to have at least 5 years of prior registration in the databases (i.e., “run-in” period) 

before the index date. The case definition also required patients without having a diagnosis of 

MS or demyelinating event ever prior to the index date.  
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Controls were selected from the RD or IBD cohorts using a density-based sampling 

algorithm (177). First, a risk set of all RD or IBD patients with new onset MS (cases) and their 

corresponding controls was created. For each case, a pool of controls was identified as all 

individuals with RD or IBD who had no prior record of MS or a related demyelinating event or 

prescription filled for an MS drug (Appendix A. Table 3) at the index date. Since there is 

usually little marginal increase in precision from increasing the ratio of controls to cases beyond 

four (182), from the potential pool of controls, each MS case was matched to up to 5 controls 

based on the following criteria: (1) birth year±3 years; (2) the same RD or IBD disease duration, 

thereby controlling for the calendar time bias (183); (3) the same health authority based on each 

individual’s place of residence to ensure that a specific geographic location does not 

differentially affect anti-TNFα prescribing between cases and controls. Controls were assigned 

the same index date as their matched case. The density-based sampling approach for control 

selection has been shown to generate an OR that closely approximates the incidence rate ratio 

(IRR) derived from a cohort study (177). 

 

3.2.5 Exposure Assessment 

 

All anti-TNFα drugs approved by Health Canada for the treatment of RD or IBD and 

dispensed in two years prior to the index date (MS onset) were identified including, adalimumab, 

certolizumab, etanercept, infliximab, and golimumab (Appendix A. Table 4). Since the risk of 

MS with anti-TNFα has been reported to occur across a variable time frame (between 2 to 24 

months between the initiation of anti-TNFα and onset of MS) (72), we considered different risk 

periods in relation to anti-TNFα use. For the main analysis, a two-year exposure assessment 
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period of anti-TNFα use was examined. The use of two years of exposure assessment period may 

better capture the latency of MS onset. We also examined the risk of anti-TNFα use on MS 

during a one-year period as a sensitivity analysis since the majority of patients developed MS 

within one year or less after the therapy initiation (72). The use of anti-TNFα during the 

exposure assessment period was represented as a binary variable (exposed/unexposed). 

Specifically, users were defined as individuals with at least one prescription filled for an anti-

TNFα agent during the exposure assessment period. The reference comparison group was 

patients who have not filled a prescription for an anti-TNFα agent in any of the risk periods.  

 

3.2.6 Covariates 

 

All baseline covariates were measured during 360 days preceding the two years exposure 

assessment period (Figure 3.1) to avoid overadjustment bias (i.e., adjusting for mediator 

variables) (94). In addition to matching variables, the following covariates were considered: sex, 

number of physician visits and hospitalizations, the CCI (148), and any dispensations for oral 

glucocorticoids, prescribed NSAIDs, DMARDs, or immunosuppressant drugs. cDAGs were used 

to select confounding variables for model adjustments (Figure 2.2). 
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Figure 3.1 A schematic representation of the study design 

 

After satisfying the case definition of RD or IBD, patients were followed until (i) death, (ii) MS 

onset, (iii) termination of health coverage, or (iv) last date of available data. Among cases and 

matched general population controls, all anti-TNFα drugs approved by Health Canada for the 

treatment of RD or IBD and dispensed in two years prior to the index date were identified (A). 

To account for the latency of MS, a 60-day latency period was applied where the exposure 

assessment period was pushed back by 60 days (B). Baseline covariates were measured during 

the 360 days preceding the two years exposure assessment period.  

RD=rheumatic diseases; IBD= inflammatory bowel diseases; MS=multiple sclerosis; TNFα= 

tumor necrosis factor alpha 
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3.2.7 Statistical Analysis 

 

Baseline covariates between MS patients and controls were compared using descriptive 

statistics. A conditional logistic regression model was used to obtain IRRs of MS among users 

and non-users of anti-TNFα. Based on the cDAGs (Figure 2.2), in addition to matching 

variables, sex and CCI were further adjusted. Interaction effect of sex was evaluated by adding 

an interaction term anti-TNFα*sex in the conditional logistic regression model.  

Due to provincial data privacy mandates, we analyzed RD and IBD cohorts, separately, in 

each province. Then, a meta-analysis was conducted to obtain the pooled estimates across 

provinces using random-effects models. A test of heterogeneity using Cochrane’s Q statistic was 

performed (184), which describes the percentage of total variation across effect sizes due to 

heterogeneity rather than chance. An alpha level of P£0.05 was used to reject the null hypothesis 

that the IRRs were statistically the same across all provinces. We calculated the number of 

patients needed to be treated for one additional patient to be harmed (NNH) for case-control 

studies using the equation 1/[(OR-1) * unexposed event rate] (185).  

 

3.2.8 Sensitivity Analyses 

 

To further test the robustness of our results, besides the analysis on the risk of anti-TNFα 

use during a one-year period outlined earlier, two additional sensitivity analyses were performed. 

First, to account for possible reverse causality bias (which refers to a situation where early 

symptoms of the outcome could affect anti-TNFα use), a 60-day latency period was applied 

where the exposure assessment period was pushed back by 60 days (Figure 3.1 B). Specifically, 
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the first 60 days prior to the index date were disregarded. Second, to estimate the effect of 

unmeasured confounders (e.g., smoking or Epstein-Barr virus infection), an E-value was 

calculated (161,186). Specifically, an estimation of the minimum strength of association was 

calculated, that an unmeasured confounder would need to have with both the exposure and the 

outcome to fully explain away a specific exposure-outcome association (161,186).   

 SAS V.9.4 was used. Meta-analyses were done with HEpiMA V.2.3.   

 

3.2.9 Standard Protocol Approvals, Registrations, and Patient Consents 

 

No personally identifying information was made available as part of this study. 

Procedures used were in compliance with BC’s Freedom of Information and Privacy Protection 

Act. Ethics approval was obtained from the University of BC’s Clinical Research Ethics Board 

(H15-00887), the University of Calgary’s Conjoint Health Research Ethics Board (REB16-

2375), the University of Saskatchewan Biomedical Research Ethics Board (Bio-REB 2298), and 

the University of Manitoba Health Research Ethics Board (HS24393), which granted a waiver of 

informed consent because data are deidentified. 

 

3.2.10 Data Availability Statement 

 

Data for this study reside in limited-access secure research environments. The data 

cannot leave this secure research environment for legal and ethical reasons.  
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3.3 Results 

 

After excluding individuals with MS or any demyelinating events before the cohort entry 

date, in total, we identified 296,918 RD patients in BC and Manitoba combined (Figure 3.2). 

During follow-up, a total of 462 patients developed MS (80.1% female, mean [standard deviation 

{SD}] age, 47.4 [14.6] years) and were matched with 2,296 controls with RD (59.5% female, 

mean [SD] age, 47.4 [14.5]). Table 3.1 summarizes the baseline characteristics of the combined 

RD cohorts. Compared with controls, MS cases had a higher number of physician visits and 

hospitalizations, higher use of glucocorticoids, NSAIDs, and DMARDs, as well as higher CCI 

scores at baseline.
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Figure 3.2 Nested case-control inclusion criteria for the rheumatic disease cohorts among the four Canadian provinces. 

 

MS=multiple sclerosis
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Table 3.1 Baseline characteristics of the multiple sclerosis cases and matched controls among 
persons with rheumatic diseases in British Columbia and Manitoba, Canada 

  RD cohorts 
 

MS cases 

(N=462) 

Controls 

(N=2296) 

Variablesa 

Age, mean (SD), y 47.39 (14.56) 47.43 (14.50) 

Female, n (%) 370 (80.09) 1365 (59.45) 

Number of hospitalizations, mean (SD) 0.32 (0.73) 0.22 (0.64) 

Number of outpatient visits, mean (SD) 16.72 (17.68) 11.20 (13.22) 

Charlson Comorbidity Index, mean 

(SD) 

0.47 (0.97) 0.37 (0.88) 

Follow-up duration, mean (SD), days 1986.05 (1495.79) 1981.67 (1498.65) 

Glucocorticoid, n (%) 52 (11.26) 202 (8.80) 

NSAIDs, n (%) 158 (34.20) 668 (29.09) 

DMARDs, n (%) 68 (14.72) 279 (8.80) 

RD=rheumatic diseases; MS=multiple sclerosis; NSAIDs=nonsteroidal anti-inflammatory drugs; 

DMARDs=disease-modifying antirheumatic drugs.  

aAll baseline covariates were measured during 360 days preceding the exposure assessment 

period.  
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Among the 84,458 IBD patients from the four provinces combined (Figure 3.3), 190 

patients developed MS (69.5% female, mean [SD] age, 44.3 [12.3] years) during follow-up, and 

were matched with 943 controls with IBD (54.1% female, mean [SD] age, 44.2 [12.2]). Table 

3.2 summarizes the baseline characteristics of the IBD cohorts for the four provinces combined. 

Like the RD cohorts, MS cases had a higher number of physician visits and hospitalizations, 

higher use of glucocorticoids, and immunosuppressant drugs, as well as higher CCI scores when 

compared with controls, at baseline.  
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Figure 3.3 Nested case-control inclusion criteria for the inflammatory bowel diseases cohorts among the four Canadian provinces. 

 

MS=multiple sclerosis
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Table 3.2 Baseline characteristics for the multiple sclerosis cases and matched controls among 
persons with inflammatory bowel diseases in British Columbia, Alberta, Saskatchewan, and 
Manitoba, Canada 

 IBD cohorts 

 
MS cases 

(N=190) 

Controls 

(N=943) 

Variablesa 

Age, mean (SD), y 44.30 (12.34) 44.22 (12.23) 

Female, n (%) 132 (69.47%) 510 (54.08%) 

Number of hospitalizations, mean (SD) 0.60 (1.16) 0.42 (0.99) 

Number of outpatient visits, mean (SD) 16.82 (16.34) 12.21 (14.39) 

Charlson Comorbidity Index, mean (SD) 0.43 (1.15) 0.32 (0.96) 

Follow-up duration, mean (SD), days 1981.01 (1318.88) 1898.58 (1329.02) 

Glucocorticoid, n (%) 36 (18.95%) 159 (16.86%) 

NSAIDs, n (%) 63 (0.33%) 378 (0.40%) 

Immunosuppressant drugs, n (%) 29 (15.26%) 123 (13.04%) 

IBD=inflammatory bowel diseases; MS=multiple sclerosis; NSAIDs=nonsteroidal anti-

inflammatory drugs.  

aAll baseline covariates were measured during 360 days preceding the exposure assessment 

period.  
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We computed the crude incidence rate of MS among incident users of anti-TNFα with 

respect to MS in each province for the RD and IBD patients separately, during the entire follow-

up period. For RD, the crude incidence rate (95% CI) was 0.29 (0.16-0.48)/1,000 person-years 

for BC, and 0.15 (0.02-0.54)/1,000 person-years for Manitoba. For IBD, the crude incidence rate 

(95% CI) was 0.26 (0.09-0.61)/1,000 person-years for BC, 0.43 (0.25-0.68)/1,000 person-years 

for Alberta, 0.41 (0.11-1.05)/1,000 person-years for Saskatchewan, and 0.30 (0.04-1.08)/1,000 

person-years for Manitoba.    

In the RD cohorts, and across all provinces combined, 18 anti-TNFα users were observed 

among MS cases compared with 42 anti-TNFα users among controls in the two years prior to the 

index date (MS onset) (Table 3.3). After adjusting for sex and CCI, the corresponding fully 

adjusted IRR (95% CI) was 2.07 (1.12-3.80) for RD in BC and 1.69 (0.10-28.44) in Manitoba, 

resulting in a pooled matched IRR (95% CI) of 2.05 (1.13-3.72) for both RD cohorts combined 

(Table 3.3 and Figure 3.4). The p-value of the interaction term (anti-TNFα*sex) was not 

statistically significant. The pooled 2-year fully adjusted NNH was 2,268 for RD, meaning that 

2,268 patients needed to be treated for one additional patient to be harmed.  

In the IBD cohorts, and across all four provinces, 23 anti-TNFα users were observed 

among MS cases compared with 98 anti-TNFα users among controls (Table 3.3). After adjusting 

for sex and CCI, the corresponding fully adjusted IRR (95% CI) was 2.30 (0.69-7.68) for IBD in 

BC, 1.57 (0.84-2.96) in Alberta, 0.37 (0.04-3.23) in Saskatchewan, and 0.40 (0.01-3.30) in 

Manitoba, resulting in a pooled fully adjusted IRR (95% CI) of 1.35 (0.70-2.59) (Table 3.3 and 

Figure 3.4). The p-value of the interaction term (anti-TNFα*sex) was not statistically significant. 

Heterogeneity was not found between individual provinces with values of the Cochrane’s Q 

statistic all larger than 0.05 among the RD and IBD cohorts across all provinces (Figure 3.4). 
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Table 3.3 Pooled associations between anti-tumor necrosis factor alpha and subsequent multiple 
sclerosis during the 2-year exposure assessment period in British Columbia, Alberta, 
Saskatchewan, and Manitoba, Canada 

Category MS cases  Controls 

Pooled RD cohorta 

Total No. of MS cases 462 2296 

Total No. of anti-TNFα users 18 42 

Pooled crude incidence rate ratio (95% CI) 2.22 (1.24-3.96) 1.00 (ref) 

Pooled adjusted incidence rate ratio (95% CI)c 2.05 (1.13-3.72) 1.00 (ref) 

Pooled IBD cohortb 

Total No. of MS cases 190 943 

Total No. of anti-TNFα users 23 98 

Pooled crude incidence rate ratio (95% CI) 1.22 (0.61-2.41) 1.00 (ref) 

Pooled adjusted incidence rate ratio (95% CI)c 1.35 (0.70-2.59) 1.00 (ref) 

RD=rheumatic disease; IBD=inflammatory bowel diseases; MS=multiple sclerosis; 

TNFα=tumor necrosis factor alpha 

aThe RD cohort results were available in British Columbia and Manitoba 

bThe IBD cohort results were available in British Columbia, Alberta, Saskatchewan, and 

Manitoba 

cIn addition to matching variables (i.e., birth year±3 years, disease duration, and the health 

authority), the conditional logistic regression model was further adjusted for sex and the 

Charlson Comorbidity Index at baseline 
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Figure 3.4 The association between anti-tumor necrosis factor alpha and multiple sclerosis 
among four Canadian provinces 

 

Adjusted IRR and pooled estimates for the association between anti-TNFα and MS in the RD 

and IBD cohorts, in BC, AB, SK, and MB, Canada 

IRR=incidence rate ratio; TNFα= tumor necrosis factor alpha; MS=multiple sclerosis; 

RD=rheumatic diseases; IBD=inflammatory bowel diseases; BC=British Columbia; 

AB=Alberta; SK=Saskatchewan; MB=Manitoba 
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Similar results were found in the sensitivity analyses (Table 3.4 and Table 3.5). Using 

the E-value metric, the observed IRR for RD would be explained away by an unmeasured 

confounder that was associated with both anti-TNFα and MS by a RR of at least 3.52-fold each, 

after adjusting for potential confounders.  
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Table 3.4 Pooled associations between anti-tumor necrosis factor alpha and subsequent multiple 
sclerosis during the 1-year exposure assessment period in British Columbia, Alberta, 
Saskatchewan, and Manitoba, Canada 

Category MS cases  Controls 

Pooled RD cohorta 

Total No. of MS cases 462 2296 

Total No. of anti-TNFα users 18 38 

Pooled crude incidence rate ratio (95% CI) 2.43 (1.35-4.37) 1.00 (ref) 

Pooled adjusted incidence rate ratio (95% CI)c 2.24 (1.22-4.11) 1.00 (ref) 

Pooled IBD cohortb 

Total No. of MS cases 190 943 

Total No. of anti-TNFα users 20 90 

Pooled crude incidence rate ratio (95% CI) 1.19 (0.63-2.27) 1.00 (ref) 

Pooled adjusted incidence rate ratio (95% CI)c 1.29 (0.70-2.36) 1.00 (ref) 

Abbreviations: RD, rheumatic disease; IBD, inflammatory bowel diseases; MS, multiple 

sclerosis; TNFα, tumor necrosis factor alpha 

aThe RD cohort results were available in British Columbia and Manitoba 

bThe IBD cohort results were available in British Columbia, Alberta, Saskatchewan, and 

Manitoba 

cIn addition to matching variables (i.e., birth year±3 years, disease duration, and the health 

authority), the conditional logistic regression model was further adjusted for sex and Charlson 

Comorbidity Index 
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Table 3.5 Pooled associations between anti-tumor necrosis factor alpha and subsequent multiple 
sclerosis after applied a 60-day latency period on the 2-year exposure assessment period in 
British Columbia, Alberta, Saskatchewan, and Manitoba, Canada 

Category MS cases  Controls 

Pooled RD cohorta 

Total No. of MS cases 462 2296 

Total No. of anti-TNFα users 18 42 

Pooled crude incidence rate ratio (95% CI) 2.25 (1.25-4.03) 1.00 (ref) 

Pooled adjusted incidence rate ratio (95% CI)c 2.16 (1.18-3.94) 1.00 (ref) 

Pooled IBD cohortb 

Total No. of MS cases 190 943 

Total No. of anti-TNFα users 23 93 

Pooled crude incidence rate ratio (95% CI) 1.35 (0.81-2.25) 1.00 (ref) 

Pooled adjusted incidence rate ratio (95% CI)c 1.51 (0.89-2.56) 1.00 (ref) 

Abbreviations: RD, rheumatic disease; IBD, inflammatory bowel diseases; MS, multiple 

sclerosis; TNFα, tumor necrosis factor alpha 

aThe RD cohort results were available in British Columbia and Manitoba 

bThe IBD cohort results were available in British Columbia, Alberta, Saskatchewan, and 

Manitoba 

cIn addition to matching variables (i.e., birth year±3 years, disease duration, and the health 

authority), the conditional logistic regression model was further adjusted for sex and Charlson 

Comorbidity Index 
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3.4 Discussion 

 

In this multi-provincial Canadian population-based study, we found the use of anti-TNFα 

was associated with an increased risk of MS compared to non-users for RD. The finding of an 

increased MS risk could help clinicians and RD patients when considering use of anti-TNFα to 

make more informed treatment decisions. We also found an increased risk of MS among IBD 

patients but given the observational nature of the study and the wide CIs, further studies are 

needed to validate these results.  

 Previous studies linking anti-TNFα use to MS risk have been somewhat mixed. For 

example, in a double-blind, placebo-controlled trial, the drug lenercept was administrated to 168 

patients with clinically definite or laboratory supported definite MS. After 24 weeks, lenercept 

users reported more MS-related exacerbations than the placebo group (p=0.007), resulting in the 

manufacturer’s decision to terminate the study early (88). An NCC study that used medical 

records of RD or IBD patients treated at one of three Mayo Clinics in the USA (2003-2019) (84) 

found that the odds of inflammatory demyelinating events were three times higher among anti-

TNFα users when compared with non-users among chronic immune-mediated diseases. The 

authors did not specifically examine the association between anti-TNFα and MS, but instead 

looked at all types of inflammatory demyelinating events, and combined RD and IBD, due to the 

relatively small number of individuals included (N=212). Further, since the Mayo Clinic is a 

tertiary referral clinic center and only includes insured patients, the study may be subject to 

referral bias which may also reduce the generalizability of findings. In the same year, others 

suggested no significantly increased risk of MS in users of anti-TNFα compared with non-users 

among RD patients (RR=1.02, 95% CI, 0.23-4.46) in a cohort study using the nationwide clinical 
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rheumatology registers in Sweden and Denmark (2000-2017) (81). However, only six MS cases 

were identified among anti-TNFα users in Sweden and four in Denmark, resulting in rather wide 

CIs. The heterogeneity from previous studies can make the results challenging for clinicians and 

patients to interpret. Thus, our large, population-based, multi-province study, which used a 

common protocol to combine regions contributes substantially to the understanding of MS risk in 

persons using anti-TNFα.  

 The mechanism for anti-TNFα potentially causing MS in persons with RD (and possibly 

IBD) is not fully understood. Current hypothesized mechanisms involve (72) (1) the increased 

demyelination through increased ingress of peripheral autoreactive T-cells into the CNS related 

to anti-TNFα; (2) the aggravation effect of anti-TNFα on CNS demyelination by decreasing 

TNFR2 which is important for the myelin repair; (3) anti-TNFα can also downregulate IL-10 and 

upregulate IL-12 and interferon- γ, which can demonstrate a profile like MS; (4) anti-TNFα may 

not deactivate TNFα in the CNS, facilitating a relatively high concentration of TNFα; (5) MS 

patients may demonstrate increased serum neutralization capacity of TNFα; and (6) anti-TNFα 

may also increase the risk of an underlying latent infection, which could lead to demyelination.  

 The strengths of the study were the use of large Canadian administrative datasets that 

included the entire RD and IBD cohorts from up to four provinces, limiting selection bias and 

maximizing the generalizability of findings. Selecting confounding variables based on cDAGs 

enabled our study to be less prone to confounding by indication. Moreover, we used a highly 

accurate case definition for MS. Finally, implementation of a MS latency period in the analysis 

may help to control for reverse causality bias. 

The limitations deserve comment. The main contribution to these results was from BC 

and Alberta. Data from the provinces of Saskatchewan and Manitoba had lower weights mainly 
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due to smaller sample sizes, hence relatively lower precision (Figure 3.4). The association 

between anti-TNFα and MS risk was not consistent in the IBD cohort, possibly due to the 

smaller cohort size or different disease states. As with all pharmacoepidemiologic studies using 

health administrative databases, we only have information on dispensation of prescription drugs 

and not their actual intake. However, since anti-TNFα agents are administered intravenously or 

subcutaneously and require special approvals for government-funded access, misclassification of 

anti-TNFα use is highly unlikely. We did not have information on lifestyle-related factors such 

as smoking. However, through our sensitivity analysis using the E-value, the observed IRR for 

RD would be hard to explain away. Health administrative databases capture information on 

diagnosis, but not necessarily on MS symptoms (which could indicate early disease onset). A  

previous study has shown that the prodromal phase to MS might present 5 or more years prior to 

the typical symptoms of demyelinating disease (66). As such, subjects exhibiting early MS 

symptoms or MS prodrome who have not yet been diagnosed might be misclassified as controls. 

However, this type of misclassification which is nondifferential usually leads to an 

underestimation of the risk of MS with the use of anti-TNFα. It is also possible that our results 

may be subject to ascertainment bias. Specifically, there might be more screening and 

surveillance of demyelination among users of anti-TNFα compared with non-users. However, 

because of the concern that anti-TNFα use might lead to MS, clinicians might be withholding 

anti-TNFα to patients with symptoms that might resemble MS or those with family history of 

MS. Thus, confounding by contraindication might also mean that our estimates are conservative, 

and our results are potentially an underestimation of the true risk.  
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3.5 Conclusion 

 

In conclusion, this is the largest population-based study to date utilizing health 

administrative datasets from four Canadian provinces to demonstrate that the use of anti-TNFα 

was associated with an increased risk of incident MS among patients with RD when compared 

with non-users. The finding of the increased MS risk could help clinicians and patients with RD 

who require anti-TNFα to make better informed decisions regarding treatment. Specifically, 

clinicians and patients can weigh the risk-quality of life trade-offs between using an anti-TNFα 

drug or choosing other available alternative medications that are comparable in efficacy, but 

have not been associated with MS (187,188). 
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Chapter 4: ASSESSING ANALYTICAL METHODS FOR ADDRESSING 

SPARSE DATA BIAS: A CASE STUDY IN PHARMACOEPIDEMIOLOGY 

UTILIZING CONDITIONAL LOGISTIC REGRESSION 

 

4.1 Introduction 

 

Sparse data bias is a unique type of bias that has traditionally received less attention than 

other classical forms of bias in epidemiologic research including confounding, selection bias, and 

measurement error. Sparse data bias can arise when calculating the ML estimates of ratio with 

low case counts for different exposure, covariate, or outcome levels, resulting in effect estimates 

that tend to deviate from the null, hence the term "sparse data bias" (96). The implications of this 

bias in pharmacoepidemiologic research can be significant, as overestimation of adverse effects 

linked to widely used medications can lead to serious clinical and public health consequences. 

For example, an inflated estimation of a particular drug’s adverse events could discourage 

patients from adhering to a possibly effective medication, leading to potentially harmful health 

outcomes.  

To date, pharmacoepidemiologic studies addressing sparse data bias are scant. 

Specifically, there is a paucity of studies that have examined sparse data bias in matched case-

control studies. Although conditional logistic regression that is used in matched case-control 

studies was originally designed to mitigate the sparse data bias in logistic regression analysis 

(97), it still necessitates large sample sizes to be able to achieve this purpose. Moreover, 

conditional logistic models can still show significant bias if the ratio of events per variable 



 

 

81 

(computed by dividing the number of events by the number of covariates) is excessively low 

(96).  

As an example of a sparse data issue, members of our team recently published an NCC 

study investigating the association between anti- TNFα and the risk of MS (126). This study 

reported an adjusted RR of 0.40 (95% CI 0.01-3.30) in a stratified analysis for the association 

between anti-TNFα and MS. To tackle the issue of sparse data, we will use data from this study 

as an example to illustrate how several methods can be used to handle sparse data bias and 

evaluate their performance relative to one another. 

Several methods have been proposed to address sparse data bias, including: (1) Firth bias 

adjustment (98); (2) penalization via the approximate Bayesian method-data augmentation (99); 

(3) MCMC Bayesian analyses (100); (4) LASSO regression (101); (5) Ridge regression (102). It 

has been demonstrated that Bayesian methods and their equivalent approaches offer significant 

benefits over conventional frequentist methods (105). Moreover, data augmentation involves a 

similar number of steps and produces comparable results to MCMC Bayesian analyses while 

running faster (105). However, no studies have compared the performance of these methods in 

the context of a pharmacoepidemiologic study.  

The objectives of this study are: (1) to compare the estimation results on the risk of MS 

associated with the use of anti-TNFα using a real-life data in a sparse data setting with 

conditional logistic regression after applying methods such as Firth bias adjustment, data 

augmentation, MCMC Bayesian analyses, LASSO regression, and Ridge regression; and (2) to 

evaluate the performance of these sparse data bias adjustment approaches through simulation 

studies.  
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4.2 Methods 

 

4.2.1 Data Source and Cohort Definition 

 

We utilized a real-world dataset to compare results from different methods, and our 

simulation data was also designed to emulate the large population-based health database from the 

province of BC, Canada (126). Population Data BC provides researchers with access to data on 

all provincially funded health care services since 1990, reflecting the universal health care 

coverage available to all residents in the province (population ~ 4.7 million). This includes data 

on all healthcare professional visits (111), hospitalizations (112), demographic data (113), BC 

cancer registry (114), and vital statistics (115). Furthermore, Population Data BC facilitated 

linkage with the comprehensive prescription drug database PharmaNet (116), which captures all 

outpatient  and community dispensed medications for all residents since 1996. Numerous 

population-based studies have been successfully conducted using health administrative data in  

BC (118,119,126).  

To examine the risk of anti-TNFα use with MS, we undertook an NCC study. We initially 

created a cohort of patients with IBD residing in BC between January 2000 and December 2006, 

identified using validated case definitions. Any anti-TNFα dispensation in the two years prior to 

the index date (MS onset) was identified. Incident-onset MS cases were ascertained using a 

validated algorithm. Up to five controls were matched to each MS case based on birth year ±3 

years, disease duration, and health authority (based on region of residence). We call this cohort 

the anti-TNFα and MS cohort. A detailed description of the data and study design can be found 
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in Chapter 3 (126). In addition to matching variables, confounding variables for the association 

between anti-TNFα and MS included sex and the CCI (148).  

 

4.2.2 Description of the Methods 

 

4.2.2.1 Firth Bias Adjustment 

 

Firth bias adjustment is a statistical correction method used to mitigate the bias in ML 

estimates, especially in situations where sample sizes are small or data is sparse; It achieves the 

bias adjustment by incorporating a penalty term into the likelihood function (103), particularly 

for exponential family models (98). This penalty term can be viewed as an analogue to the 

Jeffreys prior, which is a non-informative prior that ensures the posterior distribution is proper 

even in the case of small sample sizes, thus avoiding infinite estimates (98). Firth can be applied 

to a variety of models beyond logistic regression, including generalized linear models and Cox 

regression models (189). The relationship between the partial likelihood in Cox regression and 

conditional likelihood for matched case-control studies suggests that the same type of 

penalization used in Firth's method may also be applicable to conditional logistic regression 

models (103). It has been shown that the profile likelihood CI is statistically more robust than the 

Wald CI when dealing with sparse data (190).  
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4.2.2.2 Approximate Bayesian Method-Data Augmentation 

 

Most statistical analyses adopt a frequentist approach. In this approach, the likelihood of 

observing the given data is computed for various parameter values. We then use this likelihood 

to make decisions about the model parameters, typically selecting the parameters that maximize 

this likelihood. In contrast, Bayesian methods combine what we previously believed about the 

model parameters (prior probabilities) with the current data. From this combination, we get 

updated probabilities called 'posterior probabilities' for those parameters (105). By selecting 

appropriate prior distributions from the literature, Bayesian techniques can surpass traditional 

frequentist methods in terms of mean squared error (MSE) of estimates, particularly in situations 

where the data are sparse (105). Data augmentation is an approximate Bayesian analysis method 

that involves artificially increasing the size of a dataset by creating augmentations of existing 

data, enhancing its diversity and potentially improving model training and accuracy. The process 

of data augmentation commences with the conversion of prior distributions into prior-data 

records. By incorporating these records, we can employ traditional analysis techniques on an 

enriched dataset, allowing for more robust and comprehensive results. Data augmentation 

produces results that are comparable to those obtained from analyses based on posterior 

sampling (99), but runs much faster than simulation methods such as MCMC which we will 

introduce below.  

 In order to construct the prior data, we need to begin by specifying an interval to ensure 

the true effect is not huge (96). For example, based on previous studies (84,86,87,126), the 

pooled RR or ORs for anti-TNFα and MS was 1.92 (95% CI 1.34-2.75) among patients with 

IBD. To ensure that the prior intervals encompass the full range of reasonable possibilities for 
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the effect of for anti-TNFα (105) , we choose a normal distribution prior with a 95% CI of 0.5 

and 8. This led to a prior centre of bprior of ln(ORprior)=[ln(0.5)+ln(8)]/2=ln(2) and a variance of 

nprior={[ln(8)-ln(0.5)]/(2*1.96)}2=0.5. We also need to set additional variables in the prior data. 

The explanation and values for those additional variables have been listed in the Appendix B. 

Table 1.   

After setting the prior data, a Cox proportional-hazard regression model was used to get 

the posterior estimates for the conditional logistic regression model, along with the profile 

likelihood intervals (105).  

 

4.2.2.3 Markov Chain Monte Carlo Bayesian Analyses 

 

MCMC is a computer-driven sampling method that characterizes a distribution by 

randomly drawing values from it, without the need to know all of its mathematical properties 

(107). The term MCMC combines two concepts: Monte Carlo and Markov Chain (107). 

Monte Carlo simulation refers to the estimation of distribution properties by examining 

random samples. For instance, to find the mean of a normal distribution, instead of deriving it 

directly from the distribution's equations, the Monte Carlo approach would involve obtaining a 

large number of random draws from the distribution and computing the sample mean of those 

draws. This method is particularly beneficial when generating random samples is 

straightforward; it simplifies the computational process by circumventing the direct evaluation of 

complex underlying equations, thus reducing computational time and resource demands (107).  

Markov Chain pertains to the unique sequential process employed to generate these random 

draws. Each random draw serves as a steppingstone for generating the next draw, such that each 
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new draw depends on the one preceding it, without relying on any draws further back in the 

sequence (107). 

MCMC has been proven to be a valuable tool in Bayesian inference (100), especially 

when dealing with complex posterior distributions that are challenging to analyze directly. With 

MCMC, one can estimate various aspects of the posterior distribution that cannot be evaluated 

analytically. Bayesian inference leverages observed data to update prior beliefs about one or 

more parameters, leading to a new set of posterior beliefs about those same parameters (107). 

Like the data augmentation approach, MCMC requires extra labour beyond standard 

programming. To be comparable with the data augmentation demonstrated above, a normal 

distribution prior of the anti-TNFα regressor with mean of ln(2) and variance of 0.5 was chosen. 

As the data augmentation approach, after setting the prior distribution, the Cox proportional-

hazard regression model was used to get the posterior estimates as well as the profile likelihood 

intervals for the conditional logistic regression.  

To assess the robustness of our results, we performed a sensitivity analysis to evaluate the 

results of data augmentation and MCMC methods after applying a wider and weaker normal 

distribution prior with a 95% CI of 0.1 and 16. This 95 % CI leads to a prior mean of ln(1.265) 

and a variance of 1.675.  

 

4.2.2.4 Least Absolute Shrinkage and Selection Operator 

 

The LASSO method adjusts the linear regression model by introducing a penalty for the 

size of the coefficients. This ensures that coefficients don't become too large and potentially 

overfit the data (109). LASSO regression is also known as L1 regularization. In conditional 
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logistic regression, the LASSO method involves maximizing the conditional log-likelihood 

function penalized by the L1- norm of the unknown coefficient vector, or equivalently, 

minimizing the negative objective function (191).  This penalty term helps to shrink the 

coefficients of the variables that are not important or relevant to the outcome down to zero, 

effectively eliminating them from the model (101). By shrinking the coefficients of the irrelevant 

variables to zero, LASSO can help to identify the variables that are most important for predicting 

the outcome. LASSO mitigates the impact of sparse data bias by shrinking the effect estimates. 

In the effect size model, there's a possibility that the coefficient of our main exposure will shrink 

to zero when using LASSO regression. Therefore, LASSO is more commonly used when the 

primary goal is prediction.  

 

4.2.2.5 Ridge Regression Models 

 

In contrast, Ridge regression which is also referred to as L2 regularization adds a penalty 

term proportional to the square of the coefficients (101). This has the effect of shrinking the 

coefficients of less important variables towards zero, but they are still retained in the model with 

smaller weights (101). Like LASSO regression, the Ridge regression is also more commonly 

used when the research aim is prediction. The main difference between LASSO and Ridge is that 

LASSO tends to produce sparse models, where only a subset of the variables is included, while 

Ridge tends to produce dense models, where all variables are included, but some have smaller 

weights. There are a few publicly available R packages that conduct the LASSO and Ridge 

regression for conditional logistic models (191). In this paper, we used the clogitL1 method 

(192) which enables researchers to conduct the many-to-many match in some circumstances.  
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4.3 Results 

 

Among 34,294 IBD patients, a total of 26 MS patients with index date before December 

2006 were matched to 129 controls on birth year ±3 years, disease duration, and health authority 

(based on region of residence). One anti-TNFα user was observed among MS cases compared 

with one anti-TNFα user among controls. Upon adjusting for sex and the CCI, the fully adjusted 

OR (95% CI) in the conditional logistic regression model without sparse data bias adjustment 

was 5.31 (0.18 to 161.63) (Table 4.1). This estimate was indicative of sparse data bias, as 

indicated from the wide CIs. After applying the Firth bias adjustment method, the corresponding 

OR (95% CI) was 5.08 (0.35-79.57). Utilizing the data augmentation method with a prior OR 

(95% CI) of 2 (0.5-8), the fully adjusted OR (95% Credible Interval) equated to 2.37 (0.66-8.35). 

Implementing the MCMC sparse data adjustment method with a prior mean of ln(2), and a prior 

variance of 0.5, the fully adjusted OR (95% Credible Interval) was 2.36 (0.66 to 8.33). 

Conversely, the LASSO approach resulted in a coefficient of zero for the anti-TNFα variable, 

indicating its exclusion from the model. This outcome suggests that, within the context of the 

other variables in the model, anti-TNFα does not provide additional predictive value and is 

deemed non-essential by the algorithm's regularization process, which penalizes less informative 

predictors as part of its optimization. For Ridge regression, the OR (95% CI) was 1.06 (0.98 to 

1.15). 

During the sensitivity analysis, the data augmentation method was applied to the anti-

TNFα and MS cohort (Table 4.1) using a prior OR (95% CI) of 1.265 (0.1 to 16). The resulting 

fully adjusted OR (95% Credible Interval) was 2.28 (0.32-16.38). In a similar manner, the 
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MCMC method with a prior mean of ln(1.265) and a variance of 1.675 produced an OR (95% 

Credible Interval) of 2.22 (0.29-15.31) (Table 4.1). 

 

Table 4.1 Odds ratios for the association between anti-tumor necrosis factor alpha and multiple 
sclerosis among patients with inflammatory bowel diseases in the real-world data using 
conditional logistic regression with and without sparse data bias adjustment 

 Adjusted OR 

(95% limits) 

ML method 5.31 (0.18 to 161.63) 

Firth 5.08 (0.35-79.57) 

Data augmentation with a prior OR (95% CI) of 2 (0.5 to 8) 2.37 (0.66-8.35) 

MCMC with prior a mean of ln(2) and variance of 0.5 2.36 (0.66 to 8.33) 

LASSO 1.0 (1.0-1.0)  

Ridge 1.06 (0.98 to 1.15) 

Data Augmentation with a prior OR (95% CI) of 1.265 (0.1 to 16) 2.28 (0.32-16.38) 

MCMC with a prior mean of ln(1.265) and a variance of 1.675 2.22 (0.29-15.31) 

ML=maximum likelihood; OR=odds ratio; MCMC=Markov Chain Monte Carlo. 

 

4.4 Simulation Study 

 

Our goal was to compare the performance of several methods using simulated datasets, 

including ML estimate method, Firth, data augmentation, MCMC, LASSO, and Ridge, in a 

sparse data setting, to identify the most robust method. We conducted simulation studies using 

SAS 9.4 (SAS Institute, Cary, NC, USA) and RStudio (Version 1.3.1093). 
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4.4.1 Data-generating Mechanism 

 

We generated the simulation dataset based on the anti-TNFα and MS cohort described 

above. The dataset contains a source population of 34,294 (derived from the total number of IBD 

patients in the real-life data). The distribution of the following variables originated from our 

NCC study. Specifically, anti-TNFα and sex followed a Bernoulli distribution with probabilities 

of panti-TNFα=0.0129, pmale=0.37, respectively. Age followed a normal distribution with a mean (μ) 

of 48 and a SD (σ) of 12. The CCI (148) is modeled with a multinomial distribution, denoted by 

Multi(0.82, 0.13, 0.03, 0.003, 0.003, 0.003,0.003, 0.005, 0.001, 0.002). This distribution 

corresponds to the actual set of values observed in the data, ranging from 0 to 9. The distribution 

of patients accessing health care across the five health authority areas was modeled using a 

multinomial distribution, with the probabilities for each area set with Multi(0.16, 0.37, 0.21, 

0.16, 0.11). The number of years a person has had the disease, as determined by the year of IBD 

index date, follows a multinomial distribution. This distribution is denoted by Multi(0.036, 

0.143, 0.107, 0.107, 0.107, 0.071, 0.107, 0.036, 0.036, 0.071, 0.071, 0.036, 0.036, 0.036) and 

corresponds to the distinct years ranging from 1990 to 2003 as observed in the actual data. All 

variables included in the statistical model were treated as quantitative variables. 

After creating the above variables in the simulated dataset, we established the true 

estimate as 0.65 (OR=1.92) from the pooled results in existing studies for anti-TNFα and MS risk 

among IBD patients. Based on the real-life data, the coefficient estimates for other variables 

were as follows: age at -0.04, sex at 1.00, CCI at 0.21, health authority at 0.01, and year of the 

IBD index date at 0.02. 
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 The binary outcome for MS was generated through a Bernoulli distribution, with the 

probability represented as pMS=exp(b0+bTXi)/[1+exp((b0+bTXi)]. In the simulation, to ensure that 

the simulated datasets exhibit similar levels of sparsity and the related issues as the real-world 

dataset, we determined b0 based on the expected number of events (26 MS cases in our original 

cohort), true estimates, and the probability of covariates, arriving at a b0 value of -6.30.  

In order to generate the matched case-control data, we created a matched sample by 

random matching of approximately 26 MS cases with up to five non-MS controls, based on age, 

years of disease duration, and the same health authority within the source population. We then 

evaluated the coefficient estimate of x anti-TNFα (also referred to as the target) in the simulated 

matched sample, denoted as b anti-TNFα or the posterior median of b anti-TNFα, using methods for 

comparison, all of which utilized the conditional logistic regression model. This process was 

repeated 1,000 times, following the previously outlined procedure and resulting in 1000 target 

estimates.  

 

4.4.2 Performance Measures 

 

We computed the bias for the anti-TNFα estimate, defined as the difference between the 

estimated b anti-TNFα (or the posterior median of b anti-TNFα) and the true estimate. We also 

calculated the empirical standard error, which estimates the SD of the anti-TNFα estimate 

across the 1,000 replications. Furthermore, we determined the MSE of the estimate, which 

assesses the accuracy of the estimates by measuring their squared deviation from the true 

parameter. Additionally, since performance measures are themselves subject to inaccuracy, we 
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reported the Monte Carlo standard error (MCSE) to measure the uncertainty resulting from a 

finite number of simulation repetitions. The detailed calculations of these measurements are 

provided in Table 4.2. 

 

Table 4.2 Summary statistics for performance measurement of the simulation study 

Summary Statistics Calculation 

bias 1
"sim

#(%&! − %
"sim

!#$
) 

Monte Carlo SE for bias 

)
1

"sim − 1* (%&! − %̅)%"sim
!#$
"sim

 

empirical SE 

) 1
"sim − 1

#(%&! − %̅)%
"sim

!#$
 

Monte Carlo SE for empirical SE empirical SE,
-2("sim − 1)

 

MSE 1
"sim

#(%&! − %)%
"sim

!#$
 

Monte Carlo SE for MSE 
/* [(%&! − %)% −123,]%"sim

!#$
"sim("sim − 1)

 

SE=standard error; MSE=mean squared error 
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4.4.3 Results from the Simulation Study 

 

Figure 4.1 and Table 4.3 encapsulate the performance evaluation of six analytical 

methods - ML estimate, Firth, data augmentation, MCMC, LASSO, and Ridge - assessed on a set 

of 1,000 simulated datasets. Among the array of methods evaluated, the ML method shows a 

significant bias (MCSE) of -5.387 (0.340) and a MSE of 130.620 (3.639), indicating poor 

performance. In comparison, LASSO and Ridge have a smaller bias and MSE than ML. For the 

Firth method, the bias (MCSE) in point estimates is relatively low at 0.227 (0.038). The MSE 

(MCSE) is at 1.302 (0.080).  The empirical standard error (MCSE) for Firth is 1.119 (0.027), 

which is higher than data augmentation and MCMC, but significantly lower than that of the ML 

method. Data augmentation and MCMC outperformed the others on the measurement of bias and 

MSE. The bias (MCSE) for data augmentation was 0.022 (0.008) and was 0.010 (0.010) for 

MCMC. The MSE (MCSE) for data augmentation and MCMC was found to be 0.059 (0.003) 

and 0.071 (0.003), respectively. Upon evaluation of the empirical standard error (MCSE), it was 

observed that the data augmentation and MCMC methods achieved values of 0.242 (0.005) and 

0.267 (0.006), respectively. 

 

 

 

 

 

 



 

 

94 

Figure 4.1 Bias, mean square error, and empirical standard error with Monte Carlo standard 
error of banti-TNFα for the Maximum likelihood method, Firth, data augmentation, Markov Chain 
Monte Carlo, Least Absolute Shrinkage and Selection Operator, and Ridge comparison over 
1,000 replications. 

 
MSE=mean squared error; MCMC= Markov Chain Monte Carlo; aug=augmentation; 
ML=maximum likelihood; LASSO= Least Absolute Shrinkage and Selection Operator 
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Table 4.3 Bias, mean squared error, and empirical standard error with Monte Carlo standard 
error for maximum likelihood method, Firth method, data augmentation with a prior odds ratio 
(95% CI) of 2 (0.5 to 8), Markov Chain Monte Carlo method with a prior mean of ln(2) and 
variance of 0.5, Least Absolute Shrinkage and Selection Operator and Ridge derived from the 
1000 simulated datasets. 

 Sample 

Size 

Bias in point 

estimate (MCSE) 

MSE (MCSE) Empirical standard 

error (MCSE) 

ML 1000 -5.387 (0.340) 130.620 

(3.639) 

10.085 (0.241) 

Firth 1000 0.227 (0.038) 1.302 (0.080) 1.119 (0.027)  

Data 

Augmentation 

1000 0.022 (0.008) 0.059 (0.003) 0.242 (0.005) 

MCMC 1000 0.010 (0.010) 0.071 (0.003) 0.267 (0.006) 

LASSO 1000 -1.730 (0.135) 

 

21.259 (1.578) 4.276 (0.096) 

Ridge 1000 -0.638 (0.002) 0.412 (0.002) 

 

0.066 (0.002) 

 

MSE=mean squared error; MCSE=Monte Carlo standard error; ML=maximum likelihood; 

OR=odds ratio; MCMC=Markov Chain Monte Carlo; LASSO= Least Absolute Shrinkage and 

Selection Operator 
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4.5 Discussion 

 

We investigated the performance of a number of strategies available to tackle sparse data 

bias in an NCC study that yielded estimates indicative of sparse data bias from a conditional 

logistic regression model. When the event counts are low and the distribution of the relevant 

covariate is considerably uneven, the ML estimate and LASSO techniques exhibited substantial 

bias in the corresponding MSE, and empirical standard error. Data augmentation and MCMC 

approaches demonstrated the best performance with the lowest bias and MSE. Firth and Ridge 

methods yielded commendable outcomes, showcasing lower bias, MSE, and empirical standard 

error when compared against ML and LASSO. However, it didn't outperform Bayesian 

approaches. While the Firth penalty aligns with the Jeffreys prior in Bayesian analysis, the 

Jeffreys prior underlying the Firth penalty can generate spurious estimates that fall outside the 

range of both the prior median and the ML estimates (189). Therefore, the application of Firth's 

method does not guarantee effectively diminishing the biased estimation of the OR with sparse 

data.  

When utilizing LASSO and Ridge regression in effect size models to investigate the 

causal effect of a target, it is essential to be aware of their inherent risks and limitations. In order 

to maximize the conditional log-likelihood function, LASSO is known for pushing some 

coefficients to zero, resulting in a sparse model. As observed in Table 4.1, when applying 

LASSO to anti-TNFα and MS cohort, it sets the effect of anti-TNFα to zero in that dataset. Even 

though Ridge regression shrinks coefficients towards zero without completely eliminating them, 

it does not fully resolve the issue and can lead to an underestimation of the true effect sizes in the 
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model. Therefore, both LASSO and Ridge regression are more commonly used in predictive 

models, and might not be an optimal method for causal questions.  

The selection of priors in Bayesian or approximate Bayesian analyses can be contentious 

due to the subjective nature of defining their distribution. In data augmentation, we chose a prior 

OR (95% CI) of 2 (0.5 to 8), and for the MCMC method, we used a prior mean of ln(2) and a 

variance of 0.5, based on the results of a meta-analysis from previous studies. As it is 

recommended to consider a broader prior interval, resulting in weaker penalties (96), we applied 

a wider and weaker prior interval in the sensitivity analysis with OR (95% CI) of 1.265 (0.1 to 

16) in data augmentation and a prior mean of ln(1.265) and a variance of 1.675 in the MCMC 

analysis. The ORs for the association between anti-TNFα and MS in the anti-TNFα and MS 

cohort remained similar.  

The publication of pharmacoepidemiologic studies prone to sparse data bias will continue 

to grow, particularly with studies that aim to quantify rare adverse events. The methods to 

combat sparse data bias, as discussed in this paper, are still underutilized. The results of our 

study demonstrate that pharmacoepidemiologic studies with sparse data bias, especially those 

using conditional logistic regression, can employ methods like data augmentation and MCMC 

with carefully chosen priors to tackle the sparse data issue.  
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Chapter 5: DISCUSSION AND CONCLUSIONS 

 

The concluding chapter of this thesis wraps up the work by summarizing the key 

findings, evaluating the strengths and limitations, outlining the implications for clinical practice, 

and suggesting avenues for future research. 

 

5.1 Summary of Key Findings 

 

This dissertation unfolds through three sequential studies that scrutinize the risk of MS 

linked to the use of anti-TNFα in individuals with RD and IBD, identify potential 

methodological issues, and develop strategies to address these issues. In Chapter 2 (193), I delve 

into the concepts of cDAGs, demonstrating how they help researchers identify various biases like 

confounders, mediators, and collider-stratification bias. Through a case study, the process of 

crafting a cDAG to understand the causal relationship between anti-TNFα and the likelihood of 

MS was illustrated. The chapter also sheds light on potential biases in existing literature that 

might have influenced study outcomes pertaining to anti-TNFα and the risk of MS, such as 

confounding, contraindication-related confounding, and biases stemming from measurement 

inaccuracies. What sets this review apart is its novel use of cDAGs to delve into the connection 

between anti-TNFα and MS, making it an indispensable guide, especially for those in research 

and clinical sectors unfamiliar with these techniques. By scrutinizing biases in earlier research 

concerning anti-TNFα and MS, this review clarifies past inconsistencies and offers crucial 

insights to improve the accuracy of subsequent studies in this domain. 
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In Chapter 3 (126), this largest population-based study to date quantified the risk of MS 

associated with the use of anti-TNFα, beginning with the compilation of a substantial cohort 

from four Canadian provinces, consisting of 296,918 patients with RD and 84,458 with IBD. 

Subsequently, I carried out an NCC study within these RD and IBD populations. Incident-onset 

MS cases were ascertained using a validated algorithm (122). Up to five controls were matched 

to each MS case based on birth year ±3 years, disease duration, and health authority (based on 

region of residence) by using the density-based sampling algorithm. Any anti-TNFα dispensation 

in the two years prior to the index date (MS onset) was identified. This research represents the 

inaugural analysis of MS risk among anti-TNFα users versus non-users from four Canadian 

provinces. Additionally, I carried out two sensitivity analyses: 1) accounting for potential reverse 

causality bias by implementing a 60-day latency window, and 2) deriving an E-value to consider 

the potential impact of undetected confounders (161). The findings revealed that the use of anti-

TNFα was associated with an increased risk of MS compared to non-users for RD (pooled 

RR=2.05 [95% CI, 1.13-3.72]) after adjusting for potential confounders, which included 

matching variables, sex, and CCI at baseline. The number needed to harm was 2,268, suggesting 

that for every 2,268 RD patients treated with anti-TNFα, there would be an additional MS case. I 

also found an increased risk of MS among IBD patients but with a wide CI (pooled RR=1.35 

[95% CI, 0.70-2.59]).  

It should be emphasized that finding an association does not necessarily confirm a causal 

relationship. Although our study observed a higher risk of developing MS among users of anti-

TNFα in the RD patients, we cannot establish with absolute certainty that anti-TNFα therapies 

cause MS. This is despite our belief that unmeasured confounding, especially confounding by 
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disease severity, is unlikely to have biased our results. Finally, our results are in line with a 

number of case series and epidemiological studies that have also shown a risk.  

Our study in Chapter 3 provided some insights that were acknowledged in an 

accompanying editorial (194). The editorial highlighted the robustness of our datasets, which 

encompassed almost 100% of residents from four Canadian provinces. It also praised the highly 

validated algorithms I employed to identify patients with RD, IBD, and MS. Additionally, the 

editorial commended our meticulous efforts to curtail potential biases and extract the most 

valuable insights from the administrative data.  

In both prevailing research on this subject and my own work, the significant 

methodological difficulties presented by infrequent exposures and outcomes prompted me to 

explore in-depth statistical techniques that could counter or alleviate the effects of sparse data 

bias.  

In Chapter 4, I assessed the outcomes of applying diverse methods, such as Firth bias 

adjustment, data augmentation, MCMC Bayesian analyses, LASSO regression, and Ridge 

regression, against conditional logistic regression in the context of real-life data on anti-TNFα 

and MS. In contrast to the traditional conditional logistic regression that indicated an adjusted 

OR of 5.31 (95% CI, 0.18-161.63) for the link between anti-TNFα usage and MS within the IBD 

cohort, alternative statistical methods presented modified results. The Firth method revealed an 

adjusted OR of 5.08 (95% CI, 0.35-79.57). The data augmentation approach, starting with an 

assumed OR of 2 (95% CI, 0.5-8), yielded an adjusted OR of 2.37 (95% Credible Interval, 0.66-

8.35). Furthermore, the MCMC technique, with a prior mean of the natural logarithm of 2 and a 

variance of 0.5, resulted in an adjusted OR of 2.36 (95% Credible Interval, 0.66 to 8.33). The 

LASSO approach resulted in a coefficient of zero for the anti-TNFα variable, indicating its 
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exclusion from the model. The Ridge showed an adjusted OR of 1.06 (95% CI, 0.98 to 1.15). In 

the simulation study based on our real-life data, the traditional conditional logistic regression and 

LASSO techniques exhibited substantial bias in the corresponding MSE and empirical standard 

error. Data augmentation and MCMC approaches demonstrated the best performance with the 

lowest bias and MSE. Firth and Ridge methods yielded commendable outcomes, showcasing 

lower bias and MSE when compared against traditional logistic regression and LASSO 

regression. However, it did not outperform data augmentation and MCMC approaches.  

 

5.2 Strengths and Limitations 

 

5.2.1 Strengths 

 

While a randomized controlled trial remains the gold standard for assessing the adverse 

effects of MS in RD and IBD patients, ethical concerns arising from an earlier trial halted due to 

increased MS exacerbation rates among lenercept-treated individuals make such a trial 

improbable. Therefore, this study serves as the next best alternative. I adopted a detailed and 

careful strategy, choosing an NCC design utilizing a density-based sampling method. This 

algorithm helps to reduce selection bias by ensuring that controls reflect the distribution of 

exposure among the at-risk population each time a case is identified. Such a design guarantees 

that the OR produced is an accurate reflection of the IRR that one would obtain from a cohort 

study (195).  

 The study adopts a comprehensive population-based methodology, using an extensive 

administrative dataset from four Canadian provinces that captures information on all legal 
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residents. This broad coverage mitigates selection biases and bolsters the generalizability of our 

results. Furthermore, I used the strictest case definitions for RD, IBD, and MS. The PPV for RD 

was as high as 82%, for IBD it reached 97%, and for MS, it was 99.5%. This ensured that I 

selected the true cases of patients, minimizing selection bias, and enhancing the accuracy and 

generalizability of our findings. After using the validated algorithm to define MS cases, I defined 

the index date as the date of the first ICD-9/10 code for MS or the first code for a demyelinating 

event to ensure that only incident MS cases are captured, which included: optic neuritis, acute 

transverse myelitis, acute disseminated encephalomyelitis, demyelinating disease of the CNS 

unspecified, acute disseminated demyelination, or neuromyelitis optica. I also required all newly 

diagnosed MS individuals to have at least 5 years of prior registration in the mandatory 

provincial health system (known as the “run-in” period) before the index date and imposed a 60-

day latency period in our sensitivity analysis to best capture the onset of MS. 

 Moreover, selecting confounding variables based on cDAGs allows my study to be less 

susceptible to confounding bias, overadjustment bias, and collider bias. These biases commonly 

appear in existing epidemiological studies examining the association between anti-TNFα and 

MS. Sparse data bias is a frequent issue in pharmacoepidemiologic studies, yet few studies 

address this problem. I explored four modern methods, including Bayesian analysis and machine 

learning techniques, to tackle sparse data bias. Through simulation studies, I evaluated their 

performance, shedding light on the challenges of sparse data bias and offering potential 

solutions. Simulation data that are based on actual datasets serves as a valuable tool, potentially 

increasing the reliability of research outcomes. 
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5.2.2 Limitations 

 

While I've made extensive efforts to minimize potential biases, several limitations persist 

in this dissertation. First, health administrative databases include diagnostic ICD codes but may 

not always reflect the earliest clinical signs of MS. Previous research indicates that the 

prodromal phase for MS might emerge 5 or more years before the typical demyelinating disease 

symptoms (66,67). Consequently, subjects exhibiting early MS symptoms or MS prodrome who 

have not yet been diagnosed might be misclassified as controls. However, this type of 

misclassification, which is nondifferential usually leads to an underestimation of the risk of MS 

with the use of anti-TNFα. 

 Similar to other research that relies on health administrative data, our study did not 

include information on lifestyle behaviors such as smoking. Nevertheless, our sensitivity 

analysis, employing the E-value, indicates that the observed IRR for RD would be explained 

away by an unmeasured confounder that was associated with both anti-TNFα and MS by a RR of 

at least 3.52-fold each, after adjusting for potential confounders. 

 Although our data encompass four Canadian provinces, the association between anti-

TNFα and MS risk wasn't consistent within the IBD cohort, potentially due to the rarity of MS 

events. Similarly, I was unable to analyze the association between anti-TNFα and MS occurrence 

in the RD and IBD subpopulations, as well as the specific impact of different anti-TNFα 

treatments on MS risk, because the sample sizes were too small. 

 Given concerns that anti-TNFα use might induce MS, clinicians might hesitate to 

prescribe it to patients showing MS-like symptoms or those with a familial MS history. Such 

contraindication could mean our estimates are conservative, leading to potential 
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underestimations of the actual risk. Lastly, like all pharmacoepidemiologic studies based on 

health administrative databases, we have records of prescription drug dispensations, but not 

necessarily their consumption. However, given that anti-TNFα treatments are typically given 

intravenously or subcutaneously and necessitate specific approvals for publicly-funded access, 

misclassification of their use seems improbable. 

 

5.3 Significance and Contributions of Research  

 

Past investigations into the association between anti-TNFα and MS were fraught with 

varying degrees of bias. Recognizing and understanding these biases is paramount for clinicians 

and researchers when dissecting future studies in this arena. An invaluable tool for this task is the 

crafting of a cDAG, which serves as a visual guide to pinpoint these biases effectively. The 

insights gained from Chapter 2's in-depth exploration of cDAGs empower clinicians with a 

systematic approach to identify and evaluate potential biases when deliberating treatment 

options. This is especially pivotal when interpreting the nuanced relationship between anti-TNFα 

and the risk of MS.  

 Our study, drawing on population-based data from four Canadian provinces, identified an 

increased association between MS and the use of anti-TNFα therapy among patients with RD. 

This revelation allows for a more informed dialogue between clinicians and patients. They can 

now judiciously assess the balance between the potential risks and the quality-of-life 

improvements offered by anti-TNFα. In instances where the associated MS risk becomes a 

significant concern, they might contemplate alternative treatments that, while exhibiting similar 

efficacy, do not carry this specific risk. 
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Furthermore, Chapter 4 equips researchers with innovative statistical techniques tailored 

to combat the challenges of sparse data bias. To date, pharmacoepidemiologic studies addressing 

sparse data bias are scant. The significance of this bias cannot be overstated, as it may result in 

the overestimation of a drug's adverse effects. Such exaggerations could deter patients from 

continuing with treatments that might be beneficial, potentially leading to detrimental health 

outcomes.  Our research has shown that in the realm of pharmacoepidemiology, particularly in 

studies utilizing conditional logistic regression that are prone to sparse data bias, methodologies 

like data augmentation and MCMC with judiciously selected prior information can be effectively 

applied to address this challenge. This, in turn, can profoundly influence and refine treatment 

decisions, ultimately benefiting patient care. 

 

5.4 Implication for Future Research 

 

Our research sheds light on different aspects of the risk of MS among RD and IBD 

patients while also points out areas that warrant further exploration. 

In our study, the risk of MS associated with particular subtypes of RD and IBD, such as 

rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn’s disease, and colitis, was 

not discernible due to an inadequate sample size. Hence, I suggest that subsequent research with 

larger sample sizes focusing on these specific subgroups of RD and IBD would be both viable 

and beneficial. 

 Given that subjects exhibiting early MS symptoms or MS prodrome who have not yet 

been diagnosed might be misclassified as controls in the administrative datasets, there is an 

opportunity to enhance accuracy through the application of advanced machine learning methods. 
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This is particularly relevant for understanding the relationship between anti-TNFα and MS. 

Specifically, employing supervised learning and deep learning algorithms could be a promising 

approach. These algorithms aim to determine a binary outcome, signifying either the occurrence 

or non-occurrence of MS onset, utilizing meticulously chosen predictor variables or features. To 

optimize the predictive capability and avoid overfitting, it is essential to partition the dataset into 

training, validation, and testing subsets. Utilizing the most effective algorithm identified from 

this process can subsequently pave the way for more accurate future predictions of MS onset, 

thereby minimizing potential biases. 

 While our dataset did not account for the potential confounders like smoking, I did 

compute an E-value. However, future investigations leveraging population-based datasets that 

incorporate unmeasured confounders in our datasets would be of great significance. Moreover, 

for forthcoming pharmacoepidemiologic studies with issues of sparse data bias, I recommend 

adopting methodologies such as data augmentation and MCMC. The judicious selection of 

suitable priors is especially crucial to mitigate the challenges posed by potential sparse data bias. 

 

5.5 Conclusion 

 

The research detailed in this thesis offers clinically relevant and innovative insights into 

the potential risks of anti-TNFα on MS for patients with RD and IBD. I identified a pronounced 

association between the use of anti-TNFα and an increased incidence of MS among RD patients 

relative to non-users. I have mitigated potential biases through the use of extensive population-

based data spanning four Canadian provinces, employing rigorously validated case definitions to 

pinpoint RD, IBD, and MS cases. By implementing a cDAG, I have navigated around common 
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issues such as confounding, overadjustment, and collider-stratification, and I have introduced 

effective strategies to address the challenge of sparse data bias. These methodological 

improvements set a new course for subsequent research in pharmacoepidemiology. Together, 

these initiatives have addressed critical gaps in existing research, providing valuable information 

that can assist healthcare providers and patients in making well-informed choices regarding anti-

TNFα therapy. 
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Appendices 

Appendix A  : Dataset description, disease and medication identification codes 

Appendix A. Table A.1 Overview of the provincial datasets and population sizes 

 British Columbia Albertaa Saskatchewana Manitoba 

Population 

(2015) 

4,848,055 4,067,175 1,098,352 1,278,365 

Years of 

Data 

Available 

1990-2015 

(prescription data from 

1996) 

2008-2015 1998-2017 1984-2018 

(prescription 

data from 

1995) 

Number of 

RD 

Patients 

282,893 N/A N/A 14,025 

(rheumatoid 

arthritis only) 

Number of 

IBD 

patients  

34,328 33,984 7,933 8,213 

RD=rheumatic diseases; IBD=inflammatory bowel diseases; N/A=not available 

aThe RD cohorts were not available in Alberta and Saskatchewan 

 

 

 

 



 

 

131 

Appendix A. Table A.2 Case definitions of rheumatic diseases and inflammatory bowel diseases 
within each province 

 British Columbia Albertaa Saskatchewan

a 

Manitoba 

RD case 

definitio

n 

Rheumatoid Arthritis: at 

least two outpatient visits at 

least 2 months apart within a 

5-year period with an ICD-9 

code for rheumatoid arthritis 

(714.X) 

Ankylosing Spondylitis: at 

least two diagnostic codes 

from either outpatient (ICD-9 

720.X) or hospitalizations 

(ICD-9 720.X; ICD-10 

M45.X) at least 2 months 

apart within a 2-year period. 

Psoriatic Diseases: at least 

one diagnostic code (ICD-9 

696.X) for psoriatic diseases 

by a 

rheumatologist/dermatologist

; or at least two diagnostic 

N/A N/A Rheumatoid 

Arthritis: If 

resident in 

Manitoba ≥2 

years:   

At least 5 

hospitalization

s (ICD-9 714; 

ICD-10 M05, 

M06) or 

outpatient 

visits (ICD-9 

714).   

If resident in 

Manitoba <2 

years: 

At least 3 

hospitalization

s (ICD-9 714; 
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codes for psoriatic diseases at 

least two months apart within 

a two-year period by a non-

rheumatologist/dermatologist

; or at least one 

hospitalization with 

diagnostic code for psoriatic 

diseases (ICD-9 696.X; ICD-

10 L40.X). 

 

ICD-10 M05, 

M06) or 

outpatient 

visits (ICD-9 

714).   

 

IBD case 

definitio

n 

At least four outpatient visits 

with diagnostic codes for 

IBD (ICD-9 555 or 556) 

within two years or at least 

two hospitalizations with 

diagnostic codes for IBD 

(ICD-9 555, 556; ICD-10 

K50 or K51) within two 

years 

At least four 

outpatient 

visits, or two 

hospitalization

s or two 

medical 

contacts in the 

Ambulatory 

Care 

Classification 

System 

database with 

If resident in 

Saskatchewan 

≥2 years:   

At least 5 

hospitalizations 

(ICD-9 555 or 

556; ICD-10 

K50 or K51) or 

outpatient 

visits (ICD-9 

555 or 556) 

If resident in 

Manitoba ≥2 

years:   

At least 5 

hospitalization

s (ICD-9 555 

or 556; ICD-10 

K50 or K51) or 

outpatient 

visits (ICD-9 

555 or 556) 
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an IBD 

diagnostic 

code (ICD-9 

555, 556; ICD-

10 K50 or 

K51) within a 

two-year 

period 

If resident in 

Saskatchewan 

<2 years: 

At least 3 

hospitalizations 

(ICD-9 555 or 

556; ICD-10 

K50 or K51) or 

outpatient 

visits (ICD-9 

555 or 556) 

 

If resident in 

Manitoba <2 

years: 

At least 3 

hospitalization

s (ICD-9 555 

or 556; ICD-10 

K50 or K51) or 

outpatient 

visits (ICD-9 

555 or 556) 

 

RD=rheumatic diseases; IBD=inflammatory bowel diseases; N/A=not available 

aThe RD cohorts were not available in Alberta and Saskatchewan 
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Appendix A. Table A.3 Disease-modifying drugs approved by Health Canada over the study 
period (2000-2018) for the treatment of multiple sclerosis and their drug identification numbers 

Drug name Drug identification number (assigned by 

Health Canada) 

Extavia 02337819 

Betaseron 02169649 

Rebif 02237319, 02277492, 02237317, 02237320, 

02281708, 02318253, 02318261, 02318288 

Avonex 02237770, 02269201 

Copaxone 02245619, 02233014, 02441446, 02456915, 

02460661 

Tysabri 02286386 

Aubagio 02416328 

Gilenya 02365480 

Tecfidera 02404508, 02420201 

Lemtrada 02418320 

Plegridy 02444399, 02444402, 02444372, 02444380 

Zinbryta 02459620, 02459639 
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Appendix A. Table A.4 Anti-tumor necrosis factor alpha drugs approved by Health Canada for 
the treatment of rheumatoid diseases and inflammatory diseases and their drug identification 
numbers 

Drug name Drug identification number (assigned by 

Health Canada) 

Adalimumab 2258595, 2458349, 2458357, 2466872 

Certolizumab 2331675, 2465574 

Etanercept 2242903, 2242903, 2274728, 2455323, 

2455331, 2462850, 2462869, 2462877, 

66123997 

Infliximab 2244016, 2419483, 2419475 

Golimumab 2324784, 2324776, 2413175, 2413183, 

2417472 
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Appendix B  : Data augmentation prior data information 

Appendix B. Table B.1 Variables in the prior data augmentation for the conditional logistic 
regression with prior distribution N(ln(2),0.5), S=10 

 Case 

2/v´S2 

TNFi 

1/S 

H 

−m/S 

M 

2A 

Exposed  800 0.1 -0.0693 1600 

Unexposed  800 0 0 1600 

We need to set the following variables in the prior data: (1) A (case)= the number of cases 

represented by the data record. A is 1 for all actual cases and 0 for all actual controls.  For the 

normal distribution prior records, A can be represented by 2/nprior=4. (2) M=the total number of 

subjects represented by the record. M is set to 1 for all actual-data records. For the grouped prior 

data records, M=2A=8. Thus, the proportion of cases in the record is A/M, which in the 

ungrouped actual-data record is 1 (1/1) for cases and 0 (0/1) for controls, for the prior records, it 

is A/2A=1/2. (3) H=the ‘offset’ variable if the prior center bprior is not zero. We set H=0 for all 

actual records. For the prior data records, we set H=-bprior=-0.69. (4) The regressor value in the 

prior-data record to represent users of anti-TNFα was set X anti-TNFα=1, all other regressors in this 

prior record are set to 0. For the actual records, no change is made to the regressor values.  (5) 

S=the rescaling factor. it is possible to impose perfectly normal priors by utilizing a rescaling 

factor S that is divided into all the regressor values in the prior data, including the offset H. The 

prior A and M can then be inflated by a factor of S^2 to compensate. To illustrate, if S equals 10, 

the prior record for anti-TNFα and MS can be expressed as A=4´S2=400, M=800, H=-0.69/S=-

0.069, and the anti-TNFα regressor value=1/10=0.1 which indicates the prior record is for anti-

TNFα. 


