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Abstract

Direct measurements of entropy in mesoscopic systems offer a promising

pathway to explore a wide range of exotic quantum phenomena, especially

those that prove challenging to investigate through conventional transport

metrics. While entropy evaluations have traditionally depended on bulk

properties like heat capacity – readily measurable in macroscopic systems –

these approaches become ineffective at a mesoscopic scale where such prop-

erties are vanishingly small. For mesoscopic systems, a fundamentally dif-

ferent approach is required. This thesis introduces a novel entropy measure-

ment protocol, founded on a Maxwell relation, that is universal for arbitrary

mesoscopic circuits. It is developed, tested, and applied to systems of in-

creasing complexity within two-dimensional electron gases (2DEGs) hosted

in GaAs/AlGaAs heterostructures.

The central focus of the research is the development and validation of

a universal entropy measurement protocol tailored for mesoscopic systems.

This method is first demonstrated on a quantum dot weakly coupled to

a thermal reservoir, affirming its effectiveness and showcasing the capabil-

ity to continually assess entropy change throughout a charge transition –

a marked advancement over the foundational approach that inspired this

work. The protocol is next applied to a double quantum dot system, illus-

trating its aptitude to measure non-local entropy via capacitive coupling.

The protocol’s universality is highlighted through measurements of a quan-

tum dot hybridized with an electron reservoir, where density-matrix numer-

ical renormalization group simulations align with experimental results up

to intermediate coupling strengths. A notable divergence between theory

and experiment emerges for stronger couplings, particularly where Kondo

correlations are anticipated (in the mixed valence regime), raising intrigu-
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Abstract

ing questions yet to be answered. Lastly, preliminary measurements from a

newly configured device that facilitates operation in the Kondo regime are

discussed. The findings suggest spin suppression in the system, potentially

marking the first observation of the entropic effect of a persistent Kondo-

correlated singlet state.

This research establishes a fundamentally new technique with wide appli-

cability, reaching beyond GaAs/AlGaAs 2DEGs to include other 2D meso-

scopic systems such as layered graphene structures. As the field of quantum

entropy measurement advances, this work sets a robust platform for future

studies targeting a myriad of exotic quantum systems.
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Lay Summary

In this thesis, a new way to measure entropy in very small, or “mesoscopic”,

two-dimensional systems of electrons is introduced and tested. Traditional

methods fall short in these tiny settings, so the work here offers a broadly

applicable alternative. The new approach proves effective in different sce-

narios, revealing not only localized changes in entropy but also those that

occur between coupled systems. The study focuses on systems formed in

unique electronic structures called two-dimensional electron gases (2DEGs),

and it uses quantum dots (akin to artificial atoms) among other nano-scale

circuitry to probe their entropy. The method not only works for simple

setups but also holds promise for exploring more complex systems that are

expected to host enigmatic quantum phenomena. The technique could have

wide applications, including in other materials like layered graphene. The

work presented here sets the stage for future research into a wide range of

exotic quantum states.
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Preface

This thesis encapsulates the research I have undertaken during my doctoral

studies in the Quantum Devices group, led by Joshua Folk, at the University

of British Columbia. While I served as the primary researcher for the major-

ity of the research presented herein, a precise breakdown of the collaborative

contributions to the work follows.

Throughout the entire process, countless discussions with Joshua Folk,

my supervisor, and Silvia Lüscher, a research associate, have contributed to

all experiment concepts, device designs, and analysis interpretation.

The GaAs/AlGaAs heterostructures used for all presented measurements

were provided to us by Mike Manfra’s group at the University of Purdue.

Specifically, Saeed Fallahi, Geoffrey Gardner, and Mike Manfra were in-

volved in the fabrication of the heterostructures. The mesas and ohmic

contacts were fabricated by Christian Olsen at the University of Copen-

hagen.

The fabrication of specific devices – defined by the gates deposited atop

the heterostructures – was carried out by myself, both with and without

assistance from others, in the cleanroom facilities of the Stewart Blusson

Quantum Matter Institute at UBC. While I have fabricated and measured

numerous devices throughout my time here – in many cases, a primarily

solo effort – a large portion of the measurements presented in this thesis

(Chapters 4, 5, 6) were obtained in one particularly fortunate round of

fabrication and measurements that were carried out in collaboration with

Owen Sheekey. Owen Sheekey was an undergraduate student at the time,

and while I taught him many aspects of the design, fabrication, measure-

ment, and analysis processes, he was a very capable student who contributed

significantly in return.
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Throughout the research presented here, many discussions with our the-

ory collaborators – Yigal Meir, Eran Sela, and Andrew Mitchell – have

contributed to our mutual understanding of the measurements and results

presented. Discussions with Eran Sela, building on the prior work of Nik

Hartman, inspired the theoretical framework of the measurement protocol

presented here (primarily discussed in Section 3.1 and Chapter 4). Yigal

Meir produced the theory calculations of the double quantum dot system

entropy that we fit to data in Chapter 5. Yaakov Kleeorin, under the su-

pervision of Yigal Meir, produced the density-matrix numerical renormal-

ization group (DM-NRG) simulations that we compare our measurements

to in Chapter 6.

Chapter 4 describes the technical details of the entropy measurement

protocol applied to a single weakly coupled quantum dot system. A ver-

sion of this chapter has been published as [Child T, Sheekey O, Lüscher S,

Fallahi S, Gardner GC, Manfra M, Folk J. A Robust Protocol for Entropy

Measurement in Mesoscopic Circuits. Entropy. 2022;24(3):417]. I led the

investigation from inception to publication. I was responsible for the major-

ity of the device design, with fabrication carried out in collaboration with

Owen Sheekey (the same device is used in Chapters 5 and 6). Measurement

and analysis were carried out with the assistance of Owen Sheekey. Text

preparation for the published work was carried out by myself, with review

and editing assistance of Owen Sheekey, Silvia Lüscher, and Joshua Folk.

Some modified text from this publication is also present in Chapter 8 (the

conclusion).

Chapter 5 describes measurements of a double quantum dot system.

The work presented is not published. However, the experiments described

are part of ongoing work that will likely result in a future publication. I

worked closely with Owen Sheekey throughout this experiment. Contribu-

tions to measurement and analysis were roughly equally split between me

and Owen Sheekey for the work pertaining to this chapter (in comparison to

Chapters 4 and 6, which I led). While this experiment formed the basis of

Owen Sheekey’s undergraduate thesis work, the text presented in this thesis

is entirely my own. One figure is an adaptation of Owen Sheekey’s, used
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with permission.

Chapter 6 describes measurements of a quantum dot strongly coupled

to a reservoir. A version of this chapter has been published as [Child T,

Sheekey O, Lüscher S, Fallahi S, Gardner GC, Manfra M, et al. Entropy

Measurement of a Strongly Coupled Quantum Dot. Physical Review Let-

ters. 2022;129(22):227702]. I led the investigation from inception to pub-

lication. I was responsible for the majority of measurement and analysis,

with assistance from Owen Sheekey. As previously mentioned, Yaakov Klee-

orin produced the DM-NRG simulations. Text preparation for the published

work was carried out by myself, with review and editing assistance of Owen

Sheekey, Silvia Lüscher, and Joshua Folk.

Chapter 7 describes measurements of a small quantum dot directly

tunnel coupled to a big quantum dot. I was the primary researcher for these

measurements. The device was designed and fabricated in collaboration

with Johann Drayne, a fellow graduate student. While the measurements

presented here were solely obtained by myself, it is worth noting that they

were taken at the end of an experiment (that had a different focus, not

discussed in the thesis) that Johann Drayne contributed to significantly.
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Chapter 1

Introduction

1.1 Context

Entropy has been an integral part of scientific inquiry for over a century,

with its applications spanning numerous disciplines such as chemistry, cos-

mology, information theory, materials science, and more. The concept was

first introduced by Rudolf Clausius in the mid-19th century as a means to

understand the behaviour of energy in thermodynamic systems [1]. Since

then, entropy has permeated into diverse areas of science, proving itself as a

versatile and useful tool. In chemistry, the concept of entropy is crucial for

understanding the spontaneous direction of chemical reactions, as governed

by the second law of thermodynamics [2]. In cosmology, entropy plays a piv-

otal role in characterizing the evolution of the universe and its large-scale

structures [3]. In information theory, the concept of entropy, as introduced

by Claude Shannon, serves as a measure of information content and uncer-

tainty in communication systems [4]. And, in materials science, entropy is

used to explain the stability and behaviour of complex materials, such as

spinel high-entropy oxides [5].

In physics, entropy is most easily understood differently depending on

the scale of the system. For macroscopic systems, it is often useful to think

of entropy as a measure of a system’s thermal energy per unit temperature

that is unavailable for doing useful work [6] – a quantity that is usually

deduced indirectly via the heat capacity of the system. On the other hand,

for very small systems that consist of only a handful of particles, entropy

is more easily understood in terms of the number of microstates available

to the system [7] – a quantity that is directly related to the number of

quantum states accessible by the system. In such systems, particularly those
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1.2. Motivation

consisting of only a handful of particles, the heat capacity is vanishingly

small; thus, a different approach to measuring entropy is required. In 2018,

just prior to the start of my PhD, a first attempt at a microscopic entropy

measurement demonstrated the potential to take advantage of a Maxwell

relation to detect the minuscule entropy changes associated with a system

containing only a single electron [8]. Although an interesting demonstration,

the procedure employed in Ref. [8] lacked the generality to be applied to

systems of significant scientific value. This thesis will cover the details of

developing and testing a novel technique – based on this early demonstration

– that generalizes the approach to measuring entropy in extremely small

systems.

1.2 Motivation

A lecture given by Richard Feynmann in 1959 titled “There’s plenty of

room at the bottom” [9], although not widely recognized until many years

later, serves as a useful indication that physicists at the time were increas-

ingly beginning to turn their efforts toward exploring the largely untouched

microscopic world. This coincides with the growth of the field of meso-

scopics; a sub-discipline of condensed matter physics that covers systems

of an intermediate scale, between the microscopic (atoms and molecules)

and macroscopic. Although there are not hard limits to what constitutes a

mesoscopic system, typically the sizes range from nanometers to microme-

ters (Fig. 1.1 depicts the scale). In contrast to many macroscopic systems,

which to a good approximation can be described by classical mechanics, de-

scribing systems on a mesoscopic scale often benefits from the application of

quantum mechanics. The unique blend of quantum mechanics and our abil-

ity to manipulate these systems has allowed for the observation and control

of many striking quantum phenomena, offering a myriad of possibilities for

both fundamental research and practical applications.

While researchers have made significant strides in the fabrication and

control of mesoscopic devices, the methods for measuring these systems re-

main comparatively constrained. Traditionally, measurements have largely
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Figure 1.1: Images depicting the scale of mesoscopic measurements. (a)
A photograph of a device on a Si wafer sample holder, mounted on the
“cold-finger” of the cryostat. The cold-finger is 25.7 mm in diameter. (b) A
photograph taken through a wire-bonder microscope of the top-right corner
of the GaAs/AlGaAs heterostructure with a device (middle) wire-bonded
to the gold contacts of the Si wafer sample holder. The full heterostructure
chip (not fully in the image) measures 5 × 5 mm. (c) A microscope image
of a single device, where it is mostly the outer gates and bond pads that
are visible. The device bond pads form a 1× 1 mm square around a 2DEG
mesa in which the mesoscopic circuit is formed. (d) A scanning electron
micrograph (SEM) of the full device including the relatively large (10 ×
10 µm) heating reservoirs. The bright features are the metal gates deposited
atop the dark heterostructure surface. (e) An SEM image focused on the
smallest features of the device. A 200 × 200 nm quantum dot that would
typically contain < 5 electrons is indicated.
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been limited to monitoring the transport of electrons through the system

under various conditions – essentially, conductance measurements.

In this thesis, we discuss a novel technique for measuring mesoscopic

systems by leveraging a Maxwell relation to directly probe entropy. Be-

cause the entropy of a mesoscopic system is directly related to the number

of quantum microstates of the system, direct entropy measurement is partic-

ularly interesting as it can serve as a probe for the formation of exotic states

in strongly correlated systems (due to the exotic quantum states directly

affecting the number of microstates of the system). For instance, entropy

has been proposed as a significant indicator of isolated non-abelian quasi-

particles, such as Majorana zero modes in a superconductor [10], [11] or

excitations of a fractional quantum Hall state [12]–[14], distinguishing them

from more mundane abelian analogs.

1.3 Outline

Entropy is a crucial topic in this thesis, however, the development of our new

measurement technique was an experimental endeavour that relied heavily

upon the properties of mesoscopic devices. To the lay the groundwork,

Chapter 2 first introduces the general features of these devices along with

some more specific descriptions of measurement procedures. Subsequently,

Chapter 3 focuses on entropy – delving into the scientific background, detail-

ing alternative methods for entropy measurements in mesoscopic system, the

theoretical framework of our work, and key concepts like the Kondo effect

and the Numerical Renormalization Group (NRG) method.

The empirical work begins in Chapter 4, presenting a proof-of-concept

measurement on a simple quantum dot to validate our new technique. Chap-

ter 5 extends the new approach to a more complex system – a double quan-

tum dot – highlighting the capability to measure the entropy of non-local

systems. Then, in Chapter 6, the universality of the method is demon-

strated through measurements of a quantum dot in a non-trivial regime

where Kondo correlations are anticipated, with results compared to NRG

calculations. Finally, Chapter 7 discusses promising preliminary measure-
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ments that indicate the observation of a Kondo singlet via the entropy of

the system. Chapter 8 synthesizes the key findings and provides insights

into future directions for enhancing and applying the entropy measurement

techniques developed in this work.
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Chapter 2

Mesoscopic Devices

A prerequisite to the direct entropy measurements of nanoscale systems is

the design and fabrication of the devices with which our experiments are

performed. Our devices are comprised of quantum dots (QDs) and quan-

tum point contacts (QPCs) that are formed in the two-dimensional electron

gas (2DEG) located at the heterojunction interface of a GaAs/AlGaAs het-

erostructure. A description of these device components follows.

2.1 2DEG Heterostructures

A heterostructure is a layered structure that contains one or more in-

terface(s) between differing semiconductors, called heterojunctions. Het-

erostructures are extensively used in modern electronic devices, such as

transistors and diodes, and can be crafted using a variety of semiconductor

materials. With certain configurations of semiconductors at the heterojunc-

tions, heterostructures can lead to a fascinating physical phenomenon: a

strongly confined two-dimensional electron gas (2DEG). Such a device was

first fabricated in 1978 [15] and allowed researchers to clearly observe non-

classical behaviour that arises from the strong confinement – an idea first

postulated in 1957 [16].

Direct bandgap semiconductors gallium arsenide (GaAs) and aluminum

gallium arsenide (AlGaAs) are prototypical semiconductors used for the for-

mation of 2DEGs due to their closely matching lattice constants, including

in the devices used to facilitate the word described in this thesis. The

coloured layers in the schematic shown in Fig. 2.1a depict the typical het-

erostructure layers that form the 2DEG (at the lower boundary between

GaAs and AlGaAs) of the devices discussed in this thesis. The fabrica-
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µe = 2.56 x 106 cm2/Vs
n = 2.42 x 1011 cm-2
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Figure 2.1: (a) Three-dimensional schematic of a heterostructure (not to
scale) showing the location of the 2DEG in blue along with the electron
mobility µe and density n of the 2DEGs used in this thesis. (b) Layer
compositions and thicknesses of the heterostructures. (c) Conduction band
diagram indicating the location of uniform doping (orange circles) and δ-
doping along with the triangular well that hosts the 2DEG.

tion of these heterostructures is carried out by our collaborators at Purdue

University [17]–[19] via Molecular Beam Epitaxy (MBE). The use of MBE

for the growth of these structures allows precise control over the thickness,

composition, and doping of each layer – all of which are crucial for the for-

mation of a high-quality 2DEG. GaAs exhibits a bandgap of 1.42 eV at room

temperature [20], while AlxGa1–xAs has a tunable bandgap, ranging from

1.42 to 2.16 eV, depending upon the aluminum content (x) [21]. This tun-

ability of AlGaAs along with the very similar lattice constants of AlGaAs

and GaAs (5.662�A and 5.653�A respectively [22]) makes these materials ideal

for forming high-quality 2DEG hosting heterostructures.

It is the combination of the close match in the lattice constants of GaAs

and AlGaAs along with the precision of MBE and a specific doping strategy

that enables the formation of a nearly defect-free interface between the two

semiconductors, which in turn allows a highly mobile 2DEG to form. While

n-type doping is necessary to provide the excess of electrons that form the

2DEG, it must be done carefully to maintain high mobility in the resulting
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2DEG. Typically, dopants are added uniformly throughout the growth of a

heterostructure. For the formation of 2DEGs, however, this is not a suitable

doping strategy: it causes a loss of electron mobility and an increase in

charge noise at the 2DEG as a result of introducing inhomogeneities and

deep donor levels (DX centers) close to the 2DEG heterojunction [15], [23]–

[26]. This severely limits the usefulness of the 2DEG for the investigation of

quantum phenomena. Instead, a process called modulation-doping is used

to strategically increase the density of the 2DEG whilst maintaining high

mobility [15], [27].

Modulation doping involves spatially separating conduction electrons

from their parent donor impurity atoms [15]. This reduces the influence

of impurity scattering on the conduction electrons, facilitating the forma-

tion of a high-mobility 2DEG. In the heterostructures discussed in this the-

sis, 100 nm of pure GaAs is first evaporated on the GaAs substrate to en-

sure a clean interface. Then the AlGaAs at the GaAs/AlGaAs boundary

is deposited without any intentional doping for the first 30 nm to act as

a spacer layer (Fig. 2.1b). This is followed by 15 nm of uniformly doped

(4.8× 1018 cm−3) AlGaAs. Finally, a 5 nm layer of pure AlGaAs and 7 nm

of pure GaAs cap the structure. With an unintentional doping rate as low

as ∼ 10× 1013 cm−3 [17], the 2DEG hosting interface remains relatively

defect-free. While the specific composition of doping can drastically change

the properties of the 2DEG, the 2DEGs used for the measurements through-

out this thesis exhibit an electron density n = 2.42× 1011 cm−2 and electron

mobility µe = 2.56× 106 cm2/Vs.1

As shown in Fig. 2.1c, because of the larger bandgap of the AlGaAs than

GaAs, the electrons from the donor atoms in the AlGaAs prefer to drop down

into the lower-energy GaAs conduction band at the GaAs/AlGaAs interface

(despite the spatial separation). This bandgap difference in combination

with the attractive potential of the now positive donor atoms traps the

electrons in a near triangular potential well at the heterojunction. The very

short length scale of this triangular potential well results in the formation

of two-dimensional subbands in the well. Typically, the heterostructures

1Electron mobilities an order of magnitude larger are not uncommon [17].
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are designed such that only the lowest energy subband is populated at low

temperatures, thereby forming the quasi-2D electron gas [28], [29].

For the devices discussed in this thesis, the 2DEGs were separated into an

array of “mesas” by chemical etching, using a UV laser writer to define the

mesas. This was followed by electron beam lithography to define NiAuGe

ohmic contacts that enable electrical contact to be made to the 2DEG that

lives 57 nm below the surface of the heterostructure. The ohmic contacts

are metallic pads that are diffused from the surface of the heterostructure

down to the 2DEG via rapid thermal annealing. For a detailed description

of a mesa etching and ohmic fabrication see Ref. [30]. Additionally, 10 nm of

HfO2 was deposited by atomic layer deposition. This dielectric layer helps to

further insulate gates (discussed below) from the 2DEG, improving gating

stability [31], [32].

2.2 Quantum Point Contacts (QPCs)

Quantum Point Contacts (QPCs) are local constrictions of the 2DEG to

a short one-dimensional channel (Fig. 2.2). They are formed by applying

an electric potential to metal “gates” on the top of the heterostructure.

QPCs are a crucial component of many 2DEG devices and can be used for

various purposes. Here, I will briefly describe how they are formed and their

behaviour.

Figure 2.2a shows a simple schematic of a typical QPC. To fabricate the

QPC (and any other gate structures), a process of electron beam lithography

followed by metal evaporation is used to form ∼ 10 nm thick metal gates on

the surface of the heterostructure (∼ 50 nm above the plane of the 2DEG).

By applying a negative potential to the two metal gates relative to the

2DEG, the density of states in the 2DEG is reduced near the gates. With

a negative enough potential, the 2DEG is completely depleted, preventing

electron flow in those regions. If the two gates are placed close enough

to each other (∼ 200 nm), it is possible to form an effectively 1D channel

between them.

At low temperatures (< 1 K), the conductance through the QPC is quan-
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Figure 2.2: (a) A top-down schematic of a quantum point contact formed in
the 2DEG (blue) between two gates (gold) with negative potential applied.
The white region around the gates indicates the depletion of the 2DEG in
proximity (and under) the gates. Crossed squares represent ohmic contacts
through which the conductance of the QPC (dashed line) can be measured
using an external voltage source and current amplifier. (b) A typical mea-
surement of the quantized conductance plateaus of a quantum point contact
at low temperature, including “pinch off” at −830 mV. The gate voltage is
applied to both gates.
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tized in steps of 2e2/h (Fig. 2.2b) [33]–[37]. This is a result of the additional

confinement forming a series of 1D subbands that (in the absence of a mag-

netic field) can each be occupied by a spin-up and down electron; therefore,

each subband contributes 2e2/h to the conductance of the QPC. As the neg-

ative potential on the two gates is reduced (from left to right in Fig. 2.2b),

the steps in conductance correspond to the energy level of additional 1D

subbands falling below that of the Fermi energy of the 2DEG.

The simple structure that is a QPC has been used in various ways,

including investigating the ballistic nature of electrons in a 2DEG [38]–[46],

forming highly sensitive charge sensors [47], [48], and creating a detector for

spin-polarization [49], to name a few. In our work, we make use of them as

charge sensors, heaters, and controllable tunnel barriers for quantum dots.

2.3 Quantum Dots

Because we are interested in measuring systems with only a few electrons,

the next logical step after confining the 2DEG to 1D with a QPC is to further

confine a region of 2DEG to a zero-dimensional space, called a Quantum Dot

(QD). Figure 2.3a shows a simple schematic of such a device. The left and

right gates form two QPCs between them and the bottom gate. Then, in

combination with the middle gate, they can enclose a small region of the

2DEG to form a QD. Figures 2.4a and 2.6 also contain QDs with different

gate geometries.

To form a QD, the two QPC gates must have sufficient negative potential

such that the conductance of both QPCs individually are less than 2e2/h,

thus forming tunnel barriers. The middle gate must first be negative enough

that the 2DEG is fully depleted between it and the two QPC gates to either

side; then it can be further fine-tuned to control the energy levels in the

quantum well that is formed (Fig. 2.3a).

When a source-drain voltage bias VSD is applied across the quantum

dot (with T, eVSD < EC , where T is the system temperature and EC is

the charging energy of the QD), the transport of electrons through the dot

depends on the alignment of the Fermi levels in the 2DEG leads with the
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Figure 2.3: (a) A schematic of a quantum dot (dashed red circle) formed
in the 2DEG (blue) between 4 gates (gold). Crossed squares indicate Ohmic
contacts through which the conductance of the QD can be measured by
applying an external bias and measuring the resulting current. (b and c)
Coulomb blockade energy diagrams of a QD with coupling strength ΓL and
ΓR to the 2DEG leads. The chemical potential of the leads is µS and µD
where eVSD = µS−µD. The lines marked with crosses indicate the occupied
energy levels in the QD, where the spacing between them is the charging
energy EC of the QD. In panel b the QD is insulating as the chemical
potentials of the leads fall between energy levels of the QD preventing any
first-order tunnelling processes. In panel c the QD is conducting due to
the energy level of the QD falling between µS and µD such that first-order
tunnelling processes can occur. (d) The conductance through a QD as
plunger gate (top middle gate in panel a) voltages is swept.
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discrete quantum levels within the quantum dot. As shown in Fig. 2.3c,

transport can only occur when an energy level within the quantum dot lies

between the Fermi levels of the source and drain leads, thus allowing an

electron to consecutively tunnel into and out of the quantum dot.

This conductance dependence on the energy level of the QD can be

more clearly observed by varying the energy levels in the QD by sweeping

the potential on the plunger gate. Each time an energy level in the QD falls

between the Fermi energy of the leads, the QD will become conducting, and

otherwise the QD will be insulating. This results in periodic conductance

peaks that correspond to a change in the average occupation of the quantum

dot (Fig. 2.3d), a phenomenon known as Coulomb blockade. Such a device

is also known as a single electron transistor (SET).

In addition to the charging energy EC that arises from Coulomb inter-

actions, small quantum dots exhibit discrete energy levels akin to atomic

orbitals in atoms [50]. The orbital level spacing ∆ arises as a result of the

de Broglie wavelength of the electrons being comparable to the size of the

QD, and scales as ∆ ∝ l−2, where l is the dot size [51]. For the majority of

the QDs discussed in this thesis, ∆ >> kBT ,2 and therefore the QDs exhibit

a discrete density of states where only the lowest orbital energy level need

be considered. Due to the large orbital level spacing in small QDs, when an

odd number of electrons populate the dot, it will exhibit a net spin. This

arises because, in accordance with the Pauli exclusion principle, all other

electrons form spin-singlet pairs, leaving only one electron in the highest

energy state without a paired spin. This property is particularly relevant to

the discussion of the Kondo effect in QDs (Section 3.2.2).

Quantum dots have been used in a wide range of research and are often

used as the building blocks of spin-qubit quantum computers [52]–[57]. For

our purposes, we use QDs as both sensors and building blocks for construct-

ing more complex quantum circuits to study many-body quantum phenom-

ena.

2The exception being the big dot, discussed in Chapter 7, where ∆ << kBT , thus
resulting in an effectively continuous density of states.
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Figure 2.4: (a) A schematic of a charge sensor QPC in close proximity
to a QD. The vertical gate in the middle forms both, the charge sensor
QPC in conjunction with the left gate, and the QD with the remaining
gates on the right. The QD has only one lead through which electrons can
enter or leave (dashed arrow). (b) Current through the charge sensor QPC
with fixed bias as the plunger gate of the QD is swept over a wide range
such that the QD is unoccupied at the left, and contains 4 electrons at the
far right. Each sawtooth step indicates a change in the occupation of the
QD. (c) A much narrower and higher resolution scan showing the change in
plunger gate voltage from the first sawtooth in panel b at −138 mV showing
the thermally broadened Fermi distributed charge transition of the QD at
100 mK. The vertical arrow represents the sensitivity of the charge sensor
to the addition of one electron to the QD.

2.4 Charge Sensors

For the measurement of entropy, the capability to monitor the charge of the

QD is crucial. As depicted in Fig. 2.4a, this is achieved by placing a QPC

in close proximity to the QD.

The functioning of a QPC as a charge sensor is based on the sensitivity

of the conductance of a QPC to the electrostatic environment near the QPC.

As the charge state of the nearby quantum dot changes due to the addition

or removal of an electron (or more precisely the time average occupation of

the QD), the resulting change in the electrostatic environment modulates

the conductance of the QPC. By continuously monitoring the conductance
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2.5. Determining Electron Temperature

of the QPC (typically a current measurement with 100 uV DC bias) as the

plunger gate is swept, it is possible to infer the occupation of the quantum

dot with a precision ∼ 0.01e. Figure 2.4b shows a typical measurement of

the current through a charge sensor as the plunger gate voltage is varied

over a wide gate voltage range, leading to sequential tunnelling of several

electrons into the QD. The overall slope of the conductance through the QPC

is a result of the direct cross capacitance between the sweeping plunger gate

and the QPC, and the sudden steps indicate when the occupation of the QD

increases as a result of the energy level of the QD falling below that of the

Fermi sea. For the measurements presented in this thesis, the sweep range

is typically limited to a small window around a single charge transition so

that we can accurately resolve the fractional time average occupation of the

QD as a result of thermal or coupling-strength broadening (Fig. 2.4c).

2.5 Determining Electron Temperature

Another key requirement for our entropy measurement protocol is the ability

to determine the electron temperature precisely. For the addition of an

electron to a QD with weak tunnel coupling to an electron reservoir, the

charge sensor current ICS lineshape is given by

ICS = Iamp tanh

(
VP − Vmid

2Θ

)
+ γVP + Iconst, (2.1)

where Iamp is the amplitude of the charge transition (the sensitivity of the

charge sensor to the occupation of the QD), VP is a plunger gate potential,

Θ = kBT
αe is the thermal broadening in units of gate voltage, α ≡ dε/dVP is

the lever arm, γ represents the direct cross capacitance between the plunger

gate and the charge sensor and Iconst is a constant offset.

Figure 2.5a depicts fits of Eq. 2.1 to charge transition measurements

taken at 100 and 200 mK, where fitting is performed using least squares

minimization allowing all parameters to vary. To facilitate an accurate de-

termination of electron temperature Te, the Θ parameter is extracted from

a fit to a heavily averaged measurement of the charge transition. Typically,
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a) b)

Figure 2.5: (a) Fits of Eq. 2.1 to charge sensor current measurements of
the addition of an electron to a QD in a weakly coupled regime at T =
100 and 200 mK. Each dataset represents the average of many repeated
measurements, and are offset from each other for clarity. Note that the
x-axis represents fine-tuned gate potentials applied in addition to a coarse
potential that is not shown. (b) The extracted Θ parameters from fits to
charge transition measurements over a range of cryostat temperatures from
8 mK to 300 mK. A linear fit of the Θs for T > 85 mK is shown, extrapolated
back to T = 0.

100 or more repeated measurements of the charge transition are averaged

together after aligning them based on the Vmid parameter of fits of Eq. 2.1

to each trace individually. This averaging procedure is necessary because of

electrostatic fluctuations that occur as a result of nearby charge motion in

the dopant layer of the heterostructure. These fluctuations affect the QD

energy ε, effectively shifting the charge transition left/right with a frequency

spectrum typically between 1/f and 1/f2 [19], [23]. Therefore, by measur-

ing individual charge transitions quickly, and aligning the transitions before

averaging, we mitigate the otherwise broadening effect of these electrostatic

fluctuations.

For the conversion from Θ to Te that will allow us to use this proce-

dure as an electron temperature thermometer, we require the lever arm α.

While there are several ways α can be determined, a convenient method is

to measure a charge transition at a cryostat temperature where the electron

temperature remains in thermal equilibrium with the cryostat. In practice,

it is preferable to take measurements for a range of cryostat temperatures,
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2.6. Additional Measurement Procedures

typically from 300 mK down to the base temperature of the cryostat (typ-

ically ∼ 8 mK in our cryostats). Figure 2.5b depicts Θ extracted from

measurements over such a range. From these measurements, it is clear that,

for T > 100 mK, the thermal broadening Θ has a directly proportional rela-

tionship with the cryostat temperature T . A linear fit can then be used to

calculate α, and thus convert any Θ to electron temperature Te. If the linear

fit does not extrapolate through the origin, it suggests either that the cou-

pling of the QD to the reservoir does not meet the condition Γ� kBTe, or

that significant voltage noise is present, which can blur the charge transition.

The deviation of Θ from a directly proportional relationship with T for

T . 100 mK in Fig. 2.5b indicates that the 2DEG electrons are no longer in

thermal equilibrium with the cryostat (the heterostructure itself does remain

in thermal equilibrium with the cryostat). This is a result of the weakening

electron-phonon interaction ∝ T 5 [58] and the presence of electrical noise

that persists despite the filtering implemented in the cryostat wiring. Typi-

cally, this results in a base electron temperature ∼ 30 mK. Observing higher

base electron temperatures may suggest increased electrical noise affecting

the sample. This could be due to issues like compromised cryostat electri-

cal filtering or external setup problems such as ground loops or overloaded

power supplies.

2.6 Additional Measurement Procedures

In the experiments discussed in this thesis, some additional measurement

procedures warrant further explanation.

To reduce charge noise in our device measurements, we cool down our

devices with a positive bias applied to all of the gates that will be operated

in a depletion regime. An in-depth investigation of the effects of bias cooling

is presented in Ref. [23]. Effectively, charge carriers that are present in the

doped layers of the heterostructure are mobile at high temperatures and

move to screen the positive potential applied to the electrically isolated

gates. Upon cooling, these carriers freeze in place and remain even after the

positive bias is removed. In addition to reducing charge noise, these trapped
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2.6. Additional Measurement Procedures

negative charges under the gates decrease the negative potential that must

be applied to the gates to deplete the 2DEG beneath them. In essence,

a positive cool-down bias of, for example, +100 mV can be equated to an

additional ∼ −100 mV applied to the gate once cooled.

It is often desirable to control a specific parameter in an experiment

in isolation (such as dot energy ε). However, it is often the case that the

specific parameter is either, not controlled by a single gate potential, or the

gate potential that primarily affects that parameter also significantly affects

other parameters (such as a coupling Γ). In these cases, we can utilize

a combination of gates to form a virtual gate. A virtual gate is a linear

combination of two or more real gates that when combined effectively target

a specific parameter of the system. For example, consider two physical

gates, Gate A and Gate B, near a quantum dot. If Gate A predominantly

changes dot energy but also affects coupling, and Gate B predominantly

changes coupling but also affects dot energy, a combination of voltages on

Gate A and Gate B can be found that changes the dot energy without

substantially affecting the coupling. As an example of the naming convention

used throughout this thesis, the combined virtual gate would be called A′

(denoting that A is the primary gate). Typically, the non-primary gates

vary over a smaller range and with the opposite sign to the primary gate.

Note that only the primary gates potentials are shown on the axes of figures

throughout this thesis; it is implied that the secondary gates are adjusted

as necessary.

Similarly, we often require very fine control over gate potentials, includ-

ing adjusting around specific values significantly distanced from zero, like

−500.001 mV. This large offset from zero prevents us from using a simple

potential divider on the digital-to-analog converter (DAC) output. To over-

come this, we combine potentials. Instead of utilizing the combined effect

of multiple gates (as we do with virtual gates), we combine the outputs

of multiple DAC channels that are connected to a single gate. The DACs

(AD574) each have a range of ±10 V and a step size of 0.305 mV (20 V/216).

We typically operate in the −2 to 1 V range, but often require a precision

< 1 uV. Practically, we achieve this by combining two DAC outputs with
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a passive voltage adder circuit; essentially two potential dividers that share

the same resistor to ground. We use a small potential divider for one DAC

channel (typically 1
2), and a much larger potential divider for the second

DAC channel (typically between 1
100 and 1

10000). The combination of the

two DACs allows us to vary gate potentials with a very high level of preci-

sion (< 100 nV) over a very wide range of gate voltages (−5 to 5 V). Out of

convenience for analysis and interpretation, we often work with and display

only the values of the fine-tuned DAC potentials (that typically vary around

0 mV). In reality, however, a combined potential is applied to the gate.

2.7 Summary

Figure 2.6 shows a three-dimensional schematic of many of the key compo-

nents typical of the devices discussed throughout this thesis. This schematic

can be used to combine many of the ideas discussed in this chapter. The

white regions represent places where the 2DEG is depleted by the combina-

tion of frozen-in charge carriers (from a positive cool-down bias) in addition

to the potentials applied to the gates. Ohmic contacts that provide an elec-

trical connection from the surface of the heterostructure down to the 2DEG

are shown on either side of a quantum point contact (QPC) that acts as a

charge sensor for the quantum dots. A bias of 100 uV is typically applied

across the ohmics, with the resulting current measured using a current-to-

voltage amplifier (Basel SP983c). The gate directly between the ohmics is

used to tune the charge sensor to its most sensitive regime (G ≈ e2

h ) via

the combination of coarse and fine-tune DAC channels that are added with

a passive potential adder. The QD closest to the charge sensor has an ad-

ditional “accumulation” gate, so-called because we originally intended to

accumulate electrons under it by applying positive potential. In practice,

the accumulation gate is typically used for fine tune control of the QD energy

(only varied near 0 V) as it couples more strongly (larger lever arm α) to the

QD energy than the conventional plunger gate (the gate that also defines

the top side of the QD). A virtual gate is often made from the accumulation

gate and charge sensor gate such that the dot energy can be varied with the
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Figure 2.6: Three-dimensional schematic (not to scale) of a device with
a charge sensor, two quantum dots, and an “accumulation gate” in one of
the QDs. Where most gates typically have negative enough potential to
deplete the 2DEG underneath them (white regions), the accumulation gate
is typically held close to 0 V and so is largely invisible to the 2DEG (black
outline depicts where the 2DEG would deplete with a negative bias applied).
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direct cross-capacitive effect of the accumulation gate on the charge sensor

QPC cancelled out. For example, as the (primary) accumulation gate is

swept more positively, a corresponding linear negative change of the (sec-

ondary) charge sensor gate potential holds the current through the charge

sensor QPC roughly constant, excluding the changes in current that result

from change in QD occupation.

The vast majority of measurements conducted on mesoscopic systems

thus far depend upon conventional conductance measurements through the

system of interest (a method that, while valuable, is often limited in its

ability to provide insight into the system’s quantum state). The advent and

refinement of 2DEG heterostructure fabrication as well as the development

of gating techniques have enabled the development of progressively more

complex devices. Only now, with access to such devices, is a novel entropy

measurement like that described in this thesis feasible.
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Chapter 3

Background

This chapter provides the theoretical and methodological context for the

research in this thesis. It begins with an overview of entropy in mesoscopics

and describes the progress made with conventional heat capacity techniques,

highlighting the requirement for a fundamentally different approach. Alter-

native approaches (developed concurrently with the work presented here)

are summarized, followed by the theoretical framework upon which our novel

technique is based. The Kondo phenomenon that is measured in later chap-

ters is explained, with a particular focus on its manifestation in mesoscopic

devices. Finally, the numerical renormalization group (NRG) method – em-

ployed to generate theoretical predictions to which we compare experimental

data – is described at a high level.

3.1 Entropy

Entropy is generally understood as a measure of disorder and can be de-

scribed by a number of different formalisms.3 This section narrows the

scope to the relevant formalisms, provides an overview of related techniques

and measurements, describes the technical details of the approach to en-

tropy measurement that we have developed, and compares our approach

with other approaches that have been developed in the last few years.

3Including Shannon Entropy, Boltzmann Entropy, Gibbs Entropy, von Neumann En-
tropy, Tsallis Entropy, and Reyni Entropy.
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3.1.1 Entropy in mesoscopics

Most readers’ introduction to entropy was likely through the Boltzmann

equation:

S = kB ln(Ω), (3.1)

which defines the total entropy of the system based on the number of possible

microstates, assuming all states are equiprobable. For the purposes of the

experimental development of a direct entropy measurement technique, as

described in this thesis, the Boltzmann equation must be extended to handle

non-equiprobable states. Such a formalism is known as the Gibbs entropy,

and is defined as follows:

S = −kB

∑
i

pi ln(pi), (3.2)

where kB is the Boltzmann constant, and pi is the probability that the sys-

tem is in microstate i. To understand why the Gibbs entropy (as opposed to

Boltzmann entropy) is required to model the entropy of our systems, con-

sider the simple case of a QD that is weakly coupled to a reservoir of electrons

(a lead) and whose average occupation can be continuously changed from 0

to 1 electron.

〈N〉 P (|0〉) P (|↑〉) P (|↓〉) Entropy /kB
0 1 0 0 ln(1) = 0

1/4 3/4 1/8 1/8 0.74
1/2 1/2 1/4 1/4 1.04
2/3 1/3 1/3 1/3 ln(3) = 1.10
3/4 1/4 3/8 3/8 1.08
1 0 1/2 1/2 ln(2) = 0.69

Table 3.1: A few examples of the probability of QD state and corresponding
QD entropy for 0 ≤ 〈N〉 ≤ 1. |0〉 represents the unoccupied state while |↑〉
and |↓〉 represent the QD occupied with a spin up or down electron respec-
tively. Entropy is calculated using the Gibbs formula (Eq. 3.2) with exact
values shown where non-zero probabilities are equal (i.e. Eq. 3.1 applies).

In this very simple example, there are two main parts to the thermody-
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namic system: the reservoir and the QD. Because the reservoir has, effec-

tively, an infinite number of electrons (it is grounded), the reservoir part of

the system does not change when an electron is added to the QD. There-

fore, we can ignore its contribution to the total entropy of the system and

focus on the QD alone. Then, there are only three possible states for the

QD part of the system: it is either unoccupied (|0〉) or occupied with a

spinful electron (|↑〉 or |↓〉). Table 3.1 shows the probability that the QD

occupies each of these states for various average occupation 〈N〉 along with

the entropy associated with the QD at that point (calculated using Eq. 3.2).

Notably, when 〈N〉 = 2/3, the probability for the system to occupy each of

the three states is equal, hence the maximal entropy of kB ln(3) (that can

be determined directly from Eq. 3.1). For any other occupation between 0

and 1, while the probability of |↑〉 and |↓〉 remain equal to each other, they

differ from that of |0〉 and thus Eq. 3.2 is required.

Note that this simple example is valid only under a specific set of cir-

cumstances. The magnetic field must be zero for the energy levels of the

QD to be spin degenerate [59]. Additionally, the thermal energy kBT of the

system must be small compared to both the charging energy (kBT < EC)

and the orbital spacing of the QD (kBT < ∆) for us not to have to consider

states with two electrons and for there to be no occupation of excited states,

respectively. With these constraints, in the example scenario (as described

in Table 3.1), the time average occupation of the QD 〈N〉 only includes con-

tributions from the lowest energy single electron states of the QD (|↑〉 and

|↓〉), or the unoccupied state (|0〉).
The Gibbs entropy is a calculation of the total entropy of a system;4

however, measurements (including our own) are typically sensitive to the

change in entropy. In the example given, the initial unoccupied QD only

has one possible state (S = kB ln(1) = 0). Therefore, the total entropy and

the entropy change of the system are equal (∆S = S). However, Chapter 5

will describe several measurements in which the initial and final state of the

QD part of the system both have a finite entropy. In these cases, entropy

4Of course, the true total entropy of the system would include the entropy of the
electron reservoir, and therefore the previous example is already a simplified model.
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change must be calculated to compare to measured values. 5

Even in a system as simple as that presented in Table 3.1, where the

physics is well established, the measurement of entropy remains interesting

in its own right as a direct probe of the quantum microstates of a confined

electron. Of course, the ability to directly probe information about the

quantum states of the system becomes increasingly interesting when applied

to systems that are expected to exhibit more exotic quantum states.

There are numerous systems where the measure of entropy would be

useful for distinguishing exotic states, including non-abelian anyons in the

ν = 5/2 fractional quantum hall (FQH) state [14], neutral edge modes

in FQH [60], and Fibonacci anyons in a 3-channel Kondo state [61], [62].

A particularly noteworthy example of an exotic state system of interest

is that of one containing a Majorana Zero Mode (MZM). As a type of

non-abelian anyon, MZMs can enable topological quantum computation,

where the braiding of MZMs would facilitate robust, fault-tolerant unitary

operations thanks to their non-trivial topological state that remains im-

mune to weak local perturbations [63]. The problem with MZMs is that

they are notoriously difficult to detect through conventional conductance

measurements [64]–[66]. Through a direct entropy measurement, however,

a non-trivial 1
2kB ln(2) entropy would clearly distinguish them from non-

topological states [11]. For a more thorough description of how a mea-

surement such as this is possible with the entropy measurement protocol

discussed in this thesis, see Section 5.6.

3.1.2 Conventional entropy measurement applied to

mesoscopics

The conventional technique for measuring the entropy of a system is via

heat capacity C = Q/∆T – a quantity that can be measured by observing

the change in system temperature ∆T when a small amount of heat Q is

5It is also true that for several of the measurements in this thesis, the initial state of
the QD part of the system corresponds to N = 0 and therefore S = 0; hence, the entropy
change and total entropy of the system are equal (∆S = S), and in these cases, the terms
entropy and entropy change may be used interchangeably.
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added, or vice versa. This quantity is connected to the system’s entropy via

the Clausius definition dS = dQ/T . By integrating the heat capacity as a

function of T , the entropy change of the system can be calculated by:

∆S =

∫ T2

T1

C

T
dT. (3.3)

While this approach to determining entropy works well for macroscopic

systems, as the size of the systems becomes smaller, one must measure

ever-decreasing heat flows to calculate the specific heat capacity. As such,

heat capacity measurements of 2DEG systems are considered to be some of

the most challenging experiments due to the very small contribution of the

electrons compared to the entire heterostructure [67]. Despite the difficulty,

there have been a series of successful experiments that have measured the

specific heat [67]–[70] and entropy [71] of 2DEG systems since the mid-

1980s. The following descriptions of these measurements are intended to

highlight the substantial progress that has been made toward applying more

conventional entropy measurement techniques to mesoscopic systems, whilst

also providing the context for the requirement of the fundamentally different

approach that is discussed in this thesis.

One of the pioneering experiments of entropy-related measurements was

conducted using heterostructures with 172 2DEG layers that were thermally

isolated by suspension from superconducting wires [68]. Short (100 µs) heat-

ing pulses were applied and the resulting temperature changes (∼ 30 mK)

measured at T = 1.5 K. By repeating this measurement at varying mag-

netic fields, and under the assumption that the field affects only the elec-

tronic contribution to specific heat, Gornik et al. were the first to be able

to qualitatively detect the specific heat contribution of the 2DEGs to the

total specific heat of the heterostructure via field dependent oscillations.

Shortly after Gornik et al.’s 1985 experiment, Wang et al. [69] utilized AC

calorimetry to measure the heat capacity of a 75-layer 2DEG system. Here,

an oscillating heating current (driven at 750 Hz) induces temperature oscil-

lations in the sample that can be measured at twice the heating frequency.

This moderately fast oscillation of heat flux allowed them to measure the
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thermal response of the heterostructure before the heat dissipated to the

sample holder or thermal bath (in contrast to the previous approach that

attempted to thermally isolate the system with superconductors). Although

this facilitated a more accurate measurement of the total system heat ca-

pacity, it is worth noting that even at 1.3 K.6 the authors estimated that

40% of the total contribution came from the wires and evaporated metals of

the measurement apparatus (and that is compared to the full heterostruc-

ture, not just the 75 layers of 2DEG.) Nearly a decade later, Bayot et al.

improved upon previous measurements using a combination of the previ-

ous two approaches to determine 2DEG heat capacity at temperatures as

low as ∼ 60 mK (similar to the temperatures we are interested in). This

paper is the first to discuss the potential to use this type of measurement

to probe the entropy of the electronic system. However, these measure-

ments still took place in a 100-layer 2DEG system, far from the few electron

limit which is the subject of this thesis. More recently, in 2007, Schulze-

Wischeler et al. [70] made significant strides in reducing the scale of heat

capacity measurements, moving away from layered systems to examine a

meandering path (∼ 10 mm) of a single 2DEG layer. They used yet another

new strategy in which they applied very brief (10 ns) heat pulses to the back

of the heterostructure that essentially bombards the 2DEG with ballistic

phonons. This allowed them to measure the resistance change (and there-

fore ∆T ) of the 2DEG as a result of the ballistic phonon heating before the

2DEG reached thermal equilibrium with the substrate [72]–[74]. This was

the first measurement to directly measure the heat capacity of the electrons

(albeit in arbitrary units) rather than deducing the electronic contribution

from oscillations of total heat capacity versus magnetic field. Finally, the

most recent result, published in 2017 by Schmidt et al. [71], took the same

experimental methodology a step further by not only measuring the specific

heat of a single layer 2DEG but also by using this measurement to calculate

the entropy of the electronic system. In this experiment, square wave Joule

6We are interested in measuring systems at temperatures 40× smaller (∼ 30 mK)
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heating was applied to the system.7 By measuring the thermalization time

between the electrons of the 2DEG and the phonons of the heterostructure,

they were able to determine the specific heat of the 2DEG. Then, by inte-

grating the specific heats measured over a range of temperatures (Eq. 3.3),

they calculated the entropy change ∆S of the system between 40− 150 mK.

3.1.3 Few-electron entropy-related measurements

The conventional heat capacity-based experiments described in Section 3.1.2

showed marked improvement over time, but even the most recent approach

from 2017 demonstrated a measurement of ∼ 109 electrons. Measuring

entropy in few electron systems, such as the quantum dots that are the

subject of this thesis, clearly requires a fundamentally different approach.

One approach to measuring the entropy at the quantum dot scale is

to take advantage of the fact that the rate at which electrons tunnel into

or out of a quantum dot in Coulomb blockade is directly related to the

degeneracy (entropy) of the energy states of the QD [75]–[77]. This approach

utilizes the general principle of detailed balance8 [78], [79] along with the

ability to precisely measure electron tunnelling rates between a QD and

a reservoir [77], [80], [81]. The tunnelling rates are determined by time-

resolved detection of individual tunnelling events into or out of the QD

using a charge sensor QPC in close proximity to the QD [77], [81], [82].

Intuitively one might expect the tunnelling rate in and out to be equal to

one another in light of the time-reversal symmetry of tunnelling; however,

this doesn’t account for the degeneracies of the initial and final QD states.

Ref. [77] claims, that on the basis of detailed balance, the tunnelling rates are

proportional to the ratio of degeneracies of the N and N+1 states of the QD.

Thus, ∆S is not measured directly but can be inferred when starting from a

known state (e.g. N = 0). For example, observing a tunnelling rate into the

QD (N → N+1) as double (or half) the rate of tunnelling out (N+1→ N)

7Coincidentally, this measurement bears a significant resemblance to the heating
method we employ in measurements discussed in Chapter 4, although we use the in-
formation obtained very differently.

8The principle of detailed balancing is that, for a system in equilibrium, the average
rate for every individual process is equal to its reverse process.
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implies a degeneracy increase (decrease) by a factor of two. Although this

approach has been demonstrated to map the energy state degeneracies of

quantum dots with a handful of electrons in both a GaAs/AlGaAs 2DEG [77]

and in bilayer graphene [81], the method is specific to the measurement of

extremely weakly coupled QDs where the tunnelling rate is slow enough that

one can resolve individual tunnelling events.

Another more general approach is to utilize the Maxwell relation(
∂S

∂N

)
T

= −
(
∂µ

∂T

)
N

(3.4)

that connects the change in entropy S with respect to particle number N

(that can be fractional), to the change in the chemical potential µ with the

change of temperature of the system T [8], [12], [83], [84]. In a mesoscopic

system, these quantities (µ, N , and T ) are often relatively easy to measure or

control; that having been said, a measurement protocol utilizing this equa-

tion was proposed in 2009 [12] as a means of detecting non-abelian quantum

hall states, and it was almost a decade later before a related approach was

used to measure the much more mundane entropy of a spin-1/2 electron [8].

In the measurement described in Ref. [8], the thermal response of the charge

of a QD as its occupation is increased by one was measured with a lock-in

amplifier (applying an AC bias that heats the 2DEG reservoir connected to

the QD). Then, by assuming a thermally broadened charge transition line-

shape and utilizing Eq. 3.4, they extracted the entropy change of the system

as a parameter of a fit to the thermal response. While this approach had

the advantage of not requiring precise calibration of the measurement itself,

the reliance on knowledge of the charge transition lineshape specific to the

system measured renders the approach unsuitable for more exotic systems

(as further described in Chapter 4).

More recently, Eq. 3.4 was utilized to provide entropic evidence of a

Pomeranchuk effect9 in magic-angle twisted bilayer graphene (MATBG) [84],

9The Pomeranchuk effect refers to a phenomenon where liquid He3 may solidify upon
heating due to the large entropy of the paramagnetic solid phase [85], [86].
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[86].10 Although the two experiments approach the measurement of µ quite

differently (with Saito et al. utilizing gates that span the entire device to

make global measurements [87], and Rozen et al. utilizing a scanning single

electron transistor to make local measurements in addition to global mea-

surements), both measure µ relative to the charge neutrality point of the

MATBG. In both measurements, the entropy change of the system is deter-

mined by the integral of Eq. 3.4 with respect to N, where they approximate

∂µ/∂T from the finite difference of µ measurements at ∼ 4 K and ∼ 15 K.

Although their measurements illuminated interesting behaviour in MATBG,

their approaches benefitted from two key features that are atypical of the

systems we are interested in: they were able to use the charge neutrality

point as a reference for µ = 0 that facilitates comparison of significantly

time-separated measurements, and the interesting physics occurred over a

higher and larger temperature range that significantly increases the signal-

to-noise ratio.

A third approach to the determination of entropy in mesoscopic QD sys-

tems utilizes thermo-electric transport measurements [88]–[93]. The Mott

relation, when applied to a mesoscopic system, describes a contribution

to thermopower (or Seebeck coefficient) that arises from energy-dependent

transmission through the system, dG/dE: if thermally-excited electron

states above the Fermi energy exhibit a higher (or lower) transmission than

thermally-excited hole states below the Fermi energy, a current will tend

to flow toward (or away from) the cooler reservoir when the chemical po-

tentials of both reservoirs are aligned. In addition to the aforementioned

contribution to thermopower, there is another derived from entropy con-

siderations: Eq. 3.4, for example. This Maxwell relation implies that, for

a fixed average N on the dot, the associated reservoir chemical potential

will vary between reservoirs at different temperatures, depending on the

particular dS/dN . Consequently, in a standard thermopower measurement

setup, where no current is permitted to flow, hot and cold reservoirs will

tend to equilibrate at different µ. Therefore, by comparing thermopower

10In these papers, N and S from Eq. 3.4 are replaced by ν and s, the filling factor and
entropy per moiré superlattice unit cell, respectively.
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predictions from the Mott relation to actual thermopower measurements,

one can in principle gain insight into the entropy of the system in question.

Moreover, predictions based on the Mott relation can, in theory, be derived

from conductance measurements if one equates dG/dVG to dG/dE (where

VG refers to the potential on a gate that tunes the local energy of the sys-

tem). This is the approach proposed, and to some extent tested, in Ref. [90].

The problem with this approach is that dVG and dµ are seldom directly con-

nected, especially in mesoscopic systems that have strong interactions with

their reservoirs. Consequently, making reliable predictions from the Mott

relation using conductance measurements can be problematic.

3.1.4 Theoretical background of novel measurement

technique

Here, the theoretical framework that underpins our novel entropy measure-

ment protocol is described. In comparison to the approaches that utilize

Eq. 3.4, our approach more naturally maps to quantities that are easy to

control or measure experimentally, allowing us to avoid some of the sim-

plifying assumptions that the other approaches rely on. We approach the

problem of measuring mesoscopic entropy via a different Maxwell relation(
∂S

∂ε

)
T,µ

= −
(
∂Nd

∂T

)
ε,µ

(3.5)

from that described in Section 3.1.3. Using this relation allows us to extract

the entropy change of a system by measuring a change in the occupation

of a QD Nd with varying temperature T as we quasi-statically change the

dot energy ε. A useful derivation of Eq. 3.5 begins with the definition of

the Grand Potential ΦG (otherwise called Landau potential or Landau free

energy):

ΦG
def
= U − TS − µN

where U is the internal energy, N represents the number of particles, T

is the temperature, and µ is the chemical potential of the system. In this
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equation, N refers to the total number of particles in the system, a quantity

that we divide into Nres and Nd to denote the number of particles in the

reservoir and dot respectively.

Crucially, the measurement protocol relies upon the QD’s contribution

to the total internal energy U of the system alone. By separating this εNd

contribution we obtain

ΦG = U − TS − (Nres +Nd)µ+Ndε. (3.6)

From here, we take partial differentials with respect to the dot energy ε and

system temperature T .

(
∂ΦG

∂ε

)
T,µ

= Nd (3.7)(
∂ΦG

∂T

)
ε,µ

= −S (3.8)

Then by equating

∂2ΦG

∂ε∂T
=
∂2ΦG

∂T∂ε
, (3.9)

we can obtain

(
∂Nd

∂T

)
ε,µ

= −
(
∂S

∂ε

)
T,µ

(3.10)

dNd

dT

∣∣∣∣
ε,µ

= − dS

dε

∣∣∣∣
T,µ

. (3.11)

In this formulation, we have been careful in handling the subtle difference

between ε of the dot, and µ of the reservoir. Specifically, we work under the

approximation that the local gate-tuned potential of the QD couples only to

the charge of the QD (e.g. we assume it does not affect µ of the reservoir).
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By rearranging Eq. 3.11 into an integral form

∆Sε1→ε2 = −
∫ ε2

ε1

dNd(ε)

dT
dε, (3.12)

we obtain an equation that allows us to calculate the entropy change of the

full system ∆S as we change the energy of the QD whilst monitoring the

thermal response of the QDs occupation. It is important to note that Nd

is not limited to integer values as it represents the time-average occupation

〈Nd〉 of the QD in equilibrium.

In practice, we approximate dNd/dT by the discrete derivative11

dN(ε)

dT
≈ N(ε)|T2 −N(ε)|T1

T2 − T1
(3.13)

giving the exact measured function as follows:

∆Sε1→ε2 ≈
∫ ε2
ε1
N(ε)dε|T2 −

∫ ε2
ε1
N(ε)dε|T1

T2 − T1
. (3.14)

Overall, the approach delineated by the derivation in this section re-

quires no assumptions regarding the nature of the system’s quantum state

and is therefore generally applicable; additionally, it depends only on param-

eters that naturally map to controllable or measurable quantities (described

further in Chapter 4).

3.2 Kondo Effect

Given that an eventual goal of the work discussed in this thesis is to use

the proposed entropy measurement described in Section 3.1 to measure the

entropy change associated with the formation of Kondo correlations, here I

will provide a background of the Kondo effect and discuss some of the exist-

ing measurements in mesoscopic devices. The Kondo effect is a remarkable

many-body quantum phenomenon that arises from the interaction between

11An alternative measurement approach using a lock-in amplifier could be used to mea-
sure dNd/dT more directly, but as mentioned in Chapter 4, this alternative approach is
susceptible to additional sources of error.
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a localized magnetic impurity and the conduction electrons in a metal or a

semiconducting host.12 The effect was first observed – long before it gained

its name – as an anomalous increase in the electrical resistivity of a gold

wire at very low temperature, contrary to the expected decrease due to re-

duced phonon scattering [95]. In subsequent years, the effect was observed

in a wide range of metals [96]–[101], but despite much attention from experi-

mentalists and theorists alike [102]–[104], the effect went without a complete

explanation for 30 years. Then, in 1964, Jun Kondo provided a theoretical

explanation of the effect, and the phenomenon gained its name: the Kondo

effect [105].

3.2.1 Overview of the Kondo effect

The underlying mechanism of the Kondo effect involves the formation of a

correlated state between an impurity and a cloud of electrons that surrounds

it. This state results in a scattering rate of conduction electrons that has a

strong dependence on the energy difference between the incoming conduction

electron and the Fermi level (that leads to the anomalous low T behaviour).

The fact that the low-temperature resistance minimum was observed even

in very dilute alloys [106] led Kondo to explore the possibility that individ-

ual magnetic impurities may exhibit anti-ferromagnetic coupling with the

conduction electrons of the host metal rather than a correlation between the

localized spins of the impurities themselves [107].

Where earlier calculations of the scattering probability of conduction

electrons with the magnetic impurities had been calculated to the first Born

approximation [108] (i.e. assuming that interactions can be treated as sin-

gle scattering events), Kondo realised that calculation to the second Born

approximation (i.e. including second-order scattering events) introduced a

temperature-dependent term that explained the resistance minimum [105].

Typically the term that arises from the second Born approximation is much

smaller than that of the first, however, Kondo found that, due to the dynam-

12While we focus on the Kondo impurity model, which deals with isolated magnetic im-
purities, it is worth noting there exists a Kondo lattice model that describes the collective
behavior of periodic arrays of magnetic impurities in a metal [94].
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ical nature of the impurity spin system, the second term involves a factor

that has a singular dependence on the energy of the initial state relative to

the Fermi energy and that results in a large contribution at low T (i.e. when

the Fermi surface is sharp). An example of a second-order scattering event

in the context of a QD is described in Section 3.2.2.

Overall, the formation of a Kondo correlation can be understood intu-

itively by considering a simplified scenario where the spin of a magnetic

impurity S interacts with a single spinful conduction electron S′ [109]. In

the case that there is no exchange interaction between the spins (J = 0),

the ground state of the impurity is a doublet. However, with any amount of

anti-ferromagnetic coupling J < 0, even if it is very weak, the ground state

becomes a singlet between the impurity and conduction electron, separated

from the excited triplet state by J (which can be considered the binding

energy). This potential to lift the degeneracy of the impurity state is what

underpins the Kondo effect [109]. Note that this simple picture (considering

the interaction of the impurity with only a single conduction electron) is

analogous to the mechanism of the formation of a Kondo-correlated state,

but it does not yet explain the resistivity increase that results.

In reality, the impurity does not couple to a single conduction electron:

because the conduction electrons are freely moving in space, it is hard for

the impurity to “capture” a single electron [109]. Instead, through the co-

herent superposition of many such interactions, it couples to a local spin

density s from the surrounding continuum of conduction electrons [110].

The binding energy between the impurity S and the spin density s is no

longer described by J ; instead, the Kondo temperature TK is introduced. It

is TK that sets the energy scale for the Kondo-correlated many-body spin

singlet state. At low enough temperature (T < TK), this correlated state

between the impurity and many surrounding electrons effectively increases

the scattering cross-section of the impurity, thus increasing the resistance of

the bulk material [107].
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3.2.2 Kondo effect in mesoscopics

To study the Kondo effect in mesoscopic devices, one can mimic the magnetic

impurity with a quantum dot that has a net spin. The 2DEG that is coupled

to the QD is equivalent to the conduction electrons in a bulk material; by

measuring the conductance through such a QD (in comparison to measuring

the resistance of a bulk material), one can infer the formation of a Kondo-

correlated state, as is described in more detail below.

As discussed in Chapter 2, a quantum dot through which conductance is

measured is often called a single electron transistor (SET) and therefore the

terms are often used interchangeably. A small (<∼ 100 electrons [111]) QD

can be tuned to exhibit the Kondo effect and was first demonstrated by Gold-

haber Gordon et al. [112], [113] (shortly followed by two other groups [114],

[115]) in 1998. For a QD to exhibit Kondo correlations, two requirements

must be met via gate tuning: First, the QD must be tuned to have a net

spin. In a small quantum dot, a simple way that this can be achieved is by

starting with a very negative potential on the plunger gate such that the

dot is unoccupied, then reducing the negative potential until there is one

(or any odd number) of electrons in the dot. 13

Second, the QD must have a reasonably strong coupling Γ to the leads.

The strength of the coupling Γ has a similar effect to varying the strength

of the exchange interaction J between the conduction electrons and the

magnetic impurities in a bulk material – a quantity that in bulk materials

is largely fixed by the material properties. In a mesoscopic device, however,

this coupling can be tuned over several orders of magnitude by varying the

potential on the two gates that control the tunnel barriers on either side of

the QD, and as a result, TK of the system can be varied significantly.

With a QD tuned to odd occupation (N) and with reasonably strong cou-

pling to the leads, the conductance through the QD becomes very sensitive

to the presence or absence of the Kondo effect. As discussed in Section 2.3,

with the QD energy level E(N) = ε below the Fermi energies of the leads µ

13Many published measurements involving Kondo correlations utilize QDs with 10s of
electrons [111]–[115] and infer the odd/even occupations from the behaviour of the system.
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a) b) c)

Figure 3.1: Schematic of a 2nd order tunnelling process illustrating a spin
flip of the unpaired electron in the QD. Each panel depicts a QD coupled
to two leads where the EC separated energy levels of the QD straddle the
Fermi energy of the leads. Crosses represent that all lower energy levels of
the QD are filled with no net spin, leaving a single energy level below the
Fermi energy that can be filled by a single spin up or down electron. (a)
Initially, the QD has a net spin-up. (b) An intermediate state in which a
spin-down electron has tunnelled into the QD from the left lead. Within a
short time, a spin-up electron on the QD tunnels to the right lead. (c) The
final state of the system after a single 2nd order tunnelling process where
the QD now has a net spin-down.

(specifically, µ− ε > kBT ), and E(N + 1) = ε+EC above that of the leads

(ε+ EC − µ > kBT ), one would expect the QD to be insulating since first-

order tunnelling processes through the QD are blocked. However, if we now

consider second-order tunnelling processes (analogous to the second-order

scattering events Kondo considered in bulk materials), we find that there is

a mechanism for electrons to pass through the QD. Much like the bulk case,

this involves the dynamical nature of the spin state of the QD.

To understand these second-order tunnelling processes, let us consider

the example shown in Fig. 3.1 that illustrates one possible process. We start

with an initial state (Fig. 3.1a) where the QD has a well-defined occupation

(N and N + 1 levels are far from the Fermi level of the leads), with a single

unpaired spin-up electron occupying the N th level and an abundance of

electrons in each lead. Fig. 3.1b depicts an intermediate state in which a
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spin-down electron enters the N + 1th level from the left lead.14 Although

this is not classically allowed due to the energy level of the N + 1th state

being well above the Fermi energy, Heisenberg’s energy-time uncertainty

principle allows this as an intermediate state, if, within a short time, an

electron also tunnels out of the QD. Because the electron that tunnels out

of the QD need not be the same electron that tunnels in, the spin state of the

QD can be flipped, as shown in Fig. 3.1c (where additionally, one electron

has moved from the left lead to the right). Note that Fig. 3.1 depicts only

one of many possible virtual processes. In general, the intermediate state

can involve the QD first gaining (or losing) an electron from (to) either lead,

followed by losing (gaining) an electron to (from) either lead. Any time an

electron comes from a lead, it can have either spin,15 meaning that not all

of these processes necessarily involve spin flips. However, just as in the bulk

case, it is the processes that involve spin-flips that contribute to the Kondo

correlated state (because the operators involved in the spin-flip processes do

not commute [105]).

In contrast to the bulk case, where the correlated Kondo states con-

tribute to an increased resistivity of the material, in a QD the opposite

behaviour is observed: the conductance through the QD increases. The in-

crease in conductance is a direct consequence of the fact that the correlated

state that forms in the case of a QD, involves electrons in both leads (the

QD naturally exhibits anti-ferromagnetic coupling with electrons in both

leads). This correlation across leads effectively results in the QD becoming

transparent, and thus the conductance through the system increases.

Figure 3.2 shows a schematic of a QD used to measure the enhanced

conductance that results from Kondo correlations. In this setup, a gate po-

sitioned directly over the QD modulates its energy. As the gate potential

shifts positively, it becomes energetically favourable for the occupation of

14Both electrons are shown at the higher energy level to emphasize that it is the energy
of the QD that is temporarily above the Fermi energy; the electrons themselves are not
bound to specific energy levels.

15Of course, the Pauli exclusion principle applies in the QD; however, the orbital level
spacing is typically a fraction of the charging energy, so an electron with the same spin
could enter with an intermediate energy of ε+ EC + ∆.
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Figure 3.2: (a) A schematic of a QD with an “accumulation” sweep gate in
grey to distinguish it from the regular gates in gold. Crossed boxes represent
ohmic contacts. (b) Conductance through the QD vs. sweep gate voltage
measured with close to zero bias (1 uV) for electron temperatures ranging
30 to 300 mK. QD occupation for each Coulomb valley is indicated. No-
tably, conductance increases with decreasing temperature for the Coulomb
valley where N = 3 due to the Kondo effect while the conductance where
N = 2 falls with decreasing temperature as expected in the Coulomb valley.

the QD to increase. Specifically, the conductance peaks observed at 7 and

13 mV in Fig. 3.2b approximately align with the QD energy states where

the dot occupation transitions between 1 to 2 and 2 to 3 electrons, respec-

tively. The conductance measurements are obtained by using a lock-in am-

plifier to apply a small (∼ 1 µV) AC bias, measuring the resulting current

oscillations at the same frequency. The measurement is repeated at vary-

ing cryostat temperatures with corresponding electron temperatures in the

range 30 to 300 mK. Notably, for the Coulomb valley near 18 mV, the con-

ductance increases as a function of decreasing temperature indicating the

formation of a Kondo-correlated state between the net spin of the QD and

the conduction electrons in the two leads. In fact, when the conductance

is measured carefully [111], [113], [114], [116]–[121], it is possible to observe

log(T ) temperature dependence of the enhanced conductance that results

from Kondo correlations [122]–[124]. This behaviour mirrors the resistance

characteristics seen in the bulk Kondo effect.
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It is worth noting that the enhanced conductance due to the presence

of the Kondo effect in a QD is generally observed when there is close to

zero source-drain bias (VSD) applied (in the absence of magnetic field). The

enhanced conductance is typically a zero bias effect because the Kondo-

correlations lead to a peak in the density of states (DOS) on the impurity

site at the Fermi level [123], [124]. While this DOS peak is not directly

probed by resistivity measurements in metals, it is exactly what is probed

by conductance measurements across a QD. With significant bias across the

QD, the Kondo correlations are suppressed due to dissipative transitions

in which electrons are transferred from the higher energy lead to the lower

one [123], [124] which eventually results in the complete loss of the coherence

of the Kondo correlation [125], [126]. Although not a focus in this thesis,

there does exist an intermediate regime in which a small but non-zero applied

bias (VSD . 20kBTK [127]) results in a splitting of the enhanced DOS

into two peaks, representing an increased density of states at the chemical

potential of each lead independently [123], [124], [128], [129]. Observations

of this behaviour have been achieved in several ways: by adding a third

coupling to the QD that acts as a probe for the resonances established by the

first two [127], by replacing one lead with a coupling to the middle of biased

quasi-ballistic nanowire that itself has a double-step Fermi distribution [130],

or by applying a small in-plane magnetic field (gµBB < kBTK [107]) that

is equal to the VSD bias [131], [132]. (The induced Zeeman splitting of

the QD spin states also splits the Kondo resonance resulting in enhanced

conductance when bias and field splittings align).

In mesoscopic devices, the Kondo effect can be categorized into three

regimes: the Kondo regime, mixed-valence regime, and empty (or full) or-

bital regime. As described in Ref. [113], these regimes can be parameterized

by ε̃0 = ε0/Γ, where ε0 represents the depth of the odd occupation QD en-

ergy level below EF , and Γ is the coupling strength between the QD and

the reservoir. With this notation, the Kondo regime (resembling the bulk

case) is characterized by ε̃0 � −0.5, corresponding to a situation in which

the QD predominantly exhibits a net spin due to the ε0 energy level be-

ing mostly or fully occupied (the Coulomb valley in Fig. 3.2b). This is
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the most commonly investigated regime, as this is where the Kondo effect

has the most pronounced impact on the behaviour of the system, assum-

ing Tsys < TK . Then, there is the mixed-valence regime, observed when

−0.5 . ε̃0 . 0. In this regime, the occupation of the QD fluctuates signifi-

cantly but still mainly exhibits a net spin. Kondo-physics remains present,

but the behaviour changes; for example, conductance enhancement becomes

less pronounced, but the Kondo temperature increases significantly [113].

Notably, the mixed valence regime is the focal point of the measurements

discussed in Chapter 6. Finally, the empty orbital regime comes into play

when ε̃0 & 0. In this case, the ε0 energy level is mostly unoccupied: the QD

is mostly in a state of even occupation with no net spin. However, the QD

does still exhibit a net spin occasionally, thus Kondo-physics is not entirely

absent but has a greatly diminished impact on the behaviour of the system.

While conductance measurements of the Kondo effect in mesoscopic sys-

tems have been measured in many experiments,16 an eventual goal of the

work presented in this thesis is to measure the formation of Kondo correla-

tions via a fundamentally different approach. Instead of observing the effect

of Kondo correlations on the conductance of the system, we aim to directly

probe the entropy change of the system upon the formation of Kondo cor-

relations (Chapters 6 and 7). In contrast to the observation of an enhanced

zero bias conduction peak, we intend to observe the change of entropy of

the system from a spin-degenerate QD in the absence of Kondo correlations

(kB ln(2)) to a system in which the ground state is that of a single Kondo

correlated state (kB ln(1) = 0). In other words, we are interested in the

change in entropy of the QD-lead system as we tune from a regime where

T & TK to T � TK (either by changing the temperature T or by tuning

parameters of the system that affect TK).

16A subset of which include Refs. [48], [111]–[121], [127], [130]–[139].
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3.3 Numerical Renormalization Group (NRG)

Calculations

For the measurements discussed in this thesis that involve strong coupling

between a QD and a reservoir of electrons, the systems cannot be modelled

analytically. Instead, we compare to numerical simulations generated by our

theory collaborators (Yigal Meir, Yaakov Kleeorin, and Andrew Mitchell)

using flexible density matrix numerical renormalization group (DM-NRG)

code [140], [141] on the standard single impurity Anderson model. The

single impurity Anderson model is the Hamiltonian that describes a single

magnetic impurity, with discrete energy levels, coupled to a sea of non-

interacting conduction electrons [142].

NRG is a method that was initially developed in the mid-1970s [143],

and it has proved to be an incredibly powerful tool for the study of quantum

impurity systems (open quantum systems with infinite thermal reservoirs)

such as Kondo problem [143]. The method is generally suitable for such

systems in which a small system with a few interacting degrees of freedom

(the impurity) is coupled to a large system with many (non-interacting)

degrees of freedom [144](such as the reservoir of electrons in a 2DEG lead).

While the calculations themselves are not a primary focus of this thesis,

a rough understanding of the NRG method helps elucidate the theoretical

calculations with which our experimental measurements are compared.

A challenge of investigating quantum impurity systems theoretically is

the requirement of non-perturbative calculations to be made for interacting

many-body systems with a continuum of excitations covering a wide range

of energies [144]. For such problems with a continuous spectrum of ener-

gies, one can employ the renormalization group approach to investigate the

system.

Renormalization group (RG) theory is a mathematical framework in the-

oretical physics that facilitates the systematic investigation of problems that

involve a statistical continuum limit [143]. In particular, the NRG method

is suitable due to this specific approach being non-perturbative in all sys-

tem parameters (in contrast to most RG methods) at the cost of having
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to be performed numerically [144]. In fact, it is one of the most powerful

non-perturbative methods available today [145].

This general overview of the NRG approach is described in Refs. [143],

[144] as:

• Segmentation of the energy range of the reservoir’s spectral function

into logarithmically sized intervals.

• Transformation of the continuous spectrum into a discrete set of states

(logarithmic discretization). The continuous spectrum in each inter-

val is replaced by a single pole at the average energy with the same

total weight, resulting in a discretized spectrum that has poles at ex-

ponentially reducing energies (with exponentially reducing weight) ap-

proaching the Fermi energy.

• Mapping of the discretized states onto a semi-infinite chain where the

impurity represents the first site in the chain.

• Iterative diagonalization of this chain, starting from the impurity site

and successively adding degrees of freedom, keeping only a fraction

of the lowest-lying many-particle states each time, obtaining a new

effective Hamiltonian at each step.

• Further analysis of the energies and matrix elements calculated during

the iterative diagonalization.

Effectively, the approach hinges on the physical idea that the energy (or

length etc.) scales are locally coupled [143]. This implies that the behaviours

at a particular point on the scale are most strongly affected by nearby points

on that scale. This physical assumption allows breaking the problem into

smaller chunks that form a cascade, where an important feature of this

cascade is that the behaviour of each chunk is similar as a result of the lack

of a characteristic scale [143].

The lack of characteristic scale means that, in the iterative process of di-

agonalization, one can reach a “fixed point” where the effective Hamiltonian

after each step becomes self-similar. Then, by repeatedly carrying out this
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iterative process with varying initial conditions, one can determine so-called

amplification and de-amplification factors that in turn determine which pa-

rameters of the initial Hamiltonian are “relevant” or “irrelevant” [143].

These amplification factors are the second key feature of the cascade

picture, where small changes in a parameter at the small end of the cascade

can result in either amplifying or de-amplifying behaviour as the cascade

develops. For parameters whose effects amplify (a relevant variable), small

changes in the small end of the scale can result in macroscopic changes at the

large end of the scale, despite no assumption of a direct relationship between

them, thus maintaining the ability of this approach to capture macroscopic

effects that result from microscopic behaviours [143].

Overall, the NRG approach allows for non-perturbative simulations of

complex systems that accurately capture the low-energy behaviour of the

original systems. It can be used to make predictions for the entropy, con-

ductance, and occupation (among other things) of the system being modelled

over a wide energy scale, and is thus well-suited for simulating the meso-

scopic quantum systems that are measured and discussed in this thesis.

44



Chapter 4

Proof of concept

measurement (Single

Isolated QD)

In this chapter, a demonstration of the new entropy measurement technique

discussed in Section 3.1 is presented. This demonstration is analogous to

that of Ref. [8] in that it is a demonstration of measuring the entropy change

of a quantum dot upon the addition of a single spin-1/2 electron. However,

in contrast to the previous work, the following demonstration is generalizable

to more complex systems (as will be demonstrated in later chapters).

This chapter focuses on the technical details of the measurement proto-

col, along with a discussion of solutions to problems that were encountered

in the development of this new technique that would likely be encountered

by others attempting to replicate similar measurements. A large portion of

the contents of this chapter are published in Ref. [146].

4.1 Introduction

As discussed in Section 3.1, we utilize Maxwell relations to measure S (or,

more accurately, changes in S) by sensing changes in charge with tempera-

ture. This follows the work presented in Ref. [8] that used a charge-sensing

approach to measure ∆S due to the addition of a single spin-1/2 electron in

a lithographically defined quantum dot. Although the experiment in Ref. [8]

served as a promising step toward a direct entropy measurement protocol
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based on charge sensing, the applicability was limited17 to simple systems

for which the measurement of entropy holds little scientific value and allowed

only the determination of entropy changed caused by adding one full electron

at a time. Additionally, the experimental method described in that work

left room for artifacts in the measurement signal that could contaminate the

determination of ∆S.

The goal of the work presented in this chapter is to outline the improve-

ments made to the experimental approach in Ref. [8] that make it more ro-

bust at a technical level and applicable to a broader range of measurements.

From the analytical side, the extraction of ∆S is based on the formulation

of the Maxwell relation (Eq. 3.12 as derived in Section 3.1)

∆Sε1→ε2 = −
∫ ε2

ε1

dN(ε)

dT
dε, (4.1)

where N and ε represent the occupation and energy of the quantum dot

(QD) respectively, and T is the temperature of the electron reservoir. Equa-

tion 4.1 enables the determination of entropy (change) continuously as a

function of gate voltages or other parameters that control ε. In the ex-

periment, significant improvements to the thermal design and measurement

protocol eliminate many sources of error. Beyond the description of the new

experimental protocol, we describe common challenges and possible strate-

gies to overcome them that other groups may encounter in attempting this

type of measurement.

4.2 Device Design and Layout

A circuit designed to measure the entropy of a QD using ∂S/∂ε = −∂N/∂T
must have three elements: a QD with tuneable energy ε that is coupled to

an electron reservoir, the ability to change the temperature of this reservoir,

and a charge sensor to detect the occupation of the QD. At the outset, it

is important to note the use of ε rather than the chemical potential of the

17This is primarily due to the specific implementation of the Maxwell relation in that
initial work.
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thermodynamic reservoir µ that is more commonly referenced in relation

to Maxwell equations. This is a result of the difficulty in controlling µ

experimentally [83]. Instead, we tune the energy of the QD level ε. In

practice, it is the difference between µ and ε that controls when electrons

will enter the dot, so tuning ε has a similar effect to tuning µ.

Figure 4.1 shows an example of a circuit with the three elements listed

above. The device was fabricated in a GaAs/AlGaAs heterostructure that

hosts a 2D electron gas (2DEG) as described in Chapter 2. The electrostatic

gates were fabricated with two stages of electron beam lithography followed

by electron beam evaporation: a fine step for the inner parts, and a coarse

step for the outer parts of the gates. In the fine step, 2/12 nm of Pd/Au

were deposited. In the coarse step, 10/150 nm of Ti/Au were deposited.

Measurements were carried out in a dilution refrigerator at temperatures

ranging from 30 mK up to 500 mK. Electron temperatures below 30 mK

were not attainable in our cryostat, and temperatures higher than 500 mK

brought in sources of S unrelated to those of interest in the measurement.

Electron temperatures were determined using the procedures explained in

Section 2.5.

The QD itself was defined following standard design guidelines developed

through two decades of few-electron dot measurements across the mesoscop-

ics community; see, for example, Refs. [51], [54], [147]. The gates immedi-

ately surrounding the dot were cooled down with a +400 mV bias so that

when cold, the 2DEG under the gates was depleted of carriers with no volt-

age applied. The resulting QD could be readily tuned to an occupation of

0→ 5 electrons using the surrounding gates, with the voltage VP applied to

the plunger gate, as shown in Fig. 4.1, dedicated to the coarse tuning of the

dot occupation.

One of the advantages of our measurement protocol, which relies on

charge-sensing measurements rather than conductance, is its impact on de-

vice design: the QD only requires a single tunnel barrier to a reservoir.

Furthermore, as a charge-sensing approach, the measurement is relatively

insensitive to the precise strength of coupling between the QD and reservoir.

However, some factors are especially important for the entropy measurement
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that may not be as relevant in other experiments. For example, tuning of

the QD energy level ε is central to this technique, and this tuning must

be accomplished without changing other dot parameters significantly. For

this reason, the design includes a gate extending into the middle of the dot,

labelled VD in Fig. 4.1, with a very large electrostatic coupling to the QD

electron wavefunction: the lever arm of this gate (the ratio of the change in

QD energy to the gate voltage applied) was typically 0.2 eV/V for this gate,

compared with 0.04 eV/V or less for VP .

200 nm

ICS

Thermal
Reservoir

QD

VDC

VT VD

VP

VCS

15

10

5

0

IC
S
(nA)

−500 −400 −300
VP (mV)

N = 0 N = 1

N = 2

Figure 4.1: (main panel) False-coloured scanning electron micrograph
(SEM) of the key parts of the entropy sensor. Electrostatic gates (gold)
define the circuit in a 2D electron gas (2DEG). The thermal electron reser-
voir (red) can be rapidly heated by driving current through quantum point
contacts (QPCs) far away. (inset) Current through the charge sensor, ICS ,
for a wide sweep of the coarse plunger gate, VP , demonstrating the align-
ment of the 0→ 1 transition at the steepest part of the trace to maximize
sensitivity.

The quantum point contact (QPC) operated as a charge sensor was

formed by the three leftmost gates in Fig. 4.1, and used to detect the oc-
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cupation of the QD [47], [48], [148]. A DC bias, typically between 50 and

300 µV, was applied across the charge sensor, with the resulting current

ICS recorded using a current-voltage converter (108 A/V, 1 kHz bandwidth

set by a two-stage low-pass filter). For the measurement protocol described

here, real-time monitoring of the current is important, so the output of the

current preamplifier was fed into an analog-digital converter with a 2.5 kHz

sample rate.

VCS was tuned to maximize the charge sensor sensitivity to charge in

the QD. The inset to Figure 4.1 shows 0 → 1 → 2 electron transitions for

the QD, in this case, driven by VP , with the 0 → 1 transition tuned to the

steepest slope below the 1st conductance plateau. The relatively large cross

capacitance between VP and the charge sensor is apparent in the data in

Fig. 4.1 inset: just 200 mV applied to VP can tune the QPC from pinch-off

to nearly full transmission. This highlights the importance of tuning dot

occupation with VD during the entropy measurement.

The charge sensor sensitivity could also be increased by tuning the gates

around the dot to bring the center of the electron wavefunction as close as

possible to the charge sensor: in some cases, we were able to achieve a 10%

change in charge sensor transmission due to the addition of an electron to

the QD, using this gate geometry. We point out, however, that increas-

ing the QD–charge sensor coupling has both advantages and disadvantages.

Stronger coupling reduces the bias that must be applied to the charge sensor

for the same signal-to-noise. At the same time, stronger coupling shifts the

charge detection process farther from the weak measurement limit that may

be desirable from the point of view of back-action on the quantum system

under study [149]–[151]. Which of these factors is more important will, in

general, be different from experiment to experiment.

The coupling of the QD to the heated electron reservoir was controlled

by VT . For simplicity, the measurements presented here are in the weak cou-

pling limit (very negative VT ), where the broadening of the QD energy levels

due to the coupling with the reservoir, Γ, is much less than that of thermal

broadening (Γ � kBT ); however, measurements using this technique are

also possible in the strongly coupled regime (as discussed in Chapter 6).
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For the measurements presented here, Γ is estimated to be of the order

0.001 kBT (extrapolated from measurements in the strong coupling regime

where Γ measurably broadens the charge transition [152]). The limit on ar-

bitrarily weak coupling arises from the requirement that the tunnelling rate

between the QD and the reservoir must be much faster than the measure-

ment rate (the inverse of the time spent sitting at each setting of ε during

which an average N was recorded). From a thermodynamic perspective,

this restriction ensures that the QD can transition between all available

microstates within the measurement time.

4.3 Measurement Protocol

The measurement of ∂N/∂T that is central to Eq. 4.1 was carried out by

evaluating the discrete derivative ∆N/∆T (Eq. 3.13), using the charge sen-

sor to monitor the change in N between two nearby temperatures ∆N =

(N(T + ∆T ) − N(T )). The choice to measure at two particular values of

T , rather than the simpler approach of oscillating T (approximately) sinu-

soidally at frequency fT , then locking into variations in N at fT , was found

to be important to the quantitative determination of ∂T in Eq. 4.1 with bet-

ter than 10%–20% error, and was also helpful in troubleshooting spurious

changes in the dot potentials that could appear when attempting to change

only T .

It is the response of N to temperature alone, with all other parameters

(such as the chemical potential µ and dot energy ε) constant, that contains

information about the entropy of the system. This requirement, for identi-

cal µ and ε between the two temperatures, turns out to pose a significant

experimental challenge. In practice, any changes δµ in the thermal reservoir

or δε in the dot energy between the measurements at T + ∆T and T will

introduce inaccuracy in the entropy measurement by an amount of order

δµ/(kB∆T ) or δε/(kB∆T ), respectively. For measurements below 100 mK,

where ∆T is less than a few tens of mK, this restricts δµ and δε between the

two temperatures to be much less than 1 µeV for an accurate determination

of ∆S. There are both intrinsic and extrinsic factors that must be taken
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into account to keep µ and ε constant to such a high degree.

Quantum dots fabricated in GaAs/AlGaAs heterostructures experience

intrinsic, albeit small, electrostatic fluctuations due to nearby charge motion

in the dopant layer of the heterostructure, resulting in noise in the QD energy

ε with a frequency spectrum typically between 1/f and 1/f2 [19], [23]. It is

therefore crucial that the measurements N(T + ∆T ) and N(T ) be carried

out as close to each other in time as possible, protecting the measurement

from noise in the low-f limit. The requirement to alternate rapidly between

hot and cold reservoir temperatures mandates that the temperature change

is accomplished locally on the chip, rather than by changing the temperature

T of the entire cryostat. For this reason, and to minimize the heat capacity

of the thermal system, Joule heating due to a bias current IH was used to

raise the electron temperature Te of the thermal reservoir adjacent to the

QD (Fig. 4.1) above the sample (chip) temperature T : Te = T when IH = 0

and Te = T + ∆T at finite IH .

Driving IH directly into the thermal reservoir will generally change its

potential, however. Since the occupation N of the QD depends on the differ-

ence between the chemical potential of the reservoir µ and dot energy ε, this

direct effect of IH must be avoided. At the same time, the advantage of very

local heating must be balanced by the requirement for full thermal equili-

bration of charge carriers in the reservoir, in contrast to the non-equilibrium

distribution that is expected when injecting carriers at high bias through a

mesoscopic circuit.

A two-chamber heater was used to ensure a thermalized electron reservoir

with a µ that did not change when the Joule heating current was applied

(Fig. 4.2a): IH was sourced through QPC1 and drained through QPC2 to

heat the first chamber directly, whereas the second chamber (the thermal

reservoir immediately adjacent to the QD) was heated indirectly by electrons

diffusing from the first chamber through QPC3. Cooling of the reservoirs

occurred via electron–phonon coupling (especially at higher temperatures)

and by diffusion through QPC1, QPC2, and QPC4 to the 2DEG regions

connected to ohmic contacts, which remain at the chip temperature due to

their large volume and therefore strong electron–phonon equilibration. For
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most experiments, QPCs 1, 2, and 3 were set at their 2e2/h conductance

plateau, while QPC4 was set at 6e2/h.
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Figure 4.2: (a) SEM micrograph of the full measurement device showing
the large (10 µm square) chambers used for electron thermalization, QPCs
1 and 2 through which Joule heating current IH flowed, and QPCs 3 and
4 through which heat diffused but no net current flowed. The dashed rect-
angle in the upper left is the region shown in Fig. 4.1a, including QD and
charge sensor. (b) Crosses: broadening of the charge transition (Θ, left
axis), converted to electron temperature (Te, right axis), increases above
the sample temperature, Ts = 100 mK, due to IH driven through QPCs 1
and 2. Solid line: quadratic fit to |IH | < 1 nA data, with deviations seen at
higher |IH |. (c) Extension of panel b to higher IH and for a range of dif-
ferent sample temperatures. Sub-linear behaviour at very large IH reflects
electron–phonon cooling at higher temperatures.

One advantage of using quasi-enclosed chambers for heating is the rel-
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Figure 4.3: Electron temperature vs IH , with an extended IH range com-
pared to Fig. 4.2b, to emphasise the non-quadratic response for larger |IH |.
The solid line represents the same quadratic fit (IH < 1 nA).

atively low values of IH required to achieve a significant temperature rise.

Figure 4.2b shows that Te of chamber 2, measured via the broadening of a

weakly coupled charge transition in the QD, can be increased from a sample

temperature T = 100 mK to T + ∆T ∼ 130 mK with IH less than 2.5 nA.

At a quantitative level, of course, the temperature rise for a given current

depends on the settings of all four QPCs.

The electron temperature is approximately quadratic in IH for small

heating currents, as might be expected from Joule heating power P ∝ I2
H ,

but already by ∆T ∼ 20 mK small deviations are visible in Fig. 4.2b, where

T = 100 mK. Figure 4.3 depicts the behaviour over a slightly wider range

of IH , more clearly showing the non-quadratic response of electron temper-

ature to IH . The deviations become more extreme at higher IH or lower

chip temperature T . Non-quadratic behaviour results from the temperature

dependence of the thermal conductivity κ between the reservoir electrons

and the cold thermal ground, whether it be via electron–phonon coupling

to the chip’s lattice (κe−ph ∝ T 3−4 expected) or Wiedemann–Franz cool-

ing18 (κWF ∝ T expected) to the cold reservoirs connected to ohmic con-

18The Wiedermann–Franz law states that the ratio of the electronic contribution of the
thermal conductivity κ to the electrical conductivity σ is equal to the Lorentz number L
times temperature T :

κ

σ
= LT

.
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tacts [153]. Figure 4.2c illustrates the extreme deviation from quadratic

behaviour for large IH , corresponding to large ∆T . The sub-linear line-

shape of Te(IH) at the highest currents demonstrates that phonon cooling

has become dominant.

The potential of chamber 2 (Fig. 4.2a) was held constant by biasing

IH through QPC1 while applying a balancing voltage VBAL behind QPC2.

VBAL was tuned such that the potential in chamber 2, when sensed directly

by the QD, remained constant. The inverse signs of IH into QPC1 and VBAL

behind QPC2 are illustrated schematically at the bottom of Fig. 4.2a. To

alternate the temperature while ensuring that µ stays constant, opposing

three-level square waves were created by two channels of a 2.5 kHz digital–

analog converter to generate IH and VBAL. The top row of Fig. 4.4 shows

the square wave driving IH , with an inverse wave setting VBAL. The square

wave has four 20 ms segments: two segments heated with equal magnitude

but opposite sign (IH = ±3 nA in this case), separated by two segments at

IH = 0. Only after confirming the expected response in all four segments is

it possible to conclude that the heating process has not affected µ.

Figures 4.4a–d show the response of the charge sensor (ICS) to the

square wave, at the four positions along the charge transition indicated by

arrows in Fig. 4.4e. Before and after the transition (Fig. 4.4a,d) there is

no effect of IH . Checking these “control” positions is important to confirm

the absence of spurious coupling between IH and the charge sensor, such as

capacitive coupling between the wires carrying IH and those carrying ICS ,

or between the current path of IH and the charge sensor itself. Before the

midpoint of the transition (Fig. 4.4b), Joule heating of chamber 2 leads to a

drop in ICS , reflecting extra charge in the dot and therefore positive dN/dT

(Eq. 4.1). Within the noise of this measurement, there is no difference

between positive and negative IH . This confirms that first-order effects of

IH are strongly suppressed, for example by properly setting VBAL. For VD &

0.03 mV, the Joule heating of chamber 2 leads to a rise in ICS ; therefore,

dN/dT becomes negative before returning to zero after the transition.

The raw data, ICS(t), are processed to determine a single value ∆ICS for

each VD applied to the gate that tunes dot energy. This involves separating
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the data into two segments corresponding either to T or T + ∆T . Before

that is done, however, it is important to remove the time periods during

which the measurement is settling to new parameter values. This settling

time, on the order of a few milliseconds, is clearly visible in Fig. 4.4b,c.

We note that the rate of settling is limited by the response of the cryostat

wiring in our case; thermal equilibration times within the device are many

orders of magnitude faster [71]. The two segments at T , or T + ∆T , are

then averaged to find ICS(T ), or ICS(T + ∆T ). These values, determined

at each VD, are plotted in Fig. 4.4e in blue (T ) and red (T + ∆T ), with the

difference, ∆ICS , in Fig. 4.4f.

∆N/∆T is obtained from the ∆ICS measurement using parameters ob-

tained from the charge transition itself, ICS(VD). Weakly coupled transi-

tions are broadened by the Fermi–Dirac distribution in the reservoir and

may be fit to [37], [58]

ICS(VD) =
−Ie

2
tanh

(
VD − V0

2Θ

)
+ I ′(VD − V0) + I0, (4.2)

where Ie quantifies the sensitivity of the charge sensor to the occupation of

the QD, V0 is the center of the charge transition, Θ represents the thermal

broadening in equivalent gate voltage, I ′ quantifies the cross-capacitance

between VD and the charge sensor, and I0 is the current through the charge

sensor midway through the transition. Although the cross-capacitance is

well approximated as a simple linear term for weakly coupled transitions,

for more strongly coupled transitions, it may have different slopes on the

N = 0 and N = 1 sides of the transition, which require more elaborate

fitting.
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Figure 4.4: A step-by-step inspection of the analysis procedure that goes
into an eventual calculation of ∆S. The fine-tuning plunger gate, VD, is
used to lower the energy of the QD level such that one electron enters from
the thermal reservoir. (top) Schematic illustration of IH(t) through one
complete 80 ms cycle. (a–d) Charge sensor current through the 80 ms
cycle, calculated with respect to the unheated sections, at four locations
on the 0 → 1 transition: VD = −0.5,−0.1, 0.1, 0.5 mV. Data shown here
are averaged over 1200 square wave cycles. Blue (red) indicates times at
which the thermal reservoir is unheated (heated). The relaxation time of
the measurement (∼3 ms) is visible in panels b and c. (e) Charge sensor
current separated into averages over the 4 parts of the square heating wave,
where heating is applied with an alternating current direction (IH = 3,−3
nA), with zero bias applied in between (IH = 0). Fits to the average “cold”
and “hot” data are shown in grey. (f) The difference in charge sensor current
between the “cold” and “hot” traces. (g) ∆S(VD) obtained by integration
of ∆ICS using Eq. 4.1. ∆T is 28.1 mK, equivalent to 0.011 mV when
converted to effective gate voltage, determined from the difference in thermal
broadening of heated and unheated ICS .
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Of these parameters, Ie and Θ are crucial to the conversion between

∆ICS and ∆N/∆T . Ie is the difference in current through the charge sensor

between the unoccupied (N = 0) and occupied (N = 1) states, and is

therefore used to scale the charge sensor reading to ∆N = −∆ICS/Ie (the

minus sign appears because an increase in N causes a drop in ICS). ∆T is

determined from the difference in the broadening term, Θ, for heated and

unheated transitions. This calculation is straightforward when the QD is in

the weakly coupled limit, with the charge transition well modelled by Eq. 4.2.

As determined by fits to Eq. 4.2, Θ will have units of gate voltage instead

of energy, and the lever arm α ≡ ∆ε/∆VD that converts changes in the gate

voltage VD to changes in the dot energy ε would be needed to convert Θ to

kBT . In practice, it is more convenient to perform the integral in Eq. 4.1

over the gate voltage VD actually controlled in the measurement, rather

than over the equivalent ε (in units of energy). Therefore, the denominator

in the integrand ∆N/∆T is more conveniently expressed as ∆Θ in units of

equivalent VD rather than ∆T in Kelvin. The ∆S obtained (Fig. 4.4g) by

this approach is then in units of kB. Following this procedure, the factor α

cancels and need not be measured directly.

As described in Section 3.1, for a weakly coupled non-interacting QD,

the entropy is well modelled by the classical Gibbs entropy (Eq. 3.2). For

the measurements shown in Fig. 4.4, the QD starts in an unoccupied state

(S = kB ln(1) = 0), corresponding to the example described in Section 3.1

where ∆S = S and the entropy of the system is expected to change from 0→
kB ln(2) with a peak at kB ln(3) at the point where the QD is both spin and

charge degenerate. As VD is made more positive, bringing ε towards µ, the

average occupation of the QD begins to increase from zero at VD ∼ −0.3 mV,

reaching 〈N〉 = 2/3 (charge and spin degenerate) at VD ∼ 0.025 mV, and

finally N = 1 at VD ∼ 0.25 mV.

The values 1.07 kB ln(3) and 1.07 kB ln(2) in Fig. 4.4g illustrate typical

experimental errors resulting from the approach outlined in this work. It is

more robust than the approach of Ref. [8] in the sense that this technique

can be applied to arbitrarily complex systems without modification to the

analysis procedure; however, it is susceptible to calibration errors, giving a
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typical uncertainty of up to 10% for this method.

4.4 Common Problems

The rather complicated thermalization device design described in the previ-

ous section was arrived at after an initial round of experiments, e.g., Ref. [8],

with a much simpler design. That design is illustrated in Fig. 4.5, with Joule

heating through a single QPC directly across a channel from the QD to be

measured. In addition to the more efficient heating in the present design

(∆T ∼ 30 mK at T = 100 mK requires 3 nA at 40 µV bias compared to 8 nA

at 160 µV bias in Ref. [8]), Figures 4.5b,c illustrate two of the experimental

artifacts that were introduced by the simpler design.

Figure 4.5b shows the effect of poor thermalization of the electrons due

to IH before they interact with the dot. Electrons (or holes) passing through

the Joule heating QPC enter the reservoir (channel) with very high energy

(160 µeV in the example above) compared to the final temperature they will

have after equilibration (kB · 130 mK ∼ 11 µeV). Due to the ballistic nature

of the channel (mean free path > 5 µm), the electrons will impinge on the QD

far from equilibrium when arriving due to a straight path trajectory [40],

[44]–[46]. The effect of this non-equilibration is visible in the ∆ICS data

taken with transverse field B⊥ = 0 as a series of bumps preceding the peak

in ∆ICS(and deviating dramatically from the theoretical curve shown with a

solid line). Although we do not have a microscopic explanation for the details

of these bumps, they are suppressed by B⊥ as the trajectories from heating

QPC are bent away from the QD. Unfortunately, magnetic fields of at least

200mT were required to eliminate these deviations entirely (Fig. 4.5b), and

at this field, the entropy measurement was perturbed both by the Zeeman

energy of the field and by the onset of Shubnikov de Haas oscillations in the

channel.
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Figure 4.5: (a) False-colour scanning electron micrograph similar to the
entropy measuring circuit from Ref. [8] where the thermal electron reservoir
was heated by IH through a single QPC (top), with no additional confine-
ment of the heated channel. (b) Using the circuit in panel a, ∆ICS mea-
surements over the 0 → 1 transition for 0, 100 and 200 mT of magnetic
field applied perpendicular to the plane of the 2DEG. Then, 100 and 200
mT data are offset by 0.05 and 0.1 nA respectively. Illustrates the effect of
unthermalized electrons from the heater QPC reaching the QD, for 0 and
100 mT data. Fits to theory for weakly coupled transitions (solid grey)
emphasize the deviation of data from theory on the N = 0 side of the tran-
sition. (c) Four segments of IH square wave averaged separately, analogous
to Fig. 4.4e and made using the circuit in Fig. 4.2a, but without proper
balancing to keep the chemical potential of the reservoir at ground. The
result is a shift of IH = +5 nA with respect to −5 nA data. Inset: zoom-in
to the VD = −0.4→ −0.1 mV range of the main panel, showing both lateral
and vertical offsets ±5 nA data.
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Figure 4.5c illustrates the damaging effect of the direct (linear) offset of

the reservoir potential due to IH . When IH is driven through the heater

QPC in the geometry from Fig. 4.5a, a voltage offset is generated in the

reservoir outside the QD due to the non-zero resistance to ground. This

offsets µ, contravening the requirement to measure ∂N/∂T with µ fixed. At

the same time, it may have a capacitive effect on the charge sensor, directly

affecting the measurement of N . Because these effects reverse with the sign

of the current being driven through the heater QPC, whereas the Joule

heating itself does not, it is easy to identify their influence via a shift of the

two heated traces (one at +IH and one at−IH) away from each other. Direct

influence on the reservoir potential causes the traces to separate laterally

(Fig. 4.5c main panel), whereas cross-capacitive effects on the charge sensor

cause the traces to separate vertically (Fig. 4.5c inset). Averaging the ±IH
traces together is not sufficient to remove these offsets due to non-linearity in

ICS(VD), and may artificially raise or lower the apparent entropy determined

from analyzing ∆ICS data.

While using a lock-in amplifier for the measurement of dN/dT has some

advantages, it introduces its own set of challenges. Notably, the deviation

from the ∆T ∝ I2
H relationship makes the lock-in-based approach prob-

lematic. This approach hinges on Te changing at the second harmonic of

a sinusoidal IH , making it especially tricky to calibrate accurately. Addi-

tionally, the use of a lock-in amplifier can obscure the issues outlined in the

previous paragraph, making them challenging to detect and address. These

difficulties reinforce the merits of our alternation between T and T + ∆T

approach.

4.5 Conclusion

This chapter has described the development of a new thermal circuit design

and measurement protocol for quantifying entropy changes in mesoscopic

devices in the quantum limit, based on monitoring how the charge of the

system changes with temperature using a Maxwell relation. This same ap-

proach will be applied to more complex systems in the following chapters.
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Chapter 5

Non-local entropy

measurements in a double

QD system

This chapter details an experiment in which an additional QD is coupled

to the QD that we use for entropy measurement, demonstrating the abil-

ity to measure the entropy of a system that extends beyond that of the

locally charge sensed QD.19 The measurements discussed in this chapter

were significantly contributed to by Owen Sheekey, an undergraduate with

whom I worked closely through the whole process from device fabrication to

measurement and analysis.

5.1 Introduction

During the preliminary measurements that eventually led to the published

work detailed in Chapter 4, we often observed anomalous deviations in the

measured entropy change of the QD system from the anticipated ∆S =

kB ln(2) upon adding a spinful electron to an empty QD. These early obser-

vations led us to think more deeply about the implications of the generality

of our measurement technique, and ultimately, to better understand the po-

tential to measure systems that extend beyond the QD that we measure the

charge of directly.

As discussed in Section 4.4, several systematic issues can arise if the sys-

tem is not heated carefully. Moreover, given the often significant background

19The proposals of Refs. [11] and [154] to measure exotic quantum states rely on such
an ability.
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Figure 5.1: Measured entropy change ∆S from the addition of the first
electron to a weakly coupled QD where an additional contribution varies as
a function of the potential applied to one of the nearby gates. The dotted
line marks kB ln(2), the expected entropy change in the absence of additional
contributions. Each value of ∆S corresponds to entropy change extracted
from a 1D measurement over the N = 0→ 1 charge transition of the QD.

noise relative to the ∆ICS signal, especially during the device tuning phase

where typically less averaging is applied in favour of measurement speed,

a significant random error contribution is also expected. Thus, there were

numerous reasons why we would not be surprised by considerable devia-

tions from the anticipated entropy change in any given measurement. What

was less expected, however, were deviations that were repeatable and robust

over long periods of time. The repeatability ruled out signal-to-noise and

other fluctuating measurement conditions over time as the cause of the de-

viations. These entropy deviations also remained consistent despite varying

many controllable parameters (e.g., heating current, heater QPC settings,

low magnetic fields), ruling out the systematic issues discussed in Section 4.4.

Upon a closer and more systematic investigation of the deviations, it

was apparent that many had a characteristic “S” shape (Fig. 5.1): as we

adjusted a single gate voltage, there was a region where entropy was below

expectations, followed by a region above expectations, eventually settling

back to ∼ kB ln(2). The reproducibility, combined with this S shape led us

to hypothesize that we were observing a real effect stemming from an ad-

ditional entropy change linked to a nearby impurity in the heterostructure.

The behaviour would often depend very strongly on the tuning of one gate
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(i.e. small gate voltage changes of only a few mV), while other nearby gates

(that one would expect to have a very similar effect on the QD based on

their similar proximity) would have a much weaker effect on the deviation

(10s or 100s of mV to have a similar impact). This reinforced our belief that

these deviations arose from additional entropy contributions of impurities in

the heterostructure, especially in the doped layers closer to the heterostruc-

ture surface than the 2DEG. The close proximity of these impurities to the

heterostructure’s surface might elucidate why some gates exerted more pro-

nounced effects than others; specific gates could be in closer proximity to

these impurities.

With this picture in mind, the entropy fluctuations have a simple expla-

nation: impurities near the QD exist whose states are contingent on the local

potential that includes a contribution from the QD’s charge. For example,

let us consider a charge impurity that has two possible states, |A〉 and |B〉.
And, let us assume that the impurity is in close proximity to a gate with po-

tential VG, and the ground state of the impurity (with the QD unoccupied)

is |A〉 for VG ≤ −101 mV, and |B〉 for VG ≥ −99 mV (shown in Fig. 5.2).

In the intermediate regime (−101 mV < VG < −99 mV), the impurity’s

state is a mixture of |A〉 and |B〉, and therefore, has an increased entropy

in that regime (with a maximum of kB ln(2) when P (|A〉) = P (|B〉) = 0.5).

We then take entropy measurements by sweeping a plunger gate (e.g. VD1)

such that the occupation of the QD is increased by one (as described in

Chapter 4). For simplicity, let us assume that VD1 couples only to the QD

energy and has no impact on the impurity whatsoever. In the case that

the QD’s charge also has no impact on the impurity, then it makes no dif-

ference whether the impurity starts in a pure state or a mixture of states

as its entropy will remain constant throughout the measurement. Because

the entropy measurement is sensitive to change only, we would measure the

kB ln(2) entropy change of the QD alone for all VG.

However, if we instead imagine that, the additional charge of the QD

upon the addition of an electron, has an equivalent effect on the impurity as

a −1 mV change in potential of VG, then, depending on the initial VG, the

impurity may change state during an entropy measurement. For example,
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Figure 5.2: Fictitious example of an impurity’s effect on measured entropy
change of a QD. (a) The absolute entropy of the impurity that depends on
the QD occupation. (b) The total entropy change that would be measured
for the addition of the first electron to the QD for a range of VG values.

if VG starts at −100 mV, the increase in QD occupation during the entropy

measurement will result in the impurity seeing an effective VG = −101 mV

by the end of the measurement, thus, changing it from a state with kB ln(2)

entropy (when |A〉 and |B〉 are degenerate), to a state with 0 entropy (when it

is in state |A〉 only). Consequently, if we take several entropy measurements,

varying VG between each measurement from −102 to −97 mV, for example,

the additional entropy change of the impurity can be broken into 6 parts

(also depicted Fig. 5.2):

• VG ≤ −101 mV – No change as the impurity remains in the pure |A〉
state throughout

• −101 mV < VG < −100 mV – Increasingly negative entropy change as

the impurity starts in a mixture of |A〉 and |B〉 (initially |A〉 dominant)

and ends in the pure |A〉 state.

• −100 mV < VG < −99.5 mV – Decreasingly negative entropy change

as the impurity starts in a more mixed state, and ends in a less mixed

state (with a higher probability of |A〉).

• −99.5 mV < VG < −99 mV – Increasingly positive entropy change as
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5.1. Introduction

the impurity starts in a less mixed state (with a higher probability of

|B〉), and ends in a more mixed state.

• −99 mV < VG < −98 mV – Decreasingly positive entropy change as

the impurity starts in a pure |B〉 state, and ends in a mixed state that

becomes increasingly |B〉 dominated

• VG ≥ −98 mV – No entropy change as the impurity remains in the

pure |B〉 state throughout

The generality of the derivation of Eq. 3.12 implies that the entropy change

that we measure as we add an electron to the QD is not that of the QD’s

entropy change alone, but the entire system as it depends upon the QD’s

energy. Physically, this occurs through a thermodynamic back-action effect

of the rest of the system on the QD [11]. At any specific QD energy ε, the

charge on the QD reflects a minimization of the thermodynamic potential

of the full system, not the QD alone. As a result, we would expect the

additional contribution of the impurity’s entropy change to result in the S

shape deviation from the kB ln(2) entropy change expected of the QD in

isolation.

It is important to remember that, for the Maxwell relation (Eq. 3.5,

upon which Eq. 3.12 is derived) to be reliable, the full system must be in

thermodynamic equilibrium. This is an assumption that we cannot make

when considering impurities that lie within the heterostructure itself, due to

the way in which we currently heat the system. Because we heat the 2DEG

electrons directly, we cannot assume that the phonon temperature of the

heterostructure is in equilibrium with the 2DEG. In fact, we assume that

most of the heterostructure remains in thermal equilibrium with the cryostat

because the thermal conductivity between the cryostat and heterostructure

is much stronger than that of the electron-phonon coupling between the

2DEG and the heterostructure phonons at low T [58]. Given that we expect

the charge impurities to live within the heterostructure, electrically isolated

from the 2DEG, we cannot assume a thermal equilibrium of the full system,

and thus, although the measured deviations were still indicative of local en-

tropy changes, the magnitude and precise nature of the changes measured
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were untrustworthy. Therefore, to explore the idea of sensing the additional

entropy change of nearby impurities further, we designed a device in which

the behaviour of a nearby impurity is mimicked by a second QD. By doing

so, we can make concrete comparisons between measurements and a system

that we can make precise predictions for, whilst also ensuring thermal equi-

librium of the full system. The rest of this chapter describes the design and

measurements of this device.

5.2 Device Design

The device used for these measurements is the same device as presented in

Chapter 4, only we are now interested in additional features of that device

that can be seen in Fig. 5.3 (that were hidden behind the inset of Fig. 4.1).

These additional gates are used to form a second QD, close to the entropy-

sensing QD, to act as a controllable impurity. In fact, the same device was

designed with three experiments in mind, and as such, also included gates

to form a third QD (greyed-out gates in Fig. 5.3), but those can be ignored

for the remainder of this chapter.

The second QD (QD2) that acts as the impurity was designed to be

nearly identical to QD1, both being modifications from previous devices that

indicated QD diameters of ∼ 200 nm are ideally suited (in this particular

heterostructure) to have their occupations be tuneable down to empty N = 0

QDs. Although it is not technically necessary to be able to reach N = 0

to perform the intended measurements, there are a couple of advantages to

doing so. With small QDs that hold very few electrons, the orbital energy

spacing of the QD energy levels ∆ is large, and thus, we can more safely

assume that only the lowest orbital energy is occupied at the low T used

in the experiment. In addition, with a maximum of one electron per QD,

we can be sure that there are not unintended complex ground states for

the QDs to fall into as a result of many-body interactions within the QD,

thereby simplifying the interpretation of any measurements. Additionally,

QD2 was designed with direct coupling to the thermal reservoir so that we

can be sure that it (as well as QD1) remains in thermal equilibrium with
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Figure 5.3: False-coloured scanning electron micrographs (SEMs) of the
device, with (a) showing the heater reservoirs, and (b) showing where the
two QDs form. The green region represents the charge sensor. Red repre-
sents the thermal electron reservoir that is heated and cooled rapidly during
entropy measurement. Blue represents an area of 2DEG that remains cold
and must be decoupled from QD2 in order to ensure QD2 remains in thermal
equilibrium with the thermal reservoir. Note that the gate labelled VD1 is
varied only close to 0 V, and as a result, is largely transparent to the 2DEG
(in comparison to the other gates that typically form opaque barriers in the
2DEG). The two greyed-out gates in the blue region are unused and kept
grounded. For more detail of connected circuitry, see Figs. 4.1 and 4.2 that
depict the same device.
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the reservoir at all times.20

The placement of QD2 was chosen such that it is as close as possible to

the entropy sensing QD whilst being as far from the charge sensor as possi-

ble. We want the two dots to have a strong inter-dot Coulomb interaction

energy U [155] such that the occupation of QD2 is highly dependent on the

occupation of the entropy sensing QD1 (to mimic the charge impurities), but

we also want to minimize the direct contribution of QD2’s occupation on

the charge sensor current. Minimizing the direct effect of QD2’s occupation

on the charge sensor is important when it comes to converting the change

in current through the charge sensor (∆ICS) to dNQD1/dT . This is be-

cause we typically assume, after accounting for the direct cross-capacitance

of the sweeping gate on the charge sensor, that ∆ICS can be directly related

to a ∆N of the entropy sensing QD alone (∆NQD1). On a related note, a

significant difference between QD1 and QD2 is the absence of an “accumula-

tion” gate over QD2 (so-called because we originally intended to accumulate

charge underneath it by applying positive potential). For QD1, the gate di-

rectly over the QD helps to minimize the direct cross-capacitive effect on

the charge sensor when sweeping over the QD transition (as discussed in

Section 4.2). For QD2, it is not necessary to have such a gate, as we do not

intentionally sweep the QD2 energy level during the measurement. Between

measurements, it is sufficient to use the more conventional VP2 gate (that

has a weaker lever-arm) to tune the QD2 energy level.

Because the third QD gates were left grounded (and had a negligible

effect on the 2DEG), QD2 was left with a second tunnel barrier that con-

trolled its coupling to the unthermalized (cold) 2DEG (blue area of Fig. 5.3).

Additional care was taken to ensure that QD2’s coupling to the unthermal-

ized reservoir was much weaker than that to the thermalized one, to ensure

the proper thermalization of QD2.

As described in Chapter 4, two-stage heating reservoirs are used to en-

20More recent measurements appear to indicate that it is possible to maintain thermal
equilibrium via strong enough coupling to a QD that is itself coupled to the thermal
reservoir, but at the time of these measurements, we wanted to be very sure that thermal
equilibrium would not be an issue.
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sure a uniform thermal distribution in the reservoir that is coupled to the

QDs. All tuning and operation of the heating reservoirs is the same as that

previously described.

5.3 Methods

The device was cooled from room temperature to 100 mK with +400 mV

bias applied to all gates excluding VD1 that was left grounded (Section 2.6).

This is particularly noteworthy for the VP2 gate; although it is operated

with positive potentials in this measurement, the frozen-in potential from the

cooldown bias means that the 2DEG effectively sees a net negative potential,

similar to the rest of the gates.

After the device was cooled, we first tuned the double QD system into

a weakly coupled regime, where both QDs were weakly coupled to the ther-

mal reservoir (ΓQD1,ΓQD2 < kBT ). While the QDs have a reasonably

strong Coulomb interaction, there is no direct tunnel coupling between them,

though they can exchange an electron via the reservoir (discussed further in

Section 5.5). Similar to the measurements in Chapter 4, we aimed for this

weakly coupled regime to simplify the measurement both theoretically and

experimentally. Because of the weak coupling, the QD charge transitions

were thermally broadened and, at the low T that we measured, relatively

sharp in terms of plunger gate potential. The benefits of thermally broad-

ened sharp transitions are two-fold: ease of dot tuning and charge sensor

signal strength. To elaborate, dot tuning is made easier because the change

in QD occupation shows up more clearly in charge stability plots (Fig. 5.4,

for example) as a result of causing a more sudden change in charge sen-

sor current as the plunger gate is swept. Broader transitions tend to get

lost in comparison to the direct cross-capacitive effects of the plunger gate.

Additionally, the transitions being thermally broadened results in a much

stronger dependence of the occupation of the QD on the temperature of

the heated reservoir. This is beneficial for QD1, as it is this temperature

dependence that results in the charge sensor signal ∆ICS that we scale and

integrate to calculate the entropy of the system.
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Although QD2 was designed to be as far from the charge sensor as pos-

sible, the occupation of the second QD did still have a small (∼ 1/5 that of

the first QD) effect on the conductance of the charge sensor QPC. Although

this behaviour is not ideal for the conversion of ∆ICS to dNQD1/dT , this

weak effect did help facilitate relatively easy tuning of the system, as the

charge state of both QDs was detected by the single charge sensor (as seen

in Fig. 5.4). This enabled us to tune into a state in which both QDs were

minimally occupied (0 ≤ N ≤ 1).

Figure 5.4 depicts the charge stability of the double dot system, focusing

on the region in which both QDs have occupations between zero and one.

There are a few noteworthy observations to make from these plots. We

can see that the cross-capacitive effect of QD2 on the charge sensor is much

weaker than that of QD1 by the significantly smaller change in differentiated

current (roughly a factor of 5 difference) of the charge transition lines that

are associated with QD2 (the more horizontal lines). The reduced effect is

a result of both the increased distance between the charge sensor and QD2,

and the additional screening from the gate between the two QDs. We can

also see the effect of the inter-dot capacitance, apparent as the diagonal

(blue) line between the two triple points in Figs. 5.4b,c. The diagonal line

represents gate voltages where the lowest unoccupied energy levels of both

QDs are degenerate and below that of the Fermi energy; along this line, it

is energetically favourable to have an electron in either of the two QDs, but

not both at the same time (as depicted in Fig. 5.8). In other words, if one

dot has the N th electron, the energy cost of adding an electron to the other

dot is increased by U due to the presence of the additional negative charge

in the first dot.

For the range of VP2 where the occupation of the first dot influences

the occupation of the second, the double dot system is in a regime that is

analogous to the single QD with a nearby impurity that contributes to the

entropy change of the system. To realize a situation in which it is only the

occupation of QD1 that affects QD2, and not additionally the VD1 potential,

a virtual gate (D1′) is used to sweep the QD1 energy while holding the QD2

energy constant (Fig. 5.4c). Then, entropy measurements are carried out
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Figure 5.4: Charge stability plots of the double dot system. All panels show
charge sensor current differentiated in the y-direction in order to emphasise
the charge transitions of both QDs (QD2 transitions – the more horizontal
lines – are hard to see otherwise). In all panels, lines represent where the
occupation of QD1 increases from left to right, and QD2 from bottom to
top. (a) Various charge states of the two QDs (NQD1, NQD2) over a rela-
tively wide range of gate space. The rectangle at (−550, 110) depicts the
region measured in the lower panels. (b and c) Fine scans over the region
indicated in panel a where the applied gate voltages represent fine-tuned
control in addition to fixed gate voltages chosen near the inter-dot charge
degeneracy point. Panel c is measured with a virtual x-axis gate that holds
the QD2 occupation constant (hence, the horizontal QD2 transition lines).
The diagonal line between triple points (blue colour) is where the two QDs
are charge degenerate. Note that the blue line does not represent an inher-
ently different effect of the charge transition on the charge sensor current; it
is merely a consequence of the differentiation axis, which conveniently serves
to highlight the region of interest.

71



5.4. Results

using the same procedure and parameters as discussed in Chapter 4.

5.4 Results

The possible states of the double dot system can be expressed in terms of

the states of the individual dots. Considering just the 0 or 1 occupation

of the two dots, the possible states for the double dot system would be

|0, 0〉 , |0, 1〉 , |1, 0〉 , |1, 1〉, where |A,B〉 corresponds to dot QD1 with state |A〉
and QD2 with state |B〉. Since we have no in-plane magnetic field applied,

the electron spins are degenerate, and the occupied state can either be |↑〉 or

|↓〉, resulting in 9 possible states in total (assuming 0 ≤ NQD1, NQD2 ≤ 1).

Figure 5.5 depicts the possible states of the full system at various key points

in gate space. The entropy of the full double dot system can be calculated

using the Gibbs entropy formula (Eq. 3.2), and as discussed in Section 3.1,

we expect to measure the change in entropy from the initial state (left) to

final state (right). The summary of expected entropy changes at key points

are given in Table 5.1.

VP2

/mV
Fig. 5.6
Panels

Initial
States

Final States
Entropy

Change /kB

0.8 b, f |0, ↑〉, |0, ↓〉
|↑, ↑〉, |↓, ↑〉,
|↑, ↓〉, |↓, ↓〉,
|↑, 0〉, |↓, 0〉

ln(6)− ln(2) =
ln(3)

-0.5 c, g |0, ↑〉, |0, ↓〉 |↑, 0〉, |↓, 0〉 ln(0)

-2 d, h
|0, 0〉, |0, ↑〉,
|0, ↓〉 |↑, 0〉, |↓, 0〉 ln(2)− ln(3)

-3 e, i |0, 0〉 |↑, 0〉, |↓, 0〉 ln(2)

Table 5.1: Summary of the Initial and Final states of the double dot system
corresponding to Figs. 5.6b-i, including the total entropy change of the
system for each case.

Figure 5.6 summarizes the key measurements of the double QD system

in the weakly coupled regime. Figure 5.6a shows the charge sensor signal
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Figure 5.5: Charge stability diagram with possible double dot states over-
laid at key positions. |↑, ↓〉 represents a state in which QD1 is occupied
with a spin-up electron, and QD2 is occupied with a spin-down electron, for
example. The data is the same as that of Fig. 5.4c.
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Figure 5.6: (a) Charge sensor signal, ∆ICS ∝ dN/dT , as a function of a
virtual gate controlling the QD1 energy, and a plunger gate that primarily
affects the QD2 energy, where both represent fine-tune additions to coarse
gate values set close to inter-dot charge degeneracy. Occupations of the two
QDs are displayed for various regions of the graph with notation (NQD1,
NQD2). For simplicity, a virtual gate is not used for QD2, hence the slope
in the QD1 transition at the top and bottom of panel a. (b–e) Line cuts
from a taken at VP2 = 0.8, −0.5, −2 and −3 mV respectively, that when
integrated result in the entropy changes ∆S shown in panels (f–i). (j) The
total entropy change of the system calculated from the measurement shown
in panel a. All but panel j have x-axes that correspond to the energy of QD1,
where the occupation increases from left to right at the near vertical feature
in panel a, similar to that of Fig. 5.4). Similarly the y-axis of panels a and
j primarily correspond to the energy of QD2, where occupation increases
from bottom to top at the faint horizontal features in panel a. Table 5.1
summarizes the expected mixed states and entropy changes of the system
at the key points depicted in panels b–i.
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∆ICS ∝ dN/dT as a function of the occupation of both dots where the

effect of the Coulomb interaction U can again be seen by the diagonal line

((−0.2, −2) to (0.2, 1)) between triple points. Similar to the charge stability

measurements, the ratio of contribution to the charge sensor signal directly

from QD1 compared to QD2 is again ∼ 5 : 1, as expected. Note that, in the

regimes where the QD2 occupation remains constant, there is no additional

contribution. Additionally, in the regime where charge transfers between

the two QDs (and not the reservoir), the additional contribution can be

accounted for because NQD1 = 1−NQD2 exactly. Effectively, the amplitude

of the QD1 charge transition is reduced by 20%, but that reduced value can

be used when scaling the charge sensor signal to entropy. It is not trivial

to account for the additional QD2 contribution in the regimes where charge

transfers occur between both QDs and the reservoir (VP2 ≈ −2 and 0.5 mV),

however, to distinguish between ln(3) and ln(2) or ln(2/3) and 0, the <

20% contribution is acceptable. Thus, although we would ideally see no

contribution from QD2, for the purpose of these measurements, the effect

is small enough in the regime that it cannot easily be accounted for that it

does not significantly impact the interpretation of the results. Figures 5.6b–

e are 1D linecuts from Fig. 5.6a, highlighting some of the key features of the

double dot system. Figures f–i show the same data scaled and integrated

according to Eq. 3.12, where the final values can be compared to the entropy

changes listed in Table 5.1.

Let us first consider Figs. 5.6e,i, representing gate voltage settings where

NQD2 remains zero throughout the addition of an electron to QD1 – the

same scenario as in Chapter 4 where we measure the entropy change of

single weakly coupled QD alone. We again see an asymmetric ∆ICS that

corresponds to a total entropy change of the system of kB ln(2) with a peak

at kB ln(3) where QD1 is both charge and spin degenerate. For Figs. 5.6d,h,

on the left side of the QD1 transition, we start with QD2 in a state of charge

and spin degeneracy with the thermal reservoir, (|0, 0〉, |0, ↑〉, |0, ↓〉). As an

electron is added to QD1, we first see an increase in the entropy of the

system corresponding to an additional charge degeneracy with QD1 at the

triple point, followed by a net loss of entropy of the system. The final entropy
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change of kB ln(2) − kB ln(3) corresponds to the system ending in a state

where only QD1 is spin degenerate, (|↑, 0〉, |↓, 0〉), losing the spin and charge

degeneracy of QD2. Figures 5.6c,g show a net entropy change of zero as a

result of the system starting with a spin degeneracy in QD2, and ending with

a spin degeneracy in QD1, with a region in the middle with an additional

kB ln(2) (for a total of kB ln(4)) entropy where there is both spin and charge

degeneracy of both dots. Finally, we have Figs. 5.6b,f, where the system

starts with no electrons in QD1 and one spin-degenerate electron in QD2,

(|0, ↑〉, |0, ↓〉). For the final state of the system, we see how even very simple

systems can have a relatively complex mixture of states in the ground state.

The system ends in a state where QD1 is occupied with a spin-degenerate

electron, and QD2 is both spin and charge degenerate (where the charge

degeneracy is with the reservoir), resulting in 6 equiprobable possible states,

(|↑, ↑〉, |↓, ↑〉, |↑, ↓〉, |↓, ↓〉, |↑, 0〉, |↓, 0〉). Therefore, a total entropy change of

kB ln(6)− kB ln(2) = kB ln(3) is observed.

Although we consider the contribution from QD2 to be negligible, the

small contribution from it can be seen on the far right side of the data

in Fig. 5.6f. The contribution shows up as a linear slope from a constant

charge sensor signal contribution that does not depend on the occupation

of QD1. Because the change of occupation of QD1 is zero (∆N = 0), the

contribution to the charge sensor signal (∆ICS ∝ dN/dT ) should also be

zero. The result of not properly accounting for this undesired contribution

to the charge sensor signal is a constant offset in dN/dT resulting in a linear

slope of the integrated entropy. Having QD1 tuned to the weakly coupled

regime where the transition is relatively narrow reduces the contribution

from QD2; conversely, for a more strongly coupled QD1, the same constant

offset would be integrated over a wider range resulting in a larger error

overall.

Figure 5.6j depicts the total entropy change of the double QD system

along the full range of Fig. 5.6a. The grey line corresponds to theory calcu-

lation of the double dot system, sent to us by Yigal Meir. The calculations

take into account the energies of the two QDs ε1 and ε2, the chemical poten-

tial of the reservoir µ, the temperature of the system T , and the inter-dot
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Coulomb interaction U . For the comparison to data, U/T = 15 fits best,

representing a Coulomb interaction energy between the QDs that is much

larger than kBT . This can be seen qualitatively in the data by the relatively

narrow charge transitions (that are thermally broadened) compared to the

separation between triple points that arises from the Coulomb interaction

between the QDs. When fitting the calculations to data, a linear scaling

of the energy axis is applied to account for the conversion between plunger

gate potential and dot energy. The near-perfect fit between calculation and

measurement indicates that our measurement protocol is well suited to mea-

suring the entropy change of full systems based on charge measurements of

only a single “entropy sensing” QD.

5.5 Discussion

It is worth noting that, compared to the single QD measurements, the cou-

pling between the QDs and reservoirs in the double dot setup had to be much

stronger, although still maintaining Γ . kBT . Specifically, the stronger cou-

pling of each of the QDs was required in the regime where charge transi-

tions occur between the QDs (rather than with the reservoir). The fact that

the entropy measurement depends on the assumption that the system is in

thermodynamic equilibrium requires the N that we measure to be the time

average 〈N〉. When the device was tuned to have Γ� kBT , we found that

there was a significant region in which the rate of charge transfer back and

forth between the two QDs could be as slow as 100 ms – much slower than

our measurement – and therefore we were resolving the N th electron to be

discretely in either the left or the right QD, and not the time average.

Figure 5.7 depicts such behaviour, where Fig. 5.7a is a charge sen-

sor current measurement (sweeping at ∼ 20 mV/s) over a similar range

as the previously discussed measurements. Notably, in the region where

an electron transfers between the QDs, the signal shows many discrete

jumps that often occur far from the charge degeneracy point. A single,

much slower (∼ 0.05 mV/s), measurement through the middle of this region

(VP2 = 0 mV) is shown in Fig. 5.7b where, ICS ∼ 7.6 nA indicates QD2 is
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a) b)

d)c)

Figure 5.7: (a) Charge stability diagram of the double dot system in a
regime where both dots are very weakly coupled to the reservoir. The ap-
parently noisy region in the middle indicates that we are detecting discrete
charge transitions between the QDs (rather than a time average). (b) charge
sensor current of a much slower 1D scan at VP2 = 0 mV that includes 100s
of discrete charge jumps back and forth between the two QDs. (c and d)
Close-up of the data shown in panel b where VD1 is effectively static over
the range of measurement shown, hence, a time-axis is displayed.
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occupied, and ICS ∼ 7.3 nA indicates QD1 is occupied. By zooming in to

two regions indicated by the vertical dotted lines, we can see the behaviour

of the system as a function of time in regimes where the electron preferen-

tially occupies QD2 (left, c) or QD1 (right, d). The sudden steps indicate

individual tunnelling events from one QD to the other (via the reservoir) on

a timescale of milliseconds, therefore, each individual measurement point is

not representative of the thermodynamic equilibrium of the system.

As depicted in Fig. 5.8, we understand this drastically reduced rate of

charge exchange to be a result of the fact that a second-order process is

required for the electron to move from one QD to the other. For example,

because the two dots are only capacitively coupled, the electron must pass

through the reservoir as an intermediate step between QDs. (This is true

even when the QD energy levels are aligned.) This is similar to the insu-

lating phase of a QD in Coulomb blockade discussed in Section 2.3 (in the

absence of the Kondo effect); to have current pass through the QD, there

would need to be an intermediate state in which the dot is unoccupied (or

doubly occupied) that, for a first-order transition, is energetically forbidden.

However, similar to the discussion of the Kondo effect in QDs (Section 3.2),

such intermediate steps are possible as virtual states, albeit, their rate of

occurrence is relatively low. In the case of a double QD, rather than a QD

coupled to two leads, we have two QDs coupled to a single lead. When

two QDs have degenerate energy levels, after an electron leaves either QD,

another electron will be equally likely to enter either QD. If the QDs have

different energy levels, the lower energy state will be more likely to be filled;

as a result, the lower energy state will naturally be occupied most of the

time. In contrast to the measurement in Fig. 5.7, we require these virtual

processes to occur much faster than we measure. This allows the system to

explore all possible states in thermal equilibrium between measurements, as

required for the entropy measurement protocol. We achieved this require-

ment by coupling each QD to the reservoir more strongly than we did in the

measurements described in Chapter 4, while maintaining Γ . kBT .
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µ

ΓQD1 ΓQD2
QD1 QD2

µ

ΓQD1 ΓQD2
QD1 QD2

µ

ΓQD1 ΓQD2
QD1 QD2

U

a) b)

c)

Figure 5.8: Schematics of the double dot system depicting charge transfer
between the two QDs. QD1 and QD2 are coupled to the reservoir (that has
chemical potential µ) with coupling strengths ΓQD1 and ΓQD2 respectively.
(a and b) Schematics with QD1 or QD2 occupied, respectively, where the
occupation of either QD shifts the energy levels of the other QD to higher
energy as a result of the inter-dot Coulomb interaction U . (c) The inter-
mediate step that facilitates the transfer of an electron from one QD to the
other.
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5.6 Conclusion

Overall, the measurements of this double dot system, where the second QD is

capacitively coupled to the entropy sensing QD, serve as a good intermediate

demonstration of the generality of our entropy measurement protocol. The

fact that we can detect entropy changes of a second QD by charge sensing

only the first QD demonstrates the use of the single QD as a more general

entropy sensor for any system that is coupled to the charge of that QD (and

in thermal equilibrium with it). I call this an intermediate demonstration

because, although the system is more complex than a standalone QD, the

measurements are so far made in the weak coupling limit where more limited

approaches (such as Ref. [8]) may remain applicable.

Our double dot measurements also represent progress towards experi-

ments like those proposed by Sela et al. [11] and Sankar et al. [154]. For

example, Sela et al. [11] propose to measure the non-trivial 1
2kB ln(2) en-

tropy of a Majorana zero mode (MZM). This proposed experiment involves

engineering a system in which the presence of a single MZM depends upon

the charge state of a QD. Then, as demonstrated in this chapter, with the

presence of an MZM controlled by the charge on a QD (even if only by a

weak capacitive coupling), the measurement of the entropy change as the

occupation of a QD is varied will include the entropy change of the MZM

system as well. A brief overview of the proposed experiment follows. First,

one requires a system in which MZMs are expected to form, such as a semi-

conducting nanowire [156]–[161]. Then, because MZMs naturally come in

pairs (the Majorana qubit) with a trivial ln(2) entropy like any two-level

system, it is required that the behaviour of one MZM be separated from

the other. This can be achieved by coupling (with strength Γ) one end of

the nanowire to a lead with a continuous density of states [10]. Specifically,

when Γ� T , one of the MZMs is absorbed into the levels of the lead, and as

a result, no longer contributes to the entropy of the nanowire system (and

thus leads to a −1
2kB ln(2) entropy change of the system). The crucial step

that would allow for the detection of this entropy change is to connect the

change of occupation of a QD (i.e. the entropy sensing QD discussed in this
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chapter) to the change in the coupling of the nanowire system to its lead. If

a change in the occupation of the QD can change Γ from Γ� T → Γ� T ,

then the entropy associated with the transition can also be measured. This,

in theory, can be easily achieved by placing the QD in close proximity to

the nanowire-lead barrier, then (by capacitive coupling), the occupation of

the QD will affect the local potential of the barrier, thus affecting Γ. In this

situation, the thermal response of the QD charge as one (or more) electrons

are added to the QD will (through thermodynamic back-action) reflect the

entropy change of the full system [11]. Note that it is not necessary for the

absorption of the MZM to the lead to depend upon a single charge transition

of the QD; one could instead integrate the entropic contributions of the ad-

dition of several charges to the QD. Experimentally, the difficulty of such a

procedure will involve designing a circuit in which the nanowire-lead barrier

has a sufficient dependence on the charge of the QD such that the barrier

can be tuned between the two extremes within a reasonable change of oc-

cupation of the QD. Additionally, one will have to be very careful that the

experimental procedure for measuring the combined contribution of several

consecutive charge steps of the QD takes into account the inevitable di-

rect cross capacitance between the QD plunger gate and the nanowire-lead

barrier, particularly as the plunger gate will have to be swept orders of mag-

nitude further than in the measurements discussed in this chapter to sweep

over many charge transitions. Nevertheless, the measurements discussed in

this chapter are fundamentally very similar in procedure to those proposed

in Ref. [11].
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Chapter 6

Entropy measurements in

the mixed valence regime

In this chapter, the first measurements of the entropy of a system showing

signs of Kondo correlations are presented. This chapter largely follows that

of already published work that can be found at Ref. [152].

6.1 Introduction

The measurements discussed in this chapter serve a dual purpose: they

represent the first measurements of entropy in which Kondo correlations

are expected to be present, and more generally serve as a demonstration

of the generality of the new measurement approach where the foundational

approach of Ref. [8] is clearly not applicable. Where the previous approach

relied upon knowledge of the precise lineshape of a weakly coupled charge

transition of the QD, in this chapter, the measurements lie well outside the

weak coupling limit in a regime where there is no analytical solution to the

lineshape of the charge transition. Therefore, it is the new general entropy

measurement protocol described in Section 3.1 that allows us to measure

entropy in this regime.

Single-impurity Kondo systems have been realized in several previous ex-

periments [109], [111]–[114], [116]–[119], [121] that probed the Kondo state

via measurements of conductance. Here, we perform the first entropy mea-

surement of a Kondo-correlated dot, using the in situ heater and charge

sensing approach outlined in the previous chapters. Recently, more com-

plicated structures including multiple dots have been engineered to host

multi-channel Kondo states [162], [163], or a three-particle simulation of
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the Hubbard model [164]. We hope that this demonstration of direct en-

tropy measurement of a single-impurity Kondo system will act as a step

towards similar measurements in these more complex systems as entropy

measurements made on any of these would offer a significant advance in

their understanding.

6.2 Methods

We use the technique discussed in Section 3.1, starting by first replicating

the measurements of Chapter 4 where the coupling Γ between the QD and

reservoir is weak (Γ � kBT ). We then show that the onset of entropy

as the electron enters the QD is strongly modified when Γ & kBT . The

measurement of this modified entropy signature is the primary result of this

work in this chapter, offering clear entropic evidence of the effect of strong

reservoir coupling on the quantum state.

Measurements were performed on the same mesoscopic circuit used to

obtain the measurements discussed in Chapter 4 (Fig. 6.1a). However, in

this chapter, the device is operated in a very different regime. As before, the

device includes a QD, a charge-sensing quantum point contact, and an elec-

tron reservoir that can be rapidly Joule-heated above the chip temperature

T to an elevated T + ∆T . However, in these measurements, the coupling Γ

between the QD and the thermal reservoir was varied from Γ << kBT to

Γ >> kBT . The coupling occurs via a single tunnel barrier that is controlled

by VT .

Throughout this chapter, VD is reported with respect to the midpoint of

the N = 0 → 1 charge transition (∆VD ≡ VD − VD(N = 1/2)) because the

VD gate is generally kept close to zero potential anyway (|VD| <∼ 10 mV),

and it is much easier to make comparison between the various measurements

with a fixed reference point that has physical meaning. N in the QD was

monitored via the current, ICS , through the charge sensor [47] (Fig. 6.1b),

which was biased with a DC voltage, typically 100 µV. Changes in occu-

pation, N , were scaled from ICS using Ie, the change in ICS across a 1e

charge transition (following the same protocol discussed in Chapter 4). Fig-
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Figure 6.1: (a) Scanning electron micrograph of the device. Electrostatic
gates (gold) define the circuit. Squares represent ohmic contacts to the
2DEG. The thermal electron reservoir (red) was alternated between base
and elevated temperatures. (b) Current through the charge sensor, ICS ,
for the 0 → 1 charge transition in a weakly coupled regime, separated
into the unheated (100mK) and heated (130mK) parts of the interlaced
measurement [146], showing the single electron step height Ie. (c and d)
Change in ICS from 100 to 130 mK, for weak (panel c) and strong (panel d)
coupling between QD and reservoir. Panel c includes a fit to weakly-coupled
theory.
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ure 6.1b illustrates weakly coupled N = 0 → 1 transitions at T = 100 mK

and T +∆T = 130 mK. Throughout this work both T and T +∆T were cal-

ibrated by fitting to thermally broadened charge transitions; except where

noted, T = 100 mK with ∆T ∼ 30 mK. As described in Chapter 4, the

measurements at T and T + ∆T were interlaced by alternated Joule heating

at 25 Hz.

Figure 6.1c shows the change in detector current from 100 to 130 mK,

∆ICS(VD) ≡ ICS(T + ∆T, VD) − ICS(T, VD), scanning across the 0 → 1

transition in the weakly coupled regime. Note that −∆ICS is plotted in-

stead of ∆ICS in order to connect visually with ∆N , which increases when

ICS decreases. As in Ref. [8], the lineshape of ∆ICS(VD) in Fig. 6.1c may

be fit to a non-interacting theory for thermally-broadened charge transitions

to extract the change in entropy across the transition, ∆Sfit, not requiring

calibration factors or other parameters (see Ref. [8] for details). For the

data in Fig. 6.1c, this yields ∆Sfit = (1.02± 0.01)kB ln(2), where the uncer-

tainty reflects standard error among 5 consecutive measurements at slightly

different VT .

The limitation of this approach is illustrated by the very different line-

shape in Fig. 6.1d, reflecting the 0→ 1 transition when the QD is strongly

coupled to the reservoir. Fitting the data in Fig. 6.1d to thermally-broadened

theory would yield a meaningless (and incorrect) ∆Sfit > 10kB ln(2) for the

entry of the spin-1/2 electron. For a quantitative extraction of entropy be-

yond the weakly-coupled regime of Fig. 6.1c, we instead follow the integral

approach in Eq. 3.12 that makes no assumptions on the nature of the quan-

tum state and is additionally continuous across the transition rather than a

single value for the complete N = 0→ 1 transition.

Before moving to the quantitative evaluation of entropy, we note that the

different lineshapes of ∆ICS(VD) in Figs. 6.1c,d – the peak-dip structure in

Fig. 6.1c contrasting with the simple peak in Fig. 6.1d – can be understood

as representing two temperature regimes for the Anderson impurity model.

Figure 6.1c represents the high-temperature limit, where dN/dT is approxi-

mately a measure of the energy derivative of the density of states in the QD,

and thus exhibits positive and negative lobes. At sufficiently low tempera-
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Figure 6.2: Change of S in the QD across the N = 0 → 1 transition,
obtained by integrating ∆ICS(VD) (Fig. 6.1c) following Eq. 3.12. Dot
occupation across the transition is shown in grey. Data obtained in the
weakly coupled limit, VT = −350 mV corresponding to Γ/kBT ∼ 1× 10−4.
∆S0→1 = (0.99 ± 0.02)kB ln(2) is the net change ∆S across the complete
transition. Inset: comparison of ∆Sfit, ∆S0→1, and ∆Smax (see text) for
VT covering approximately 10−5 < Γ/kBT < 10−1.

tures, the exact solution [165], and the resulting Fermi liquid theory [166]

predict a positive dN/dT for all values of the dot energy, from the empty

level to the Kondo regime through the mixed-valence regime, with a peak

expected at a dot energy corresponding to TK(ε) ∼ T , where the entropy

is expected to crossover from S = 0 to S = kB ln(2). Figure 6.1d, corre-

sponding to a measurement where T � Γ, demonstrates such all-positive

dN/dT .

Following the same procedure as discussed in Chapter 4, the evaluation of

Eq. 3.12 from experimental data starts with the approximation of dN(ε)/dT

by the ratio ∆N(VD)/∆T = −∆ICS(VD)/(Ie∆T ). ∆T is expressed in units

of gate voltage using the corresponding lever arm so that the integral may
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be evaluated over VD, giving ∆S(VD).

Figure 6.2 shows the entropy change across the N = 0 → 1 charge

transition in the weakly coupled regime calculated from the data in Fig. 6.1c,

very similar to that in Chapter 4. The net change in entropy from beginning

to end, ∆S0→1 = (0.99 ± 0.02)kB ln(2), is nearly identical to the ∆Sfit =

(1.02±0.01)kB ln(2) from Fig. 6.1c, despite different sources of error for the

two approaches.

The inset to Fig. 6.2 compares the fit and integral approaches for weakly-

coupled charge transitions covering four orders of magnitude in Γ, tuned by

VT (see Fig. 6.5b inset for calibration of Γ). The consistency between ∆S0→1

and ∆Sfit over the full range of weakly-coupled VT , in addition to the fact

that ∆Smax remains kB ln(3) throughout this regime, confirms the accuracy

of the integral approach. Small deviations from ∆S0→1 = ∆Sfit = kB ln(2),

such as that seen around VT = −330 mV, are repeatable but sensitive to

fine-tuning of all the dot gates; we believe they are due to extrinsic degrees

of freedom capacitively coupled to the dot occupation, such as charge insta-

bility in shallow dopant levels in the GaAs heterostructure (as described in

Chapter 5).

After confirming the accuracy of Eq. 3.12 in the weakly coupled regime,

we turn to the regime Γ & kBT (VT > −280 mV), where the influence of

hybridization is expected to emerge. In other words, we repeat the same

measurement protocol as we open up the tunnel barrier between the QD

and reservoir by decreasing the negative potential on VT .

6.3 Analysis

Before discussing the results of the strongly coupled regime, an understand-

ing of the analysis procedures used is useful.

Each measurement of entropy presented in this chapter is, in fact, an av-

erage of many individual sweeps across the transition, as depicted in Fig. 6.3.

The averaging of many sweeps is particularly important in the strongly cou-

pled regime (Γ > kBT ) because the ∆ICS signal becomes weaker as the

transition becomes broader. In the weakly coupled regime, the transition
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Figure 6.3: (a) Markers illustrate a single measurement across the charge
transition, which takes 30 seconds to complete. No peak in ∆ICS can be
seen in this raw data. After averaging 400 of such scans together (solid line),
however, a small peak in ∆ICS is seen at ∆VD = 0. (b) Raw ∆ICS data
(greyscale) for 400 scans as in panel a. Averaged together, they yield the
solid line in panel a.

width is dominated by thermal broadening, but for Γ > kBT , the transi-

tion width is proportional to Γ. Because the magnitude of entropy change

does not increase, but the transition spans an increasingly wide range of dot

energies ε, the magnitude of dN/dT (and thus ∆ICS) naturally decreases.

In the strong coupling regime, it was often necessary to measure the

charge sensor signal over a single charge transition for tens of minutes or

even hours to obtain a reasonable signal-to-noise ratio. Fig. 6.3a illustrates

the terrible signal-to-noise ratio of a 30 s measurement sweep. However,

the presence of charge instability makes single slow measurements over the

transition unreliable. By repeatedly sweeping over the transition quickly,

then aligning each sweep based on a fit to the ICS data before averaging,

we can improve the signal-to-noise ratio of the corresponding ∆ICS whilst

mitigating the effect of charge instability. The alignment of data is exclu-

sively based on the unheated parts of the ICS measurement as it is crucial

that no artificial shift between the heated and unheated parts of the data

be introduced, otherwise, the conversion to entropy via Eq. 3.12 will be

compromised.

For the most strongly coupled measurements (VT ≥ −230 mV), the very

broadened charge transitions result in an uncertainty in the center parameter
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of the fit that exceeds that of the typical charge noise of the system; as a

result, these data were averaged without centring first. The charge noise

in the system (determined in the weakly coupled regime) typically causes

sudden changes in dot energy ∆ε . 6 µeV without significant long-term drift

seen in the data. However, given that the transition width of measurements

in the VT ≥ −230 mV regime is on the order of 400 µeV, the lack of centring

is expected to have a negligible effect. Occasional larger jumps in dot energy

did occur on a timescale of hours; care was taken never to average data across

such jumps.

To make a quantitative comparison between theory and experiment, we

compare to DM-NRG simulations [140], [141] as described in Section 3.3.

These calculations yield N as a function of T and ε0, where −ε0 is the

depth of the dot level ε below the reservoir chemical potential µ. From

N(T, ε0), dN/dT and thereby ∆S are extracted via Eq. 3.12. To make a

direct comparison with the experiment, ∆ε0 ≡ ε0 − ε0(N = 1/2) is defined

like ∆VD, centred with respect to the charge transition.

In the calculations, our collaborators assumed infinite interaction U , a

constant density of states in the reservoir with bandwidth D = 1 exceeding

all other energy scales, and kept 350 states per iteration with discretization

constant Λ = 2. Note that the U in this case differs from that discussed

in Chapter 5: here, it represents the Coulomb repulsion between electrons

in the single QD (charging energy). Thus, an infinite U limits the QD

occupation 0 ≤ N ≤ 1 in the NRG simulation. The NRG results are given

in arbitrary units of energy. Our collaborators note that the NRG curves are

independent of the values of bandwidth W and of U as long as U,W >> T,Γ

because, as with the experimental plots, all curves are shifted such that x = 0

corresponds to half filling.

NRG parameters are calibrated to match those in the measurements by

aligning the occupation N(∆ε0) with the measured N(∆VD), from which

the appropriate Γ/T calculation may be selected and the precise connection

between ∆ε0 with ∆VD is ensured. The procedure for fitting the occupation

N of NRG calculations to measured data involves three additional steps

before typical fitting procedures can be applied:
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• We linearly interpolate the 2D array of NRG calculations for Occupa-

tion N

• Add terms (amplitude, constant, linear) to account for the behaviour

of the charge sensor in detecting the QD occupation

• Allow for an offset and scaling proportional to Θ (T in units of gate

voltage) in the ε0 axis

For a more thorough demonstration of NRG fitting, see Appendix A. Also

note that, in the above procedure we effectively modify the NRG data to

match measurement by adding terms to the NRG calculation. This is some-

what counter-intuitive when considering the aim is to compare data to the-

ory. The choice is arbitrary and chosen this way around to visually match

what the experimentalist is accustomed to observing in data. It would, of

course, be exactly equivalent to subtracting the additional terms from the

data to match the NRG occupation directly. In either case, the parameters

of fitting are identical.

We fit the modified calculations to data using Powell’s method of mini-

mization [167] to find the best fitting parameters, allowing all parameters to

vary with the exception of Γ and Θ, for which only one is allowed to vary. In

the weakly coupled regime, it is reasonable to approximate Γ ∼ 0, and with

that constraint, we can determine Θ(VD). Repeating this fitting procedure

for varying VT (maintaining Γ ∼ 0), we find a linear relationship between

Θ(VD) and VT . Given that it is the lever arm α that connects Θ in units of

gate voltage to temperature T in kelvin via

αΘ = kBT, (6.1)

and that we are very confident that the temperature T of the system is

constant within ∼ 1%, the linear relationship between Θ(VD) and VT implies

a linearly changing lever arm (Fig. 6.4).

As the lever arm α is a measure of the strength of effect the plunger gate

VD has on the QD energy, the linear change implies that as VT is varied, the

effect VD has on the QD energy also varies. We attribute this to a change
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Figure 6.4: Variation of lever arm α, and charge step Ie measured inde-
pendently over the full range of VT explored in this experiment. Dashed
line: extrapolation of α into the strongly-coupled regime where it cannot be
measured directly

of shape of the QD that results in the charge moving further from VD for

more positive VT .

For measurements into the strongly coupled regime (more positive VT )

where Γ >> 0, we force the Θ parameter to follow the linear relationship

found in the weakly coupled regime, allowing Γ to be a varying parame-

ter. The fit parameters found by comparing N of NRG calculations to ICS

of measured data can then be used to directly compare between the NRG

dN/dT calculations and ∆ICS measurements. As seen in Fig. 6.5b, the

data/theory agreement in terms of dot occupation N is within the experi-

mental resolution, giving confidence that measured and calculated ∆S may

be compared directly.

6.4 Results

If we now apply the above analysis to the measurements taken as the cou-

pling Γ is increased between the QD and reservoir, we obtain the data sum-

marized in Fig. 6.5. This figure shows the crossover from Γ � kBT to
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Γ � kBT , illustrating several qualitative features. The kB ln(3) peak in

∆S(ε) decreases with Γ until no excess entropy is visible at the charge de-

generacy point for Γ/kBT & 5 (Fig. 6.5a). This suppression of the entropy

associated with charge degeneracy originates from the broadening by Γ of

the N = 1 level due to hybridization with the continuous density of states

in the reservoir [11]. At the same time, the total entropy change ∆S0→1

remains ∼ kB ln(2) over the entire range of Γ explored in this experiment,

reflecting the entropy of the spin-1/2 electron trapped in the QD.

Figure 6.5c illustrates NRG predictions for ∆S(ε0) over the range of

Γ accessible in our measurements. Matching the data, the peak in entropy

due to charge degeneracy is suppressed for Γ > kBT , while the net entropy

change across the transition remains kB ln(2). At the same time, a qual-

itative difference between data and NRG is the shift to the right seen in

NRG curves for higher Γ (Fig. 6.5c), but not observed in the measurements

(Fig. 6.5a). This relative shift of NRG with respect to data is not explained

by an offset of ∆ε0 with respect to ∆VD, as the two are aligned by the

occupation data (Fig. 6.5b).

Instead, the shift of NRG curves to the right (toward higher occupation)

with increasing Γ is explained by the virtual exchange interactions under-

lying the Kondo effect, which form a quasi-bound singlet state between the

localized spin and a cloud of delocalized spins in the reservoir at tempera-

tures below TK . This state has no magnetic moment [105] and, in the case

of a single-electron QD, zero entropy. Thus, due to the Kondo effect, we

expect the entropy to remain zero for all dot energies that obey T < TK(ε0).

In Section 3.2, I described a situation in which we would expect the

entropy of the system to remain zero even with N = 1 (not only near charge

degeneracy). The reason that S = 0 for N = 1 is not expected for these

measurements (or NRG simulations) is that even the largest Γ explored here

is not large enough to result in TK > T in the deep Kondo regime (far from

charge transitions). However, scaling theory predicts that when the energy

level of the QD is far below that of the Fermi level, the Kondo temperature
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TK depends exponentially on the depth of the level [113], [168]:

TK =

√
ΓU

2
eπε0(ε0+U)/ΓU (6.2)

Although it is not technically correct to apply this formula in the mixed

valence regime (ε ∼ 0), qualitatively it implies that TK will increase sig-

nificantly toward the mixed valence regime [113]. Therefore, we expect the

onset of kB ln(2) entropy to shift to larger values of ε as Γ increases, as seen

in the NRG results.

The reason that we do not measure in the deep Kondo regime is that for

the present device geometry, ∆ICS collapses with increasing Γ, limiting the

strength of the coupling accessible in the measurement to Γ/kBT . 25.

6.5 Discussion

It remains a puzzle why the strong suppression of entropy right at the charge

transition, seen in NRG calculations for Γ/kBT ≥ 5, is not observed in

the data. One possibility is that the charge measurement itself leads to

the de-phasing of the Kondo singlet [133], [150], [151]. In fact, Ref. [133]

reported a suppression of the Kondo conductance peak due to charge sensing.

However, despite finding a 30× stronger de-phasing than had been predicted

theoretically at the time, the magnitude of the suppression they found, even

with significantly higher charge sensor bias (1200 µV), was ∼ 10% [133],

and therefore unlikely to explain the discrepancy that we see. Nevertheless,

we tested for charge sensor dephasing in our measurement by repeating the

measurement with charge sensor biases from 300 µV down to 50 µV, but no

dependence on the bias as seen in the data (Fig. 6.6).

We note that the entropy measurement presented here is the first that

could be sensitive to the dephasing of the Kondo state itself, rather than

the dephasing of transport through the Kondo resonance [151].
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formation of the Kondo singlet
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Chapter 7

Preliminary entropy

measurements in the Kondo

regime

The measurements presented in this chapter extend upon those discussed in

Chapter 6. Where the previous chapter was experimentally limited to in-

vestigation of the Kondo effect in the mixed-valence regime, here we discuss

a new approach that should allow for entropy measurement of the Kondo

effect into the more typical Kondo regime that many previous conductance

measurements have focused on. The data presented here is preliminary, but

indicative of a promising approach for further investigation.

7.1 Introduction

The discrepancy between measurement and NRG discussed in Chapter 6

calls for a more comprehensive investigation of the use of entropy mea-

surements to probe the Kondo effect. Although the measurements of the

previous chapter were expected to show significant indications of the Kondo

effect, they were carried out with weaker coupling (smaller Γ/T ratio) than,

to our knowledge, has been measured via conventional conductance mea-

surements.21

This makes it difficult to argue that our measurements definitively in-

dicate an inconsistency in the NRG simulations of entropy, especially given

that NRG simulations of conductance are in good agreement with existing

21There are existing conductance measurements in the mixed-valence regime, such as
Ref. [113], however, they were closer to the Kondo regime due to a larger Γ/T ratio.
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measurements that have been made closer to the Kondo regime. Ideally,

we would like to make entropy measurements in a regime that has been

extensively studied via conductance measurements.

The major problem with further exploration of the Kondo effect via the

approach in Chapter 6, is the discrepancy between requiring a very strong

coupling to increase the Kondo temperature of the system, while at the same

time, requiring a relatively weak coupling so that we obtain a significant

charge sensor signal. Therefore, we require a new approach that allows us

to control parameters affecting these requirements independently. The key

aspect to this new approach is to separate the coupling through which Kondo

correlations form, from the coupling through which charge is added to the

full system, such that they can be controlled independently. This chapter

describes a device and measurement procedure that facilitates such control,

and thus, allows entropy measurements to be made in a regime that can be

more directly compared to existing conductance measurements.

7.2 Device Design

For the design of this new device, several requirements had to be satisfied

simultaneously to enable a series of planned experiments, including the en-

tropy measurements discussed in this chapter. In this section, the design

considerations that are relevant to the measurements presented in this chap-

ter will be described.

Figure 7.1 depicts the device. Where the charge sensed QD of the de-

vice measured in the previous chapter had a single coupling to the thermal

reservoir, we now want an additional coupling to a separate reservoir so that

we can separate where charge is added to the system from where the Kondo

correlations occur. Instead of coupling the QD to a second lead (as is the

case in typical conductance devices), we coupled the QD to a big dot (BD)

with an area ∼ 4 µm2, as seen in Fig. 7.1d.

Because the BD is relatively large, its orbital level spacing ∆ � kBT ,

and therefore, it effectively has a continuous (metal-like) density of states

(like a regular lead). However, the finite size maintains a charging energy
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Figure 7.1: Scanning electron micrographs (SEMs) of the measured device.
(a) The full device with the typical two-chamber heating reservoirs discussed
in Chapter 4. (b) Two SD–BD devices that are close to identical in design.
Measurements discussed in this chapter were taken using the right side QDs,
also shown in panel d. (c) A close-up of the small dot only. Gates around
the QDs are labelled, where VC primarily controls the SD–BD coupling,
VSDP is the SD plunger, VCSS and VCSQ form the charge sensor QPC, VN
controls both SD–reservoir and SD–BD coupling, VBD forms the big dot,
and VBDP acts as the BD plunger.
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EC > kBT that results in the quantization of the occupation of the BD.

The idea is that, when the BD is coupled to the SD and tuned to a fixed

occupation (εBD 6≈ εSD, EF ), it will behave like a regular reservoir in terms

of Kondo correlations, but without allowing charge transitions with the SD.

Thus, charge transitions for the SD (and more generally, the full SD–BD

system) are mediated only by the coupling of the SD to the thermal reservoir,

a coupling that can be kept weak. Note that the addition of a second tunnel

barrier to the small QD requires that the enclosed area be made smaller to

allow reaching the single occupation regime (that, as previously discussed, is

convenient for both experimental and theoretical considerations). The area

was reduced from ∼ 40 fm2 to ∼ 35 fm2 as a result.

The VC gate was designed to primarily control the SD–BD coupling,

and the VN gate was designed to control both the SD–BD and SD–reservoir

couplings. While it would have been simpler to have a dedicated gate for

controlling the SD–reservoir coupling, we faced practical constraints. The

cryostat has a maximum wiring capacity of 24 lines, and there is also a risk

of fabrication defects. Given these limitations, we opted to minimize the

number of gates, accepting some additional complexity in the measurement

process. It should be emphasized that we typically do not use VCSS to

control the SD–reservoir coupling due to its disproportionately large effect

on both the QD energy and the charge sensor QPC.

For the purposes of the entropy measurements discussed in this chapter,

the VBDP gate acted as the fine-tune plunger gate for the BD.22 The VN

gate that separates the VBDP gate from the BD area causes a screening

effect that weakens the lever arm of VBDP on the BD energy – a beneficial

side effect, given that we require very fine control of the energy of the BD.

Of course, the VBD gate can also act as a plunger for the BD, but given its

enormous size, it has an extremely strong lever arm that makes it suitable

only for coarse tuning of the BD energy.

Consistent with the previous entropy measurement devices, we used the

two-chamber heating reservoirs as previously discussed, although in this

22Its primary purpose was for a different experiment where it would serve as a gate that
can un-deplete a local region of 2DEG that is otherwise depleted by the VN gate.
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case, we sneaked the VBDP gate out through the QPCs of the heater reser-

voirs. Because the VBDP gate was used for fine-tuning control and its po-

tential was kept close to zero, it had a negligible effect on the heater QPCs.

As in previous cases, we had a charge sensor adjacent to the entropy sensing

SD, this time with a wider VCSQ gate that potentially increases the charge

sensor sensitivity.23

7.3 Methods

The device was cooled from room temperature to base temperature (cryostat

∼ 8 mK, electron ∼ 25 mK) with +200 mV applied to most gates, excluding:

all heater gates, VBDP , and VBD.24 This locks in an equivalent−200 mV bias

under each gate that adds to any additional potential applied (discussed in

Section 2.6). Compared to previous measurements where we typically mea-

sured at 100 mK (a temperature at which the 2DEG electrons and cryostat

are in thermal equilibrium), here we typically measured at the lowest tem-

perature possible to maximize the regime in which T < TK . As discussed

in Section 2.5, while the cryostat reaches a base temperature < 8 mK, the

electrons reach thermal equilibrium at ∼ 25 mK as a result of the weakening

electron-phonon interaction (∝ T 5) [58] and presence of electrical noise that

is not filtered out in the cryostat wiring.

As shown in Fig. 7.2a, we first tuned the device to a regime where both

the SD–reservoir and SD–BD couplings were weak, the SD was minimally

occupied (0 ≤ N ≤ 1), and the BD was occupied by many electrons. Sim-

ilar to the double dot measurements of Chapter 5, the charge transitions

of the big dot had a much smaller effect on the charge sensor due to the

increased distance and screening between it and the charge sensor. Here,

the transitions of the BD were much more closely spaced as a result of the

23Confirming whether the wider QPC gate helps with sensitivity is difficult as the precise
behaviour of the charge sensor QPC varies significantly between cooldowns, presumably,
due to the precise location of frozen-in dopants.

24If we were only carrying out the experiment described here, the VBD would also have
been cooled with positive bias applied. In this case, we just applied a more negative bias
to that gate to ensure the 2DEG beneath it was depleted.

101



7.3. Methods

−2 0 2

−45

−40

−35

−30

−25

−20

V SDP  /mV

V
 BD

P  
/m

V

(0, N)
(0, N+

1)

(1, N+
1)

(1, N)

−36 −35 −34 −33 −32 −31
−60

−50

−40

−30

−20

V SDP  /mV

V
 BD

P  
/m

V

(0, N)

(0, N+1) (1, N+
1)

(1, N)

−3 −2 −1 0 1 2 3 4
−80

−60

−40

−20

0

V SDP  /mV

V
 BD

P  
/m

V

(0, N)

(0, N+1)

(0, N+2)

(1, N+1)

(1, N+2)

(1, N+3)

a)

b) c)

Figure 7.2: Charge stability diagrams with varying SD–BD coupling. The
data represents charge sensor current differentiated in the horizontal axis.
SD charge transitions occur at the more vertical features, and BD transitions
at the faint more horizontal features. Occupations of the two QDs are shown
as (NSD, NBD). While the precise occupation of the SD is known, for the
BD, only its relative occupation is known. (a) Weak coupling. (b and
c) Increasingly strong coupling. Note that the SD–BD charge transitions
broaden with increased coupling, while the SD–reservoir and BD–reservoir
transitions remain thermally broadened due to the SD–reservoir coupling
remaining weak.

102



7.3. Methods

much smaller charging energy that comes from the larger size of the dot. In

contrast to the measurements discussed in Chapter 5, the regions of interest

in these measurements are the charge transitions of the small dot between

the transitions of the big dot – where the occupation of the big dot remains

constant.

Because the big dot has a fixed occupation NBD, the addition of an

electron to the system is broadened only by the thermal distribution of

electrons in the thermal reservoir and the strength of coupling between the

small dot and reservoir; the strength of the coupling between the two dots

does not affect the broadening of the charge transition of the full system.

This allowed us to maintain the strong thermal dependence of the system

that provides a strong charge sensor signal, even in the case that the SD

and BD were strongly coupled to each other.

Figures 7.2b,c depict the charge stability diagrams of the double dot

system with increasing coupling strength between the two dots (that is pri-

marily controlled by VC). As the coupling strength increases between the

two dots, the region where charge exchanges between the two dots broadens,

making the transition less visible in the charge stability diagrams. Note that

the stronger coupling does not significantly broaden the charge transitions

for either dot individually, as those transitions remain thermally broadened

due to the weak coupling of the full system to the thermal reservoir via the

SD–reservoir coupling. For very strong coupling between the two dots, the

behaviour tends towards that of a single larger dot, as can be seen by the

slope of the SD and BD charge transitions becoming more similar (Fig. 7.2c).

Crucially, there remains a strong localization of charge in the small dot,

despite the very strong coupling between it and the BD. This can be seen by

the fact that the differentiated charge sensor current signal remains strong

when charge is added to the SD from the reservoir (in comparison to the

BD–reservoir transitions). The strong localization of the charge in the small

dot, along with the thermally broadened charge transitions, means that the

charge sensor signal does not diminish for increased coupling. This holds

even with much stronger SD–BD coupling than was achieved between the

QD and reservoir in the mixed valence entropy measurements discussed in
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Chapter 6.

However, the broadening of the SD–BD transition for increased cou-

pling strength makes it difficult to distinguish the regions that correspond

to charge transitions of the SD alone with NBD fixed (in Fig. 7.2c, for exam-

ple). This is a result of VSDP similarly affecting the occupation of both the

SD and BD in the strong coupling limit. In other words, the VSDP gate cou-

ples to both the SD and BD energies. This poses a problem for the entropy

measurement as it is crucial that the occupation only change in the small dot

to be able to accurately convert the charge sensor signal ∆ICS to dN/dT .

Therefore, it is better to sweep over the SD transitions using a virtual gate

that holds the BD energy (and therefore NBD) constant. Such a virtual

gate, SDP′, was formed using the VSDP and VBDP gates. For a virtual gate

that truly coupled only to the SD energy, we would have also needed to

account for the effect VSDP had on the SD–BD and SD–reservoir couplings.

However, since it was only important that Γ . kBT for the SD–reservoir

coupling (not a precise value of Γ), it was generally safe to ignore the ef-

fect VSDP had on the SD–reservoir coupling. As for the SD–BD coupling,

for these preliminary measurements, we were interested in the behaviour of

qualitatively different coupling regimes: weak, medium, and strong. There-

fore, as long as the SD–BD coupling did not change drastically during a

sweep over the SD charge transition, it was an acceptable approximation to

counteract the effect of VSDP on the BD energy using VBDP alone.

Figures 7.3a,b show a direct comparison between sweeping over the SD

transition with and without the virtual gate. Both measurements were taken

in the regime that the SD–BD coupling was weak, but in Fig. 7.3b, the use

of the virtual SDP′ gate results in BD transitions that lie parallel to the

sweep axis. Because charge sensor data is differentiated in the x-direction

for these charge stability plots, the BD transitions do not show up in the

scans that utilize SDP′, instead, dotted lines are added to mark where those

transitions occur. For the data in Figs. 7.3c,d, the SD–BD coupling is made

stronger by reducing the negative potential on VC , roughly equivalent to

data in Figs. 7.2b,c.

Entropy measurements were made over similar regions to those depicted
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Figure 7.3: Differential charge sensor current charge stability plots with
varying SD–BD coupling using the virtual SDP′ gate for the x-axis, where
the primary VSDP values are shown in the axes. (a) Weak coupling data,
taken without using a virtual gate, as a reference for the effect of virtual
gating in all other panels. (b) Weak coupling (same as a except for the
virtual gate). (c and d) Medium and strong coupling, respectively.
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in Fig. 7.3. Although we are primarily interested in the behaviour of the

system between BD transitions, it was necessary to perform 2D measure-

ments that span BD transitions because of slow drifts in the BD energy

over time. In other words, the VBDP potentials that correspond to places

where the BD occupation is between transitions, vary over time, so we must

measure over a range of VBDP to reliably collect data in the regimes of in-

terest. Entropy measurements were made with similar parameters to those

described in Chapter 4, with the notable difference being that T was oscil-

lated from the base electron temperature (25 mK) to ∼ 35 mK rather than

100 to 130 mK.

7.4 Results

In the entropy measurements of the SD–BD system, we are primarily inter-

ested in the entropy change of the system at SD–reservoir transitions; when

the BD’s occupation and entropy remain constant. This is in contrast to the

measurements of Chapter 5 where the interesting behaviour occurred when

the occupation of both QDs changed during the measurements. Specifically,

we are hoping to observe the entropic effect of Kondo correlations forming in

the system when the SD–BD coupling is made strong enough that T < TK

in the Kondo regime. Note that, in the experiment described in Chapter 6,

T < TK was only achieved in the mixed-valence regime, where TK signifi-

cantly increases close to the charge degeneracy point. Here, the ability to

measure with much stronger SD–BD coupling means that we expect Kondo

correlations to persist even as NSD → 1 (the Kondo regime).

Figure 7.4 depicts a summary of the entropy measurements over several

BD transitions with weak and strong SD–BD coupling. For this preliminary

data, the additional measurements necessary for conversion from ∆ICS to

dN/dT were inadequate; as a result, the entropy values are given in arbitrary

units. As we do not have sufficient information to calculate the entropy

values directly, we can instead compare the peak and final values for a crude

estimation of the entropy behaviour of the system. The dashed black line

represents the expected final entropy based on the observed peak, assuming

106



7.4. Results

Final
Peak
Peak ×
Ln(2)/Ln(3)

Data
≈Ln(2)

−2 0 2

SDP' /mV

Δ
S
 /

ar
b.

Δ
S
/a
rb
.

−40 −20 0

−2

0

VBDP /mV

S
D
'/
m
V

Δ
S
/a
rb
.

−60 −50 −40 −30 −20 −10

−1
0
1

VBDP /mV

V
S
D
P
/m

V

−2 0 2

SDP' /mV

Δ
S
/a
rb
.

−0.5 0 0.5

VSDP /mV

Δ
S
/a
rb
.

a)

c) d)

b)

Figure 7.4: Summary of entropy measurements with weak (left) and strong
(right) SD–BD coupling. (a and b) Peak and final entropy changes (in
arbitrary units) over the SD transition, corresponding to vertical sweeps
in the charge stability diagram below. Note that the axes of the charge
stability diagrams are swapped in comparison to previous figures. (c and
d) Full entropy measurements as a function of SD energy averaged over
the regions indicated by vertical dashed lines in panel a and b. Arbitrary
units are used for entropy change due to the lack of sufficient calibration
measurements. The dashed lines in all but d indicate ln(2)

ln(3) ·∆Speak. For d,

the dashed line is the same as that in panel c (i.e. assuming the calibration
factors are the same and the arbitrary values are comparable, however, this
may not be the case).
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an ln(2)
ln(3) ratio that we would expect for the addition of the first electron to a

simple weakly coupled QD. Under each entropy summary, a charge stability

diagram that corresponds to the location of the entropy measurements is

included. Note that the axes on these charge stability diagrams are swapped

in comparison to Figs. 7.2 and 7.3: the SD transition is the near-horizontal

feature, and the BD transitions are marked with dotted lines.

To confirm that the system behaves as we expect without Kondo cor-

relations, let us first look at the case where SD–BD coupling is weak in

Figs. 7.4a,c.25 With weak coupling, the presence of the big dot should have

a negligible effect on the total entropy change of the system when the BD

does not undergo a charge transition itself. To elaborate, we do not expect

Kondo correlations to form between the SD and BD as TK � T for weak

coupling, and for constant NBD the entropy of the BD is assumed to remain

constant. For −40 mV < VBDP < −30 mV in Fig. 7.4a, the entropy mea-

surements correspond to change in SD occupation alone. The full entropy

change data in this region is averaged to obtain the data in Fig. 7.4c. As

expected, Fig. 7.4c closely resembles the weakly coupled entropy transition

shape seen in previous chapters, with the final entropy change matching the

expected value for a weakly coupled QD (assuming the peak corresponds to

kB ln(3)). For VBDP < −50 mV and VBDP > −15 mV in Fig. 7.4a, where

NBD = N −1, N + 1 respectively, we also see good agreement with expecta-

tion for the total entropy change. Around VBDP = −15 and −25 mV we see

a significant deviation in the measured entropy as a result of the additional

contribution of the BD charge transitions (similar to Chapter 5).

Now, if we compare to the case of strong SD–BD coupling, shown in

Figs. 7.4b,d, we see a crucial change in behaviour. For −17.5 mV < VBDP <

−12 mV in Fig. 7.4b, the BD’s occupation is again fixed, however, the final

entropy change is now significantly below that expected for a spinful electron

in a QD. Indeed, Fig. 7.4d indicates that the entropy increases at the transi-

25Note that the weakly coupled measurements were taken by sweeping VSDP rather
than the SDP′ virtual gate, as a result, the BD transitions show up as diagonal lines. In
this preliminary experiment, the measurement taken in the weak coupling regime after
setting up the SDP′ gate failed. The effect on the entropy measurements is negligible.

108



7.5. Discussion

tion (due to charge degeneracy), but returns close to zero as NSD → 1. If the

calibration factors between the weakly and strongly coupled measurements

do happen to be similar, then we can also compare to the dashed line that

indicates kB ln(2) from the weakly coupled measurement. This would indi-

cate that the entropy at the charge degeneracy point is kB ln(2), as would

be expected. Similar behaviour is seen for −45.7 mV < VBDP < −39.4 mV

and VBDP > 8.0 mV where NBD = N −1, N + 1. This is a hopeful sign that

we are observing a system in which the spin-entropy of the QD is suppressed

in favour of a Kondo singlet state.

7.5 Discussion

The significant decrease in entropy of the NSDP = 1 system with strong

compared to weak coupling is indicative of the formation of a correlated

state that suppresses the spin-entropy one would otherwise expect in the

small dot. However, it is important to note that the measurements presented

here are preliminary. They were obtained, in a rush, at the end of a long

experiment that had a different focus. Consequently, the results presented

here lack some of the additional measurements and calibrations that are

required to make strong statements about the validity of the findings. The

intention of this chapter is to showcase the promising steps that have been

made so far, with the expectation that a future experiment will be carried

out to more thoroughly investigate the behaviours of the system.

Several additional measurements could render these results more com-

pelling. First, the interpretation of the entropy changes would be more

reliable with the necessary calibration factors (∆T , α, and Iamp) to scale

from charge sensor signal to entropy change in units of kB. For example, it

would be interesting to confirm the accuracy of the presumed kB ln(2) peak

in Fig. 7.4d. The lack of calibration factors here was mostly due to time

constraints.26 Because some gate potentials change significantly between

the weak and strong coupling limits, it is prudent to take calibration mea-

26Also, remaining brain power was running short at the end of a long and intense
experiment.
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surements at each set of device settings. While measurements are shown at

only a few device settings here, in reality, many more were taken, and there

was not enough time to collect all of the necessary information for all of the

combinations of device settings measured.

To make a more quantitative comparison to, for example, NRG calcula-

tions, it would also be helpful to determine the SD–BD coupling strength

quantitatively. This may prove somewhat challenging as the charge tran-

sitions between the SD and BD become increasingly difficult to measure

accurately as the coupling strength increases (similar to the issues discussed

in Chapter 6).

To confirm that the effect seen is in fact due to Kondo correlations,

it would be interesting to repeat similar measurements at varying system

temperatures. Such measurements should be relatively easy to carry out but

would require a lot more time. In the analysis of such measurements, one

could look for the characteristic ln(T ) dependence of the Kondo effect. An

in-plane magnetic field could also be used to suppress the Kondo effect via

the Zeeman splitting of spin-degeneracy in the SD. Although, as the Zeeman

splitting would naturally suppress spin-degeneracy itself, it may be difficult

to extract useful information from such a measurement.

Another important consideration in the small dot big dot device is the

thermal equilibration of the BD electrons. Because the BD is not directly

tunnel coupled to the thermal reservoir, the process through which it ther-

malizes with it is not clear. In the measurements presented here, the

SD–reservoir coupling was made as strong as possible while maintaining

Γ . kBT , assuming that the BD thermalizes via second-order processes

through the SD. Because the entropy measurements are taken over SD tran-

sitions (where εSD ≈ EF ), the rate of virtual processes is expected to be

high. On the other hand, the thermalization of the BD may occur via local

electron-phonon coupling; the electrons in the thermal reservoir dissipate

heat to the phonon lattice, which, in turn, could transfer heat to the nearby

BD electrons. Further investigation would be beneficial.

More generally, continued experiments with a small dot coupled to a big

dot are particularly intriguing: there is the potential to extend such mea-
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surements to systems that exhibit more exotic ground states, such as those

influenced by a multi-channel Kondo effect [163], [169], [170]. The multi-

channel Kondo effect is fascinating because it can lead to non-Fermi liquid

behaviour [169]. Note, however, that simply coupling a QD to multiple infi-

nite reservoirs (leads) is not sufficient to form a multi-channel Kondo state

because the leads can freely exchange electrons with each other. This results

in a single correlated state forming between all leads and the impurity QD.

Conversely, with finite reservoirs that have fixed charge, electrons cannot

transfer between them, resulting in separate Kondo correlations that each

compete to screen the impurity QD spin. In fact, the device described here

could be tuned to exhibit a two-channel Kondo effect by strongly coupling

the SD to both the reservoir and the big dot. But, this would introduce

the same issues for the charge sensor signal strength discussed in Chap-

ter 6. Therefore, experimentally, it would be much easier to couple the SD

strongly to two separate big dots, allowing the coupling of the full system

to the thermal reservoir to be kept weak.
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Chapter 8

Conclusion

8.1 Summary

In conclusion, a novel procedure for both measuring and analyzing entropy

in mesoscopic systems has been developed and demonstrated on a variety of

systems of increasing complexity.

The entropy measurement conducted on a quantum dot (QD) weakly

coupled to a reservoir, as discussed in Chapter 4, proved the effectiveness of

the new approach. These results not only confirmed the utility of the method

but also exhibited its capability to evaluate entropy changes continuously

throughout the charge transition. This alone represents a marked improve-

ment over the foundational approach of Ref. [8], which permitted extraction

of only the total entropy change. This proof-of-concept measurement was

then used as the starting point for the following experiments.

In Chapter 5, the capacity of the device introduced in Chapter 4 to func-

tion as an entropy sensor for a capacitively coupled system is substantiated.

The experimental findings are presented as that of a double QD system,

closely matching theory calculations. Importantly, these results can also be

interpreted as measurements of the non-local entropy of the second QD, at-

tained through its capacitive coupling to the ‘entropy sensor QD’. To clarify,

since the entropy change of the first QD is known, its contribution to the

total measured entropy change can be accounted for, yielding an isolated

measurement of the entropy change of the second, capacitively coupled QD.

This is analogous to the approaches proposed by Sela et al. [11] and Sankar

et al. [154] to measure the entropy associated with, a Majorana zero mode

and topological entanglement of chiral topological phases, respectively.

In Chapter 6, the universality of the newly developed measurement tech-
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nique is further validated. By establishing a strong coupling between the en-

tropy sensor QD and the thermal reservoir, a non-trivial system emerges due

to the hybridization of discrete QD states with the continuous spectrum of

the reservoir. A comparison with density-matrix numerical renormalization

group (DM-NRG) simulations corroborated the experimental findings, show-

ing good agreement up to intermediate coupling strengths. Interestingly, a

significant deviation between experiment and simulation was observed for

stronger coupling, particularly where Kondo correlations are anticipated in

the mixed valence regime. This discrepancy has raised questions that are

yet to be resolved.

In Chapter 7, further exploration of a system manifesting Kondo corre-

lations is described. A newly configured device, which integrates features

from previous experiments, enables the measurement of entropy in a more

strongly coupled regime than was previously attainable. With the stronger

coupling, it is expected that Tsys < TK can be realized in the Kondo regime;

thus, Kondo correlations should persist throughout the charge transition of

the system. Preliminary measurements appear to indicate the suppression of

spin entropy, suggesting the observation of the formation of a Kondo singlet.

While the measurements delineated in this work do not directly unveil

new insights into exotic states, they establish a foundational methodology

that holds significant promise for future studies aimed at elucidating a wide

range of exotic quantum phenomena.

8.2 Extensions of discussed measurements

The methodologies and findings presented thus far serve as fundamental

building blocks for further exploration of mesoscopic entropy measurements.

The following section discusses potential extensions to these initial measure-

ments.

In Chapter 5, the measurements presented were confined to the weak cou-

pling regime. Although there existed a relatively strong Coulomb interaction

between the two QDs, each was weakly tunnel-coupled to the reservoir, and

no direct tunnel coupling existed between the QDs themselves. During the
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time these measurements were conducted, initial explorations were made

into the system’s behaviour beyond the weak coupling limit. However, the

absence of direct tunnel coupling between the two QDs proved to be a signif-

icant limitation. Given the concerns about system thermalization, this was

a worthwhile trade-off for the device and the measurements presented here.

For a future measurement, a very similar device featuring direct tunnel cou-

pling between the two QDs could offer an intriguing platform for studying

quantum states that require strong coupling: for example, the simplest case

being the formation of a singlet state between the two QDs. In fact, such a

device has already been fabricated but has yet to be measured.

Additionally, the double dot experiment can be seen as a step toward

entropy measurement in more complex multi-dot systems (where the QD

entropy probe can be one of the QDs). Multi-dot systems can be used to

simulate different regimes of the Hubbard model [171], such as the recent

implementation of Nagaoka ferromagnetism [164]. Entropy measurements

in such systems would be fascinating.

In Chapter 6, the QD was connected to the reservoir through only one

tunnel barrier, thereby precluding the possibility of taking more conventional

conductance measurements for additional comparison to NRG simulations.

It would be advantageous to investigate a system where both conductance

and entropy measurements could be conducted simultaneously. Such an

experimental setup could potentially shed some light on the source of the

previously observed discrepancy between entropy measurements and NRG

simulations. Indeed, the device introduced in Chapter 7 was conceived with

this dual-measurement approach in mind. The gate serving as the big dot

plunger was specifically designed to allow the small QD to be toggled be-

tween conductance and entropy measurements with minimal adjustments to

its parameters.

As discussed in Section 7.5, the device utilized there offers several av-

enues for additional measurements aimed at scrutinizing Kondo correlations

in greater detail. In addition, the device could theoretically be adjusted to

manifest a two-channel Kondo effect. However, as previously mentioned,

pursuing such an experimental regime would likely be more productive
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through an extension of the current device design.

8.3 Looking Forward

While the previous section focused on specific extensions of the measure-

ment techniques discussed in this thesis, it is worth emphasizing the broader

spectrum of opportunities for advancing this field of work. The following

paragraphs will delineate various strategies to refine these measurements fur-

ther and extend their applicability to a wider array of intriguing quantum

systems.

Adopting higher bandwidth measurements would yield immediate im-

provements in noise performance. The damaging effect of charge noise off-

setting the QD energy levels, which motivated the fast alternation between

temperatures discussed in Section 4.3, is more severe in these entropy mea-

surements than in a typical mesoscopic investigation. The need to control µ

and ε at a sub-µeV level forces the measurement to be performed at as high a

frequency as possible given the experimental setup, and fundamental speed

limitations involving heat capacity of electrons are at least several orders of

magnitude above what was achieved in the present experiments [71].

Two more opportunities for improvement stem from the need to remain

in thermal equilibrium for Maxwell relations to be applicable. The very

act of charge sensing injects a non-equilibrium component into the system

dynamics, in principle violating the starting requirement for Maxwell rela-

tions. This can be minimized by, first, reducing stray couplings between the

sensor circuit and the device under test and, second, by reducing the noise

of the charge sensing measurement itself. At the same time, the theoretical

question of how much charge sensing is actually expected to affect dN/dT

for a given system remains an important open avenue for study.

On a more practical note, the requirement for operation in thermal equi-

librium is hard to meet in complex circuits when following the electron heat-

ing approach outlined in this thesis. The advantage of heating only electrons

is that the heat capacity is minuscule, and temperatures can change rapidly

as a result. The disadvantage is that the electronic system is then out of
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thermal equilibrium with the phonon lattice, so parts of a multi-component

mesoscopic circuit that couple differently to the heated electronic reservoir

and the phonon lattice may end up at different, and poorly defined, effective

temperatures.

In the measurements detailed in Chapters 4, 5, and 6, thermal equilib-

rium was not a pressing concern. The systems – single electrons in quantum

dots – easily achieve thermal equilibrium with the reservoir, even with the

weakest of couplings. This is because there are no internal degrees of freedom

(within kBT ) for the first electron in a ∼ 200 nm diameter QD. However,

for the device discussed in Chapter 7, thermal equilibration of the full sys-

tem requires more careful consideration due to the indirect coupling of the

‘big dot’ to the thermal reservoir. Future experiments may transition away

from the electron heating approach described here, opting instead for a more

elaborate thermal circuit that maintains both electrons and lattice phonons

in thermal equilibrium during the heating step. This will require careful

design to ensure that the thermal coupling between the chip and cryostat is

strong enough to keep the chip close to the base cryostat temperature while

the heating is off, but weak enough to keep the chip in internal thermal

equilibrium during the heating process. Ironically, the heating techniques

employed in seminal studies of 2DEG heat capacity [67]–[69], which were

discussed in Section 3.1.2, may find renewed relevance in the context of our

entropy measurement protocol. While these early experiments lacked the

precision needed to quantify entropy changes in few-electron systems, their

heating methodologies could be well-suited for integration into our more

sophisticated measurement and analysis techniques.

Numerous avenues exist for employing the entropy measurement tech-

nique developed in this thesis, especially with an adapted heating procedure,

as discussed. Any system for which the ground state is modified by the oc-

cupation of the charge-sensed QD is a candidate – whether the QD is an

integral part of the measured quantum system, or whether the QD affects

a nearby quantum system of interest purely through capacitive coupling.

Moreover, the applicability of this technique extends beyond the confines of

2DEGs in GaAs/AlGaAs heterostructures. It could be applied to a wide

116



8.3. Looking Forward

range of mesoscopic devices, such as layered graphene structures [81], [84],

[86], [172], either through analogous gating techniques if the system hosts a

2DEG, or via external circuitry placed in close spatial proximity, as demon-

strated by Rozen et al. [84]. This versatility underscores the broader rele-

vance of the work presented herein and sets the stage for further explorations

in the rapidly evolving field of quantum entropy measurements.
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G. Fève, B. Huard, C. Mora, A. Cottet, and T. Kontos, “Coupling a

Quantum Dot, Fermionic Leads, and a Microwave Cavity on a Chip,”

Physical Review Letters, vol. 107, no. 25, p. 256 804, 2011, issn: 0031-

9007. doi: 10.1103/physrevlett.107.256804. eprint: 1108.4371.

[136] S. J. Chorley, M. R. Galpin, F. W. Jayatilaka, C. G. Smith, D. E.

Logan, and M. R. Buitelaar, “Tunable Kondo Physics in a Carbon

Nanotube Double Quantum Dot,” Physical Review Letters, vol. 109,

no. 15, p. 156 804, 2012, issn: 0031-9007. doi: 10.1103/physrevlett.

109.156804. eprint: 1209.3735.

[137] M. Niklas, S. Smirnov, D. Mantelli, M. Margańska, N.-V. Nguyen,
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[155] A. Hübel, J. Weis, and K. v. Klitzing, “Precise experimental char-

acterization of a double quantum dot system with strong capacitive

interdot coupling,” Physica E: Low-dimensional Systems and Nanos-

tructures, vol. 40, no. 5, pp. 1573–1575, 2008, issn: 1386-9477. doi:

10.1016/j.physe.2007.09.109.

[156] A. Y. Kitaev, “Unpaired Majorana fermions in quantum wires,”

Physics-Uspekhi, vol. 44, no. 10S, pp. 131–136, 2001, issn: 1063-7869.

doi: 10.1070/1063-7869/44/10s/s29. eprint: cond-mat/0010440.

[157] Y. Oreg, G. Refael, and F. v. Oppen, “Helical Liquids and Majo-

rana Bound States in Quantum Wires,” Physical Review Letters,

vol. 105, no. 17, p. 177 002, 2010, issn: 0031-9007. doi: 10.1103/

physrevlett.105.177002. eprint: 1003.1145.

[158] R. M. Lutchyn, J. D. Sau, and S. D. Sarma, “Majorana Fermions and

a Topological Phase Transition in Semiconductor-Superconductor

Heterostructures,” Physical Review Letters, vol. 105, no. 7, p. 077 001,

2010, issn: 0031-9007. doi: 10.1103/physrevlett.105.077001.

eprint: 1002.4033.

[159] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup,

C. M. Marcus, and Y. Oreg, “Majorana zero modes in supercon-

ductor–semiconductor heterostructures,” Nature Reviews Materials,

140

https://doi.org/10.1103/physrevlett.129.227702
2110.14158
https://doi.org/10.1016/0039-6028(96)00464-5
https://doi.org/10.1103/physrevlett.131.016601
https://doi.org/10.1103/physrevlett.131.016601
2212.09856
https://doi.org/10.1016/j.physe.2007.09.109
https://doi.org/10.1070/1063-7869/44/10s/s29
cond-mat/0010440
https://doi.org/10.1103/physrevlett.105.177002
https://doi.org/10.1103/physrevlett.105.177002
1003.1145
https://doi.org/10.1103/physrevlett.105.077001
1002.4033


BIBLIOGRAPHY

vol. 3, no. 5, pp. 52–68, 2018. doi: 10.1038/s41578-018-0003-1.

eprint: 1707.04899.

[160] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers,

and L. P. Kouwenhoven, “Signatures of Majorana Fermions in Hybrid

Superconductor-Semiconductor Nanowire Devices,” Science, vol. 336,

no. 6084, pp. 1003–1007, 2012, issn: 0036-8075. doi: 10 . 1126 /

science.1222360. eprint: 1204.2792.

[161] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrik-

man, “Zero-bias peaks and splitting in an Al–InAs nanowire topo-

logical superconductor as a signature of Majorana fermions,” Na-

ture Physics, vol. 8, no. 12, pp. 887–895, 2012, issn: 1745-2473. doi:

10.1038/nphys2479. eprint: 1205.7073.

[162] R. M. Potok, I. G. Rau, H. Shtrikman, Y. Oreg, and D. Goldhaber-

Gordon, “Observation of the two-channel Kondo effect,” Nature,

vol. 446, no. 7132, pp. 167–171, 2007, issn: 0028-0836. doi: 10 .

1038/nature05556. eprint: cond-mat/0610721.

[163] A. J. Keller, L. Peeters, C. P. Moca, I. Weymann, D. Mahalu, V.

Umansky, G. Zaránd, and D. Goldhaber-Gordon, “Universal Fermi

liquid crossover and quantum criticality in a mesoscopic system,”

Nature, vol. 526, no. 7572, pp. 237–240, 2015, issn: 0028-0836. doi:

10.1038/nature15261. eprint: 1504.07620.

[164] J. P. Dehollain, U. Mukhopadhyay, V. P. Michal, Y. Wang, B. Wun-

sch, C. Reichl, W. Wegscheider, M. S. Rudner, E. Demler, and

L. M. K. Vandersypen, “Nagaoka ferromagnetism observed in a

quantum dot plaquette,” Nature, vol. 579, no. 7800, pp. 528–533,

2020, issn: 0028-0836. doi: 10.1038/s41586-020-2051-0. eprint:

1904.05680.

[165] A. Tsvelick and P. Wiegmann, “Exact results in the theory of mag-

netic alloys,” Advances in Physics, vol. 32, no. 4, pp. 453–713, 1983,

issn: 0001-8732. doi: 10.1080/00018738300101581.

141

https://doi.org/10.1038/s41578-018-0003-1
1707.04899
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
1204.2792
https://doi.org/10.1038/nphys2479
1205.7073
https://doi.org/10.1038/nature05556
https://doi.org/10.1038/nature05556
cond-mat/0610721
https://doi.org/10.1038/nature15261
1504.07620
https://doi.org/10.1038/s41586-020-2051-0
1904.05680
https://doi.org/10.1080/00018738300101581


BIBLIOGRAPHY

[166] C. Mora, C. P. Moca, J. v. Delft, and G. Zaránd, “Fermi-liquid theory

for the single-impurity Anderson model,” Physical Review B, vol. 92,

no. 7, p. 075 120, 2015, issn: 1098-0121. doi: 10.1103/physrevb.

92.075120. eprint: 1409.3451.

[167] M. J. D. Powell, “An efficient method for finding the minimum of

a function of several variables without calculating derivatives,” The

Computer Journal, vol. 7, no. 2, pp. 155–162, 1964, issn: 0010-4620.

doi: 10.1093/comjnl/7.2.155.

[168] F. D. M. Haldane, “Scaling Theory of the Asymmetric Anderson

Model,” Physical Review Letters, vol. 40, no. 6, pp. 416–419, 1978,

issn: 0031-9007. doi: 10.1103/physrevlett.40.416.

[169] S. Kirchner, “Two-Channel Kondo Physics: From Engineered Struc-

tures to Quantum Materials Realizations,” Advanced Quantum Tech-

nologies, vol. 3, no. 5, p. 1 900 128, 2020, issn: 2511-9044. doi: 10.

1002/qute.201900128.

[170] Z. Iftikhar, S. Jezouin, A. Anthore, U. Gennser, F. D. Parmentier,

A. Cavanna, and F. Pierre, “Two-channel Kondo effect and renor-

malization flow with macroscopic quantum charge states,” Nature,

vol. 526, no. 7572, pp. 233–236, 2015, issn: 0028-0836. doi: 10.1038/

nature15384. eprint: 1602.02056.

[171] U. Mukhopadhyay, J. P. Dehollain, C. Reichl, W. Wegscheider, and

L. M. K. Vandersypen, “A 2 × 2 quantum dot array with controllable

inter-dot tunnel couplings,” Applied Physics Letters, vol. 112, no. 18,

p. 183 505, 2018, issn: 0003-6951. doi: 10.1063/1.5025928. eprint:

1802.05446.

[172] B.-B. Chen, Y. D. Liao, Z. Chen, O. Vafek, J. Kang, W. Li, and

Z. Y. Meng, “Realization of topological Mott insulator in a twisted

bilayer graphene lattice model,” Nature Communications, vol. 12,

no. 1, p. 5480, 2021. doi: 10.1038/s41467-021-25438-1. eprint:

2011.07602.

142

https://doi.org/10.1103/physrevb.92.075120
https://doi.org/10.1103/physrevb.92.075120
1409.3451
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1103/physrevlett.40.416
https://doi.org/10.1002/qute.201900128
https://doi.org/10.1002/qute.201900128
https://doi.org/10.1038/nature15384
https://doi.org/10.1038/nature15384
1602.02056
https://doi.org/10.1063/1.5025928
1802.05446
https://doi.org/10.1038/s41467-021-25438-1
2011.07602
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Appendix A

NRG data and fitting

The following pages represent a python Jupyter notebook that demonstrates

loading and working with the NRG calculation data provided by Yaakov

Kleeorin and Yigal Meir. For completeness, all functions necessary to run

the notebook are included explicitly. In a normal use case, many of the

functions defined in the notebook would be defined in separate files and

only included where necessary. The notebook and data can be found at

https://github.com/TimChild/thesis_nrg_appendix.
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1 Introduction
This is intended to explain how the NRG data produced by Yaakov Kleeorin (and Yigal
Meir) is used in fitting to experimental data

Note that many of the functions shown here are somewhat over-complicated for the minimal
examples presented here, but I have included them in their entirety for completeness. The
functions presented here are from a larger package of analysis functions that I developed
over several years. It can be found at https://github.com/TimChild/dat_analysis.

2 Setting up Notebook
[2]: # Get all the external imports out of the way

# Python built ins
from dataclasses import dataclass
from functools import lru_cache
import datetime
import sys

# Third party imports
import matplotlib
import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn as sns
import numpy as np
import lmfit as lm
import scipy
import numpy as np
import scipy

print(f"python version: {sys.version}")
print(f"matplotlib version: {matplotlib.__version__}")
print(f"seaborn version: {sns.__version__}")
print(f"numpy version: {np.__version__}")
print(f"lmfit version: {lm.__version__}")
print(f"scipy version: {scipy.__version__}")

python version: 3.10.10 | packaged by Anaconda, Inc. | (main, Mar 21 2023,
18:39:17) [MSC v.1916 64 bit (AMD64)]
matplotlib version: 3.7.1
seaborn version: 0.12.2
numpy version: 1.24.2
lmfit version: 1.1.0
scipy version: 1.10.1
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[4]: %matplotlib inline
mpl.rcParams.update(

{
"figure.dpi": 110, # 27in 1440p = 110

}
)
# FIG_SCALE -- Set to full width of page (~6in)
FS = 6

def decrease_fontsize(ax, decrease_fs):
"""
Decrease the font sizes of various elements of a given ax by␣

↪decrease_fs.

Parameters:
- ax: The axes for which font sizes should be decreased.
- decrease_fs: The amount by which to decrease the font size.
"""
# Decreasing font size for x and y tick labels
current_xticks_fs = ax.xaxis.get_ticklabels()[0].get_fontsize()
current_yticks_fs = ax.yaxis.get_ticklabels()[0].get_fontsize()
ax.tick_params(axis="x", labelsize=current_xticks_fs - decrease_fs)
ax.tick_params(axis="y", labelsize=current_yticks_fs - decrease_fs)

# Decreasing font size for x and y axis labels
ax.xaxis.label.set_fontsize(ax.xaxis.label.get_fontsize() -␣

↪decrease_fs)
ax.yaxis.label.set_fontsize(ax.yaxis.label.get_fontsize() -␣

↪decrease_fs)

# Decreasing font size for title
ax.title.set_fontsize(ax.title.get_fontsize() - decrease_fs)

# Decreasing font size of axes exponents
ax.xaxis.get_offset_text().set_fontsize(

ax.xaxis.get_offset_text().get_fontsize() - decrease_fs
)
ax.yaxis.get_offset_text().set_fontsize(

ax.yaxis.get_offset_text().get_fontsize() - decrease_fs
)

# Decreasing font size for legend (if present)
if ax.get_legend():
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for text in ax.get_legend().get_texts():
text.set_fontsize(text.get_fontsize() - decrease_fs)

3 Loading NRG Calculation data
Now, we’ll define a class for loading and holding NRG calculations.

[5]: @dataclass
class NRGData:

ens: np.ndarray
ts: np.ndarray
conductance: np.ndarray
dndt: np.ndarray
entropy: np.ndarray
occupation: np.ndarray
int_dndt: np.ndarray
gs: np.ndarray

@classmethod
@lru_cache
def from_mat(cls):

"""Combines two new NRG datasets (the first has good thermally␣
↪broadened data, but isn't wide enough for

gamma broadened data. The second is more gamma broadened data␣
↪only over a wider range but with the same density

of points (i.e. a differently shaped array)

This combines both and adds NoNs to the narrower data so that␣
↪they can still be treated as arrays.

"""

def pad_to_shape(arr: np.ndarray, desired_x_shape: int):
"""Pads array with NaNs so that it has a given x dimension"""
if arr.shape[-1] > desired_x_shape:

raise RuntimeError(f"{arr.shape[-1]} > {desired_x_shape}")
diff = desired_x_shape - arr.shape[-1]
pads = [(0, 0)] * (arr.ndim - 1)
pads.extend([(0, diff)]) # Pad all NaNs, at end of data
return np.pad(arr, pad_width=pads, mode="constant",␣

↪constant_values=np.nan)

NRG_DATAS = [
"Mu_mat",
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"Conductance_mat",
"DNDT_mat",
"Entropy_mat",
"Occupation_mat",
"intDNDT_mat",

]

# Thermally broadened data (includes gamma broadened which isn't␣
↪wide enough)

path = "nrg_calculations/NRGresultsNew.mat"
data = scipy.io.loadmat(path)
rows_from_narrow = np.s_[

0:10
] # 0 -> 9 are the thermal rows from first set of data
dx_shape, dy_shape = data["Mu_mat"][:, rows_from_narrow].shape

# Gamma broadened data (same as in above but much wider)
path = "nrg_calculations/NRGresultsNewWide.mat"
wide_data = scipy.io.loadmat(path)
wx_shape, wy_shape = wide_data["Mu_mat"].shape

common_x_shape = wx_shape # This has the larger shape

new_data = {}
for k in NRG_DATAS:

if k in data and wide_data:
d = data[k].T[rows_from_narrow]
padded = pad_to_shape(d, common_x_shape)
new_data[k] = np.concatenate([padded, wide_data[k].T],␣

↪axis=0)
else:

# Just getting shape using an array I know will exist
full_shape = (dy_shape + wy_shape, common_x_shape)
new_data[k] = np.zeros(full_shape)

new_data["Ts"] = np.array(
[data["T"][0, 0]] * dy_shape + [wide_data["T"][0, 0]] *␣

↪wy_shape
)
new_data["Gammas"] = np.concatenate(

[
data.get("Gammas").flatten()[rows_from_narrow],
wide_data.get("Gammas").flatten(),

]
)
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return cls(
ens=new_data["Mu_mat"],
ts=new_data["Ts"],
conductance=new_data["Conductance_mat"],
dndt=new_data["DNDT_mat"],
entropy=new_data["Entropy_mat"],
occupation=new_data["Occupation_mat"],
int_dndt=new_data["intDNDT_mat"],
gs=new_data["Gammas"],

)

3.1 Notes on NRG calculations
First let’s look at the NRG data as provided by Yaakov.

A couple of notes about the NRG data. - All energies are defined in units of bandwidth
(where bandwidth ≡ 𝐸𝐹 = 8.5 meV for a 2DEG with electron density 2.42×1015 m−2 (1011

cm−2)). - For 𝑇 ≫ 𝑇𝐾 it is only the ratio Γ/𝑇 that is important, but for low 𝑇 (or high Γ)
the ratio 𝑇 /𝑇𝐾 becomes important, and 𝑇𝐾 is not a simple function of Γ.

The data is in two files, NRGResultsNew.mat and NRGResultsNewWide.mat. The narrow
data is best for thermally broadened data, but is not wide enough for gamma broadened
data, so the gamma broadened data is contained in the wider calculations

In order to make it easier to use, I combine both datasets into one taking the best of both,
and making sure they have the same data shape. The mismatch between the size of the
narrow arrays and wide arrays is filled with np.nan in the narrow arrays. I use a class for
this so that it is easier to see what data is available

[6]: data = NRGData.from_mat()
print(data.dndt.shape)

(40, 2001)

data now refers to an object which holds all the data in the .mat files. Including [ens, ts,
conductance, dndt, entropy, occupation, int_dndt, gs].

[7]: attrs = ["ens", "ts", "conductance", "dndt", "occupation", "gs"]
for attr in attrs:

arr = getattr(data, attr)
print(f"{attr}.shape = {arr.shape}")

ens.shape = (40, 2001)
ts.shape = (40,)
conductance.shape = (40, 2001)
dndt.shape = (40, 2001)
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occupation.shape = (40, 2001)
gs.shape = (40,)

3.2 Plotting NRG data as is
The arrays ts and gs correspond to the whole 1D arrays of data, and so only have the y
shape

Now let’s look at the data

[8]: attrs_2d = list(set(attrs) - {"ts", "gs"})

fig, axs = plt.subplots(2, 2, figsize=(FS, FS * 0.7))
axs = axs.flatten()

for attr, ax in zip(attrs_2d, axs):
ax: plt.Axes
sns.heatmap(ax=ax, data=getattr(data, attr))
ax.set_title(f"{attr}")
ax.set_xticks(ax.get_xticks()[::2])
ax.set_yticks(ax.get_yticks()[::2])

fig.tight_layout()
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The mismatch in data shape can be seen here, where the rows 0-9 are from the narrow
dataset and are filled with np.nan to match the data shape of the wider data

Note that for the new NRG data, entropy and int_dndt have NOT been calculated directly
as this is a very expensive operation. However, the dndt data is sufficient to obtain the
entropy changes given that entropy ends at ln(2) on the occupied side over the full calculated
range.

The ens array is the x-axis (effectively sweep gate) data for all of the other datasets

For example, if we use the ens to plot some narrow and wide data we get:

[9]: rows = [8, 9, 10, 11] # rows around the change from narrow to wide␣
↪datasets

fig, axs = plt.subplots(2, 2, figsize=(FS, FS * 0.7))
axs = axs.flatten()

for r, ax in zip(rows, axs):
x = data.ens[r]
occ_data = data.occupation[r]
dndt_data = data.dndt[r]

ax.plot(x, occ_data, label="Occupation")
ax.set_xlabel("Ens")
ax.set_ylabel("Occupation")
ax.plot([], [], "r:", label="dN/dT")
ax.legend(loc="center right", fontsize=8)
decrease_fontsize(ax, 1)

ax2 = ax.twinx()
ax2.plot(x, dndt_data, "r:")
ax2.set_ylabel("dN/dT /arb")
ax2.tick_params(axis="both")
decrease_fontsize(ax2, 1)

fig.tight_layout()
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Note that the dndt data is scaled such that integrating (taking into account the ens spacing)
results in close to, but not exactly the expected ln(2) total entropy change (see below).

[10]: rows = [8, 11, 23, 39]

fig, axs = plt.subplots(2, 2, figsize=(FS, FS * 0.7))
fig.suptitle(f"Demonstrating dN/dT scaling s.t. integrated results in max␣

↪== 1")
axs = axs.flatten()

for r, ax in zip(rows, axs):
x = data.ens[r]
occ_data = data.occupation[r]
dndt_data = data.dndt[r]
int_data = np.nancumsum(dndt_data) * np.nanmean(np.diff(x))
int_data = int_data - np.nanmin(int_data)

ax.plot(x, occ_data, label="Occupation")
ax.set_xlabel("Ens")
ax.set_ylabel("Occupation")
ax.plot([], [], "r:", label="Integrated dN/dT")
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ticks = ax.get_xticks()
ax.set_xticks(ticks[1 if len(ticks) % 4 - 1 else 0 :: 2])
ax.legend(loc="lower right", fontsize=9)
decrease_fontsize(ax, 1)

ax2 = ax.twinx()
ax2.plot(x, int_data, "r:")
ax2.set_ylabel("Entropy /Arb")
ax2.set_ylim(-0.01, np.log(3) + 0.01)
decrease_fontsize(ax2, 1)

ax2.axhline(np.log(2), color="k", linestyle="--")

fig.tight_layout()

Note that the integrated entropy always ends close to but not quite 𝑙𝑛(2). I believe this is
just an artifact from calculation, they should all integrate to ln(2).
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3.3 Plotting combined NRG datasets
We can plot the data using the ens and T/G ratios to see what the full space of calculated
data really looks like

[11]: X = data.ens # same shape as data2d
Y = data.ts / data.gs # Only 1D

X1, X2 = X[0:10], X[10:] # Narrow, Wide
X1 = X1[:, :401]

# Note: we want a meshgrid denoting corner points of pixels instead of␣
↪centers

XXs = []
for X in X1, X2:

x_stepsizes = np.array([np.mean(np.diff(_x)) for _x in X])
# All step sizes should be the same (i.e. mean(diff) == diff[0])

X = X + (x_stepsizes / 2)[:, None] # Shift coords half a step to␣
↪right

XX = np.append(
(X[:, 0] - x_stepsizes)[:, None], X, axis=1

) # Add a row of left side values starting half a step left
XX = np.append(

XX[0][None, :], XX, axis=0
) # Add an additional row to match with Y+1 shape, not ideal but ok␣

↪enough...
# Not ideal because I should be extrapolating what the stepsize␣

↪would be
XXs.append(XX)

Y = np.concatenate(
([Y[0] - (Y[1] - Y[0]) / 2], (Y[0:-1] + Y[1:]) / 2, [Y[-1] + (Y[-1] -␣

↪Y[-2]) / 2])
)
# start-half first step, midpoints, end+half last step
# Y spacing is not equal, so mostly we want the midpoints between values
YYs = []
for XX in XXs:

YY = np.repeat(
Y[:, None], XX.shape[-1], axis=1

) # Convert to same x-axis shape as XXs
YYs.append(YY)

YYs = [
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YYs[0][:11],
YYs[1][10:],

] # Convert to same y-axis shape as XXs (note both use same middle␣
↪coord (YYs[10]))

fig, axs = plt.subplots(2, 2, figsize=(FS, FS * 0.7))
axs = axs.flatten()

for attr, ax in zip(attrs_2d, axs):
data_ = getattr(data, attr)
Zs = data_[0:10, :401], data_[10:] # Only use Z part of data which␣

↪matches XX

for XX, YY, Z in zip(XXs, YYs, Zs):
ax.pcolormesh(XX, YY, Z, vmin=np.nanmin(data_), vmax=np.

↪nanmax(data_))
ax.set_title(f"{attr}")
ax.set_xlabel("Ens")
ax.set_ylabel("T/G")
ax.set_yscale("log")
ax.set_xscale("symlog", linthresh=0.000001)
xticks = ax.get_xticks()
ax.set_xticks(xticks[1::3])

fig.tight_layout()
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The graphs above are plotting with a log y-scale and symlog (symmetric log) x-scale

The key graphs here are the dndt and occupation, as these are the data we compare to.
ens highlights the symlog x-scale since the colorscale is just that of the x-values

4 Fitting to NRG
4.1 Parameters for Fitting

• mid: Position of N=0.5 occupation (only roughly N=0.5 for NRG - to get a more
accurate center look at N=0.5 of occupation data)

• theta: Thermal broadening
• g: Gamma broadening

Specific to dndt

• amp: Scaling of dndt calculations

Specific to i_sense

• amp: Charge step size
• const: Average Charge Sensor current
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• lin: Cross capacitance of gate on Charge Sensor
• occ_lin: Change in lin as a fn of occupation (This is not often used)

4.2 Making NRG functions that behave like analytical functions
In order to use this data for fitting routines, we require a function which can take any value
of all fitting parameters (Gamma, Theta, En etc), so we need to interpolate between the
nearest rows of data. And we might want to do this for any of the NRG datasets. From top
down:

• One can get such a function from NRG_func_generator(which='i_sense') for a func-
tion for the specified data (e.g. [i_sense, occupation, dndt])

– i.e. This returns a function which takes all the usual fitting parameters - (x, mid,
g, theta, amp, lin, const, occ_lin)

• It does so by wrapping nrg_func(...); a function which takes all the regular param-
eters + which data is being requested

• That requests an interpolator from _get_interpolator(...) and then performs the
interpolation with the values passed to return a value/array of answers

• _get_interpolator(...) takes the theta/g ratio, and name of data to figure out
exactly which rows of data from which dataset needs to be interpolated.

– To avoid having to rebuild the same interpolator over and over, this then calls a
cached function _cached_interpolator which actually generates the interpo-
lator. Note: _get_interpolator(...) cannot be cached as the call to it could
have any value of theta/g even if they end up returning the same interpolator

• The _cached_interpolator(...) is called with an index and data name, so this has
well-defined call arguments which can be cached so future calls for the same interpolator
don’t have to be calculated again.

– It takes the two consecutive rows of data that will be interpolated between
– Does a 1D interpolation of the wider of the two rows of data to match the ens

axis of the narrower data (wider/narrower in ens)
– Then creates a 2D interpolator between the two rows of data
– Converts the 2D interpolator into a function which takes the usual arguments

(minus [g, theta]) and additionally:
∗ Adds an option for i_sense data by taking into account [mid, amp, lin,
const, occ_lin]

∗ Scales dndt data with amp to help with arbitrary scaling of dndt calculations
– Returns the function which takes the usual arguments

[12]: from typing import Union, Callable, Tuple
from scipy.interpolate import interp1d, RectBivariateSpline
from dat_analysis.core_util import get_data_index

def NRG_func_generator(which="i_sense") -> Callable[..., Union[float, np.
↪ndarray]]:
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"""
Wraps the nrg_func in a way that can be used by lmfit. If not using␣

↪lmfit, then just call nrg_func directly

Args:
which (): Which data to make a function for (i.e. 'i_sense',␣

↪'occupation', 'dndt', etc)

Returns:
nrg_func for named data

"""
from functools import wraps

@wraps(nrg_func)
def wrapper(*args, **kwargs):

return nrg_func(*args, **kwargs, data_name=which)

return wrapper

def nrg_func(
x,
mid,
g,
theta,
amp: float = 1,
lin: float = 0,
const: float = 0,
occ_lin: float = 0,
data_name="i_sense",

) -> Union[float, np.ndarray]:
"""
Returns data interpolated from NRG results. I.e. acts like an␣

↪analytical function for fitting etc.

Note: Does not require amp, lin, const, occ_lin for anything other␣
↪than 'i_sense' fitting (which just adds terms to

occupation)
Args:

data_name (): Which NRG data to return (i.e. occupation, dndt,␣
↪i_sense)

Returns:
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"""
interper = _get_interpolator(t_over_gamma=theta / g,␣

↪data_name=data_name)
return interper(x, mid, g, theta, amp=amp, lin=lin, const=const,␣

↪occ_lin=occ_lin)

def get_nrg_data(data_name: str):
"""Returns just the named data array from NRG data"""
nrg = NRGData.from_mat()
if data_name == "i_sense":

z = 1 - nrg.occupation
elif data_name == "ts":

z = nrg.ts
elif data_name == "gs":

z = nrg.gs
elif data_name == "occupation":

z = nrg.occupation
elif data_name == "dndt":

z = nrg.dndt
elif data_name == "conductance":

z = nrg.conductance
elif data_name == "ens":

z = nrg.ens
else:

raise NotImplementedError(f"{data_name} not implemented")
return z

def scale_x(x, mid, g, theta, inverse=False):
"""
To rescale sweepgate data to match the ens of NRG (with varying␣

↪theta).

Note: The -g*(...) - theta*(...) is just to make the center roughly␣
↪near OCC = 0.5 (which is helpful for fitting

only around the transition)

x_scaled ~ (x - mid) * nrg_theta / theta

Args:
inverse (): set True to reverse the scaling

Returns:

Appendix A. NRG data and fitting

159



"""
if not inverse:

x_shifted = (
x - mid - g * (-2.2) - theta * (-1.5)

) # Just choosing values which make 0.5 occ be near 0
x_scaled = x_shifted * 0.0001 / theta # 0.0001 == nrg_T
return x_scaled

else:
x_scaled = x / 0.0001 * theta # 0.0001 == nrg_T
x_shifted = x_scaled + mid + g * (-2.2) + theta * (-1.5)
return x_shifted

def _get_interpolator(t_over_gamma: float, data_name: str = "i_sense") ->␣
↪Callable:

"""
Generates a function which acts like a 2D interpolator between the␣

↪closest t_over_gamma values of NRG data.

Returns:
Effective interpolator function which takes same args as nrg_func
i.e. (x, mid, g, theta, amp=1, lin=0, const=0, occ_lin=0) where␣

↪the optionals are only used for i_sense
"""
ts, gs = [get_nrg_data(name) for name in ["ts", "gs"]]
tgs = ts / gs
# index = np.abs(tgs - t_over_gamma).argmin()
index = get_data_index(tgs, t_over_gamma)
index = (

index if tgs[index] > t_over_gamma else index - 1
) # want the true value to be between interpolated rows
if index < 0: # Asking for data outside of calculation range

index = 0
elif (

index > len(tgs) - 2
): # -2 because cached interpolator is going to look at next row as␣

↪well
index = len(tgs) - 2

return _cached_interpolator(lower_index=index, data_name=data_name)

@lru_cache(
maxsize=100
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) # Shouldn't ever be more than XX rows of NRG data (XX == size of data␣
↪in .mat files)

def _cached_interpolator(lower_index: int, data_name: str) -> Callable:
"""
Actually generates the scipy 2D interpolator for NRG data.
This can be used for any future requests of this interpolator
so this should be cached.

Args:
lower_index (): The lower index of NRG data to use for␣

↪interpolation (will always interpolate between this and
lower_index + 1)

data_name (): Which NRG data to make an interpolator for

Returns:
2D interpolator function which takes x as an energy and y as a␣

↪gamma/theta ratio.
"""

def strip_x_nans(x: np.array, z: np.array) -> Tuple[np.ndarray, np.
↪ndarray]:

"""Strip off NaNs that are in x array (and corresponding data)"""
return x[np.where(~np.isnan(x))], z[np.where(~np.isnan(x))]

ts, gs, ens, data = [
get_nrg_data(name)[lower_index : lower_index + 2]
for name in ["ts", "gs", "ens", data_name]

]
tgs = ts / gs

narrower_ens, narrower_data = ens[0], data[0] # Just the
wider_ens, wider_data = ens[1], data[1]

narrower_ens, narrower_data = strip_x_nans(narrower_ens,␣
↪narrower_data)

wider_ens, wider_data = strip_x_nans(wider_ens, wider_data)

single_interper = interp1d(
x=wider_ens, y=wider_data, bounds_error=False,␣

↪fill_value="extrapolate"
) # values are saturated near edge of NRG data,
# so effectively constants for extrapolation

interpolated_wider_data = single_interper(

Appendix A. NRG data and fitting

161



x=narrower_ens
) # i.e. mapping wider data to narrower ens

# Note: Just returns edge value if outside interp range
# flips are because x and y must be strictly increasing
interper = RectBivariateSpline(

x=np.flip(narrower_ens),
y=np.flip(np.log10(tgs)),
z=np.flip(np.array([narrower_data, interpolated_wider_data]).T,␣

↪axis=(0, 1)),
kx=1,
ky=1,

)
# Note: the interpolator does not use the parts of the wider data␣

↪that extend beyond the narrower data

interp_func = _interper_to_nrg_func(interper, data_name)
return interp_func

def _interper_to_nrg_func(interper, data_name: str):
"""Makes a function which takes normal fitting arguments and returns␣

↪that function"""

def func(x, mid, g, theta, amp=1, lin=0, const=0, occ_lin=0):
x_scaled = scale_x(x, mid, g, theta)
interped = interper(x_scaled, np.log10(theta / g)).flatten()
if data_name == "i_sense":

interped = (
amp * (1 + occ_lin * (x - mid)) * interped
+ lin * (x - mid)
+ const
- amp / 2

)
# Note: (occ_lin*x)*Occupation is a linear term which␣

↪changes with occupation,
# not a linear term which changes with x

elif data_name == "dndt":
interped *= amp

elif data_name == "conductance":
interped = amp * interped + const

return interped

return func
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And a function for getting the x value that corresponds to a given occupation 𝑁 .

[13]: def get_x_at_occupation(N, mid=0, theta=None, g=None) -> float:
"""
Get x value at occupation N
(Note that the NRG data has its own energy scale where 0 is only␣

↪close to N=0.5)

Args:
mid (): Middle of transition based on fitting (this value will␣

↪not be exactly N=0.5)
theta (): Theta (thermal broadening)
g (): Gamma (tunnel broadening)

"""
# Make a high density x-array that will include N=0.5
x = np.linspace(mid - 1000, mid + 1000, 100000)
occ = nrg_func(x=x, mid=mid, g=g, theta=theta, data_name="occupation")
# Get index where occ closest to N
idx = np.abs(occ - N).argmin()
# Return the x of that index
return x[idx]

4.3 Demonstration of NRG functions
A couple of demonstrations of the use of these functions to generate data, although usually
they will only be used for fitting

[14]: theta = 1
gamma = 0.1
amp = 1
mid = 0
const = 5
lin = 0.005
occ_lin = 0

x = np.linspace(-20, 20, 100)

data_names = ["dndt", "occupation", "i_sense"]

fig, axs = plt.subplots(1, 3, figsize=(FS, FS * 0.4))
axs = axs.flatten()

for name, ax in zip(data_names, axs):
func = NRG_func_generator(which=name)
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data = func(
x=x,
mid=mid,
amp=amp,
const=const,
lin=lin,
occ_lin=occ_lin,
g=gamma,
theta=theta,

)
# Note that only x, mid, gamma, theta are used for all three datas,␣

↪they are ignored for the wrong data types
ax.plot(x, data)
ax.set_title(f"{name}")

fig.tight_layout()
print(

f"Notice that the true x value of N=0.5 is actually␣
↪x={get_x_at_occupation(N=0.5, mid=mid, theta=theta, g=gamma):.4f}, not␣
↪0"

)

Notice that the true x value of N=0.5 is actually x=-2.1500, not 0

Although the center of transition (𝑁 = 0.5) is close to but not quite 𝑥 = 0. The NRG data
as provided has an absolute zero given by the ens, however, this does not align with 𝑁 = 0.5
(which makes sense since entropy should shift the occupation with temperature etc). For
comparison to experimental data, it is helpful to have the center of transition be close to
𝑥 = 0 for ease of fitting (it is difficult to estimate a center value otherwise). This is achieved
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by shifting the x-axis of NRG data AFTER interpolation with the line:

𝑥shifted = 𝑥 − 𝑥0 − Γ × (−2.2) − Θ × (−1.5)

where the factors −2.2 and −1.5 were found through trial and error to result in the 𝑁 = 0.5
being close to 𝑥 = 0
And then scaling to account for thermal broadening (which is OK to do because the calcu-
lations are dependent on Γ/𝑇 ratio only) using:

𝑥scaled = 𝑥shifted × 0.0001
Θ

where 0.0001 is the Theta value used in the NRG calculations

We can also plot 2D data using the generated function

[15]: def xy_to_meshgrid(x, y):
"""returns a meshgrid that makes sense for pcolorgrid
given z data that should be centered at (x,y) pairs"""
nx = len(x)
ny = len(y)

dx = (x[-1] - x[0]) / float(nx - 1)
dy = (y[-1] - y[0]) / float(ny - 1)

# shift x and y back by half a step
x = x - dx / 2.0
y = y - dy / 2.0

xn = x[-1] + dx
yn = y[-1] + dy

return np.meshgrid(np.append(x, xn), np.append(y, yn))

x = np.linspace(-20, 20, 100)
g_over_t = np.linspace(0.1, 10, 100)
theta = 1

gamma = g_over_t * theta

fig, axs = plt.subplots(1, 3, figsize=(FS, FS * 0.4))
axs = axs.flatten()

for name, ax in zip(data_names, axs):
func = NRG_func_generator(which=name)
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data = np.array(
[

func(
x=x,
mid=mid,
amp=amp,
const=const,
lin=lin,
occ_lin=occ_lin,
g=g,
theta=theta,

)
for g in gamma

]
)
xx, yy = xy_to_meshgrid(x, g_over_t)
ax.pcolormesh(xx, yy, data)
ax.set_title(f"{name}")

fig.tight_layout()

4.4 Fitting with NRG functions
For fitting to data, I use the lmfit package.

As an example, I will generate some fake i_sense data using the function demonstrated
above

[16]: theta = 1
gamma = 0.005 # Very weakly coupled to start with
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amp = 1.2
mid = 5
const = 5
lin = 0.005
occ_lin = 0

noise_fraction = 0.02

x = np.linspace(-20, 20, 500)

i_sense_func = NRG_func_generator(which="i_sense")
fake_data = i_sense_func(

x=x, mid=mid, const=const, amp=amp, lin=lin, g=gamma, theta=theta,␣
↪occ_lin=occ_lin

)
fake_data += np.random.normal(0, amp * noise_fraction, x.shape[0])

fig, ax = plt.subplots(figsize=(FS * 0.5, FS * 0.4))
ax.plot(x, fake_data)
fig.tight_layout()

Using the data above to demonstrate fitting to NRG

We’ll need to make some initial guesses for fitting parameters. Typically, a function like the
one below does a good enough job for starting parameters.

[17]: def guess_isense_params(
x, data, g: float, g_vary: bool, theta: float, theta_vary: bool

) -> lm.Parameters:
params = lm.Parameters()
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params.add_many(
# name, value, vary, min, max
# Guess middle of dataset
lm.Parameter("mid", np.nanmean(x), True, -100, 100),
# Guess similar to amplitude of total data
lm.Parameter("amp", np.nanmax(data) - np.nanmin(data), True, 0),
# Generally requires quite strict limits
lm.Parameter("lin", 0, True, 0, 0.1),
# Roughly in middle of data
lm.Parameter("const", np.nanmean(data), True),
# Usually 5 works quite well, could do something more fancy if␣

↪needed
lm.Parameter("theta", theta, theta_vary, 0, 20),
# Holding fixed near zero because fitting weakly coupled data
lm.Parameter("g", g, g_vary, theta / 1000, theta * 50),
# Usually not needed
lm.Parameter("occ_lin", 0, False),

)
return params

4.4.1 Fitting weakly coupled data

For fitting weakly coupled data (like the data above), the g value should be set small and
forced not to vary, and theta should be allowed to vary.

[18]: params = guess_isense_params(x, data, g=0.001, g_vary=False, theta=5,␣
↪theta_vary=True)

Note that the parameter g cannot be set exactly to zero and is NOT allowed to vary here
(since we are trying to fit weakly coupled data). In fact, even with g set 5x lower than the
generated data, we should get a good fit since we are in the weakly coupled regime. Also
not allowing occ_lin to vary just because that is generally not needed

[19]: func = NRG_func_generator(which="i_sense")

model = lm.model.Model(func)
fit = model.fit(fake_data, x=x, params=params, method="powell",␣

↪nan_policy="omit")

Note: The fitting method has been specified as powell rather than the default leastsq.

I experimented with many other fitting modes and found powell to be most reliable. I
believe this is because of the discontinuous gradient of the interpolated data (i.e. corners at
each calculated value)
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[20]: print("Comparison of Expected vs Fit values\nName\t\tExpected\t\tFit")
for expected, name in zip(

[mid, amp, const, lin, theta, gamma, occ_lin],
["mid", "amp", "const", "lin", "theta", "g", "occ_lin"],

):
par = fit.params.get(name)
print(f"{name:10}\t\t{expected:.1f}\t\t{par.value:.2f}\u00b1{par.

↪stderr:.2f}")

Comparison of Expected vs Fit values
Name Expected Fit
mid 5.0 4.99±0.04
amp 1.2 1.20±0.01
const 5.0 5.00±0.00
lin 0.0 0.00±0.00
theta 1.0 1.00±0.02
g 0.0 0.01±0.00
occ_lin 0.0 0.00±0.00

Or we can look at the full fit report

[21]: print(fit.fit_report())

[[Model]]
Model(nrg_func)

[[Fit Statistics]]
# fitting method = Powell
# function evals = 812
# data points = 500
# variables = 5
chi-square = 0.27294246
reduced chi-square = 5.5140e-04
Akaike info crit = -3746.55119
Bayesian info crit = -3725.47815
R-squared = 0.99792494

[[Variables]]
mid: 4.98810340 +/- 0.04252290 (0.85%) (init = -9.094947e-16)
amp: 1.19941503 +/- 0.00703026 (0.59%) (init = 0.9196366)
lin: 0.00498214 +/- 2.6391e-04 (5.30%) (init = 0)
const: 4.99934266 +/- 0.00152794 (0.03%) (init = 4.930602)
theta: 0.99835231 +/- 0.01923735 (1.93%) (init = 5)
g: 0.005 (fixed)
occ_lin: 0 (fixed)

[[Correlations]] (unreported correlations are < 0.100)
C(mid, theta) = 0.940
C(amp, lin) = 0.938
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C(amp, theta) = 0.697
C(lin, const) = 0.674
C(mid, amp) = 0.640
C(lin, theta) = 0.629
C(amp, const) = 0.603
C(mid, lin) = 0.564
C(const, theta) = 0.472
C(mid, const) = 0.345

And now lets plot the fit on the data

[22]: fig, ax = plt.subplots(figsize=(FS * 0.6, FS * 0.5))
ax.plot(x, fake_data, label="Data")
ax.plot(x, fit.eval(x=x), label="Fit")
ax.set_title(f"NRG fit to i_sense data")
ax.set_xlabel("Sweepgate")
ax.set_ylabel("Current")
ax.legend()
fig.tight_layout()

Because both g and theta are so strongly correlated, for fitting strongly coupled data (g >
theta), it is necessary to hold theta fixed at the expected value.

4.4.2 Fitting strongly coupled data

For strongly coupled data, theta should be set to it’s expected value and set to NOT vary,
while g can be set to vary (within limits of 0.001 < 𝑇 < 50𝑇 ).
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[23]: theta = 1
gamma = 15 # Made Gamma >> T
amp = 1.2
mid = 50
const = 5
lin = 0.005
occ_lin = 0

noise_fraction = 0.02

x = np.linspace(-200, 250, 500) # Much wider x-axis

i_sense_func = NRG_func_generator(which="i_sense")
fake_data = i_sense_func(

x=x, mid=mid, const=const, amp=amp, lin=lin, g=gamma, theta=theta,␣
↪occ_lin=occ_lin

)
fake_data += np.random.normal(0, amp * noise_fraction, x.shape[0])

fig, ax = plt.subplots(figsize=(FS * 0.6, FS * 0.5))
ax.plot(x, fake_data)
fig.tight_layout()

Where the max/min points of the data are not near the transition sometimes causes issues
with guessing amp as the max - min, but probably it is OK with this.

This time, we will allow g to vary while fitting, but hold theta fixed at the expected value.
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And we’ll use the same model for the fitting

[24]: # Generate new params
params = guess_isense_params(x, data, g=5, g_vary=True, theta=theta,␣

↪theta_vary=False)

# Using same model as previously
fit = model.fit(fake_data, x=x, params=params, method="powell",␣

↪nan_policy="omit")

[25]: print("Comparison of Expected vs Fit values\nName\t\tExpected\t\tFit")
for expected, name in zip(

[mid, amp, const, lin, theta, gamma, occ_lin],
["mid", "amp", "const", "lin", "theta", "g", "occ_lin"],

):
par = fit.params.get(name)
print(f"{name:10}\t\t{expected:5.1f}\t\t{par.value:.2f}\u00b1{par.

↪stderr:.2f}")

fig, ax = plt.subplots(figsize=(FS * 0.6, FS * 0.5))
ax.plot(x, fake_data, label="Data")
ax.plot(x, fit.eval(x=x), label="Fit")
ax.set_title(f"NRG fit to i_sense data")
ax.set_xlabel("Sweepgate")
ax.set_ylabel("Current")
ax.legend()
fig.tight_layout()

Comparison of Expected vs Fit values
Name Expected Fit
mid 50.0 49.76±0.31
amp 1.2 1.16±0.02
const 5.0 5.00±0.00
lin 0.0 0.00±0.00
theta 1.0 1.00±0.00
g 15.0 14.13±0.36
occ_lin 0.0 0.00±0.00
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As expected, a good fit to fake_data

Now let’s fit the data. We’ll change the initial params first so that we aren’t cheating too
much

Again we see a good fit. Note that there are several fitting parameters shown above that are
not used and are just held fixed.

5 Plotting vs Occupation
Instead of plotting an energy/sweepgate values on the x-axis, let’s plot against occupation
instead. This will be useful for comparing measurements at varying G/T ratios

This is achieved by using the same parameters (specifically the g, theta, and mid) values to
generate the expected Occupation data. We’ll just skip to using the useful functions to do
this.

[26]: mid = 30
amp = 1
theta = 20
g = 0.001
lin = 0.001
const = 5
occ_lin = 0

x = np.linspace(-300, 300, 1000)
occ_x = nrg_func(x, mid, g, theta, data_name="occupation")
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data_names = ["i_sense", "dndt", "conductance"]
fig, axs = plt.subplots(2, 3, figsize=(FS, FS * 0.7))

for name, ax in zip(data_names, axs[0, :]):
# data = nrg_helper.data_from_params(x=x, which_data=name,␣

↪which_x="sweepgate")
data = nrg_func(x, mid, g, theta, lin=lin, const=const,␣

↪data_name=name)
ax.plot(x, data)
ax.set_title(name)
ax.set_xlabel("Sweepgate")
decrease_fontsize(ax, 2)

for name, ax in zip(data_names, axs[1, :]):
data = nrg_func(x, mid, g, theta, lin=lin, const=const,␣

↪data_name=name)
ax.plot(occ_x, data)
ax.set_title(name)
ax.set_xlabel("Occupation")
decrease_fontsize(ax, 2)

fig.tight_layout()
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As expected, the i_sense data is linear when plotted against Occupation (excluding the
edges). The non-zero linear term results in vertical lines at either end (i.e. changing current
with no change of occupation).

Plotting 𝑑𝑁/𝑑𝑇 this way makes it much easier to compare 𝑑𝑁/𝑑𝑇 for varying Γ/𝑇 . Same
goes for conductance data

e.g.

[27]: g_over_ts = np.logspace(np.log10(0.1), np.log10(30), 10)
mid = 0
theta = 10
# g -- defined in loop based on G/T ratios
# print("Ratios to plot: ", [f"{gt:.3g}" for gt in g_over_ts])

fig, axs = plt.subplots(1, 2, figsize=(FS, FS * 0.5))
axs = axs.flatten()
for data_name, ax in zip(["dndt", "conductance"], axs):

for gt in g_over_ts:
g = gt * theta
x = np.linspace(

-max([theta, gt * theta]) * 15, max([theta, gt * theta]) *␣
↪15, 300

) # Wider x needed for wider data
occ_x = nrg_func(x, mid, g, theta, data_name="occupation")
data = nrg_func(x, mid, g, theta, data_name=data_name)
data = data / np.nanmax(data)
ax.plot(occ_x, data, label=f"{gt:.3g}")
# ax.plot(x, data, label=f"{gt:.3g}")

if data_name == "conductance":
leg = ax.legend(title="G/T ratio", loc="center left", fontsize=8)
leg.get_title().set_fontsize(9)

ax.set_title(f"Comparing normalized {data_name} for varying G/T",␣
↪fontsize=10)

ax.set_xlabel("Occupation")
decrease_fontsize(ax, 2)
# ax.set_ylabel("Normalized Delta Current")

fig.tight_layout()
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Appendix B

Measurement setup

The cryostats used for all measurements presented in this thesis were dilution

refrigerators of the “dry” type that utilize a closed loop pulse tube for the

cooling of the 4 K (and higher T ) plates (see Fig. B.1). This is in contrast to

“wet” fridges that use liquid He and require regular top ups. Specifically, two

Bluefors models were used: a BF-LD400 and BF-XLD400. The dry fridges

enable long duration (many months of) measurements with relatively little

maintenance; however, the pulse tube introduces mechanical vibrations into

the system that can affect both base temperature and electrical measurement

noise. The cryostats themselves are capable of cooling the mixing chamber

plate down to TF ∼ 7 mK (and we assume that our heterostructure chips

reach similarly low phonon temperatures). However, it is the temperature of

the electrons in the 2DEG that is important for the measurements presented

within this thesis, and they do not reach such low temperatures due to the

presence of electrical noise that propagates down the measurement lines. In

practice, we were able to achieve electron temperatures around Te ∼ 25 mK

in our systems, although that was not our primary concern.

There are two main approaches to reducing the electrical noise that

reaches the 2DEG: prevention and filtering. For prevention, it is necessary

to understand where the noise come from in the first place. Although the

precise sources of electrical noise are difficult to pin down, our experience

seems to suggest that in addition to 60 Hz (and harmonics) noise that can

typically be eliminated by identifying and removing any ground loops, a

significant source (especially in our dry fridges) is triboelectric in nature.

Over a wide range of relatively low frequencies (. 5 kHz), electrical noise

increases with decreasing temperature of the system – an effect that we

think is related to the difference in thermal expansion coefficients of the
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metals and insulators used in the wiring that increase the amount that the

wires rub against the insulators when moved by vibrations. Unfortunately,

because this only becomes apparent at very low temperatures, it is difficult

to optimize the cryostat wiring because the behavior at room temperature

does not correlate well with the behaviour at the low temperatures where

the characteristics are most important. In the end, we found that although

we could achieve better room temperature performance from the top of the

fridge to the Still plate with our own wiring, the twisted pair phosphor-

bronze wiring provided by Bluefors performed similarly or slightly better at

very low temperature, and was less prone to thermal cycling issues. From

there, we found that polyimide flat printed circuit (FPC) flexible cables

performed well at low temperatures, and provide a convenient means of in-

terfacing with PCBs or other FPCs via ZIF connectors that can be obtained

without magnetic impurites (important for high and/or sweeping magnetic

field measurements).

In terms of filtering, we primarily relied upon a 3-stage RC filter placed

on the mixing chamber. Typically, the cutoff frequency (−3 dB) was around

50 kHz, however, in the most recent iterations, we switched to single stage

RC filters with cutoff frequencies around 10 kHz or lower. Generally speak-

ing, the low-pass filter should be designed to have as low a cutoff frequency

as permitted by the measurements (either in terms of frequency or inline

resistance). At the expense of re-usability, the RC filter can be designed

with the specific device to be measured in mind, using higher Rs and Cs

(and thus lower cutoff frequencies) for gates that will be held at constant

potentials during individual measurements. The placement of the RC filter

is also very important: it should be as close as possible to the device (ideally,

toward the end of the cold finger) and should be clamped securely to ensure

it is well thermalized with the mixing chamber. In fact, in Fig. 1.1a one can

see that the heterostructure chip is glued (using PMMA) directly to a sili-

con wafer that is itself stuck to the coldfinger using silver paste. The silicon

wafer has thin meandering nano-fabricated lines that act as a distributed

RC filter immediately before the device – in addition to the RC filter that

lies on the mixing chamber plate. After the RC filtering, it is important

178



Appendix B. Measurement setup

to keep any remaining wiring up to and including the device shielded by

a conductor (typically copper) that is well thermalized with the MC plate

to avoid microwave radiation from the relatively warm (∼ 1 K) still shield

entering the lines.

Because any optimization of cryostat wiring requires thermal cycling,

and given that the thermal cycling process takes several days at best, it

is a very time consuming process to carry out systematic tests. Instead,

we attempted to find a middle ground – doing our best to improve noise

and thermal characteristics of the systems between regular measurement

cooldowns – without dedicating the enormous amount of time that would

have been required to investigate each problem systematically. As a result,

I have many thoughts and superstitions about what factors are important

in determining optimal measurement conditions, but few concrete facts. For

a more systematic analysis of cryostat wiring, I recommend Ref. [173], from

which we utilize many of the same components. Ref. [174] also demonstrates

exceptional cryostat wiring, where an electron temperature of only 6 mK was

achieved.
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Figure B.1: Photo of the BF-XLD system showing the lower temperature
plates and coldfinger. The gold plated copper plate that is in line with the
bottom of the top outer vacuum can (OVC) is the 4 K plate. Below that,
there is the Still plate, 0.1 K (not usually referenced), and finally, the mixing
chamber (MC) plate. The 50 K plate is hidden from view by the top OVC.
The coldfinger is the copper piece extending below the MC plate, designed
such that a mounted sample is positioned in the center of the magnet (not
shown) when the system is in operation.
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