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Abstract 

Historical data from four full-scale ultrafiltration membrane facilities was analyzed to gain 

insight into changes in membranes' performance over time, commonly referred to as membrane 

ageing. The analysis indicates that performance factors, such as hydraulically irreversible 

resistance, clean membrane resistance, total fouling rate, and the extent of resistance reversed 

during Backwash (BW), increase as membranes age. The rates at which these performance 

factors increased were substantially different between facilities indicating that membrane ageing 

is influenced by site-specific raw water and operational conditions. A framework was developed 

to forecast membrane replacement age using data from the initial years of operation. Adoption of 

this framework provides evidence-based tools to assist with the operation and long-term financial 

management of membrane infrastructure.  
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Lay Summary 

Membrane filtration is a popular choice for water treatment due to the efficient removal of 

harmful pathogens and contaminants. However, membranes undergo changes in their operational 

and physical properties over time, which is popularly known as membrane aging. In the present 

study, historical data was acquired from four full-scale ultrafiltration membrane facilities and 

analyzed to examine the effects of ageing on the various operational properties (referred to as 

performance factors) of the membrane. The analysis indicates that, in general, as membranes 

age, they cannot filter as much water (i.e., resistance increases) and must be cleaned more 

frequently. Using historical data, a forecasting tool was developed to inform membrane 

replacement, which eventually would help the managers of full-scale ultrafiltration membrane 

facilities to make better financial plans.  
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1 Introduction  

Ultrafiltration (UF) is a popular choice for treating surface water. As long as UF membranes are 

not breached, they are capable of consistently removing particulates/contaminants regardless of 

potential fluctuation in raw water quality (Crittenden et al., 2012). As UF membranes filter 

water, material accumulates on the membrane surface or within the pores. This material is 

typically defined as foulant (U.S.EPA, 2005). In order to remove foulants, UF membrane 

facilities periodically perform hydraulic and chemical cleanings (Crittenden et al., 2012). Over 

time, these cleaning events can adversely affect the performance of UF membrane (e.g., increase 

in resistance, rate of fouling, etc.) and characteristics (e.g., decrease in hydrophilic additive 

contents, etc.). This progressive deterioration of the performance and characteristics of UF 

membrane is commonly defined as 'membrane ageing' (Robinson et al., 2016). Adverse effects 

due to membrane ageing are reported to be primarily responsible for UF membrane replacement 

(Prulho et al., 2013).  

 

Lab-accelerated ageing studies and field-harvested membrane studies, the commonly used 

approaches to investigate the impacts of ageing on UF membranes, are either time or resource 

intensive (Robinson & Bérubé, 2020). These approaches also lack the capability to forecast UF 

membrane replacement age. In addition, lab-scale studies do not accurately reflect membrane 

ageing at full-scale facilities (Filho et al., 2021). As a result, limited knowledge exists regarding 

membrane ageing at full-scale facilities (Yu et al., 2021) and an evidence-based approach to 

inform UF membrane replacement has yet to be established (Fenu et al., 2012).  

 

Fortunately, most full-scale UF membrane facilities collect extensive operational data. This 

operational data could potentially be used to investigate the impact of membrane ageing on 

performance (Robinson & Bérubé, 2020). The present study assessed if historical data from full-

scale facilities could potentially be used to quantify membrane ageing and forecast membrane 

replacement age. Change in resistance to permeate flow was considered as a metric to assess 

membrane ageing. Historical data from four full-scale UF membrane facilities, operating in 

Canada, was considered. All facilities that were considered, used the same membrane type 

(ZeeWeed 1000, Veolia Water Technologies, Canada). However, each facility had different 

operating protocols. Combined, the historical data from the four full-scale UF membrane 
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facilities represents over 30 years of operational data. A comprehensive statistical methodology 

was developed to 1) clean up relevant time series resistance data, and 2) extract summative 

parameters of time series resistance data. Membrane ageing was quantified based on the change 

in the extracted summative parameters. A framework was also developed to forecast time series 

resistance so that the replacement age of UF membranes could be estimated. The overall goal of 

the present study is to provide managers of full-scale UF membrane facilities with evidence-

based tools to manage operations and forecast eventual membrane replacement.  
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2 Literature Review 

2.1 Introduction 

Membrane filtration employs a porous semipermeable physical barrier (commonly referred to as 

a membrane) to separate material of interest from a liquid stream (U.S.EPA, 2005). Based on the 

pore size, membranes can be classified into four categories: Microfiltration (MF, pore size ~ 0.1 

µm), Ultrafiltration (UF, pore size ~ 0.01 µm), Nanofiltration (NF, pore size ~ 0.001 µm), and 

Reverse Osmosis (RO, nonporous) (Crittenden et al., 2012). MF and UF are collectively called 

low-pressure membranes, and typically used to remove particulate material, while NF and RO 

are collectively called high-pressure membranes, and typically used to remove soluble materials. 

For surface freshwater treatment, low-pressure membranes are typically used, because the group 

of contaminants that is typically of the greatest concern is particulate material (i.e., protozoa, 

bacteria, and virus) (Crittenden et al., 2012). The present study considers the use of UF 

membranes, hereafter simply referred to as membranes, for the treatment of surface freshwater. 

 

The throughput of membranes (J) is proportional to the driving force (P) for permeation and 

inversely proportional to the product of the total membrane resistance (Rt) to the permeate flow, 

at given time (t), and the viscosity (µ𝑇) of the permeate flow at a given temperature (T) 

(U.S.EPA, 2005).  

𝐽 =  
𝑃

𝑅𝑡 ∗  µ𝑇
 

Equation 1 

The driving force, commonly referred to as trans-membrane pressure (TMP), is the difference in 

pressure between the feed and permeate sides of the membrane. As membranes filter water, 

material, commonly referred to as foulants, is retained on the surface of the membrane or within 

membrane pores. The process of accumulation of foulants is referred to as fouling. Because of 

fouling, the resistance to the permeate flow generally increases with time (U.S.EPA, 2005). The 

total membrane resistance to the permeate flow is the sum of the intrinsic membrane resistance 

(Rm) and resistance due to fouling (Rf). 

𝑅𝑡 = 𝑅
𝑚

+  𝑅𝑓 Equation 2 
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The intrinsic membrane resistance is dependent on the physical properties of membranes. This 

resistance is generally obtained from the membrane manufacturers or clean water filtration tests 

with the virgin (i.e., new) membranes. Resistance due to fouling (Rf) is the variable portion of 

the total membrane resistance, increasing during filtration and decreasing during cleaning as 

foulants are removed from the membrane. Membrane facilities typically monitor the total 

membrane resistance continuously or at the start and end of filtration cycles. For simplicity, 

hereafter, total membrane resistance (Rt) is referred to as resistance (R). Resistance is a 

commonly used metric for analyzing and comparing filtration and cleaning data for membrane 

facilities (Baars et al., 2005).  

 

2.2 Membrane Cleaning  

Physical and chemical cleaning are typically performed to remove retained foulants on/in the 

membranes, and as a consequence, decrease the resistance to permeate flow (Crittenden et al., 

2012). Backwash (BW), which is achieved by reversing the flow direction through membranes, 

is commonly used for physical cleaning. BW is typically performed at a relatively high 

frequency (i.e., every hour); and is usually accompanied by some form of scouring to enhance 

the removal of foulants from a membrane surface. Scouring is commonly achieved by adding air 

at the membrane surface. However, some foulants cannot be removed by means of physical 

cleaning approaches. These foulants are commonly referred to as hydraulically irreversible 

foulants (Smith et al., 2005). 

 

Chemical cleaning, which is achieved by exposing membranes to one or more chemical cleaning 

agents, is commonly used to remove hydraulically irreversible foulants (Regula et al., 2014).  

Two types of chemical cleaning approaches, both achieved by soaking the membranes in 

chemical cleaning agents, are typically used. 

1) Mild chemical cleaning; commonly referred to as Maintenance Cleaning (MC). These are 

typically performed more frequently (e.g., daily to weekly) with a relatively low soak 

duration and low concentration of chemical cleaning agents (Wang et al., 2014). 

2) Extensive chemical cleaning; commonly referred to as Recovery Cleaning (RC). These 

are typically performed less frequently (e.g., monthly) with a relatively high soak 

duration and high concentration of chemical cleaning agents (Wang et al., 2014). 
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Various chemical cleaning agents are commonly used in practice for both MC and RC, including 

bases (e.g., NaOH), oxidants (e.g., HOCl), acids (e.g., HCl), acid chelates (e.g., Citric acid), 

alkaline chelates (e.g., EDTA) and surfactants (Porcelli & Judd, 2010). The type and frequency 

of chemical cleaning agents to use are highly dependent on the nature of the foulants (Porcelli & 

Judd, 2010). Eventually, some of the resistance due to fouling cannot be completely removed 

with chemical cleanings. This resistance is commonly defined as chemically irreversible 

resistance (Wang et al., 2014). A pictorial representation of the evolution of resistance to 

permeate flow in a membrane system is presented in Figure 1. 

 

Figure 1: Resistance evolution in membrane during filtration and cleaning 

Adapted from (Wang et al., 2014) 

The frequencies at which cleanings are performed vary widely from facility to facility. In a 

survey of over 87 full-scale membrane facilities, Adham et al. (2005) reported BW frequencies 

of 0.2 - 5 per hour with a median value of 1.3 per hour, average MC frequency of 1 per week, 

and RC frequencies of 0.02 - 4.2 per month with a median value of 0.3 per month. Due to the 

dynamic nature of fouling, which changes with time, it is essential to estimate the appropriate 

frequency and relevant chemical dose required for BW, MC, and RC (Heo et al., 2022). 

Unfortunately, most full-scale membrane facilities follow manufacturer prescribed protocols for 

cleaning, which do not comprehensively consider the impact of relevant site-specific water 

characteristics or operational conditions (Heo et al., 2022). 

 

2.3 Membrane Ageing  

The long-term increase in chemically irreversible resistance, along with other changes in 

membrane performance and characteristics, is commonly referred to as 'membrane ageing' 
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(Robinson et al., 2016). The two most commonly used approaches to investigate the impacts of 

ageing on membranes are lab-accelerated ageing studies and laboratory characterization of field-

harvested membranes (Robinson & Bérubé, 2020). Few studies have monitored the performance 

change at full-scale membrane facilities over time (Yu et al., 2020). Note that most studies 

focusing on membrane ageing considered resistance as a metric to quantify change in 

performance (Robinson et al., 2016). Robinson & Bérubé (2020) also proposed that resistance 

after extensive chemical cleaning could potentially be used to benchmark membrane ageing. For 

this reason, change in resistance with time (i.e., membrane age) is used in the present study as a 

metric of membrane ageing. 

 

Previous lab-accelerated ageing studies, performed by soaking membranes in a chemical 

cleaning agent for a specified amount of time, suggested that resistance decreases with 

membrane age (Abdullah & Bérubé, 2013; Ren et al., 2021). In contrast, previous lab-accelerated 

ageing studies, performed using cyclic filtration and cleaning, suggested that resistance increases 

with membrane age (Hajibabania et al., 2012; He et al., 2014). Abdullah and Bérubé (2013) 

suggested that as membranes age, they become more hydrophobic, attracting more foulants and 

resulting in a greater rate of increase in resistance. They also reported that the extent of 

resistance reversed during chemical cleaning decreases as membranes age. Ren et al. (2021), on 

the other hand, reported no impact of ageing on the extent of resistance reversed during chemical 

cleaning, and a decrease in the extent of resistance reversed during physical cleaning with 

membrane age.  

 

Results from field-harvested membrane studies are also inconsistent, likely due to the impact of 

site-specific water characteristics and operating conditions on membrane ageing. Robinson & 

Bérubé (2020) reported that resistance and rate of fouling remained unchanged for the initial five 

years of operation (i.e., age). The authors, however, reported a significant increase in resistance 

and rate of fouling after five years of operation. Touffet et al. (2015) reported that resistance 

decreases with membrane age, although they reported an increase in rate of fouling with 

membrane age.  
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In a full-scale membrane performance monitoring study, Yu et al., (2020) reported a progressive 

increase in resistance and rate of fouling over a 7 year time-period. As a result, more frequent 

cleaning was required to maintain a target flux. The authors, however, noted that the results from 

different full-scale facilities might produce different results due to impact of site-specific 

conditions.  

 

Listed below is a summary of the impact of ageing on membrane performance factors reported in 

the literature. 

1) Resistance was reported to either increase (Hajibabania et al., 2012; He et al., 2014) or 

decrease (Abdullah & Bérubé, 2013; Ren et al., 2021). 

2) Rate of fouling was reported to increase (Abdullah & Bérubé, 2013; Touffet et al., 2015;  

Robinson & Bérubé, 2020; Yu et al., 2020).  

3) Extent of resistance reversed during chemical cleaning was reported to either decrease 

(Abdullah & Bérubé, 2013) or remain unchanged (Ren et al., 2021). 

Because lab-scale studies are not representative of full-scale membrane ageing (Filho et al., 

2021), laboratory characterization of field-harvested membranes is time and resource intensive, 

and limited monitoring of ageing at full-scale facilities to date, the long-term performance of 

full-scale membrane facilities is not well understood (Yu et al., 2021).  

 

2.4 Forecasting Membrane Replacement   

In a survey of 106 full-scale membrane facilities treating drinking water, Chang et al. (2022) 

reported that membrane replacement age ranged from 5 to 10+ years; with 37% of the facilities 

replacing their membranes after approximately 7 years of operation (i.e., age) and 13% of the 

facilities replacing their membranes after more than 10 years of operation. Change in 

performance due to ageing was identified to be the primary reason for membrane replacement 

(Prulho et al., 2013). A number of change in performance triggers for replacing membranes have 

been reported; these include the followings. 

• When resistance increase causes substantial flux decline such that the membrane system 

cannot meet the demand  (Fenu et al., 2012); 
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• When warranty, provided by the manufacturers, in terms of maximum chemical dose is 

reached (Cote et al., 2012);  

• When resistance can no longer be decreased using chemical cleaning (De Wilde et al., 

2007); 

• When resistance increase causes substantial increase in operating cost (Fenu et al., 2012); 

• When any of the followings changes substantially: resistance, rate of fouling, breach 

frequency, infrastructure deterioration, and extent of resistance reversed during chemical 

cleaning (Robinson et al., 2016); 

• When progressive increase in resistance creates the need for frequent chemical cleaning 

(Cote et al., 2012);  

• When TMP increase becomes significantly greater than what has historically been 

observed (Woo et al., 2022). 

 

While these triggers might be beneficial for better management of day-to-day operations, they do 

not provide insight to predict when a membrane would have to be replaced. Unfortunately, there 

is no universally accepted change in performance trigger for the replacement of membranes 

(Fenu et al., 2012).  

 

Classical time series forecasting models are considered in the present study to inform membrane 

replacement. These models were selected because they are simple and can be easily interfaced 

with data analysis and control systems commonly available at full-scale membrane facilities. 

Many classical time series forecasting models such as linear forecasting, moving average, 

exponential smoothing, autoregressive integrated moving average (ARIMA) etc. are able to 

make reliable prediction into the future (Hyndman & Athanasopoulos, 2018). Of these classical 

models, exponential smoothing model is very popular due to its inherent simplicity, and ability to 

readily combine it with more sophisticated models (Vandeput, 2021). 

 

A few studies have considered the use of forecasting tools to gain insight into membrane 

replacement age and/or performance. Ayala et al. (2011) performed a linear regression between 

the permeability decline and operating time of field harvested membranes from six full-scale 

membrane bioreactor (MBR) facilities. They utilized over six years of field harvested 
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membranes data and estimated the membrane replacement age of approximately 7 

years. Utilizing data from the previous one year, Teychene et al. (2018) attempted to predict the 

irreversible rate of fouling of the next six months using ARIMA time series forecasting model. 

However, the confidence intervals associated with the ARIMA forecast were very wide, 

suggesting that a large amount of data is required for a reliable forecast. For both studies, the 

forecasting timeline was very short (i.e., 6 months to 1 year). In addition, neither of the studies 

identified the minimum amount of data required to have a reliable forecast of membrane 

replacement; and nor did they propose a framework to effectively forecast membrane 

replacement using historical data from full-scale operation.  

 

To the best knowledge of the author, the use of exponential smoothing model in forecasting 

membrane replacement has not yet been reported. In the present study, both linear and 

exponential smoothing model were used for forecasting membrane replacement. These two 

models are simple and can be easily implemented using a commonly available platform (e.g., 

‘Microsoft Excel’).  

 

Linear model involves fitting a linear regression line through an available dataset to estimate a 

slope and an intercept. The estimated slope and intercept are used to forecast beyond the data 

used for regression. Exponential smoothing model has three different variants - single, double 

and triple exponential smoothing (Vandeput, 2021). In the present study, double exponential 

smoothing (DES) model, otherwise known as Holt’s linear trend, was used. In simple terms, the 

DES model involves estimating a level component, which is the weighted sum of past data, and a 

trend component, which is the weighted sum of the difference between past data. The estimated 

level and trend components are then used to forecast beyond the data used for estimating both 

components (Vandeput, 2021). 

 

2.5 Research Gaps 

The following research gaps were identified from the literature review: 

1) Lab-accelerated ageing studies and laboratory characterization of field-harvested 

membranes can provide insight on membrane ageing mechanisms; however, they are 

either not representative of full-scale performance or time and resource intensive. 
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2) To date limited studies have been undertaken on performance monitoring of full-scale 

membrane facilities using historical data. 

3) No study has considered the use of historical data from multiple full-scale membrane 

facilities to gain insight into membrane ageing.  

4) No study has considered the use of forecasting tools, for forecasting timeline greater than 

1 year, to provide guidance into when membranes should be replaced; and no study has 

identified how much historical data would be required to generate a relevant forecast.  
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3 Objectives of the Study 

The key research objectives of the present study are listed below.  

1) Investigate how performance factors change with membrane age for different facilities by 

analyzing historical data from full-scale membrane facilities. 

2) Develop a framework to forecast membrane replacement age by utilizing historical data 

from full-scale membrane facilities.  
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4 Materials and Methods 

4.1 Full-scale Data Analysis  

4.1.1 Introduction  

Four full-scale membrane facilities treating surface freshwater were considered for the present 

study. The name and location of these facilities are omitted to maintain anonymity. These 

facilities were selected because they used the same type of membranes for treating surface 

freshwater (ZeeWeed 1000, Veolia Water Technologies, Canada). Although these facilities use 

the same type of membranes, the specific membrane chemistry type, the characteristics of the 

raw water, the pretreatment approaches, the operating set points for permeation, as well as 

physical and chemical cleaning protocols, differed. A detailed description of the membrane 

chemistry type and operating protocols used at different facilities is provided in Appendix A. 

 

Time series train-wise historical data from these four full-scale membrane facilities was 

acquired. To generate a manageable dataset, data from three randomly selected trains from each 

facility was analyzed. The type of historical data available for each facility differed; therefore, 

different approaches were used to obtain the required information. Refer to Appendix B for 

details of the acquired data. Note that data analysis was performed using Python programming 

language.  

 

4.1.2 Calculation of Resistance 

a) Facilities 1, 2, and 4 

For facilities 1, 2, and 4, historical temperature and permeability data were available. Resistance 

(R) was calculated using Equation 3.  

𝑅 =  
1

µ𝑇 ∗  𝐵𝑇 
 

Equation 3 

where,  

R = Resistance to permeate flow (m-1)    

𝐵𝑇  = permeability at temperature T (m3.m-2.hr-1.bar-1) 

µ𝑇  = dynamic viscosity of water at temperature T (Pa.s) 
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µ𝑇 in Equation 3 can be calculated from temperature using Equation 4. 

   µ𝑇  =  1.784 – (0.0575 ∗ 𝑇)  + (0.0011 ∗T2) – (10-5∗ 𝑇3)  Equation 4 

where, 

   µ𝑇  = dynamic viscosity of water at temperature T (cP) 

 T = Temperature of water (0C) 

b) Facility 3 

For facility 3, historical permeate flux, TMP, and temperature data were available. Resistance 

(R) was calculated using Equation 5. 

𝑅 =  
𝑇𝑀𝑃

𝐽𝑇 ∗  µ𝑇
 

Equation 5 

where, 

R = Resistance to permeate flow (m-1)    

JT = Flux at temperature T (m3.m-2.hr-1) 

TMP = Trans-membrane pressure at temperature T (Nm-2) 

µ𝑇  = dynamic viscosity of water at temperature T (Pa.s) 

 

4.1.3 Occurrences of BW, MC and RC 

I. BW  

a) Facilities 1 and 3 

For facilities 1 and 3, every minute permeate flow, TMP, and tank water level data were 

available. BW was considered to have occurred when the following three conditions were met 

within 5 minutes. A 5 minute period was selected because all relevant conditions associated with 

a BW occurred within 5 minutes. 

1) A tank drain. 

2) An interruption in permeate flow. 

3) A transition from a negative pressure to a positive pressure in the permeate line.  

 

b) Facilities 2 and 4 

For facilities 2 and 4, a BW generated a distinct data tag, which was used to identify the 

occurrence of a BW. 
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II. MC and RC 

a) Facilities 1 and 3 

For facilities 1 and 3, an MC and RC were considered to have occurred when the following four 

conditions were met within the corresponding reported duration of an MC (approximately 8 – 60 

minutes) and RC (> 100 minutes), respectively.  

1) Two tank drains. 

2) An interruption in permeate flow between the tank drains. 

3) A transition from a negative pressure to a positive pressure in the permeate line. 

4) Chemical soak between the tank drains (depending on the duration of soak length MC 

and RC were distinguished). 

 

For facility 1, the chemical cleaning agents used for an MC and RC were identified from the 

chemical flow data tags during an MC and RC, respectively. While for facility 3, the chemical 

cleaning agent used for an MC and RC were identified from the operator’s log.   

 

b) Facility 2 

For facility 2, an MC and RC generated distinct data tags which were used to identify the 

occurrence of an MC and RC; and the chemical cleaning agents used during an MC and RC, 

respectively. 

 

c) Facility 4 

For facility 4, occurrences of MC were not reported in the operator’s log, nor could they be 

identified from the available data. RC dates and the chemical cleaning agents used were 

identified from the operator’s log. However, the exact time of the RC was not reported. The 

exact time of an RC was identified when the following three conditions were met within the 

reported duration of an RC. 

1) An interruption in permeate flow.  

2) A transition from a negative pressure to a positive pressure in the permeate line. 

3) A high resistance drop (i.e., > 5x1010 m-1, which was the lowest resistance drop on the 

dates of the reported RC). 
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4.1.4 Rate of Change in Resistance 

I. Between BW 

a) Facilities 1 and 3 

For facilities 1 and 3, every minute historical resistance data was available. Typical change in 

resistance between BW is illustrated in Figure 2. 

 

Figure 2: Change in resistance between BW 

Triangular symbols correspond to resistance; circular solid and open symbols correspond to the post 

and pre BW resistance estimated with the intercepts of the linear regression model; the solid lines 

correspond to the linear regression model fitted to the resistance measurements between two 

consecutive BW; dashed lines correspond to the occurrences of BW. 

 

From the resistance data between BW, the parameters of interests were:  

1) Pre and post BW resistance.  

2) Rate of change in resistance between BW.  

 

A linear regression model was applied to every minute resistance data between BW (see Figure 

2). The intercepts at times corresponding to BWn
 and BWn+1 were used as the estimates of pre 

and post BW resistance (RpreBW, RpostBW), respectively, and the slope as an estimate of rate of 

change in resistance between BW.  Note that between 2 successive BW, the permeate flow was 
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periodically interrupted due to the low demand. When this occurred, the analysis was performed 

by excluding the time period when the permeate flow was interrupted. 

 

Also, note that because the permeate flow immediately pre and post BW can be variable for up to 

2 minutes (because of pump starts and stops), data for the first two minutes immediately pre and 

post BW was excluded from the regression analysis. Resistance value that was not within the 

95% prediction interval of the fitted linear regression model was considered to be an outlier and 

was excluded from the analysis. Linear regression was again performed without the excluded 

data. 

 

A change in resistance between BW that could not be accurately modeled using a linear 

regression model was excluded from the analysis. The accuracy of the model was quantified 

using R2 of the linear regression model. The R2 "cutoff" was defined as equivalent to a 90% 

confidence interval of z-values (Equation 6), estimated from the R2 values as described by Fisher 

(1921). In total, approximately 15% of the change in resistance between BW were excluded from 

the analysis.  

𝑍 =  
1

2
 𝑙𝑛(

1 + √𝑅2

1 − √𝑅2
) 

Equation 6 

 

b) Facilities 2 and 4 

For facilities 2 and 4, historical resistance data was only available immediately pre and post BW. 

For this reason, these two measurements were used as the estimates of pre and post BW 

resistance (RpreBW and RpostBW), respectively.  Note that because the permeate flow immediately 

pre and post BW can be variable, the rate of change in resistance between BW was not estimated 

for facilities 2 and 4.  

 

II. Between MC 

The resistance post BW (RpostBW) was used to assess the rate of change in resistance between 

MC. For all facilities, a number of relationships were considered to describe the change in 

RpostBW between MC. However, none could accurately model the change in RpostBW between MC. 
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The accuracy of the model was quantified using R2 of each relationship. Because of the high 

variability in the rate of change in RpostBW between MC, the impact of MC on resistance was not 

further considered. Thus, hereafter, chemical cleaning only refers to RC. 

 

III. Between RC 

a) Facilities 1, 2, and 3 

The resistance post BW (RpostBW) was also used to assess the change in resistance between RC. 

Typical change in RpostBW between RC is illustrated in Figure 3. 

 

Figure 3: Change in post BW resistance between RC 

Circular solid symbols correspond to post BW resistance; unfilled rectangular symbols 

correspond to the pre RC resistance; filled rectangular symbols correspond to the post RC 

resistance; dashed vertical lines correspond to the occurrences of RC; dashed pink lines 

correspond to the mc cycle used for fitting Equation 7 in zone 1; dashed black lines correspond to 

mc cycle not used for fitting Equation 7; curved solid lines correspond to Equation 7 fitted to the 

RpostBW data in zone 1; linear solid lines correspond to the linear regression model fitted to the 

RpostBW data in zone 2. 

 

From the RpostBW data between RC, the parameters of interests were:  

1) Pre and post RC resistance.  

2) Rate of change in RpostBW between RC.  
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These parameters were estimated using a combination non-linear regression (i.e., Equation 7) 

and linear regression. The change in RpostBW between could be characterized by an initial rapid 

increase followed by a slower gradual increase in RpostBW. In Figure 3, this behavior is illustrated 

in zone 1. When the interval between RC was relatively long (approximately 10% of the interval 

between RC), the change in RpostBW was observed to again increase rapidly. In Figure 3, this later 

behavior is illustrated in zone 2.  

  

1) Zone 1: Change in RpostBW, in zone 1, could be modeled using non-linear regression 

relationship presented in Equation 7. 

𝑦 =
𝑎 ∗ 𝑥

1 + 𝑏 ∗ 𝑥
  +  𝑐 ∗ 𝑥 +  𝑑 Equation 7 

 

where, 

   x = volume filtered within each RC cycle/ m2 membrane area   

y = post backwash resistance (m-1) 

a, b, c and d = empirically estimated parameters   

Equation 7 was fitted to the RpostBW data corresponding to the first ith number of MC after an RC; 

and extended to the next RC. The number i was selected to be equal to the minimum number of 

MC below which zone 2 behavior was not observed. Provided that zone 2 behavior was not 

observed, intercepts at times corresponding to RCn and RCn+1
 were extracted as the estimates of 

pre and post RC resistance (RpreRC and RpostRC), respectively, and the rate of change in RpostBW 

between RC was estimated using the coefficients a, b, and c from Equation 7.. 

 

Note that RpostBW having error outside of 2 standard deviations of errors (actual – modeled 

RpostBW) was considered to be an outlier and excluded from the analysis. Non-linear regression 

analysis, using Equation 7, was again performed without the excluded data. 

 

Change in RpostBW between RC (i.e., RCn, RCn+1) that could not be accurately modeled using 

Equation 7 was excluded from the analysis. Because RC is a relatively infrequent cleaning 

approach compared to BW, the change in RpostBW between RC for which Equation 7 could not be 

accurately fitted were excluded from the analysis. This was identified by the Python 
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'scipy.curve_fit()' function returning R2 values that were not greater than zero. Note that less than 

5% of the change in RpostBW between RC were excluded from the analysis.  

 

2)  Zone 2: Start of zone 2 was identified when the actual RpostBW remained consistently below or 

above Equation 7 fitted to the data, for the duration of at least two consecutive MC. In zone 2, 

the change in RpostBW could be described using a linear regression model. Thus, when zone 2 

behavior occurred, the change in RpostBW between RC was modelled with Equation 7 and a linear 

regression model as illustrated in Figure 3.  

 

The intercepts at times corresponding to RCn
 and RCn+1 were extracted as the estimates of pre 

and post RC resistance (RpreRC, RpostRC), from zone 2 and zone 1 respectively, and the rate of 

change in RpostBW between RC (RCn, RCn+1) was quantified using the coefficients a, b, and c 

from Equation 7 (estimated from zone 1) and the slope of linear regression model (estimated 

from zone 2) (see Figure 3).  

 

Note that for zone 2, RpostBW values that were not within the 95% prediction interval of the fitted 

linear regression model was considered to be an outlier and were excluded from the analysis. 

Linear regression was again performed without the excluded data. 

 

Change in RpostBW in zone 2 that could not be accurately modeled using a linear regression was 

excluded from the analysis.  Similar to zone 1, this was identified by the Python 'linregress()' 

function returning R2 values that were not greater than zero. Note that no change in RpostBW in 

zone 2 were excluded from the analysis for this.  

 

b) Facility 4 

For facility 4, zone 2 could not be identified because the occurrence of MC could not be 

identified. Change in RpostBW between RC was modeled using Equation 7. Estimation of change 

in RpostBW between RC, and extraction of RpreRC and RpostRC were performed according to the 

discussion presented for zone 1 above. Note that zone 2 behavior was not observed to occur for 

facility 4.  
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4.1.5 Quantification of Performance Factors 

Of the performance factors that have been reported to change with membrane age (see section 

2.3), resistance, rate of fouling, and extent of resistance reversed during cleaning events were 

considered in the present study. For resistance both hydraulically irreversible resistance 

following BW and clean membrane resistance following RC were considered. For rate of 

fouling, rate of change in resistance between BW, defined as total fouling rate, was considered. 

For the extent of resistance reversed during cleaning events, resistance reversed during both BW, 

and RC were considered. A summary of performance factors examined for the present study is 

presented in Table 1.  

Table 1: Performace factors examined from full-sale data 

Performance factors  Performance factors quantified based on* 

Hydraulically irreversible resistance  Post BW resistance (RpostBW) 

Clean membrane resistance1  Post RC resistance (RpostRC)   

Total fouling rate  Slope of the linear regression model fitted to the 

resistance (R) data between BW 

Extent of resistance reversed during 

BW 

Difference between the resistance pre and post BW 

(RpreBW – RpostBW) 

Extent of resistance reversed during 

RC 

Difference between the resistance pre and post RC 

(RpreRC – RpostRC) 

* see section 4.1.4 for the estimation of each of these parameters. 

Note that for all performance factors, data outside of 2 standard deviations of the raw data was 

considered as outlier and excluded from the analysis. For train 2 at facility 3, at the end of 2017, 

an abrupt drop in resistance was observed, without any occurrence of cleaning event during that 

period. For this reason, any data before 2018 for that train was excluded from the analysis. For 

facility 1, at startup, the initial data had higher variability. For this reason, for all trains at facility 

1, data corresponding to cumulative permeate volume less than 50 m3/m2 was excluded from the 

analysis.  

 
1 In the present study, clean membrane refers to the membrane after RC, even though membranes might not be fully 

cleaned after an RC due to the accumulation of chemically irreversible resistance.   
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4.2 Forecasting Framework 

4.2.1 Introduction 

Forecasting was performed using clean membrane resistance data (RpostRC). Two time series 

forecasting models were considered:  linear, and DES. For both models, data was divided into 

two sets – training data and test data. The percentage of all available data considered for training 

ranged from 5% to 60% at 5% increments to determine the minimum amount of data required for 

a reliable forecast. The root mean square error (RMSE) between the forecasted RpostRC and the 

actual RpostRC, for the test data, was used as a metric of accuracy of the forecast.   

 

Membranes were assumed to have to be replaced when forecasted RpostRC was increased to a 

value corresponding to a 70% decrease in the permeability of a virgin (i.e., new) membrane.  A 

70% reduction in permeability is currently being used by managers of facility 4 as a trigger for 

membrane replacement. Note that as the initial few years of data for train 2 at facility 3 was 

excluded from the analysis (see section 4.1.5), forecasting was not performed for that train. Also, 

for facility 1, initial RpostRC data corresponding to cumulative permeate volume less than 50 

m3/m2 was excluded from the forecasting (see section 4.1.5).  Note that forecasting was 

performed using Microsoft Excel-2019. 

 

4.2.2 Data Preprocessing for Forecasting 

At full-scale facilities, RC is not performed exactly at the same time interval. However, for the 

DES model, data (both training data and test data) is required to have equal time interval 

(Wright, 1986). Also, the DES model is more effective without any significant outliers in the 

training data (Ahmad & Ahmad, 2013). For these reasons, RpostRC data needed preprocessing 

before forecasting could be performed. To have consistent data, for both models, data was 

preprocessed in the same manner using the following two steps: 

1. Equalizing the temporal spacing of the data: The training and test data was modified 

as needed such that the time interval between consecutive data was constant. This was 

achieved by assigning each RpostRC to the first day of the respective month so that the time 

interval between each RpostRC was one month. If a certain month had no RpostRC, an 

equivalent value was interpolated, assuming linear regression through the training and 
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test data. If a certain month had more than one RpostRC, the average of those RpostRC was 

used and assigned at the first day of the respective month. 

2. Replacing outliers in the training data: Outliers in the training data were identified and 

replaced by an interpolated value, assuming linear regression through the training data. 

Outliers were identified as the data lying outside of the 95% prediction interval of that 

regression line. Note that outliers were replaced only in the training data as the model 

was trained in the training data only.  

  

4.2.3 Forecasting Using Linear Model 

For the linear model, linear regression was performed using the training data following the 

procedure outlined in Berthouex & Brown (2002) to estimate relevant summative time series 

parameters (i.e., slope and intercept). For the linear forecast, the linear regression performed in 

the training data was simply extrapolated to the test data and beyond using the estimated slope 

and intercept.  

 

The prediction interval for the linear model was constructed using Equation 8 to quantify the 

uncertainties associated with the forecast, as outlined in Berthouex & Brown (2002). 

𝑌𝑡  ± 𝑡𝑐𝑟𝑖𝑡 ∗ 𝑠 ∗ √1 +
1

𝑛
+

(𝑥𝑡 − 𝑥)2

∑ (𝑥𝑖 − 𝑥)2𝑛
𝑖=0

   Equation 8 

where, 

Yt = linear forecasted RpostRC at time t  

𝑡𝑐𝑟𝑖𝑡 = critical t value corresponding to 95% prediction interval 

s = variance of the training data  

n = number of observations in the training data  

𝑥𝑡 = membrane age at time t 

𝑥 = mean membrane age of the training data  
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4.2.4 Forecasting Using DES Model 

For the DES model, the procedure outlined in (Vandeput, 2021) was used. Briefly, each training 

data is associated with a level (Lt) and a trend (bt) component. These components were estimated 

using Equation 9 and Equation 10, respectively.  

𝐿𝑡 =  𝛼 ∗ 𝑦𝑡   +  (1 − 𝛼) ∗ (𝐿𝑡−1  +  𝑏𝑡−1) Equation 9 

𝑏𝑡 =  𝛽 ∗ (𝐿𝑡 −  𝐿𝑡−1)   + (1 − 𝛽) ∗ (𝑏𝑡−1) Equation 10 

where,  

Lt = estimated level component at time t  

Lt-1 = estimated level component at time t-1  

bt = estimated trend component at time t  

bt-1 = estimated trend component at time t-1  

α & β = smoothing parameters with a range of 0 ≤ α & β ≤1 

yt = RpostRC at time t 

Level (Lt) and trend (bt) component for the first training data were initialized as the first RpostRC 

and the difference between first two RpostRC, respectively. Note that the trend component can be 

both positive and negative in Equation 10. The unknowns in Equation 9 & Equation 10 are the 

smoothing parameters (i.e., α & β), which were estimated by minimizing the RMSE between the 

actual RpostRC and forecasted RpostRC using the “Solver” function in Microsoft Excel-2019, in the 

training data. The Forecasted RpostRC for the training data was obtained using Equation 11. 

𝐹𝑡  = 𝐿𝑡  + 𝑏𝑡   Equation 11 

where,  

Ft = forecasted RpostRC at time t  

Lt = estimated level component at time t  

bt = estimated trend component at time t  

After α & β were estimated (i.e., model was trained), the forecast could be extrapolated into the 

test data and beyond using Equation 12.  

𝐹𝑡+ℎ|𝑡 =  𝐿𝑙𝑎𝑠𝑡  + ℎ ∗ 𝑏𝑎𝑣𝑒𝑟𝑎𝑔𝑒           Equation 12 
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where, 

h = h-step ahead forecast (i.e., 1, 2, 3…….)  

                             𝐹𝑡+ℎ|𝑡 = h step ahead forecasted RpostRC  

Llast = estimated level component of the last training data 

baverage = average of all positive trend component of the training data2 

 

The prediction interval for the DES model was constructed using Equation 13 to quantify the 

uncertainties associated with the forecast, as outlined in Hyndman & Athanasopoulos (2018). 

    𝐹𝑡+ℎ|𝑡  ± 𝑐 ∗ 𝜎ℎ    Equation 13 

where, 

c = 1.96 for 95% prediction interval     

𝜎ℎ = standard deviation of the forecast  

𝜎ℎ was calculated using Equation 14. 

𝜎ℎ
2 = 𝜎2[1 + (ℎ − 1) {𝛼2 +  𝛼𝛽ℎ +

𝛽2ℎ(2ℎ − 1)

6
}]     

Equation 14 

where, 

𝜎2 = variance of the training data 

 

 

 

 

 

 

 

 
2 If there was no positive trend component in the training data, the absolute average trend component of all training 

data was used for forecasting. 
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5 Results and Discussion  

5.1 Change in Performance Factors 

For all the performance factors considered in the present study (see section 4.1.5), the followings 

are presented: 

a) typical raw time series data and typical average time series data; and 

b) the rate of change of the estimated time series data for 3 trains at all facilities.  

 

Raw time series data provides qualitative insight into the variability of the time series data; while 

estimated time series data, obtained by fitting a linear regression model to the raw data, provides 

qualitative insight into the overall trend of the time series data. The rate of change of the 

estimated time series data, obtained from the slope of the linear regression model fitted to the 

raw data, provides quantitative information on the overall trend of the time series data. 

Considering results for all facilities in parallel provides insight into the impact of site-specific 

water characteristics and operational conditions, while considering the results from 3 trains at 

each facility provides insight into the variability in time series data within a particular facility. 

Also, for each train at each facility, the coefficient of determination (R2) provides a measure of 

how representative the estimated time series data is of the raw time series data.  

 

When relevant, typical performance data is presented. For all performance factors considered, 

the results are presented with respect to both cumulative filtered and membrane age.  

 

5.1.1 Hydraulically Irreversible Resistance 

Typical hydraulically irreversible resistance, quantified based on the post the BW resistance, is 

presented in Figure 4. 
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(a)                                                                           (b) 

           

 

Figure 4: Typical hydraulically irreversible resistance  

(a) with respect to cumulative volume filtered; (b) with respect to membrane age. Solid line 

corresponds to linear regression model fitted to the raw data. 95% confidence interval of the linear 

regression model is included but cannot be viewed because it overlaps with the solid line. Results 

presented for train 1 at facility 3.  

Overall, the hydraulically irreversible resistance increases with respect to both cumulative 

volume filtered and membrane age. The abrupt changes in raw hydraulically irreversible 

resistance data coincide with the occurrences of RC; suggesting that hydraulically irreversible 

resistance is impacted by the operational conditions of the facilities. The rate of change of the 

estimated hydraulically irreversible resistance, for three trains at each facility, is presented in 

Figure 5. Details relating to the fit and slope of the linear regression model to the raw data is 

presented in Appendix C Table C1. 
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(a)                                                                             (b) 

            
 

Figure 5: Rate of change of estimated hydraulically irreversible resistance  

(a) with respect to cumulative volume filtered; (b) with respect to membrane age. Note that the scale 

of y axis in both figures are different as the magnitude of change with respect to cumulative volume 

filtered is different from that of membrane age. Error bar indicates standard error of the estimated 

slope. Results presented for 3 randomly selected trains at each facility. 

For facilities 2, 3, and 4, the rate of change of the estimated hydraulically irreversible resistance 

is significantly greater than 0 (zero) (p < 0.05), indicating substantive membrane ageing, based 

on this metric, at these facilities. For facility 1, although the rate of change is significantly 

greater than 0 (zero) (p < 0.05) for trains 2 and 3, the magnitudes of the rate of change are 

relatively low; while for train 1, the rate of change is negative. The relatively low and/or negative 

rate of change of the estimated hydraulically irreversible resistance suggests limited membrane 

ageing, based on this metric, at facility 1.   

 

The coefficient of determination (R2) was substantively different for all facilities. The coefficient 

of determination was consistently greater than 0.7 for facility 4, approximately ranged from 0.2 – 

0.7 for facility 3, approximately 0.4 for facility 2, and less than 0.1 for facility 1. A coefficient of 

determination of greater than 0.7, range from 0.2 – 0.7, and less than 0.1, indicate that the 

estimated hydraulically irreversible resistance represents the raw hydraulically irreversible 

resistance data very well, moderately well, and poorly, respectively. Note that when the rate of 

change is low, the coefficient of determination is inherently low (Miaou et al., 1996). 
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In summary, the hydraulically irreversible resistance substantively increased with membrane age 

for 3 of the 4 facilities. For these facilities, the rate of change of the estimated hydraulically 

irreversible resistance could generally be approximated with a linear relationship moderately 

well to very well. For one of the facilities (i.e., facility 1), the hydraulically irreversible 

resistance was not observed to substantively increase with membrane age. 

 

5.1.2 Clean Membrane Resistance 

Typical clean membrane resistance, quantified based on the post RC resistance, is presented in  

Figure 6.  

(a)                                                                            (b) 

          
 

Figure 6: Typical clean membrane resistance 

(a) with respect to cumulative volume filtered; (b) with respect to membrane age. Solid line 

corresponds to linear regression model fitted to the raw data. 95% confidence interval of the linear 

regression model is indicated by the light black shade. Results presented for train 1 at facility 3.    

Overall, the clean membrane resistance increases with respect to both cumulative volume filtered 

and membrane age. Unlike hydraulically irreversible resistance (see section 5.1.1), there is no 

abrupt change in raw clean membrane resistance data; suggesting that the clean membrane 

resistance is relatively unimpacted by the operational conditions of the facilities. The rate of 

change of the estimated clean membrane resistance, for three trains at each facility, is presented 

in Figure 7. Details relating to the fit and slope of the linear regression model to the raw data is 

presented in Appendix C Table C2. 



29 

 

                                  (a)                                                                                 (b) 

           
 

Figure 7: Rate of change of estimated clean membrane resistance 

(a) with respect to cumulative volume filtered; (b) with respect to membrane age. Note that the scale 

of y axis in both figures are different as the magnitude of change with respect to cumulative volume 

filtered is different from that of membrane age. Error bar indicates standard error of the estimated 

slope. Results presented for 3 randomly selected trains at each facility. 

For facilities 2, 3, and 4, the rate of change of the estimated clean membrane resistance is 

significantly greater than 0 (zero) (p < 0.05), indicating substantive membrane ageing, based on 

this metric, at these facilities. For facility 1, the rate change of the estimated clean membrane 

resistance is not significantly greater than 0 (zero) (p > 0.05) and the magnitudes of the rate of 

change are relatively low. The relatively low and insignificant rate of change of the estimated 

clean membrane resistance suggests limited membrane ageing, based on this metric, at facility 1.  

 

The coefficient of determination (R2) was substantively different for all facilities. The coefficient 

was consistently greater than 0.7 for facility 4, approximately ranged from 0.2 – 0.7 for facility 

3, approximately 0.4 for facility 2, and less than 0.1 for facility 1. A coefficient of determination 

of greater than 0.7, range from 0.2 – 0.7, and less than 0.1 indicate that the estimated clean 

membrane resistance represents the raw clean membrane resistance data very well, moderately 

well, and poorly, respectively. Note that when the rate of change is low, the coefficient of 

determination is inherently low (Miaou et al., 1996). 
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In summary, the clean membrane resistance substantively increased with membrane age for 3 of 

the 4 facilities. For these facilities, the rate of change of the estimated clean membrane resistance 

could generally be approximated with a linear relationship moderately well to very well. For one 

of the facilities (i.e., facility 1), the clean membrane resistance was not observed to substantively 

increase with membrane age.  

 

5.1.3 Total Fouling Rate 

Typical total fouling rate, quantified based on the slope of the linear regression model fitted to 

the resistance data between BW, is presented in Figure 8. 

(a)                                                                         (b)              

       
 

Figure 8: Typical total fouling rate  

(a) with respect to cumulative volume filtered; (b) with respect to membrane age. Solid line 

corresponds to linear regression model fitted to the raw data. 95% confidence interval of the linear 

regression model is included but cannot be viewed because it overlaps with the solid line. Results 

presented for train 1 at facility 3.  

Overall, the total fouling rate increases with respect to both cumulative volume filtered and 

membrane age. Raw total fouling rate data is highly scattered; suggesting that the total fouling 

rate is impacted by the operational conditions of the facilities. The rate of change of the 

estimated total fouling rate, for three trains at facilities 1 and 3, is presented in Figure 9. Note 

that for facilities 2 and 4, total fouling rate could not be estimated (see section 4.1.4). Details 

relating to the fit and slope of the linear regression model to the raw data is presented in 

Appendix C Table C3.  
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(a)                                                                           (b) 

            
 

Figure 9:  Rate of change of estimated total fouling rate  

(a) with respect to cumulative volume filtered; (b) with respect to membrane age. Note that the scale 

of y axis in both figures are different as the magnitude of change with respect to cumulative volume 

filtered is different from that of membrane age. Error bar indicates standard error of the estimated 

slope. Results presented for 3 randomly selected trains at facilities 1 and 3. 

For facilities 1 and 3, the rate of change of the estimated total fouling rate is significantly greater 

than 0 (zero) (p < 0.05), indicating substantive membrane ageing, based on this metric, at these 

facilities. For facility 1, on average, the magnitude of the rate of change is relatively lower than 

for facility 3. The relatively lower increase in the rate of change of the estimated total fouling 

rate suggests relatively lower membrane ageing, based on this metric, at facility 1.  

 

The coefficient of determination (R2) was approximately similar for both facilities. The 

coefficient of determination was approximately 0.1 for both facilities. A coefficient of 

determination of 0.1 indicates that the estimated total fouling rate represents the raw total fouling 

rate data poorly. Note that when the rate of change is low, the coefficient of determination is 

inherently low (Miaou et al., 1996). 

 

In summary, the total fouling rate increased substantively with membrane age for facilities 1 and 

3. For both facilities, the rate of change of the estimated total fouling rate could generally be 

approximated with a linear relationship poorly. For facilities 2 and 4, total fouling rate could not 

be quantified (see section 4.1.4). 
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5.1.4 Extent of Resistance Reversed during BW 

Typical extent of resistance reversed during BW, quantified based on the difference between 

resistance pre and post BW (RpreBW – RpostBW), is presented in Figure 10. Note that the extent of 

resistance reversed during BW was normalized with respect to the volume of permeate filtered 

before each BW; to account for the fact that the extent of resistance incurred between BW is 

expected to be proportional to the volume of permeate filtered. 

(a)                                                                               (b)        

             
 

Figure 10: Typical extent of resistance reversed during BW 

(a) with respect to cumulative volume filtered; (b) with respect to membrane age. Solid line 

corresponds to linear regression model fitted to the raw data. 95% confidence interval of the linear 

regression model is included but cannot be viewed because it overlaps with the solid line. Results 

presented for train 1 at facility 3. Note that the extent of resistance reversed during BW was 

normalized with respect to volume of permeate filtered before each BW. 

Overall, the extent of resistance reversed during BW increases with respect to both cumulative 

volume filtered and membrane age. Similar to the total fouling rate (see section 5.1.3), raw 

extent of resistance reversed during BW data is highly scattered; suggesting that the extent of 

resistance reversed during BW is also impacted by the operational conditions of the facilities. 

The rate of change of the estimated extent of resistance reversed during BW, for three trains at 

each facility, is presented in Figure 11. Details relating to the fit and slope of the linear 

regression model to the raw data is presented Appendix C Table C4. 
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(a)                                                                           (b)               

         
 

Figure 11: Rate of change of estimated extent of resistance reversed during BW  

(a) with respect to cumulative volume filtered; (b) with respect to membrane age. Note that the scale 

of y axis in both figures are different as the magnitude of change with respect to cumulative volume 

filtered is different from that of age. Error bar indicates standard error of the estimated slope. Results 

presented for 3 randomly selected trains at each facility. 

For facility 4, the rate of change of the estimated extent of resistance reversed during BW is 

significantly greater than 0 (zero) (p < 0.05), indicating substantive membrane ageing, based on 

this metric, at this facility. For facilities 1, 2, and 3, although the rate of change of the estimated 

extent of resistance reversed during BW is significantly greater than 0 (zero) (p < 0.05) (except 

train 3 at facility 2), the magnitudes of the rate of change are relatively lower than for facility 4.  

For train 3 at facility 2, the rate of change is relatively low and negative, and associated with 

relatively high error. The relatively lower increase in the extent of resistance reversed during BW 

suggests relatively lower membrane ageing, based on this metric, at facilities 1, 2 and 3 than that 

of at facility 4.   

 

The coefficient of determination (R2) was substantively different for all facilities. The coefficient 

of determination ranged from 0.2 – 0.7 for facility 4, approximately 0.1 for facilities 1 and 3, and 

consistently less than 0.1 for facility 2. A coefficient of determination of 0.2 – 0.7, approximately 

0.1 to less than 0.1 indicate that the estimated extent of resistance reversed during BW represents 

the raw extent of resistance reversed during BW data moderately well, and poorly, respectively. 
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Note that when the rate of change is low, the coefficient of determination is inherently low 

(Miaou et al., 1996). 

 

In summary, the extent of resistance reversed during BW increased with membrane age for all 

four facilities. For these facilities, the rate of change of the estimated extent of resistance 

reversed during BW could generally be approximated with a linear relationship poor to 

moderately well. 

 

5.1.5 Extent of Resistance Reversed during RC 

Typical extent of resistance reversed during RC, quantified based on the difference between 

resistance pre and post RC (RpreRC – RpostRC), is presented in Figure 12. 

(a)                                                                             (b)           

         
 

 

Figure 12:  Typical extent of resistance reversed during RC 

(a) with respect to cumulative volume filtered; (b) with respect to membrane age. Solid line 

corresponds to linear regression model fitted to the raw data. 95% confidence interval of the linear 

regression model is indicated by the light black shade. Results presented for train 1 at facility 3.    

Overall, the extent of resistance reversed during RC does not increase with respect to both 

cumulative volume filtered and membrane age. Similar to clean membrane resistance (see 

section 5.1.2), there is no abrupt change in raw extent of resistance reversed during RC data; 

suggesting that the extent of resistance reversed during RC is relatively unimpacted by the 

operational conditions of the facilities. The rate of change of the estimated extent of resistance 
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reversed during RC, for three trains at each facility, is presented in Figure 13. Details relating to 

the fit and slope of the linear regression model to the raw data is presented in Appendix C Table 

C5.  

(a)                                                                                (b)               

           
 

Figure 13: Rate of change of estimated extent of resistance reversed during RC 

(a) with respect to cumulative volume filtered; (b) with respect to membrane age. Note that the scale 

of y axis in both figures are different as the magnitude of change with respect to cumulative volume 

filtered is different from that of age. Error bar indicates standard error of the estimated slope. Results 

presented for 3 randomly selected trains at each facility. 

For facilities 1, 2, and 3, the rate change of the estimated extent of resistance reversed during RC 

is not significantly greater than 0 (zero) (p > 0.05) (except train 3 at facility 3). For train 3 at 

facility 3, the rate of change is significantly greater than zero 0 (zero) (p < 0.05). The 

insignificant and relatively inconsistent rate of change of the estimated extent of resistance 

reversed during RC suggests limited membrane ageing, based on this metric, at facilities 1, 2, 

and 3. For facility 4, the rate of change is significantly greater than 0 (zero) (p < 0.05), indicating 

membrane ageing, based on this metric, at this facility. 

 

The coefficient of determination (R2) was different for different facilities. The coefficient of 

determination (R2) was approximately 0.1 for facilities 3 and 4, and less than 0.1 for facilities 1 

and 2. A coefficient of determination of approximately 0.1 to less than 0.1 indicates that the 

estimated extent of resistance reversed during RC represents the raw extent of resistance 
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reversed during RC data poorly. Note that when the rate of change is low, the coefficient of 

determination is inherently low (Miaou et al., 1996). 

 

In summary, the extent of resistance reversed during RC did not increase with membrane age for 

3 of the 4 facilities. For these facilities, the rate of change of the estimated extent of resistance 

reversed during RC could generally be approximated with a linear relationship poorly. For one of 

the facilities (i.e., facility 4), the extent of resistance reversed during RC was observed to 

increase with membrane age.    

 

5.1.6 Summary of Change in Performance Factors  

Of the performance factors considered for the present study, all except the extent of resistance 

reversed during RC generally increased with membrane age. A summary of the change in 

performance factors with membrane age is presented in Table 2. 

Table 2: Change in performance factors with membrane age 

Performance factors  
Increase with 

age (yes/no) 

Extent to which the estimated 

data represents raw data? 

Hydraulically irreversible resistance Yes Moderate to very well 

Clean membrane resistance Yes Moderate to very well 

Total fouling rate Yes Poor 

Extent of resistance reversed during BW Yes Poor to moderate 

Extent of resistance reversed during RC No Poor 
 

Of these performance factors, the clean membrane resistance (i.e., post RC resistance) was 

selected as the most suitable metric for monitoring and forecasting full-scale membrane 

performance based on the following outcomes:  

• Unlike other performance factors, raw clean membrane resistance data did not have any 

abrupt changes suggesting that it is relatively independent of the operational conditions of 

the facilities;  

• A substantive increase in clean membrane resistance, with respect to membrane age, was 

generally observed at the different facilities; and 
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• The rate of change of the estimated clean membrane resistance could generally be 

approximated with a linear relationship moderately well to very well.  

 

Note that the clean membrane resistance was also previously suggested as the benchmark metric 

for monitoring membrane ageing (Robinson & Bérubé, 2020); and used by managers of facility 4 

to inform membrane replacement.   

 

5.2 Forecasting Membrane Performance 

5.2.1 Minimum Data Required for Reliable Forecasting 

Typical forecasting results are presented in Figure 14. 

 
 

Figure 14: Typical forecasting results 

Results presented for 20% of the total data used for training for train 3 at facility 3. 

The error associated with the forecasting was quantified using the RMSE between the forecasted 

clean membrane resistance and actual clean membrane resistance for the test data. The RMSE 

between the forecasted and actual clean membrane resistance for each facility, when considering 

a range of fractions of the total data used for training, is presented in Figure 15. Note that 

forecasting was not performed for train 2 at facility 3 because of the exclusion of initial few 

years of data (see section 4.2.1). 
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                                 (a)                                                                       (b) 

                                 

                                   (c)                                                                         (d) 

            

 

Figure 15: RMSE of the test data between forecasted and actual clean membrane resistance. 

(a) Facility 1; (b) Facility 2; (c) Facility 3; (d) Facility 4. Note that equivalent years of data on the x 

axis is different for different facilities due to the different data range reported from each facility.    

The overall trends in the RMSE between the forecasted and actual clean membrane resistance, 

with respect to the fraction of the total data used for training, differed between different facilities 

and different trains at each facility. However, for all facilities and trains, the RMSE for both 

models was lower when 20% or more of the total data was used for training. 20% of total data 

corresponds approximately to the initial 1.5 years of the total data. For this reason, the initial 1.5 

years of the total data was selected as the minimum to have a reliable forecast. Note that as the 

fraction of total data used for training increases, the RMSE of both models decreases and tends 

to converge.  
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5.2.2 Choosing between Linear and DES Forecasting Model 

The mean RMSE of both models, for each train at each facility, was estimated by averaging the 

RMSE of the test data; associated with 20% to 60% of the total data used for training at 5% 

increment. Pairwise comparison was used to assess if the mean RMSE of both models differed, 

following the procedure in Appendix D. The estimated mean RMSE, and the outcomes of the 

comparison are summarized in Table 3. 

Table 3: Mean RMSE of the linear and the DES model comparison 

Facility/train 
Mean RMSE for forecasting model (m-1) Different 

(yes/no) Linear DES 

Facility 1/train 1 1.11e+11 4.06e+11 yes 

Facility 1/train 3 1.78e+11 6.97e+11 yes 

Facility 1/train 4 1.47e+11 9.76e+11 yes 

Facility 2/train 1 8.53e+11 6.5e+11 no 

Facility 2/train 2 6.53e+11 6.61e+11 no 

Facility 2/train 3 5.76e+11 7.97e+11 yes 

Facility 3/train 1 2.99e+11 4.17e+11 no 

Facility 3/train 2 Not considered  Not considered - 

Facility 3/train 3 4.64e+11 4.28e+11 no 

Facility 4/train 61 2.80e+11 1.53e+11 yes 

Facility 4/train 64 4.27e+11 2.42e+11 yes 

Facility 4/train 75 2.45e+11 4.26e+11 yes 
 

(note: the lowest mean RMSE for each train is italicized) 

For facility 1, on average, the linear model provides a more accurate forecast. Recall from 

section 5.1.2 that facility 1 had no substantive increase in clean membrane resistance (i.e., 

limited membrane ageing). For facility 4, on average, the DES model provides a more accurate 

forecast. Recall from section 5.1.2 that facility 4 had a substantive increase in clean membrane 

resistance (i.e., substantive membrane ageing). For facilities 2 and 3, on average, both the linear 

and the DES model provide forecasts with similar accuracies. Recall from section 5.1.2 that 

facilities 2 and 3 also had a substantive increase in clean membrane resistance (i.e., substantive 

membrane ageing).  
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The above results suggest the following:  

1. Facilities for which a substantive increase in clean membrane resistance is observed (i.e., 

substantive membrane ageing), the DES model provides a better or an equivalent forecast 

of the clean membrane resistance than the linear model.  

2. However, facilities for which no substantive increase in clean membrane resistance is 

observed (i.e., limited membrane ageing), the linear model provides a better forecast of 

the clean membrane resistance than the DES model.  

 

5.2.3 Forecasting Membrane Replacement 

The resistance of a virgin (i.e., new) membrane was estimated based on the measured resistance 

when original or replacement modules were initially operated. The lowest average measured 

resistance (for all facilities) was approximately 1x1012 m-1 (lowest value ranged from 8x1011 to 

1.4x1012 m-1), which was considered as the virgin membrane resistance. A 70% reduction in 

permeability was selected as the trigger for membrane replacement (see section 4.2.1). A 70% 

reduction in permeability corresponds to a 3.3 fold increase in resistance to a value of 3.3x1012 

m-1. The forecast for the different facilities was extrapolated until the forecasted resistance was 

equal to 3.3x1012 m-1. For facility 1, the linear model was used and for facilities 2, 3, and 4, the 

DES model was used for forecasting (see section 5.2.2).  The results for the forecasting, for one 

typical train at each facility, are presented in Figure 16.     
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(a) 

 

 (b)  

 

Figure 16: Forecasting membrane replacement  

(a) Facility 1; (b) Facility 2; (c) Facility 3; (d) Facility 4. The horizontal dotted line corresponds 

to a reduction in permeability of 70% compared to that of a virgin membrane and the vertical 

dotted line corresponds to the membrane operational age when a 70% reduction in permeability is 

achieved. Forecasting results are based on 20% of the total data being used for training. Results 

presented for trains 3, 2, 3, and 61 at facilities 1, 2, 3, and 4 respectively. 
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(c) 

 

    (d) 

 
 

Figure 16: Forecasting membrane replacement (continued) 

(a) Facility 1; (b) Facility 2; (c) Facility 3; (d) Facility 4. The horizontal dotted line corresponds 

to a reduction in permeability of 70% compared to that of a virgin membrane and the vertical 

dotted line corresponds to the membrane operational age when a 70% reduction in permeability is 

achieved. Forecasting results are based on 20% of the total data being used for training. Results 

presented for trains 3, 2, 3, and 61 at facilities 1, 2, 3, and 4 respectively. 
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For train 3 at facility 1, the linear model forecasts a replacement age of 54 (forecast interval from 

23 to infinite) years. Note that in Figure 16a, the replacement age range is beyond the boundary 

of both axes and cannot be viewed. For train 2 at facility 2, train 3 at facility 3, and train 61 at 

facility 4, the DES model suggests a replacement age of 9 (forecast interval from 5 to infinite), 8 

(forecast interval from 6 to infinite), and 12 (forecast interval from 7 to infinite) years, 

respectively (see Figure 16b – d). Note that for all trains at all facilities, the upper forecast 

interval was consistently infinite. Estimated replacement age, for all trains at each facility, are 

listed in Table 4. 

Table 4: Membrane replacement age 

Facility Train 
Forecasting 

model 

Replacement age per 

train (years) 

Average 

replacement age per 

facility (years) 

Facility 1  

Train 1 Linear Could not be determined* 

54 (23 – infinite) Train 3 Linear 54 (23 – infinite) 

Train 4 Linear Could not be determined* 

Facility 2  

  

Train 1 DES 18 (13 – infinite) 

11 (4 – infinite) Train 2 DES 9 (5 – infinite) 

Train 3 DES 7 (4 – infinite) 

Facility 3  

Train 1 DES 11 (6 – infinite) 

9 (6 – infinite) Train 2 Not considered  Not considered 

Train 3 DES 8 (6 – infinite) 

Facility 4  

Train 61 DES 12 (7 – infinite) 

11 (5 – infinite) Train 64 DES 13 (6 – infinite) 

Train 75 DES 8 (5 – infinite) 

        

*Infinite replacement age was forecasted. Note that all the values are rounded down to the nearest 

integer to provide a conservative forecast of the replacement age.  

For facilities 2, 3 and 4 (i.e., facilities with substantive membrane ageing), the forecast predicts 

average replacement ages of 9 to 11 years, which are consistent with the typical membrane 

replacement age (Chang et al., 2022). Note that facility 3, is currently replacing its membranes 
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after approximately 9 years of operation. Based on the data from the initial 1.5 years of operation 

(i.e., equivalent to the initial 20% of the total data), the forecasting model would have been able 

to ‘predict’ membrane replacement at 9 years of operation. For facility 1, the forecast predicts 

that the membranes should be replaced at approximately 54 years of operation. This timeline is 

much greater than the typical range. For this facility, the decline in other performance factors 

that are not linked to the clean membrane resistance (e.g., such as fiber breakages), are likely to 

govern membrane replacement age. It should be noted that the long timeline to replacement (i.e., 

54 years) indicates that the performance of facility 1, in terms of clean membrane replacement, is 

very good.   
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6 Conclusions 

From the present study, followings can be concluded: 

1) Of the performance factors examined, the hydraulically irreversible resistance, the clean 

membrane resistance, the total fouling rate and the extent of resistance reversed during 

BW were observed to increase with membrane age; while the extent of resistance 

reversed during RC was not observed to increase with membrane age. Among these 

performance factors, the clean membrane resistance (i.e., post RC resistance) was 

identified as the most suitable metric to monitor membrane ageing and to forecast 

membrane performance.  

2) The rates at which these performance factors changed were substantially different at 

different facilities indicating that the rates of change are greatly impacted by site-specific 

conditions.  

3) Utilizing the clean membrane resistance data from approximately the initial 1.5 years of 

years of operation, it is possible to make reliable forecast of membrane replacement age. 

The forecast is expected to enable the managers of full-scale membrane facilities to make 

evidence-based decisions and better manage their finances.  

4) For facilities with substantive membrane ageing, the DES model outperforms the linear 

model in forecasting membrane replacement age; while for facilities with limited 

membrane ageing, the linear model performs better in forecasting membrane replacement 

age.  
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7 Recommendations 

The present study recommends the followings: 

1) The present study was focused exclusively on historical resistance data from full-scale 

membrane facilities. The study did not attempt to identify the causes of observed changes 

in historical resistance data. Future studies should attempt to identify the causes of 

observed changes in historical resistance data.  

2) The forecasting models (i.e., linear and DES) used in the present study are influenced by 

the variability of the historical resistance data. Care should be taken to collect accurate 

historical data.  
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Appendix A 

Designed operational characteristics of the different facilities are summarized in Table A1 – Table A4.  

Table A1: Capacity, source water and pretreatment approaches of different facilities   

 Facility 1 Facility 2 Facility 3 Facility 4 

Source 

(Lake/river etc.) 

Lake  

 

River 

 

Lake 

 

Lake  

 

Max capacity 

 

65.2 MLD 

 

116 MLD 

 

20.9 MLD 

 

400 MLD 

 

Avg Capacity 

 

39.1MLD 

 

83 MLD 

 

8-16 MLD 

 

200 MLD 

 

Pretreatment 

(Pre 

chlorination/ 

ozonation etc.) 

Pre-chlorination, 

Ozonation, UV 
Pre-chlorination Pre-chlorination            -- 

Pretreatment 

chemical used 

and dose 

  

-- 

Sodium Hydroxide                      

pH adjustment: 7.5 

Sodium 

Hydroxide                   

pH adjustment: 

7.5 

Pre-chlorination 

Dechlorination 

with sodium 

bisulfite; 

pH adjustment 

with sodium 

hydroxide  

Ozonation 

Coagulant 
 PAX-XL 

 

Aluminium 

Chlorohydrate (ACH) 

Aluminium 

Chlorohydrate 

(ACH) 

 

 

 

No coagulation 

and flocculation 

 

 

 

 

 

Coagulant 

addition 

  

Inline  

 

Inline Rapid mix tank 

Rapid mixing G 

(/s) 

   

2500 

 

-- -- 
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 Facility 1 Facility 2 Facility 3 Facility 4 

Coagulant dose 

  

2 mg/L 

 

 

 

Flow and UVA 

proportional; 

average~1-2 mg/L (as 

high as 13mg/L 

during 52eriod of 

high UVA)  

Flow proportional 

typically 4-5 mg/L 

No coagulation 

and flocculation 

Flocculant tank 

details 

  

Consist of a 

dynamic mixer and 

two flocculation 

trains with a total 

storage volume of 

1,312 m3 

 

3 floc trains, each 

with 2 in series 

2 in series for 

every train, only 

the first being 

mixed 

Flocculation G 

(/s) 

  

50 

 

At 100% - 78.65/s               

operating at 50% 

(39.3/s)                      

both tanks at same 

mixing speed 

75% of mixer 

speed capacity 

(will send info on 

mixer power) 

Flocculation 

HRT (minutes) 

 10 to 15 

 

31.24 total at average 

flow (38 MLD) 
 --  

Note: -- indicates that data not available.  
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Table A2: Primary membrane train details of different facilities   

 Facility 1 Facility 2 Facility 3 Facility 4 

Membrane type* ZW1000B ZW1000A ZW1000A ZW1000A 

Number of trains 
7 installed trains, 

5 operating trains 
7 3 

12 (2 banks of 6 

trains each) 

Casettes/train 4 5 4 8 

Casette type v3 v3.3 V3.2 96M 

Modules/casette  

(specify blank as 

well) 

  

84/96 (4 blank 

stacks of 3 

modules) 

48/60 (4 blank 

stacks of 3 

modules) 

87/96 (3 blank 

stacks of 3 

modules) 

Modules/casette  90 84 48 87 

Module type v3 v4 v3  v4 

Area/module (m2) 46.5 41.8 41.8 51.1 

Modules/train 360 420 192 696 

Total membrane 

area (m2) 
66960 122892 24076.8 426787.2 

Average Flux 

(LMH) 
24.33 28.14 13.84 19.52 

*1000B older membrane chemistry; no longer in use; 1000A current membrane 

chemistry 
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Table A3: Maintenance cleaning details of different facilities   

 Facility 1 Facility 2 Facility 3 Facility 4 

Maintenance 

cleaning 

1 time per day, 100 

mg/L Sodium 

hypochlorite 

Type A: 2 times 

per month, 100 

mg/L sodium 

hypochlorite,  15 

mins soak after 

hydraulic 

backwash (no 

CEB), 

 

Type B: 1 x per 

month,  500mg/L 

Citric acid , 1220 

mg/L hydrochloric 

acid - target pH of 

2, 15 mins soak 

after hydraulic 

backwash (no 

CEB)  

3 to 5 times per 

week (only one 

type), 100 ppm 

hypo (no citric 

acid),  1 hr soak 

after hydraulic 

backwash (no 

CEB),  Chemical 

solution reused 

once and then 

discharged (either 

for primary of 

secondary train) 

Sodium hypo soak 

of 15 mins at 250 

mg/L, usually in 1- 

2 days 
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Table A4: Chemical cleaning details (Recovery cleaning) of different facilities   

 Facility 1 Facility 2 Facility 3 Facility 4 

Recovery cleaning 

Two 6-hour recovery 

clean cycles occur 

every 42 days, First: 

a high pH cycle 

commences using 500 

mg/L sodium 

hypochlorite;  

Second: a low pH 

cycle using 2000 

mg/L citric acid; 

increase the water 

temperature to 40°C. 

Type A: 1 time per 

month, 500 mg/L 

Sodium hypochlorite, 

5 hr soak, Usually not 

heated.  2 x per year 

do heated cleans for 1 

month (to 40C). 

 

 

Type A: 1 time per 

month (one of Type 

A in one month then 

one of type B in 

following month), 

1000 ppm hypo, 5 hr 

soak, Initial solution 

heated to 20C, if temp 

falls to < 18C, heater 

goes on and permeate 

recirculated, Added to 

tank, recirculated 

from permeate, waste 

from tank 

 Type A: 

Sodium hypo 

soak of 5-6 

hrs at 500 

mg/L, 

monthly, uses 

heated water 

all year round 

  

Type B: 2 x per year, 

2000 mg/L Citric 

acid, 915mg/L 

Hydrochloric acid 

(target pH 2), 5 hr 

soak, Heated to 40°C,  

Type B: Monthly 

(one of Type A and 

B), 500 ppm citric, 5 

hr soak, Initial 

solution heated to 

20C, if temp falls to < 

18C, heater goes on 

and permeate 

recirculated, Added to 

tank, recirculated 

from permeate, waste 

from tank 

Type B: 

Citric acid 

soak for 5-6 

hr at 2000 

mg/L + pH 

adjustment 

using 

sulphuric 

acid. The use 

of sulphuric 

acid has 

stopped since 

2019, 

monthly 
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Appendix B       

Table B1: Details and frequency of collected data. 

           Facilities 

  

                 

Parameters 

Facility 1 Facility 2 Facility 3 Facility 4 

Permeate flow Every minute  
Every fifteen 

minute 
Every minute  

Average of every 5 

minutes  

Tank water level Every minute 
Every fifteen 

minute 
Every minute Not available  

Temperature  

 
Every minute 

Before and after 

cleaning events 
Every minute 

Before cleaning 

events 

Temperature 

corrected 

permeability  

 

Every minute 
Before and after 

cleaning events 

Every minute (no 

data available 

before 2020) 

Before and after 

cleaning events 

TMP 

 
Every minute 

Before and after 

cleaning events 
Every minute 

Average of every 5 

minutes 

Turbidity  Every minute  
Every fifteen 

minute 
Every minute Not available  

Chemical flow rate 

(i.e., hypo and 

citric tags) 

Every minute Not available Not available Not available 

Occurrences of 

MC  

Not available 

(but can be 

calculated from 

data) 

Exact time  
Date but not exact 

time  
Not available 

Occurrences of RC 

Not available 

(but can be 

calculated from 

data) 

Exact time with 

cleaning agent 

types 

Date with cleaning 

agent types but not 

exact time 

Date with cleaning 

agent types but not 

exact time 
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Table B2: Reported data range for all facilities 

Facilities Data range (year) 
Age of membrane trains (in 

years) 

Facility 1 2013-2022 1-10 

Facility 2 2015-2022 1-8 

Facility 3 2016-2021 3-8 

Facility 4 2014-2022 1-9 
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Appendix C 

Table C1: Summary of linear regression analysis of historical hydraulically irreversible resistance. 

Facilities 

Cumulative volume filtered as 

independent variable   

 

Membrane age as independent variable  

 

 Slope 
Slope std 

error 
R2 p-value Slope 

Slope std 

error 
R2 

p-

value 

Facility 1 

train 1 

 

-1.38e+07 

 

5.07e+06 

 

0.00

1 

 

1.00e-11 

 

-8.44e+08 

 

3.69e+08 

 

0.00036 

 

2.23e-

2 

 

Facility 1 

train 3 

 

8.02e+07 

 

5.86e+06 

 

0.01

1 

 

2.06e-42 

 

6.58e+09 

 

4.43e+08 

 

0.014 

 

1.08e-

49 

 

Facility 1 

train 4 

 

1.05e+08 

 

5.35e+06 

 

0.02

3 

 

3.99e-84 

 

8.25e+09 

 

4.03e+08 

 

0.025 

 

2.95e-

92 

 

Facility 2 

train 1 
1.44e+09 1.38e+07 

0.37

1 
< 2e-16 1.50e+11 1.49e+09 0.355 

< 2e-

16 

Facility 2 

train 2 
1.12e+09 1.02e+07 

0.40

3 
< 2e-16 1.14e+11 1.05e+09 0.392 

< 2e-

16 

Facility 2 

train 3 
1.24e+09 1.26e+07 

0.35

7 
< 2e-16 1.25e+11 1.33e+09 0.335 

< 2e-

16 

Facility 3 

train 1 
9.32e+08 5.58e+06 

0.57

1 
< 2e-16 1.43e+11 8.84e+08 0.555 

< 2e-

16 

Facility 3 

train 2 
1.24e+09 2.31e+07 

0.18

8 
< 2e-16 1.71e+11 3.43e+09 0.168 

< 2e-

16 

Facility 3 

train 3 
1.91e+09 7.49e+06 

0.74

5 
< 2e-16 3.08e+11 1.20e+09 0.747 

< 2e-

16 

Facility 4 

train 61 
1.50e+09 3.65e+06 

0.86

7 
< 2e-16 2.54e+11 5.78e+08 0.877 

< 2e-

16 

Facility 4 

train 64 
1.73e+09 3.88e+06 

0.88

8 
< 2e-16 2.86e+11  6.02e+08 0.896 

< 2e-

16 

Facility 4 

train 75 
1.45e+09 4.36e+06 

0.81

4 
< 2e-16 2.42e+11 6.69e+08 0.832 

< 2e-

16 
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Table C2:  Summary of linear regression analysis of historical clean membrane resistance.  

 

 

Facilities 

Cumulative volume filtered as 

independent variable 

 

Membrane Age as independent variable  

 

 Slope 
Slope std 

error 
R2 

p-

value 
Slope 

Slope std 

error 
R2 

p-

value 

Facility 1 

train 1 

3.94e+07 

 

7.54e+07 

 

0.0031 

 

0.602 

 

3.22e+09 

 

5.47e+09 

 

0.0039 

 0.558 

Facility 1 

train 3 

1.06e+08 

 

7.31e+07 

 

0.022 

 

0.152 

 

8.63e+09 

 

5.51e+09 

 

0.026 

 0.120 

Facility 1 

train 4 

1.09e+08 

 

7.98e+07 

 

0.019 

 

0.174 

 

8.92e+09 

 

6.00e+09 

 

0.023 

 0.140 

Facility 2 

train 1 
1.53e+09 2.53e+08 0.373 1.05e-7 1.61e+11 2.76e+10 0.358 

2.27e-

7 

Facility 2 

train 2 
1.10e+09 1.58e+08 0.409 1.44e-9 1.11e+11 1.63e+10 

0.4 

 
2.47e-

9 

Facility 2 

train 3 

1.04e+09 

 

1.56e+08 

 

0.39 

 

4.57e-9 

 

1.05e+11 

 

1.63e+10 

 

0.374 

 

1.17e-

8 

 

Facility 3 

train1 
8.86e+08 8.56e+07 0.661 

1.60e-

14 
1.37e+11 1.35e+10 0.651 

3.52e-

14 

Facility 3 

train2 
1.60e+09 2.97e+08 0.454 4.92e-6 2.30e+11 4.52e+10 0.425 

1.22e-

5 

Facility 3 

train3 
1.59e+09 1.40e+08 0.713 

9.95e-

16 
2.59e+11 2.24e+10 0.719 

6.11e-

16 

Facility 4 

train 61 
9.81e+08 3.36e+07 0.879 

7.45e-

56 
1.68e+11 5.66e+09 0.882 

1.17e-

56 

Facility 4 

train 64 

1.43e+09 

 

5.66e+07 

 

0.844 

 

1.80e-

49 

 

2.41e+11 

 

9.39e+09 

 

0.848 

 

5.02e-

50 

 

Facility 4 

train 75 

8.79e+08 

 

4.65e+07 

 

0.75 

 

1.28e-

37 

 

1.47e+11 

 

7.68e+09 

 

0.754 

 

5.33e-

38 

 



60 

 

Table C3: Summary of linear regression analysis of historical total fouling rate 

 

 

Facilities 

cumulative volume filtered as 

independent variable 

 

Membrane Age as independent variable  

 

 Slope 
Slope std 

error 
R2 p-value Slope 

Slope std 

error 
R2 

p-

value 

Facility 1 

train 1 

9.02e+08 

 

6.57e+07 

 

0.00

99 

 

1.24e-

42 

 

5.57e+10 

 

4.80e+09 

 

0.007 

 

5.26e-

31 

 

Facility 1 

train 3 

3.18e+09 

 

5.13e+07 

 

0.16 

 
< 2e-16 

2.39e+11 

 

3.88e+09 

 

0.159 

 

< 2e-

16 

Facility 1 

train 4 

2.33e+09 

 

5.23e+07 

 

0.08

8 

 

< 2e-16 
1.71e+11 

 

3.95e+09 

 

0.083 

 

< 2e-

16 

Facility 3 

train 1 
1.08e+09 3.70e+07 

0.03

4 

4.57e-

183 
1.71e+11 5.75e+09 0.035 

3.81e-

192 

Facility 3 

train 2 
4.76e+09 8.64e+07 

0.18

1 
< 2e-16 6.78e+11 1.28e+10 0.17 

< 2e-

16 

Facility 3 

train 3 
3.56e+09 3.95e+07 

0.24

2 
< 2e-16 5.79e+11 6.35e+09 0.246 

< 2e-

16 

Facility 4 

train 61 

 

 

Data not available  

Facility 4 

train 64 

Facility 4 

train 75 

Facility 2 

train 1 

Facility 2 

train 2 

Facility 2 

train 3 
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Table C4: Summary of linear regression analysis of historical extent of resistance reversed during BW 

 

Facilities 

Cumulative volume filtered as 

independent variable 

 

Membrane Age as independent variable  

 

 Slope 
Slope std 

error 
R2 p-value Slope 

Slope std 

error 
R2 

p-

value 

Facility 1 

train 1 

7.72e+08 

 

6.77e+07 

 

0.00

9 

 

5.99e-

30 

 

4.58e+10 

 

4.94e+09 

 

0.006 

 

2.00e-

20 

 

Facility 1 

train 3 

2.81e+09 

 

4.62e+07 

 

0.18

8 

 

< 2e-16 
2.10e+11 

 

3.50e+09 

 

0.184 

 

< 2e-

16 

Facility 1 

train 4 

1.84e+09 

 

4.92e+07 

 

0.08 

 

4.94e-

295 

 

1.35e+11 

 

3.72e+09 

 

0.075 

 

1.16e-

277 

 

Facility 2 

train 1 
2.90e+09 2.88e+08 

0.00

5 

7.78e-

24 
2.87e+11 3.07e+10 0.004 

8.38e-

21 

Facility 2 

train 2 
1.80e+09 2.90e+08 

0.00

2 

5.56e-

10 
1.73e+11 2.99e+10 0.002 

7.60e-

9 

Facility 2 

train 3 
-4.76e+07 1.95e+09 0.0 9.80e-1 -4.26e+10 2.03e+11 0.0 

8.33e-

1 

 

Facility 3 

train 1 
9.01e+08 3.25e+07 

0.03

5 

5.95e-

166 
1.43e+11 5.05e+09 0.036 

6.74e-

173 

Facility 3 

train 2 
4.27e+09 7.46e+07 0.21 < 2e-16 6.09e+11 1.10e+10 0.198 

< 2e-

16 

Facility 3 

train 3 
2.92e+09 3.25e+07 

0.26

9 
< 2e-16 4.75e+11 5.24e+09 0.272 

< 2e-

16 

Facility 4 

train 61 
5.16e+09 3.23e+07 

0.50

8 
< 2e-16 8.81e+11 5.51e+09 0.508 

< 2e-

16 

Facility 4 

train 64 
5.77e+09 5.26e+07 

0.33

7 
< 2e-16 9.67e+11 8.81e+09 0.338 

< 2e-

16 

Facility 4 

train 75 
6.07e+09 3.97e+07 

0.49

5 
< 2e-16 1.01e+12 6.55e+09 0.501 

< 2e-

16 
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Table C5: Summary of linear regression analysis of historical extent of resistance reversed during RC  

Facilities 

Cumulative volume filtered as 

independent variable 

 

Membrane Age as independent variable  

 

 Slope 
Slope std 

error 
R2 p-value Slope 

Slope std 

error 
R2 

p-

value 

Facility 1 

train 1 
-2.04e+07 6.46e+07 

0.00

1 
7.53e-1 -1.43e+09 4.70e+09 0.0011 

7.62e-

1 

Facility 1 

train 3 
3.17e+07 3.67e+07 

0.00

8 
3.89e-1 1.58e+09 3.10e+09 0.003 

6.11e-

1 

Facility 1 

train 4 
2.98e+07 4.55e+07 

0.00

5 
5.15e-1 1.93e+09 3.43e+09 0.003 0.003 

Facility 2 

train 1 
1.11e+08 

1.32e+08 

 

0.01

4 

 

4.05e-1 

 1.10e+10 
1.43e+10 

 0.012 
4.44e-

1 

Facility 2 

train 2 

-2.55e+07 

 

9.98e+07 

 

0.00

1 

 

7.99e-1 

 

-3.38e+09 

 

1.03e+10 

 

0.002 

 

7.43e-

1 

 

Facility 2 

train 3 

8.22e+07 

 

1.06e+08 

 

0.01 

 

4.42e-1 

 

7.64e+09 

 

1.10e+10 

 

0.008 

 

4.90e-

1 

 

Facility 3 

train 1 
1.20e+08 1.03e+08 

0.02

7 
2.52e-1 1.83e+10 

1.60e+10 

 

0.026 

 

2.56e-

1 

 

Facility 3 

train 2 
-1.80e+08 

1.66e+08 

 

0.03

5 

 

2.88e-1 

 

-2.95e+10 

 

2.45e+10 

 

0.043 

 

2.38e-

1 

 

Facility 3 

train 3 
3.20e+08 1.08e+08 

0.14

1 
4.74e-3 5.17e+10 1.75e+10 0.141 

4.71e-

3 

Facility 4 

train 61  
2.39e+08 5.64e+07 

0.14

9 
4.76e-5 4.06e+10 9.59e+09 0.148 

5.02e-

5 

Facility 4 

train 64 
4.62e+07 5.00e+07 

0.00

8 
3.58e-1 7.44e+09 8.39e+09 0.007 

3.77e-

1 

Facility 4 

train 75 

1.90e+08 

 

6.53e+07 

 

0.06

9 

 

4.40e-3 

 

3.12e+10 

 

1.09e+10 

 

0.067 

 

4.94e-

3 
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Appendix D 

The RMSE of the test data of each model, for each train at each facility, corresponding to 20%, 

25%, 30%, 35%, 40%, 45%, 50%, 55%, and 60% of the total data used for training constituted a 

dataset. The mean RMSE of each model was calculated by averaging the RMSE of each dataset. 

For  example, at train 1 facility 3, the RMSE of the test data corresponding to 20%, 25%, 30%, 

35%, 40%, 45%, 50%, 55%, and 60% of the total data used for training are 4.86e+11, 3.09e+11, 

4.09e+11, 3.43e+11, 2.46e+11, 2.17e+11, 2.15e+11, 2.24e+11, and 2.39e+11, respectively for 

the linear model with a mean RMSE of 2.99e+11; while for the DES model the RMSE of the test 

data are 3.72e+11, 6.87e+11, 7.71e+11, 3.72e+11, 4.73e+11, 2.48e+11, 2.79e+11, 2.74e+11 and 

2.68e+11, respectively with a mean RMSE of 4.17e+11.  

 

Mean RMSE of both models (i.e., 2.99e+11 and 4.17e+11), for each train at each facility, was 

then compared to assess if they were statistically different using the following approach:  

- First normality assumption of t test for both datasets (RMSE of the DES and the linear 

model) was checked. If assumption was met, Welch t test was performed. 

- If normality assumption was violated, log10 transformation was made to both datasets. If, 

in both transformed datasets, normality assumption was met, Welch t test was done on 

the transformed dataset. 

- If normality assumption was still not met, non-parametric MannWhitney U test was 

performed. 

 


