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Abstract

Automated driving has been pursued for more than fifty years, but with the widespread

adoption of machine learning to train autonomous driving agents, simulators have

begun to play an increasing role in the development and deployment of autonomous

vehicles because they are not only faster, cheaper, and safer than physical exper-

iments, but also more controllable, observable, and repeatable. In order to create

realistic simulations, it is critical to have a good “social agent” to control the action

of the other vehicles in the simulation. To date, however, no systematic compari-

son between different social agents has been performed. Here we describe a series

of experiments which trained reinforcement learning (RL) agents in the SMARTS

(Scalable Multi-Agent RL Training School) traffic simulation environment with

three different social agents, and performed a comparison of the performance of the

resulting RL agent. Along with SMARTS supported social agents SUMO (Simu-

lation of Urban Mobility) and ZOO (provided by SMARTS), we integrated the

DRIVE social agent (provided by Inverted AI) into the simulator for this study.

The RL agents were trained and tested in six different task scenarios on five dif-

ferent maps. Overall, the experimental results show that RL agents trained in the

environment with the DRIVE social agent performed more consistently on crite-

ria including completion rate, collision rate and off-road rate, indicating DRIVE’s

heightened behavioral diversity and meaningful interactivity with the ego vehicle.

We further conducted an analysis of some of the characteristics of the traffic gen-

erated by the different social agents: Traffic density, traffic speed and acceleration

distribution, and average neighbor distance.
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Lay Summary

There has been remarkable progress in the development of autonomous vehicles

in recent years thanks to machine learning. When training an autonomous driving

agent, simulation offers many advantages over physical experiments. This study in-

vestigated a critical component of simulators, the so-called “social agents” which

control the behaviour of the other vehicles in a training simulation. We systemati-

cally compared three different social agents within a common simulator and evalu-

ated their impact on the quality of an autonomous agent trained through reinforce-

ment learning on the simulator. Additionally, we analyzed some characteristics of

the traffic generated by these three social agents. The study offered insights into

which traits in social agents contribute to the improved performance of autonomous

driving agents, contributing valuable knowledge to the ongoing advancements in

autonomous vehicle technology.
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Chapter 1

Introduction

In recent years, there has been remarkable progress in the development of au-

tonomous vehicles. However, research indicates that demonstrating the desired

level of reliability for these vehicles would require driving billions of miles on the

road [20]. Therefore simulation emerges as a crucial element in the development

and deployment of autonomous vehicles. Simulation provides a controllable and

cost-effective environment, enabling developers to rapidly test new algorithms and

features without the need for real-world vehicle deployment. Simulation not only

prevents potential hazards to test participants, such as in pedestrian jaywalking

scenarios, but also ensures observable and reproducible test cases for debugging

purposes.

Despite the numerous advantages of simulators, the quality and fidelity of a

simulator significantly impacts the outcomes of autonomous driving system devel-

opment. Several critical aspects define a high-quality simulator, including a realis-

tic physics engine, the capability for diverse map and scenario generation, and high

quality social agents to control the other vehicles in the simulation environment.

Creating social agents that are interactive, behaviorally-diverse, and realistic has

been one of the biggest bottlenecks due to the complicated nature of the human

driving behaviors they seek to mimic. Even though several widely used open-

source microscopic simulators—such as CARLA [12], SUMO [29], and SMARTS

(Scalable Multi-Agent RL Training School) [47]—claim to provide simulation for

autonomous vehicle development, there are no publicly available comparisons of
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the social agents used in the different simulators.

Much recent research attention has been directed at reinforcement learning

(RL) for so-called “end-to-end” autonomy, where the agent is trained to take sensor

data as input and produce control signals as output, without any assumed models of

sensing, dynamics, or control and without any specified intermediate features (such

as a system state). We adopt this end-to-end RL approach in this study, and use it

to train autonomous ego agents to drive a vehicle within the SMARTS simulation

environment. Using SMARTS allowed us to train our ego agents against three dif-

ferent social agents: the agent provided by SUMO, the new agent ZOO developed

in SMARTS, and the DRIVE agent developed by InvertedAI. The first two were

already integrated into the SMARTS simulator, and we worked with InvertedAI

to integrate the DRIVE agent. The RL ego agents were trained and assessed in

SMARTS simulation environments featuring these different social agents, and the

resulting data were analyzed to characterize the behavior of the traffic generated

by these social agents and the qualities of the RL ego agents trained against them.

The rest of this thesis is organized as follows: Chapter 2 reviews prior related

work. A detailed experimental setup is provided in Chapter 3. Performance evalu-

ation and analysis are performed in Chapter 4, and Chapter 5 concludes the study

with directions for future work.
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Chapter 2

Background and Related Work

Autonomous vehicles (AVs) have been studied for decades, but the recent rapid

growth in the power of machine learning has dramatically increased the level of

interest in the academic and commercial R&D communities. We can identify two

broad approaches to autonomous driving. The “modular” approach consists of

multiple perception algorithms for cameras and other sensors that produce a simpli-

fied and often pre-specified set of features describing the state of the environment

and ego vehicle, and then uses model-based planning and control algorithms [15]

to decide what actions to take. In contrast, the “end-to-end” approach learns to map

sensory input directly into control commands [8]. While the modular approach can

take advantage of existing or independently developed models of sensing, dynam-

ics, and control, and the internal feature representations can simplify auditing and

interpreting behaviours, the design simplicity of the end-to-end approach makes it

increasingly popular.

For an end-to-end learning algorithm, the supervised learning method was first

introduced in the late 1980s when Pomerleau built the first end-to-end decision-

making system for NAVLAB [34]. This system mapped the current image and laser

range finder data to steering angle actions. Later in 2004, inspired by this work,

Lecun et al. [24] trained a convolutional neural network (CNN) which can remotely

drive a truck on a open terrain and avoid obstacles such as rocks and ponds. In

2016, Bojarski et al. [9] applied an end-to-end deep neural network in practice and

firstly tested the lane keeping task in traffic on local roads. However, the supervised
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learning method requires a large collection of labelled driving data. Furthermore,

different human drivers may make completely different decisions even in the same

situation, which results in an ill-posed problem for which it is difficult to train an

effective regressor. Consequently, most researchers have focused on reinforcement

learning (RL) approaches for self-driving cars, as RL does not require human-

labeled training data.

2.1 End-to-end Reinforcement Learning for Autonomous
Driving in Simulation

In RL, agents learn behaviours by optimizing a reward function, without relying on

manually designed rules or human driving data [42]. While RL encompasses vari-

ous subdomains, we will limit our scope to end-to-end RL for autonomous driving

in simulation. When it comes to autonomous driving development in simulation,

TORCS (The Open Racing Car Simulator) [14] and CARLA [12] are the two most

popular simulators. While TORCS is designed for racing simulation, CARLA fo-

cuses more on providing urban driving simulation environments which are rich in

sensory and physical complexity.

In 2010, Daniele et al. [28] used a tabular Q-learning model1 to learn over-

taking strategies in TORCS, with the resulting trained agent outperforming pro-

grammed NPCs provided in TORCS. The first modern attempt to apply a vision

based end-to-end RL technique for developing autonomous driving policy in the

TORCS simulator was presented by Koutnik et al. [22] in 2013. Their work used

images from the driver’s perspective, and processed the data with both a CNN

and an RNN. Lillicrap et al. [27] introduced a deep deterministic policy gradient

model that effectively learned deterministic control policies in TORCS. They used

an RGB image of the current frame as the observation space, and mapped the cur-

rent observation space to acceleration, braking and steering control actions. Also in

the TORCS environment, an asynchronous advantage actor-critic algorithm (A3C)

was proposed by Mnih et al. [31].

In recent years, Peng et al. [33] introduced a deep reinforcement learning al-

1Although we use the term “model” here, this neural network design is still an “end-to-end”
approach to vehicle control, and is not related to the “model-based planning and control” used in
“modular” approaches mentioned above.
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gorithm Dueling Double Deep Q-Network (DQN) to achieve autonomous driving,

with the trained agent able to outperform a human driver in TORCS. Later, Basile

et al. [7] used DQN and Deep Deterministic Policy Gradient-based (DDPG) to

achieve a safe driving policy that is robust to sensor faults. The proposed method

was validated in TORCS.

When it comes to the CARLA platform, one of the major problems in applying

RL is the relatively realistic but high-dimensional sensor inputs, such as complex

RGB images. As a result, most of the RL examples on this platform have been

focused on simple driving tasks, such as lane following [21]. However, in recent

years, there have been some efforts made to make RL work with high-dimensional

inputs. For example, Agarwal et al. proposed a framework that first created a

low-dimensional representation that comprises a stack of bird’s view images, de-

sired trajectory, and traffic-light states, and then fed the representation to the RL

model [5]. In 2018, Liang et al. [26] first pretrained a supervised network based

on human labeled data, and then initialized a Deep RL model (DDPG) with the

pretrained weights of the supervised network. This pipeline alleviated the low ex-

ploration efficiency of large continuous action spaces in RL. As a result, their work

demonstrated the first effective RL approach for an end-to-end vision-based driv-

ing pipeline that outperformed the modular approach at the time on the CARLA

simulator.

In recent years, there has been a lot of literature that ensembles various RL or

other neural network techniques, such as with supervised neural network. Ahmed

et al. [6] proposed an end-to-end AD system that combined a supervised network

and a Deep RL agent (DDPG). The input RGB images were first encoded into a

set of affordances, and then the DDPG mapped the affordances along with vehicle

measurements and a navigation command into control signals for the vehicle.

2.2 Simulation in Autonomous Driving Training
In order to build performance in AVs and confidence that they will not malfunction,

we need to collect a lot of data. Simulation systems are indispensable not only for

reducing cost but also for obtaining massive data sets. Simulation may also be the

best way to explore the potential influence of AVs on broader concerns around the
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safety and social impact of vehicle traffic.

2.2.1 Simulator Models: Agent-based or Not?

While there are a huge variety of different approaches to vehicle and traffic sim-

ulation, Agent-Based Models (ABMs)[17], Discrete-Event Models (DEMs) [23]

and System Dynamics Models (SDMs) [40] stand out as the three major categories

[32].

An ABM model is a collection of autonomous decision-making agents (such as

vehicle drivers or pedestrians) within a specific environment and time-scale. Dur-

ing the simulation, each agent independently makes decisions based on its own

sensing, intelligence, memory, and predefined rules. ABM represents a bottom-up

approach to modeling traffic, and offers several advantages for AV applications.

First, by modeling individual interactions between different agents, ABMs can ex-

plore how individual behaviours contribute to collective traffic patterns. Second,

ABMs provide a more realistic simulation of urban traffic due to the bottom-up

perspective. Third, each agent in the simulation can quickly adapt to new charac-

teristics or complexities [25]. Although computationally more expensive than the

alternatives, ABMs have become the predominant tool for urban AV impact assess-

ment and validation due to the growing availability of computational power [25],

and the simulation approach of choice when training RL driving agents.

The DEM simulation approach assumes that a system’s state variables change

only at discrete and separate points in time. In a DEM simulation, a complex sys-

tem is modeled as an ordered sequence of events, which may involve complicated

sequences and hierarchical structures. However, in order to generate the sequence

of events, a DEM generally requires agents to define their paths in advance. Since

human drivers and pedestrians do not behave or react to one another in a determin-

istic fashion, predicting their paths in advance is not terribly realistic [13].

SDM traffic simulations dispense entirely with the notion of individual agents,

and instead model traffic as if it were a fluid flowing through a network of inter-

connected pipes. The dynamics of this fluid does take into account the effect of

vehicle interactions and hence it does not flow like water or air, but SDMs are typ-

ically built to explore network-wide effects, and hence do not typically try to track
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the movement of an individual vehicle or its interplay with the traffic around it.

SDMs are well-suited for addressing long-term and dynamic management prob-

lems; for instance, Wen et al. [44] applied SDM to model urban traffic in Beijing

and analyze factors such as energy consumption and carbon emissions. The lack of

information about individual vehicles makes SDMs inappropriate for training and

testing RL agents for individual vehicles, although they could be used to analyze

the high level impacts of increasing penetration of AVs into traffic streams.

2.2.2 Simulator Validation

A driving simulator need not be realistic if the goal is simply to train an agent

that can drive in that simulator; for example, driving simulators and the agents that

control the competing vehicles in racing games are often more fun with cartoonish

physics. But if simulation is used for training agents that may eventually control

real-world AVs, it is critical that the simulator be validated against real-world data.

Sewall et al. [38] introduced an interactive hybrid simulation of large-scale traf-

fic, and they validated their simulation by comparing the numbers of cars, average

velocity, and flux with respect to real-world data. A study by Shaaban et al. [39]

compared the performance of modeling dual lane and triple lane roundabouts be-

tween two agent-based traffic simulation tools, imTraffic and VISSIM. Their com-

parison focused on operational measurements such as average delay under various

scenarios and traffic flow rates.

In terms of simulation platforms designed for AV development, Yang et al. [45]

conducted numeric simulations to compare vehicle based and movement based

traffic control for AVs under different intersection configurations. However, the

comparison primarily focused on operational measurements, such as delay versus

traffic demand and maximum throughput. For evaluating traffic behavior perfor-

mance, Huber et al. [19] presented a proof of concept for evaluating traffic conflicts

with respect to the behavior of a autonomous driving policy in simulation. In the

study, they introduced a subset of metrics such as time to collision and deceleration

rate to avoid collision.

For multi-scenarios autonomous driving, Sun et al. [41] proposed a reinforce-

ment learning framework that includes an auxiliary task for scenario recognition,
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and trained agents in the SMARTS environment. They tested their trained agents

in six scenarios and showed the success rate as one of the performance metrics.

Yang et al. [46] proposed a reinforcement learning algorithm with a action judg-

ment network which predicts the safety state given current observation and action

for developing safer AVs, and collision rate was selected as the evaluation metric.

Overall, the majority of performance evaluations focus on the effect of different

architectures and training algorithms for the ego vehicle rather than the effect of

the social agents that control the other vehicles in the simulation.

2.2.3 AV Competitions in Simulation

The wide availability of ABM simulators and RL training packages have led to

a growing crop of simulator based competitions for AV agents. Most focus on

agents designed to operate in one of two environments: high-speed racing or urban

driving.

The Generalized Racing Intelligence Competition (GRAIC) organized multi-

ple events between 2019 and 2023, focusing on AVs navigating diverse race sce-

narios while avoiding static and dynamic obstacles along the track [30]. Sensing

was simplified: A perception oracle provided known-to-be correct data including a

local view of obstacles, lanes, and gates on the track. For the evaluation stage, the

submitted controllers were tested not only against dynamic obstacles provided in

the simulator, but also against other submitted controllers. Later in 2022, the Learn

to Ride Challenge [2] was hosted by Carnegie Mellon University, which tasked

participants with training an RL agent to achieve maximum speed while adhering

to safety constraints. The challenge featured two tracks: one for training and an-

other for testing. Notably, the testing track did not include dynamic obstacles or

social agents. In high-speed racing competitions, it seems that there was little to

no involvement of intelligent social agents.2

While race competitions typically prioritize maximizing speed, urban driving

challenges tend to emphasize the robustness and safety of the controllers given var-

ious traffic conditions. In 2019, CARLA hosted the CARLA Autonomous Driving

Challenge [1, 12], in which participants were tasked with training a self-driving

2GRAIC did feature competitions between submitted agents, but that represents rather con-
strained social interaction in which all agents are pursuing exactly the same goal.
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agent to reach a target destination along a pre-defined route without committing

traffic infractions; for example, driving on the wrong side of or off the road. Chal-

lenging traffic situations, such as uncontrolled intersections, were included in the

testing scenarios, and tests were run under various simulated weather conditions.

The evaluation metrics included of route completion percentage before termination

(e.g. collisions with other vehicles) and the number of traffic infractions.

In 2022, SMARTS [47] organized the NeurIPS 2022 Driving SMARTS Com-

petition [3]. Participants aimed to develop controllers that can drive as quickly and

safely as possible from a start location to a destination amid background traffic.

The competition featured various maps and scenarios for both training and testing,

with evaluation metrics encompassing safety, comfort (smoothness and safe driv-

ing), task completion (percentage of completed scenarios), traffic rule violations,

and completion time. The competition included both offline and online learning

conditions, and a preliminary version of our work (which used a supervised learn-

ing algorithm rather than RL) secured second place in both the offline and online

condition.

While both the SMARTS and CARLA urban driving competitions used their

own interactive social agents during training and testing, no cross-validation be-

tween different social agents was performed by either competition. A study by

Gutiérrez-Moreno et al. [18] trained an RL agent for intersection scenarios in both

the SMARTS and CARLA simulators, but their goal was to improve training ef-

fectiveness and efficiency by first training the ego agent in the faster but less physi-

cally accurate SMARTS environment before further training in the slower but more

physically accurate CARLA environment. In both environments the same social

agent (from CARLA) was used for the other vehicles. Our study seeks to address

a gap in the literature by exploring what is essentially the complementary exper-

iment to that performed in [18]: comprehensively comparing ego agents trained

in the same simulator environment but with different social agents controlling the

other vehicles.
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Chapter 3

Setup

Having covered the related work in reinforcement learning and simulation for au-

tonomous driving, in this chapter we will discuss the following aspects that are

related to preparing the experiments. The simulation environment section will

cover the simulation platform and the simulation scenarios used for training the

ego agents. Then the configuration used for all agents’ training will be shown in

Section 3.2. Last but not least, the details about the three different social agents we

trained ego agents with will be discussed in Section 3.3.

3.1 Simulation Environment
The training environment configuration including simulation platform, training

scenarios, and social agents is discussed in the following subsections.

3.1.1 Simulation Platform

Vehicle traffic can be simulated at many different levels of fidelity, but here we

focus on the microscopic level in which the continuous motion of each vehicle is

simulated with the time between simulation steps smaller than one second. There

are several widely used open-source microscopic simulators, including CARLA

[12] and SUMO [29]; however, for these experiments we chose to use the relatively

recently developed SMARTS simulator [47] for a number of reasons:

• SMARTS uses a reduced fidelity vehicle and road model, which permits
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faster simulation of individual episodes. That allowed these experiments to

proceed on a modest computational budget.

• SMARTS was designed from the beginning to support multiple different ve-

hicle agents, which allowed us to easily train the ego agents using several

different social agents for the other vehicles. Out of the box SMARTS sup-

ports SUMO agents and its own agents from their so-called Social Agent

Zoo (ZOO). We integrated support for the DRIVE agent from InvertedAI

(IAI) [37].

• SMARTS follows the standard OpenAI Gym APIs [10], which makes imple-

mentation of new features smoother. The metadata collection, visualization

as well as reward functions adjustment were easily achieved due to this in-

terface.

• SMARTS is a new simulation environment, so it would be useful to know if

it shows training capabilities comparable to established simulators.

• These experiments were a natural extension of code that we developed for the

“Driving SMARTS@NeurIPS2022” competition (in which we were awarded

second place).

• The development team for SMARTS provided active support during the

competition and throughout the implementation of these experiments.

For the scope of this study, the SMARTS version of 0.6.1 and the ZOO social

agents available in this version was used. Note that while SUMO is a open-source

simulator, SUMO is also integrated in the SMARTS simulator as background traffic

provider which is able to control social agents. In all following sections, “SUMO”

refers to the social agent controller, not the simulator.

3.1.2 Simulation Scenarios and Episodes

The six scenarios that we used for training and evaluation are described below,

roughly in order of degree of difficulty:
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Figure 3.1: Left: Highway cruising map. Right: The 50m x 50m relative ego
view to the same scale as the map.

Figure 3.2: Left: Highway merging map. Right: The 50m x 50m relative ego
view to the same scale as the map.
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Figure 3.3: Left: Map for one lane to one lane cross intersection scenario
with all way stop signs. Right: The 50m x 50m relative ego view to the
same scale as the map. Note that this map is larger scale than all of the
others, so the relative ego view region looks smaller.

1. Highway cruising: A ego agent starts from one end of a three-lane highway

and drives straight to the other end. This scenario requires the ego agent to

perform the highway cruising task without colliding into other social agent

vehicles which may cut in, overtake, or change speed. Fig 3.1 shows the map

definition.

2. Highway merging from an on-ramp: The ego agent starts from a single ramp

lane which curves gently into a separated merge lane. Because the merge

lane has finite length, the ego agent must merge into the flow of traffic on

the three-lane highway to complete the scenario. Fig 3.2 shows the map

definition.

3. One lane to one lane cross intersection with all way stop signs: Ego agent

starts from the west road linked to a junction with all way stop signs and turns

left at the junction onto the to north road to reach the final goal location at
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Figure 3.4: Left: Map for T intersection scenarios. The primary (east-west)
road has two lanes and traffic priority. The secondary (north-south) road
has one lane. Right: The 50m x 50m relative ego view to the same scale
as the map.

the end of the road. The social agents controlling the other vehicles know

about the stop signs, but the ego vehicle agent must learn these features. Fig

3.3 shows the map definition.

4. One lane to two lane T intersection left turn: Ego car starts on the secondary

(south) road with one lane and turns left onto the primary road heading west-

ward. The social agents controlling the other vehicles know that the primary

(east-west) road has priority, but the ego vehicle agent must learn this fea-

ture. Fig 3.4 shows the map definition.

5. One lane to two lane cross intersection left turn: Same as the T intersec-

tion above except that the secondary (north-south) road continues north of

the intersection, so other vehicles may start or stop on that additional seg-

ment. The primary (east-west) road maintains priority. Fig 3.5 shows the

map definition.
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Figure 3.5: Left: Map for the cross intersection scenarios. The primary (east-
west) road has two lanes and traffic priority. The secondary (north-
south) road has one lane. This map is used for two scenarios (left turn
and right turn). Right: The 50m x 50m relative ego view to the same
scale as the map.

6. One lane to two lane cross intersection right turn: Same as the cross intersec-

tion above but the ego car will turn right from the south secondary road onto

the primary road heading eastward. The primary (east-west) road maintains

priority. Fig 3.5 shows the map definition.

The physical dimensions that each map represents can be found in Table 3.1.

To provide some intuition, the relative size of the ego vehicle’s view field is also

shown beside each map in Figures 3.1–3.5.

In an episode of a given scenario, the ego agent always has the same start and

goal location. Other vehicles are randomly spawned at the start of or during the

episode. The same social agent is used for all of the other vehicles in a given

episode, depending on against which of the social agents this episode is training or

evaluating.

In intersection scenarios, the traffic flow rate ranged from 5 to 15 vehicles per
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Table 3.1: Physical Map Size for the Scenarios

Scenario Map Name Length (m) Width (m)

Highway Cruising 200 200
Highway Merging 200 200

One Lane to One Lane Cross Intersection 400 400
One Lane to Two Lane T Intersection 200 200

One Lane to Two Lane Cross Intersection 200 200

minute, whereas in highway scenarios, the flow rate varied from 10 to 25 vehicles

per minute. The higher spawn rate in highway scenarios was designed to introduce

additional complexity to the conditions, as these scenarios lacked intersections,

thereby lacking interactions between agents.

All other aspects of the driving task are held fixed across scenarios; for exam-

ple, the observation, action, and reward functions are the same for all scenarios

(see section 3.2).

3.2 Reinforcement Learning Configuration
Because SMARTS is designed to support RL algorithms, the integration of an RL

training environment was intuitive and smooth. Since this study is an extension

from the “Driving SMARTS@NeurIPS2022” competition, we reused several de-

sign parameter choices from it, such as the observation space and choice of RL

learning algorithm. However, there were still several hyper parameters we chose

to tune, such as the action space and reward function. All hyper parameters were

tuned with respect to training against the SUMO social agent, and then they were

fixed for the experimental training and evaluation with all social agents (see sec-

tion 3.3 for more details about the social agents and justification of our tuning

process). We discuss the following RL elements below: Observation space, action

space, reward function and choice of RL algorithm.

3.2.1 Observation Space

At each time step the ego agent is given one frame showing the state of the simu-

lation at each of the current and previous two time steps (a total of three frames).
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Each frame includes:

• The position of the ego vehicle’s goal location relative to the ego vehicle’s

current location. This observation ignores the road network.

• An eight-bit, 112× 112 pixel color image showing a bird’s-eye view cen-

tered at the ego agent’s location and showing a 50× 50 meter square ob-

servation area around it. For a sense of scale, this observation area would

cover roughly 6 % of a 200m x 200m scenario map at any given time, and

each pixel would represent a patch of ground 0.2 meters square. These im-

ages show roadways as grey, off-road (out of bounds) as black, the space

occupied by the ego vehicle as red, and other vehicles as white.

Note that the observation image that SMARTS provides does not include any

stop sign or roadway priority information. This limitation of the current SMARTS

observation space will need to be removed before the simulator can be used for

more complex road networks; however, for this study we treated that information

as another feature which the RL agent would need to learn. The RL agent faces

this same challenge no matter which social agent it is trained against, and it seems

quite feasible to learn these features because the stop sign and/or roadway priority

is fixed for any given map in our set of scenarios.

3.2.2 Action Space

We initially tried a small space of just four discrete actions: stop, drive straight

at 40 km/h, turn left 15◦ at 40 km/h, or turn right 15◦ at 40 km/h; however, this

level of discretization resulted in very jerky motion by the ego vehicle as it tried to

approximate intermediate angles or speeds by switching rapidly between actions.

After some experimentation, we settled on ten discrete actions as shown in Ta-

ble 3.2. The asymmetry between the sharp left and sharp right turn actions arises

because left turns have a larger turn radius (and hence a smaller turning angle) than

right turns on road networks which have a “drive on the right” rule.

It is worth noting that although the ego vehicle’s agent specifies a desired

speed in its choice of action, the simulator also enforces maximums on accelera-

tion (2.6 m/s2) and deceleration (4.5 m/s2) of vehicles; consequently, the vehicle’s

actual speed may take several time steps to achieve an indicated desired speed.
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Table 3.2: Discrete action spaces.

Action Index Speed (km/h) Turning Angle (degree)

0 0 0
1 50 0
2 30 +2
3 50 +2
4 30 -2
5 50 -2
6 30 +10
7 50 +10
8 30 -20
9 50 -20

3.2.3 Reward Function

It is critical to design suitable reward signals to accelerate the learning process

and provide a valid baseline. The reward function consists of a weighted sum of

functions to encourage the agent to reach the final goal, while satisfying road rule

constraints and avoiding collisions. Following [16], it has the form

r = whrh +wrrr +wprp + rg (3.1)

where rh, rr, rp, and rg denote reward components for rewards of humanness, rules,

making progress to final goal, and reaching the final goal respectively, and wh, wr,

wp denote their respective weights chosen to sum to 1. Each reward term rx is

bounded between 0 to 1 as well (except rg for reasons discussed below).

The reward for humanness is defined as

rh = 0.3tanh(
dt

σd
)+0.3exp(−

d2
l

2σl
)+0.4rsteer (3.2)

where dt is the distance to the closest obstacle in ego agent’s visual field (span of 80

degrees centered at ego car’s heading direction) and driving in the same direction

as ego car (filtering out cars in the opposite lanes). As we want to maximize the

dt , we use a tanh function and choose σd to be the distance the ego car can travel
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given current speed for 1.5 seconds. Secondly, dl is the absolute offset of the ego

agent from the center of the lane. We want to encourage the offset to be close to

0, so we chose the Gaussian function and set σl to be 10 percent of the lane width.

Last, we reward action that keeps the same steering angle as the previous action,

where rsteer is defined as

rsteer =

1, if the current action has the same steering angle as the previous action

0, otherwise
(3.3)

We admit that this definition of “humanness” is overly simplistic and ignores or

overly simplifies factors which are known to influence human driving, such as

acceleration and jerk. However, any attempt to quantify humanness in a universal

manner using only local simulation state is doomed to failure anyway. We choose

this form because it captures some desirable aspects of driver behaviour, and we

note that our evaluation criteria stick to other, easily quantifiable properties (such as

whether the ego vehicle reaches the goal location) rather than qualitative properties

like humanness. It is also important to remember that this reward function only

impacts the training of the ego vehicle, and it is the job of the (already trained)

social agents to generate human-like trajectories for the other vehicles.

The reward for rule is defined as

rr = 0.7rw +0.3ro (3.4)

where rw is 0 when the ego car is on the wrong way and 1 otherwise, and ro is equal

to 1 when the ego car is on the shoulder and 0 otherwise. On shoulder is a flag

that SMARTS provides, and this flag is on when any corner point of the vehicle’s

bounding box is off the road while the center of the vehicle is not located off the

road. This term would also be a natural place to provide a reward for respecting

roadway priority, but we have chosen to force the ego vehicle to learn that priority

without a direct reward signal.
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Table 3.3: Hyper parameter values for reward functions

Hyper Parameters Description Value

wh Weights for reward of humanness 0.2
wr Weights for reward of rules 0.3
wp Weights for reward of making progress 0.5
σd Parameters for reward of distance to obstacles 1.5*vego

σl Standard deviation for reward of lane center offset 0.32

The reward for making progress is defined as

rp =

1, if the ego car is closer to the final goal than last time step

0, otherwise
(3.5)

Finally, the reward for actually reaching the final goal is defined as

rg =

50, if the ego car reaches the final goal

0, otherwise
(3.6)

The constant “jackpot” reward of 50 for reaching the final goal is chosen to be

larger than the maximum reward that the ego car can achieve if it just keeps driving

until the episode time limit is reached; consequently, it will prefer to achieve the

goal (thus ending the episode) rather than drive in circles until time expires.

The table 3.3 shows the hyper parameters and the corresponding values we

chose in the reward function design. These values were chosen by hand-tuning.

All training included in this study was using this fixed set of hyper parameters.

3.2.4 Neural Network Architecture and Training

All training was done via Python library SB3 [35] version 1.4.0 using the default

network architecture. Figure 3.6 shows the overall architecture that SB3 provides.

This network architecture can be separated into two main parts:

1. Feature Extractor: A neural network that extracts features from high dimen-

sional observations. SB3 uses a CNN for image data, and a flatten layer for
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vector observation data. The further details of the shape of the network will

be discussed in below.

2. Last Network: A two layer fully-connected network that maps the features

to actions or values. For PPO, each layer has 64 nodes.

All observations were first pre-processed before being fed to the feature extrac-

tor. The image data was normalized by dividing the values by 255 to have values

between 0 to 1. The non-image observation data—the relative goal position—is

converted to one-hot vectors.

For the image observations, SB3 used the ”Nature CNN” for feature extraction.

As PPO algorithm was selected, only a linear layer was presented after the CNN.

This CNN architecture was shared between actor network and critic network. The

details of the architecture used in the ”Nature CNN” is shown in Figure 3.7. With

a three frame stack of colored images at each timestep, a total of nine channels of

image data with 112 by 112 pixel resolution is fed into the ”Nature CNN”. After

three convolutional layers and one linear layer, a feature vector of length 256 is

generated.

The output of the CNN is combined with the relative distance and heading with

respect to the goal and they are fed to the final two-layer fully-connected network

to map to the action space or value space. This last network used 64 units per layer

for the PPO algorithm.

More details of the architecture of the ”Nature CNN” or the fully-connected

network architecture can be found at [35]. The pytorch code definition of the model

used in this study can be found in the Appendix A.

The Python library Stable Baseline3 is used for training the RL agents. The

learning algorithm is chosen to be Proximal Policy Optimization (PPO) for its rel-

ative robustness towards hyperparameter choices [36]. The default hyper param-

eters from Stable Baseline3 are used (specific values can be found in Table 3.4).

More detail can be found at [35].

3.3 Social Agent
We divide the vehicles in our simulations into two categories: A single ego vehicle

and all the other vehicles. The ego vehicle’s behaviour is controlled by a novel RL
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Figure 3.6: The default network architecture that SB3 provided. After feature
extraction for image data, the Nature CNN generates output of dimen-
sion of 256 while the vector observation gets flattened to a 1 by 6 vector.
This combined vector of features of dimension of 262 is fed into the last
network. The two layer fully connect network has 64 nodes for each
internal layer, and generates output of dimension 10 (the discretized ac-
tion space dimension).

Figure 3.7: Nature CNN architecture used for image input data.
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Table 3.4: The default hyperparameter values from Stable Baseline3

Hyper Parameters Description Value

Learning Rate Learning Rate 3e−5

N Step The number of steps to run for each environ-
ment per update

2048

Batch Size Minibatch size 64
N Epoch Number of epoch when optimizing the surro-

gate loss
10

Total Timestep The total number of samples (env steps) to
train on

4e6

agent which we are training or evaluating in the experiments below. The other ve-

hicles’ behaviours are controlled by a fixed or pre-trained social agent. Besides the

two social agents that SMARTS already supported—SUMO and ZOO—we also

integrated DRIVE social agents from a third party to compare the performance.

DRIVE was selected due to its easy to integrate API and responsive customer ser-

vice. To conclude, three different social agents were selected for this study:

• SUMO [29] has been an open-source traffic simulation suite since 2001, and

it has been widely used as a baseline social agent ever since. It is also by

default the background social agent that SMARTS provides. SUMO version

of 1.7.0 was used in the SMARTS simulator for this study.

• ZOO [47] is the more intelligent social agent that SMARTS claims to be, and

it is developed and deployed along with SMARTS simulator. It could come

from self play or population-based training [43]. We were curious about the

performance of this ZOO agent compared to SUMO agent.

• Last of all, DRIVE [37] developed a deep generative model for multi-agent

trajectory prediction which claims to provide a more realistic, behaviorally

diverse and interactive behavior model for social agents. They provide API

support for integrating their behavior model into the SMARTS simulator.

The social agents for the other vehicles are not given any path or goal infor-

mation; they are simply supposed to mimic how human agents might behave in
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similar circumstances. Each other vehicle is also an independent agent, and is

given the bird-view image centered at itself, all neighbor vehicles’ state including

position, heading, speed and bounding box, as well as the stop sign information as

their observation space. The social agents are not aware of which vehicle is the

ego vehicle. The SMARTS simulator provides the same observation space to all

social agents, and it is the social agent’s own decision on which information to use

to generate their next action. The social agent’s policy is packed in their own code

base, so the details will not be discussed here but can be found in each citation.

We consider the SUMO agent as the baseline social agent in our experiments

in the sense that training algorithm hyper parameters were (lightly) tuned to im-

prove results against SUMO agents, and then those hyper parameters were reused

without tuning when training against the other two social agents. We adopted this

approach because SUMO is the most widely used of the three social agents and hy-

per parameter tuning is computationally expensive; therefore, we believe the most

common use case for the other two agents would be swapping them into a training

regime already tuned for SUMO agents.

In addition to the three specified social agents, we established a training envi-

ronment that included all social agents, referred to as ”ALL” in subsequent sec-

tions. This training environment with ALL social agents consisted of six scenarios

for each social agent, totaling 18 scenarios. To ensure a fair comparison, the total

training steps for all ego agents remained consistent, as illustrated in Table 3.4.

Consequently, in the training environment with ALL social agents, the time spent

learning against each individual social agent was roughly a third of what was en-

countered for training sets involving a single social agent.
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Chapter 4

Results

With respect to each social agent (SUMO, ZOO, DRIVE, and ALL), we repeated

the training process for an ego agent three times from different random initial neu-

ral network parameters in the six training scenarios described in Section 3.1.2. This

protocol resulted in a total of twelve independently trained ego agents. The pur-

pose of training three independent ego agents against each social agent is to get

some intuition for the variability in results arising from the randomization in the

initial network parameters and the training algorithm itself; if there had been time,

we would have trained five or perhaps seven to improve that intuition. Then we

evaluate each trained agent in the test scenarios and analyze the results.

4.1 Evaluation Configuration
The test scenarios were identical to the training scenarios in Section 3.1.2, but

initialized with different random seeds. Every trained ego agent was tested against

each of the three social agents, including the one with which it was originally

trained, in the 6 scenarios. For each scenario, 20 episodes were evaluated. This

resulted in a total of 120 episodes evaluated for each trained agent.

All three instances of ego agents trained against each social agent were evalu-

ated, and the median of those three evaluation scores is presented in the following

sections. The detailed data for all twelve individual ego agents can be found in

Appendix A.
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Table 4.1: Median Completion Rate, Collision Rate, and Off-road Rate for
evaluation in SUMO environment.

Test in SUMO
Trained with Completion Rate Collision Rate Off-Road Rate

SUMO 0.692 0.233 0.075
DRIVE 0.575 0.283 0.142
ZOO 0.533 0.225 0.242
ALL 0.517 0.100 0.383

Table 4.2: Median Completion Rate, Collision Rate, and Off-road Rate for
evaluation in ZOO environment.

Test in ZOO
Trained with Completion Rate Collision Rate Off-Road Rate

ZOO 0.600 0.208 0.075
DRIVE 0.475 0.442 0.083

ALL 0.458 0.267 0.275
SUMO 0.358 0.600 0.058

4.2 Performance Analysis
Table 4.1, Table 4.2, and Table 4.3 show the results of trained agents evaluated

in the SUMO, ZOO, and DRIVE test environments respectively. We did not test

against the ALL social agent because the results can be inferred by averaging the

results for the other three. The tables report average completion rate, collision

Table 4.3: Median Completion Rate, Collision Rate, and Off-road Rate for
evaluation in DRIVE environment.

Test in DRIVE
Trained with Completion Rate Collision Rate Off-Road Rate

DRIVE 0.608 0.217 0.175
SUMO 0.529 0.379 0.093
ZOO 0.525 0.275 0.100
ALL 0.509 0.275 0.217
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rate and off-road rate on 120 episodes among six scenarios ranking from highest

completion rate to the lowest. All values shown in the tables are the median of

the three evaluation results from the three instances of ego agents trained in each

social agent environment. There are a couple of details worth noting about the rates

reported in these tables:

• In addition to collision, off-road, and completion, there is another (rare) ter-

mination condition: exceeding the time step limit. Consequently, the colli-

sion rate, off-road rate, and completion rate may not sum to one.

• If the ego car leaves the map—for example, overshoots the goal location—it

is counted as “off-road.”

We visualize the data in Table 4.1, Table 4.2, and Table 4.3 in Figure 4.1. The

figure shows the percentage chart for how episodes terminated in each of the twelve

test cases. Here it is easy to see that for the majority of the test cases the off-road

rate is lower than the collision rate, which means that collision with other social

agents is the main reason that an ego car could not complete the task within the

time constraint.

To get a feel for the variability between different training runs, Figure 4.2 shows

a bar chart for the completion rates of all three instances of each trained ego agent

evaluated in all three testing environments. Unsurprisingly, agents trained in the

environment with the same social agents as the test environment always scored the

highest completion rate, which is 69.2% for SUMO, 60.0% for ZOO, and 60.8%

for DRIVE. Averaging across the other three ego agents in each of the three test en-

vironments (so ZOO, DRIVE and ALL tested against SUMO; SUMO, DRIVE and

ALL tested against ZOO, . . . ), we see that the average completion rate is highest

when tested against SUMO and lowest against ZOO. Based on these compara-

tive results, we hypothesize that SUMO provides the least challenging social agent

environment, while ZOO provides the most challenging. We will discuss this hy-

pothesis further in Section 4.3 and Section 4.4.

Figure 4.2 also shows that agents trained in the DRIVE environment consis-

tently scored the second best in the other two social agents’ test environments.

Quantitatively the ego agent trained against DRIVE scored 57.5% tested against
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Figure 4.1: Percentage chart for completion rate, collision rate and off-road
rate for all twelve evaluation results. These values are for the median
of the three ego agent instances trained against a particular social agent,
and correspond to the data reported in Table 4.1, Table 4.2, and Ta-
ble 4.3.

SUMO and 47.5% tested against ZOO (see Table 4.1 and Table 4.2). These results

potentially indicate that the DRIVE social agents may provide the most behav-

iorally diverse training environment, thereby resulting in a more robustly trained

ego agent.

In contrast, we now draw attention to the large disparity in completion rates

for ZOO trained ego agents against SUMO social agents, and vice versa. Further-

more, while the ZOO trained ego agent achieves roughly the same collision rate in

the SUMO test as DRIVE and even SUMO itself, the SUMO trained ego agents

has by far the worst collision rate of all test cases for the ZOO test. These results

provide further support for the hypothesis that the ZOO and SUMO social agent
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Figure 4.2: Completion rate of trained ego agents in different testing envi-
ronments. A given bar shows the completion rate for all three inde-
pendently trained instances of the ego agent: the top and bottom of the
bar correspond to the rates of the best and worst instances, and the line
through the middle is the median instance. It is this median instance
which is reported in the first columns of Table 4.1, Table 4.2, and Ta-
ble 4.3.

behaviours deviate significantly from one another, with the ZOO social agents the

more challenging of the two. To further investigate this, we perform a more de-

tailed analysis of the reasons for collisions and the characteristics of the driving

environments presented by the different social agents.

Turning now to the bottom rows of Table 4.1, Table 4.2, and Table 4.3 (or the

red bars in Figure 4.2), we see that the ego agent trained against ALL social agents

appears to have the most consistent performance among all test environments; for

example, its median completion rate is 51.7% tested against SUMO and DRIVE

social agents, and slightly lower at 45.8% against ZOO social agents. It does have

the lowest median completion rate among the ego agents in both the SUMO and

DRIVE tests, but in both cases it is only a tiny bit worse that the ZOO trained

ego agent. Looking at the reasons for failure, its high off-road rate may indicate

a need for longer training time or a deeper neural network architecture, because it
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Figure 4.3: Front and rear view field of an ego car. They are both defined as
a span of 80◦ centered along the heading axis.

is trying to learn a more complex environment (more different behaviours for the

other vehicles) with the same number of training episodes.

We did test for the statistical significance of the completion rate results with

both paired and unpaired t-tests; however, given that we had only three instances

of each agent it should come as no surprise that the data is insufficient to claim any

strong result of this nature.

4.3 Collision Rate Analysis
To further analyze the collision incidents detected during test evaluations, we de-

fine three collision types. For the purpose of these definitions, Figure 4.3 shows

the front and rear view fields of the ego car.

1. Front Collision: The other vehicle is within the front view field of the ego car

and the difference between the other car’s heading and the ego car’s heading

is smaller than 40 degrees. In this type of accident it is highly likely that the

ego car is at fault, as the collided vehicle was struck from behind by the ego

vehicle.

2. Rear Collision: The other vehicle is within the rear view field of the ego car.

In this type of accident, it is highly likely that the social agent controlling the

other vehicle is at fault, as the ego car was the one being struck from behind.

3. Other Collision: All collisions that cannot be categorized into the former two

types, such as head-on or T-bone collisions, are binned into this category.
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Table 4.4: Median collision rate for different collision types for evaluation in
SUMO environment.

Test in SUMO
Trained with Front Collision Rate Rear Collision Rate Other Collision Rate

(Proportion) (Proportion) (Proportion)

SUMO 0.050 (21.4%) 0.033 (14.3%) 0.150 (64.3%)
ZOO 0.192 (85.2%) 0.008 (3.7%) 0.025 (11.1%)

DRIVE 0.067 (23.5%) 0.050 (17.6%) 0.167 (58.8%)
ALL 0.058 (58.3%) 0.000 (0.0%) 0.042 (41.7%)

Determining fault in this type of collision can be complicated, so we do not

attempt to do so.

Through this collision type categorization we are better able to understand the colli-

sion rates during testing against different social agents, and hence potentially some

qualitative characteristics of the three social agents.

With that in mind, Table 4.4, Table 4.5, and Table 4.6 show the rates of the

different categories of collisions during testing against SUMO, ZOO and DRIVE

social agents respectively. The percentage values inside the parentheses are the

fraction of all collisions attributable to that category. In other words, the rates

(outside the parentheses) should sum across a row to the rate reported in the second

columns of Table 4.1, Table 4.2, and Table 4.3 respectively, while the percentages

(inside the parentheses) should sum across a row to 100%.

Collisions against the SUMO social agents: The rear collision rates for all

trained ego agents in Table 4.4 stand out for being very near zero, and the lowest

rear collision rates in any of the tables. From this we may hypothesize that the

SUMO behaviour model may contain a certain hard-coded driving mechanism that

prevents them from colliding into the vehicle in front. While it may represent

defensive driving at its best, it is unrealistic and may cause the ego vehicle to learn

to ignore the vehicles behind it and therefore stop as quickly as possible whenever

it wants. Evidence of this negative effect on ego agent training can be found in

Table 4.5 and Table 4.6, where the category responsible for the most collisions for

ego agents trained against SUMO social agents is a rear collision.
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Table 4.5: Median collision rate for different collision types for evaluation in
ZOO environment.

Test in ZOO
Trained with Front Collision Rate Rear Collision Rate Other Collision Rate

(Proportion) (Proportion) (Proportion)

SUMO 0.075 (12.5%) 0.367 (61.1%) 0.158 (26.4%)
ZOO 0.025 (12.0%) 0.125 (60.0%) 0.058 (28.0%)

DRIVE 0.033 (7.5%) 0.308 (69.8%) 0.100 (22.6%)
ALL 0.042 (15.6%) 0.150 (56.2%) 0.075 (28.1%)

Table 4.6: Median collision rate for different collision types for evaluation in
DRIVE environment.

Test in DRIVE
Trained with Front Collision Rate Rear Collision Rate Other Collision Rate

(Proportion) (Proportion) (Proportion)

SUMO 0.093 (24.5%) 0.150 (39.6%) 0.136 (35.8%)
ZOO 0.083 (30.3%) 0.058 (21.2%) 0.133 (48.5%)

DRIVE 0.042 (19.2%) 0.100 (46.2%) 0.075 (34.6%)
ALL 0.142 (51.5%) 0.067 (24.2%) 0.067 (24.2%)

Collisions against the ZOO social agents: The opposite effect can be seen in

Table 4.5, where rear collisions make up the overwhelming majority of collisions.

From this pattern we hypothesize that the ZOO social agents are more aggressive

and less interactive than SUMO or DRIVE social agents. As a consequence, ego

agents trained against ZOO social agents may learn to be very cautious about the

vehicles behind them, as demonstrated in Table 4.4 and Table 4.6 by the fact that

the ego agent trained against the ZOO social agents has a significantly lower rate

of being rear-ended than ego agents trained against SUMO or ZOO.

Collisions against the DRIVE social agents: It is much harder to discern

a pattern from testing against DRIVE social agents as reported in Table 4.6, as

the category of the most common collision type varies depending on which social

agent the ego vehicle was trained against. To further explore this lack of an obvious

pattern, Figure 4.4 shows for each test environment the fraction of collision types
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averaged across the ego agents which were trained against all four social agent

types. From this we see that when testing against DRIVE social agents, the three

categories of collision are much more balanced than when testing against either

SUMO or ZOO social agents. In fact, comparison of the data in Table 4.6 against

the other two tables confirms that the ego agent trained against each of the four

social agents demonstrates greater balance between the categories of collision in

the DRIVE tests than in tests against SUMO or ZOO. This observation of the colli-

sion type distribution suggests that DRIVE may have the most behaviorally diverse

social agent model.

(a) Test in SUMO (b) Test in ZOO (c) Test in DRIVE

Figure 4.4: Average proportion of collision types under different testing en-
vironments.

Comparing against collision categories in real life is difficult, since each real

life collision does not involve an “ego” and an “other” vehicle, and is categorized

by a trained human assessor rather than with a simplistic mathematical definition.

For example, the US National Highway Traffic Safety Administration (NHTSA)

Crash Report Sampling System (CRSS) during the period 2016–2020 reported that

front-to-rear collision accounts for 43.9% of traffic accidents and angle accounts

for 33.8% [4]. These CRSS categories are not equivalent to our definitions—for

example, a CRSS front-to-rear collision means that one of the vehicles suffered a

front and one of the vehicles suffered a rear collision according to our categories—

but it does indicate that the direction of the vehicles before collision is reasonably

well balanced. Figure 4.4 makes it clear that the DRIVE social agent comes closest

to achieving a balanced portfolio of failure modes.
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Figure 4.5: Traffic acceleration distribution for social agents.

4.4 Characteristics of Social Agents
To further investigate the characteristics of the three social agents, we collected

some metadata about the environment which those social agents created. Note that

the ego agent’s behaviour has only indirect and limited effect on this metadata as it

is mediated through its interaction with the social agents in its immediate vicinity.

4.4.1 Traffic Acceleration and Speed

Figure 4.5 shows the distribution of traffic acceleration for the three social agents.

The data is categorized into four ranges: less than 0.28 m/s2, between 0.28 to 1.23

m/s2, between 1.23 to 2.12 m/s2, and more than 2.12 m/s2. These thresholds are

derived from a study by [11], where longitudinal accelerations up to 0.28 m/s2

were deemed ’Excellent,’ and accelerations surpassing 2.12 m/s2 were regarded as

’Terrible.’ The inflection point for acceptable acceleration, described as ’So-so,’

was found to be at 1.23 m/s2.

As shown in the figure, for all social agents, over 65% of accelerations fall

within the ”Excellent” category, while less than 2% of accelerations are catego-

rized as ”Terrible”. Notably, there is no substantial difference in the distribution of
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Figure 4.6: Traffic speed distribution for social agents.

accelerations among the different social agents.

Figure 4.6 shows the distribution of traffic speeds. The most conspicuous out-

lier is within the speed range of 45 km/h to 55 km/h, where over 60% of ZOO

agents fall, while only around 30% of both DRIVE and SUMO agents fall within

this range. As a result, the average speed of ZOO agents is notably higher than that

of SUMO or DRIVE agents, which likely contributes to the high rear-end collision

rate for ego vehicles in the ZOO tests. In contrast, DRIVE agents display an even

speed distribution across bins below 55 km/h and a greater fraction of speeds above

55 km/h, again indicating a more diverse behavioral model.

4.4.2 Traffic Density

We define traffic density as the count of social agent vehicles within a 50×50 meter

view zone centered around the ego car at each time step. The average traffic density

has been calculated for each scenario and each social agents, and the outcomes are

presented in Figure 4.7.

For scenarios like Highway Cruise, Highway Merge, 1 to 2 lane left turn c

(cross intersection), and 1 to 2 lane left turn t (T-junction), the traffic densities
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Figure 4.7: Traffic density for the environments generated by each social
agent for each scenario.

are within a similar range across different social agents. Unsurprisingly, highway

scenarios generally have higher traffic density compared to intersection scenarios,

as intersections introduce more complicated conditions that may slow down traffic

flow.

Interestingly, in the case of 1 to 1 lane left turn c scenarios, the SUMO en-

vironment exhibits notably higher traffic density than both the ZOO and DRIVE

environments. To investigate this observation, animations of several episodes in

the SUMO environment were observed and compared with those in the ZOO and

DRIVE environments. The comparison between representative snapshots of these

scenarios running under different social agent environments are presented in Fig-

ure 4.8. It is evident from these snapshots that in the SUMO environment, traffic

congestion prior to entering the intersection is considerably worse than in the ZOO

and DRIVE environments.

The cause of this severe traffic jam before the intersection in the SUMO en-

vironment might be attributed to the behavioral model of SUMO agents, which

strictly follows hard-coded rules. As a result, when an ego car’s behavior deviates

from SUMO agents’ expectations, SUMO agents can easily end up in deadlock sit-
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(a) Test in SUMO (b) Test in ZOO

(c) Test in DRIVE

Figure 4.8: Snapshots of running scenarios 1 lane to 1 lane left turn cross
intersection under different social agents environment.

uations. On the other hand, ZOO and DRIVE agents appear to be less likely to wait

for a long time (if not forever) when presented with out-of-distribution behaviors.

A second outlier is 1 to 2 lane right turn c, where the traffic density is higher

for ZOO and DRIVE environment than SUMO environment. The cause of this

outcome remains unclear and is worth further investigation.

4.4.3 Traffic Neighbor Distance

A “neighbor” of a given agent is defined as the closest vehicle within its field of

view and heading in roughly the same direction. This definition is similar to the
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Figure 4.9: Average neighbor distance between vehicles for the environments
generated by each social agent.

Figure 4.10: Average neighbor distance between vehicles with respect to ve-
hicles’ speed for the environments generated by each social agent.
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definition stated for the front collision type as outlined in Section 4.3, and ignores

vehicles behind, to the side, or traveling in a different direction. It is important to

note that a vehicle may have no neighbor when no other vehicle on the road meets

the specified criteria. As a consequence, no neighbor distance data is collected for

that vehicle during that particular time step.

The results for neighbor distances are presented in Figure 4.9 and Figure 4.10,

with the former showing results in meters and the latter in units of time. In the latter

figure, the distance is divided by the speed of the subject vehicle to approximate

the reaction time available to the driver if the neighboring vehicle were to come to

an abrupt halt.

As shown in Figure 4.9, the neighbor distances seem to be relatively consistent

across all social agents for each scenario, with the ZOO agent displaying slightly

longer distances in four out of the six scenarios. However, when considering the

neighbor distances with respect to the vehicle’s speed as shown in Figure 4.10,

it becomes clear that ZOO agents have the shortest driver reaction times across

all scenarios, while SUMO agents have the longest reaction times. This outcome

aligns with the findings from Section 4.4.1, where ZOO environments demonstrate

higher traffic speeds and SUMO environments have the slower speeds. The short

reaction time of ZOO agents may also contribute to their high rate of rear collisions,

as mentioned in Section 4.3.

4.5 Limitations
This study has a number of limitations. All trained agents were based on a sim-

ple default neural network architecture provided by Python library stable baseline3

and detailed in Section 3.2.4. This architecture is likely insufficiently deep to en-

able an ego car to learn to respond consistently to the complex traffic scenarios

presented by the various interacting social agents, as evidenced by the completion

rates of each trained agent. The highest completion rate, 0.692, is attained by an

agent trained and tested in the SUMO environment; however, this rate would be

considered dismal for a real autonomous vehicle. This study was intended to be

a lightweight exploration of the relative merits of training against different social

agents, but an ego agent intended for actual use would certainly require a deeper
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and perhaps more complex network architecture, and a corresponding greater train-

ing time.

The second limitation arises from the discrete action space adopted in this

study. We chose a discrete action space in alignment with the default settings

of the “Driving SMARTS@NeurIPS2022” competition and to avoid the complex-

ity of a continuous action space. However, our study adopted a relatively coarse

action space with only ten options. This choice reduced training time but led to

non-human driving behaviors, such as abrupt braking and zig-zag motions. If time

allows, exploring a higher-dimensional discrete action space or a continuous action

space would be worth considering.

Last but not least, our testing environment was not as diverse as it could be.

The testing scenarios were identical to those used in training. While different ran-

dom seeds were applied to the evaluation environments, no novel maps or ego car

tasks were introduced. Although additional novel scenarios were available from

the competition, integrating DRIVE or ZOO agents into each scenario required ef-

fort from the agents’ authors and we did not want to strain their already generous

support for this preliminary study. If this study is extended, adding more scenarios

would be a straightforward if somewhat time-consuming task.
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Chapter 5

Conclusion

To supplement the existing studies on social agents for autonomous driving de-

velopment provided by different simulators, this study compared the performance

of the ego agent policies learned through RL from training in a common simula-

tor environment but with three different social agents: SUMO, ZOO, and DRIVE.

Specifically, we implemented six training scenarios with the three social agents:

highway cruising, highway merging, one lane to one lane cross intersection left

turn, one lane to two lanes cross intersection left turn, one lane to two lanes T in-

tersection left turn, and one lane to two lanes cross intersection right turn. For a

fair comparison among the ego agents trained with different social agents, all of

the training environment factors—including observation and action space, reward

function, neural network architectures and related learning hyper parameters—

were set the same. The trained ego agents were then evaluated with each social

agent under six test scenarios, which were identical to the ones in training but with

different random seeds. Performance was compared under the criteria comple-

tion rate, collision rate, off-road rate, and collision type distribution. To further

explore observation the effect of social agent, we investigated the general traffic

characteristics of each social agent: traffic density, traffic speed distribution, traffic

acceleration distribution, and average neighbor distance.

We data shows some interesting patterns. Unsurprisingly, all trained ego vehi-

cles scored the highest completion rate under the test environment with the same

social agents as their training environment. However, autonomous ego vehicles
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trained in environments with the DRIVE social agents scored the second best in all

test environments with other social agents consistently. As for collision rate, the

test environment with the ZOO social agents showed the highest average collision

rate of 37.9%, while it is 28.7% for DRIVE and 21.0% for SUMO. We charac-

terized the type of collision into three easily distinguished categories: front (ego

agent likely at fault), rear (social agent likely at fault), and other (unknown fault).

More than 60% of collisions when testing in ZOO environments were rear colli-

sions, while only 9% of collisions when testing SUMO environments were rear

collisions. These statistics lead us to believe that the ZOO agents are quite ag-

gressive and the SUMO agents quite defensive. DRIVE social agents appeared to

have the most balanced collision type distribution where each type accounted for

roughly one third of the total collisions.

We further investigated the characteristics of the traffic generated by each social

agent. Many of the measures were essentially the same for all social agents, but a

few stood out. While more than 60% of the ZOO social agents fell into the speed

bins above 45 km/h, only around 40% of either SUMO or DRIVE social agents

was driving more than 45 km/h. In addition, ZOO social agents had the shortest

average neighbor distance with respect to their current speed for all six scenarios

among all social agents. These characteristics further explained the high collision

rate and the high rear-end collision proportion for ZOO social agents.

In general, the findings of our study reveal that each social agent has its own

characteristics, and those different characteristics impact the policies of ego agents

trained against those social agents. ZOO social agents appeared to be too aggres-

sive on the road and not interactive enough with the ego vehicles, which resulted

in overly cautious ego vehicles. While SUMO social agents showed a fair amount

of interactivity by yielding to ego vehicles most of the time, it also resulted in ag-

gressive ego vehicles with the highest collision rate in the test environments with

other social agents. Lastly, DRIVE appeared to be the most behaviorally-diverse

social agent among them all, and it also appeared to offer a happier medium on the

scale of aggressive to defensive interactivity with ego vehicles.

During the experiment’s setup stage, we integrated DRIVE into the SMARTS

simulator, and implemented code that supported five different map settings and six

scenarios. With the option to modify the ego car’s task, additional scenarios can be
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easily created. The integration code is open source.

This study discussed several representative social agents for training autonomous

ego agents in simulation, but our comparisons cannot cover all possible social

agents or simulators. From the results of this study, we believe it a worthwhile

endeavor to explore other social agents in traffic simulation. If future study is

undertaken, it would be worthwhile to explore more complicated neural network

architectures, hyper parameter tuning, and action spaces to see if those have an ef-

fect on ego agent performance. Regarding the comparison between different social

agents, a notable limitation of the current study was the use of the same scenarios

for testing as for training; it would be good to introduce unseen maps and/or goals

at the testing phase.
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Appendix A

Supporting Materials

Inverted AI provided some characteristic data about real traffic, which we compare

in the figures below against the data collected in section 4.4. In each graph the red

bars show the real data.
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Figure A.1: Traffic speed distribution for social agents and real traffic data
provided by InvertedAI.

Figure A.2: Traffic acceleration distribution for social agents and real traffic
data provided by InvertedAI.
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Figure A.3: Traffic average neighbor distance for social agents and real traffic
data provided by InvertedAI.

Figure A.4: Traffic average neighbor distance with respect to vehicles’ speed
for social agents and real traffic data provided by InvertedAI.
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