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Abstract 

Understanding changes in salmonid populations and their habitat is a critical issue given 

changing climate, their importance as a keystone species, and their cultural significance. Further, 

there is an increasing need to provide up to date, accurate, and spatially explicit information to 

forest managers to make informed decisions within a sustainable forest management context. 

The increasing availability of Airborne Laser Scanning (ALS) data for forest applications offers 

an opportunity to utilize these data for assessing the quality and quantity of habitat, which is 

often costly and difficult to characterize at broad scales. ALS data provides detailed and accurate 

Digital Elevation Models (DEMs) under forest canopies, which in turn enable the 

characterization of detailed stream networks, as well as stream and terrain attributes important to 

salmonids. The primary objective of this thesis is to examine the potential of ALS to characterize 

stream habitat features important for salmonids. To accomplish this a systematic review 

examining how remote sensing technologies have been used to characterize stream habitat 

features was completed. Next, workflows and models were developed to extract stream width 

and  individual morphological features classified as pools, riffles, runs, and cascades using ALS 

data. Additionally, the ability of ALS to extract instream wood features was assessed, examining 

which ALS and environment attributes influenced the detection rate. Lastly, a broader 

perspective was used and a framework was developed to integrate ALS derived indicators of 

watershed condition and pressure into existing watershed status evaluations procedures. 

Ultimately, the research presented in this thesis describes a series of value-added approaches to 

better understand how ALS data can be used to characterize stream and riparian vegetation 

features important to salmonids in a forested environment.  
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Lay Summary 

There is a need for spatially explicit and accurate information regarding fish habitat in forested 

watersheds. Remote sensing technologies, specifically laser scanning have a strong history in 

providing  accurate information on vegetation and terrain due to their ability to provide three-

dimensional characterization of the environment. This thesis examines the ability of airborne 

laser scanning data (ALS) to characterize stream habitat features important to salmonids in a 

forested environment and presents a framework to assess the quality of these habitat indicators. 

Methods to use this technology to map stream width, habitat, and instream wood features were 

developed and assessed for accuracy.   
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Chapter 1: Introduction  

1.1 Introduction  

Understanding changes in Pacific Salmon and trout (Salmonidae, Oncorhyncus spp; hereafter 

termed salmonids) populations and their habitat is a critical issue given changing climate, their 

importance as a keystone species, and their cultural significance (Atlas et al., 2021; Dey et al., 

2021; Irvine & Fukuwaka, 2011). Within their freshwater stream habitats, salmonids require 

suitable food, shelter, spawning areas, water quality, and unimpeded migration access both 

upstream and downstream (Quinn, 2004). These habitat features are the products of interactions 

between climate, watershed hydrology, hillslope and erosional processes, management, and 

upland and riparian vegetation dynamics (Pike, 2010).  

Riparian ecotones are the component of the terrestrial environment that exert influence on a 

stream and (or) that is influenced by the waterbody (Naiman & Décamps, 1997). These 

influences include thermoregulation of streams through channel shading, addition of nutrients to 

stream systems through leaf shedding, bank stabilization, and creation of habitat features through 

supply of instream wood (Tschaplinski & Pike, 2010). Riparian areas are hotspots for terrestrial 

and aquatic biodiversity including both plants and animals (Domer et al., 2019; Semmens & 

Ancona, 2019). Compared to upland forests, riparian vegetation is more dense, has greater 

biodiversity, and has a more complex vertical canopy structure (Naiman & Décamps, 1997). Yet, 

riparian habitat loss driven by climate change, forest harvesting and associated road construction, 

development, and other anthropogenic disturbances, is increasing and as a result it is important 

for forest managers to actively protect riparian areas to ensure that these areas continue to 

provide a wide variety of ecosystem services.  
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The degree to which the riparian ecotone, climate change, and anthropogenic disturbances 

influence a stream is dependent on stream size, as many smaller streams have less predictable 

flows (Pike, 2010), or are less protected under current management practices (Ministry of 

Forests, 2019). Generally, headwater streams are considered order one or order two and include 

tributaries with permanent, intermittent and ephemeral flows (Colvin et al., 2019; Strahler, 

1957). Small headwater streams account for over 70% of stream networks across the world 

(Colvin et al., 2019; Datry et al., 2014). These streams strongly influence ecological function 

within both headwater and downstream areas, including lakes and coastal estuaries by 

transporting water, sediments and organic material, while enhancing water quality and nutrient 

cycling (Colvin et al., 2019).            

Headwater streams provide critical habitat conditions for fish, specifically salmonids in British 

Columbia, Canada (Gregory & Bisson, 1997). The aquatic habitat of these species is influenced 

by, in addition to riparian vegetation, a variety of terrain characteristics which act as key drivers 

of hydrologic and geomorphic processes (Hogan & Luzi, 2010). Stream geomorphic processes, 

such as flow rate, sediment transport, and channel shape, create complexity in stream structures, 

which have been directly linked with quality and quantity of salmonid habitat and by association 

the distribution of salmonids (Bjornn & Reiser, 1991). 

Within a watershed, the distribution of salmonids is broadly influenced by stream features such 

as bankfull width and gradient (McMillan et al., 2013; Ptolemy, 2013). However, within a single 

stream reach, salmonid distribution becomes increasingly correlated to microhabitat features 

such as morphological units (e.g. pools and riffles), instream wood, and depth (Dolloff & Warren 

Jr, 2003; Fausch, 1993; Fausch & Northcote, 1992). The importance of morphological units, 

specifically pools and riffles is well recognized with many salmonids relying on pools during 
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seasonal low flow periods and using riffles during the spawning season (Bjornn & Reiser, 1991; 

Gonzalez et al., 2017; MacIsaac, 2010). Further, instream wood not only contributes to stream 

structural complexity by influencing pool availability but also provides nutrients and influences 

sediment distribution and has also been corelated with salmonid abundance (Bilby, 2003; Boss & 

Richardson, 2002; Montgomery et al., 2003; Rosenfeld et al., 2000). Thus, understanding the 

distribution of habitat features across fine and broad scales is important for assessing the 

distribution of salmonids species and quality habitat within headwater streams and throughout an 

entire watershed.   

As watershed and forest processes that influence salmonid habitat shift, salmonids are facing 

increasing pressures through climate change and anthropogenic disturbances (Dey et al., 2021; 

Peacock et al., 2023). There is a growing need to characterize salmonid habitat and quantify the 

stressors and pressures facing watersheds (Dey et al., 2021). Conventional methods to 

characterize stream habitat are conducted by small teams in situ and generally target single 

stream reaches ranging in length from 50 – 500 m. The goal of these approaches is to quantify 

habitat features and draw inferences about habitat quantity and quality throughout a watershed. 

However, these approaches seek to characterize representative stream reaches and then make 

extrapolations rather than completing a comprehensive watershed census, leading to missing 

information on the hierarchical and heterogeneous nature of freshwater habitat features (Fausch 

et al., 2002). Indeed, monitoring and measuring salmonid habitat is costly, time consuming and 

can be extremely difficult to achieve at a broad spatial scale using conventional in situ 

measurements, thereby resulting in a need to develop tools and approaches to characterize habitat 

features across a variety of different spatial scales.   
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Over two decades ago, Fausch et al. (2002) called for increases in research and applications 

across longer time scales and over larger geographic areas to better understand the natural and 

anthropogenic processes affecting fish habitat and ultimately to better manage fish and prevent 

habitat and population declines. Remote sensing systems generate new opportunities to observe 

both the condition of salmonid habitat and the pressures (i.e., climate change, habitat loss) that 

they are facing. Specifically, conventional passive optical earth observation satellites, such as 

Landsat systems, have well developed research histories in riverine applications (Piégay et al., 

2020). Passive optical sensors record the amount of electromagnetic radiation reflected off the 

earth’s surface in the visible, near infrared (NIR), and shortwave infrared portions of the 

electromagnetic spectrum (Chuvieco, 2016). One strength of these sensors is the ability to 

examine phenomena outside of the visible region of the electromagnetic spectrum. For example, 

differences in the reflection and absorption properties of water can be used to differentiate 

between amounts of suspended sediment, changes in depth and flood extent, submerged aquatic 

vegetation levels, and instream habitat units (Marcus et al., 2012). A second strength of these 

systems is the temporal resolution, with the Landsat series of satellites having collected over 50 

years of open source, analysis ready data (Wulder et al., 2022). The large temporal span of these 

systems allows for the ability to explore previous watershed condition and examine changes in 

watershed processes through time (Pekel et al., 2016). However, these systems are generally 

limited to larger river systems due to their moderate spatial resolutions, 30 m for Landsat, and 

their inability to see into and below the forest canopy to detect three dimensional ground 

topography. These limitations become particularly problematic in headwater streams where a 

single Landsat pixel could contain portions of the wetted stream, some dry stream bed, bankside 

riparian vegetation and upland vegetation leading to more noise than signal in the data. Further, 
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in some regions, like the Pacific Northwest of North America, headwater streams can have high 

canopy cover leading to total occlusion when viewed from above using passive sensors 

(Johansen, et al., 2010).  

The use of light detection and ranging (lidar), has a demonstrated capacity to penetrate forest 

canopies to generate fine scale digital elevation models (DEM) and point clouds from which a 

variety of stream structures, physical terrain information, and vegetation characteristics can be 

derived (Johansen et al., 2010; O’Callaghan & Mark, 1984; Tompalski et al., 2017). Lidar 

systems typically consist of three components; a laser scanner, a Global Positioning System 

(GPS), an Inertial Measurement Unit (IMU) all mounted on a platform such as a tripod often 

termed terrestrial laser scanning (TLS), an airplane or  airborne laser scanning (ALS) or a 

satellite system (Lefsky et al., 2002). Working in unison, these components derive information 

on the three-dimensional location of reflected objects, be it vegetation or terrain, very accurately 

based on the amount of time it takes for a laser pulse to reflect off a surface and return to the 

laser scanner (Lefsky et al., 2002). Processing of the reflected laser pulses provides a three-

dimensional point cloud used to extract detailed terrain and vegetation characteristics (Reutebuch 

et al., 2003; Wasser et al., 2013).    

Studies using ALS data to characterize riparian and stream attributes are becoming increasingly 

common. For example, ALS has been used to map riparian zone extent and stream width of  

large Australian rivers with some success (Johansen et al., 2011). In France, ALS systems were 

used to extract indicators of ecological integrity of riparian zones finding a decrease of riparian 

forest integrity in built up areas and lower flooding frequency with more intact riparian forests 

(Michez et al., 2013). Further, in a Canadian context, Tompalski et al (2017) used ALS to 

characterize riparian vegetation and stream networks based on riparian management area 
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guidelines (Forest and Range Practices Act, 2002). As demonstrated above, ALS and remote 

sensing have been used to examine riparian and stream ecosystems. However, there has been 

limited development of methodologies to characterize small headwater streams, specifically 

deriving morphological units important to salmonids. With the increased acquisition of ALS data 

across larger areas, there is increasing opportunities to create value-added information products 

that take advantage of the data to support other forest management objectives. 

Key to this research is evaluating the capacity of ALS data to charactertize the freshwater aquatic 

environments important to salmonids across multiples scales. By doing so, this research will 

support the information needs of forest and fisheries managers by providing approaches to better 

understand the streams and aquatic environments in their management areas, enabling 

operational planning that aligns with sustainable forest management philosophies. Further, this 

research aims to create tools and aproaches to leverage ALS data to provide a more robust 

characterization of the entire forest ecosytems beyond the vegetation attributes routinely derived 

(Eitel et al., 2016). The capability of ALS to characterize stream structures important to fish 

habitat needs to be quantified, as there has been limited research on characterizing small streams 

less than 10 m wide, classifying individual morphologic units, and detecting instream wood, 

which could prove invaluable in assessing habitat quality and abundance of salmonids. 

Furthermore, few remote sensing studies have looked at how ALS data can be integrated into 

current fish habitat and watershed health status assessments. Therefore, the goal of this research 

is to further the application of ALS data for the characterization of riparian and aquatic 

environments.  

1.2 Research questions  

To address the above, this PhD aims to answer the following research question: 
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What stream and riparian features of importance for fish habitat can be accurately characterized 

using airborne laser scanning?   

This question will be divided into four sub questions:  

1. How have remote sensing technologies been used to characterize freshwater fish habitat? 

2. To what extent can individual fish habitat units be characterized in small streams using 

ALS data? 

3. How can ALS data be used to characterize instream wood and what physical and 

environmental properties effect detection rate?  

4. How can ALS derived indicators of habitat condition and pressure integrate into existing 

landscape scale habitat monitoring protocols?   

1.3 Dissertation overview 

The remainder of this dissertation aims to address the research questions outlined above in 6 

chapters (chapters 2 -7; Figure 1-1): 

How have remote sensing technologies been used to characterize freshwater fish habitat? 

Chapter 2 provides a systematic review on the ability of remote sensing technologies to 

characterize fresh water fish habitat. I describe the trends, challenges, and opportunities in the 

research field and provide background information for the dissertation.  

To what extent can individual fish habitat units be characterized in small streams using ALS 

data? 

Chapter 3 describes the two study watersheds and gives an overview of the ALS and field data 

collected.  

In chapter 4 I describe the process of extracting stream width, and reach level instream wood 

counts from an ALS point cloud. Further, in this chapter I train and test a random forest model 

for predicting four classes of stream morphological units in the study stream reaches.  
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How can ALS data be used to characterize instream wood and what physical and environmental 

properties effect detection rate?  

Chapter 5 describes a methodology to extract individual instream wood features from a point 

cloud and examines which environmental and ALS data properties impact detection rate.  

How can ALS derived indicators of habitat condition and pressure integrate into existing 

landscape scale habitat monitoring protocols?   

Chapter 6 builds off the previous chapters and presents a framework for using ALS data and the 

methods developed in this dissertation, to provide a description of the condition and pressures 

facing salmonid habitat at the watershed scale.  

Lastly, chapter 7 offers conclusions and synthesis of the dissertation providing an overview, 

highlighting innovations, and detailing limitations and future directions of the work.        
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Figure 1-1. Conceptual diagram demonstrating the general structure of this dissertation.  
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Chapter 2: Background - Advances in remote sensing of freshwater fish 

habitat: A systematic review to identify current approaches, strengths and 

challenges 

Recent advances in the use of remote sensing have revolutionized many fields of ecology and 

environmental management in terrestrial and aquatic ecosystems (Cavender-Bares et al., 2022; 

Iskin & Wohl, 2023; Lines et al., 2022). Monitoring to support management decisions typically 

relies on ground sampling across time and space, which is associated with high labour costs and 

safety issues, as well as logistical challenges in inaccessible areas. The diversity of remote 

sensing technologies and platforms has expanded greatly in the past few decades. Technological 

advances have resulted in remotely sensed data with greater spatial, temporal, and spectral 

resolutions (Chuvieco, 2016). This, accompanied by trends toward free and open data policies, 

analysis ready data products, and the increasing availability of cloud computing resources, has 

made these data more widely available (Wulder et al., 2022). These innovations and trends are 

resulting in the development of powerful new tools and data sources that can be applied to 

regions and to map and monitor environmental phenomena historically not possible. 

The identification and protection of habitat is of critical importance to the management and 

conservation of freshwater fish species. Indeed, habitat availability is often seen as the limiting 

factor for species recovery in degraded ecosystems and thus habitat features are often targeted 

during the restoration of aquatic ecosystems (Bond & Lake, 2003). Additionally, freshwater 

habitat is an important determinant of fish population health and has therefore been included in a 

variety of different environmental protection legislation globally (Dey et al., 2021). Given the 

scale and pace of habitat degradation that is occurring as a result of a changing climate, land-use 
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practices, and resource extraction industries, methods are needed to rapidly assess, delineate, 

identify, and monitor the quantity and quality of important components of freshwater fish habitat 

(Dey et al., 2021).  

Assessments of freshwater habitat are most often obtained using field sampling, wherein crews 

spend time in streams and lakes measuring attributes and installing/retrieving in situ data loggers. 

These methods are costly, time consuming, and in many circumstances, impossible to scale-up 

geographically and temporally (Diggins et al., 2016; Papa et al., 2020). Remote sensing allows 

for continuous data collection across large geographic areas, often with repeat sampling, and 

increasingly finer spatial, temporal, radiometric, and spectral resolutions. There has also been an 

increase in the availability of consumer-level Unmanned Aerial Vehicles (UAV) (also known as 

Remotely Piloted Aerial Systems (RPAS) or colloquially as drones), which has allowed an 

exponential increase in the number of habitat details observed (Coops et al., 2019). Additionally, 

there has been a revolution in the acquisition of 3D landscape information principally through 

developments in Light Detection and Ranging (lidar) and the ability of these technologies to be 

mounted on a range of platforms, from hand-held to spacecraft (Lines et al. 2022). Coupled with 

the rise of open access computing resources and image archives such as the Landsat archive and 

Google Earth Engine (GEE), we are now able to undertake unprecedented image analysis at 

broad scales (Gorelick et al., 2017; Wulder et al., 2012).  

Despite these advances, the use of remote sensing for studies of freshwater fish habitat is a 

relatively nascent field of study and one that comes with a number of specific challenges. While 

there is a rich history of remote sensing of rivers and lakes, limited work has been done 

connecting these derived metrics and attributes with fish-specific data (Dörnhöfer & Oppelt, 

2016; Piégay et al., 2020). Likewise, while some focus has been placed on remote sensing of 
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riparian vegetation, a critical component of freshwater habitat, this work is often not explicitly 

linked to fish or fish habitat information (Huylenbroeck et al., 2020).  

To better understand the natural and anthropogenic process affecting fish habitats and thus better 

manage fish, and prevent habitat and population declines, research and applications across longer 

time scales and over larger geographic areas are needed (Fausch et al., 2002). To help address 

this, the review examined recent developments in remote sensing of freshwater fish habitat. I 

briefly reviewed available remote sensing platforms and sensors, and then undertook a 

systematic review of peer-reviewed studies that have utilized remote sensing technologies to 

characterize freshwater fish habitat. I classified studies based on when they were published 

(year), where they were conducted (geographic region), the type of habitat characteristics and 

species that were mapped or monitored, and concluded with a discussion of future research 

directions and the important considerations fisheries scientists and managers need to make if 

they are thinking about utilizing remote sensing in fish habitat monitoring or research. 

2.1 Remote sensing technologies 

In this section I introduce the various remote sensing technologies available (Table 2-1). I 

characterize the technologies by platforms and sensors. Some sensors may be mounted on 

several different platforms, whereas other sensors are less versatile. Specific data characteristics 

and capabilities often relate to specific platform and sensor combinations. 
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Table 2-1. Overview of remote sensing technologies, their strengths and weaknesses and applications for fresh 

water habitat characterization. 

 

Technology Strength  Weakness 

 Example 

Freshwater 

Habitat 

Application 

Citations 

Platform 

Ground based Very high spatial 

resolution (cm), easy 

to pair with field 

data 

Very small 

geographic 

coverage   

Single reach  (Grantham, 

2013; Resop et 

al., 2012) 

UAV High spatial 

resolution (cm-m), 

decreased cost in 

recent years 

Small 

geographic 

coverage  

Multiple 

reach, single 

stream    

(Cheek et al., 

2016; Harrison 

et al., 2020; 

O’Sullivan et 

al., 2022) 

Aerial High spatial 

resolution (cm-m), 

moderate geographic 

coverage 

Costly, 

generally a 

one-off 

collection  

Single 

watershed/ 

multiple 

watersheds 

(Dauwalter et 

al., 2015; 

Duffin et al., 

2021a; Hedger 

et al., 2006) 

Satellite Moderate to high 

spatial resolution 

(m-km), Large 

geographic 

coverage, repeated 

data acquisition on a 

regular cycle 

Spatial 

resolution 

may not be 

sufficient 

depending 

on 

application 

Multiple 

watersheds/ 

continental   

(Carter et al., 

2021; Liu et al., 

2021; Luck et 

al., 2010) 

Sensor 

Optical imagery Most common 

sensor type, broad 

range of available 

information, many 

open access data, 

archives and long-

term calibration 

enable time series 

applications  

Difficult to 

get 

vegetation 

structural 

information, 

passive 

sensor relies 

on suitable 

illumination 

conditions, 

obscured by 

clouds and 

haze  

Habitat type 

and 

complexity, 

landcover, 

spawning  

(Grimm et al., 

2016; J. E. Hall 

et al., 2018) 

Thermal Best for temperature 

information  

Only useful 

for 

temperature 

information  

Stream and 

lake surface 

temperature  

(Frechette et al., 

2018; Tonolla 

et al., 2012; 
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Wilbur et al., 

2020) 

Lidar High spatial 

resolution 3D 

information on 

terrain and 

vegetation structural, 

active sensor  

Lack of 

spectral 

information, 

costly 

(although 

price varies)  

Habitat type 

and 

complexity, 

hydrological 

features,  

spawning   

(Dakin Kuiper 

et al., 2022; 

Hedger et al., 

2020; 

Tompalski et 

al., 2017) 

Radar Active sensor, able 

to penetrate cloud, 

can provide some 

information on                                                                        

vegetation structure  

Limited data 

availability 

for longer 

wavelength 

radar, 

difficult to 

process  

Ice cover, 

hydrological 

features  

(Brown et al., 

2010; 

Marcaccio et 

al., 2022; 

Wissmar et al., 

2010) 

Digital 

Photogrammetry 

High spatial 

resolution 

information on 

forest structure that 

is similar to that 

provided by lidar 

(but not the same), 

can have some 

limited spectral 

information  

Limited 

geographic 

coverage, 

most often 

UAV based, 

lack of 

penetration 

through 

vegetation 

and cloud  

Habitat type 

and 

complexity, 

hydrological 

features, 

spawning  

(Kalacska et al., 

2018; Pichon et 

al., 2006; 

Tamminga et 

al., 2015) 
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2.2  Platforms 

Across the globe, there has been a marked increase in the variety of platforms available on which 

to mount remote sensing instruments. These range from ground-based sensors, typically used in 

the field to acquire optical or lidar data, to aerial platforms including aircraft and the recent 

proliferation of UAV’s. Space-based platforms can include stand-alone satellite platforms as 

well, as more recent developments that allow infrastructure to be mounted on existing space 

based infrastructures such as the International Space Station (ISS) (Dubayah et al., 2020). 

The choice of platform for data acquisition fundamentally involves trade-offs in spatial and 

temporal resolution and the required spatial extent of the data (Chuvieco, 2016). Space-based 

platforms offer the advantage of regular data acquisition, dictated by orbit overpass time, and 

conventionally cover larger spatial extents (100–1000’s of square kilometers) at spatial 

resolutions ranging from sub-metre to < 2000 m (Belward & Skøien, 2015) or have larger spatial 

footprints in the case of spaceborne lidar. The temporal resolution of the data acquired is 

dependent on the spatial resolution of the sensor and as a result the spatial extent, but can vary 

from daily coverage for coarse spatial resolutions, for example, 1 km x 1 km, to 16 days for 

Landsat (or currently 8 days with both Landsats 8 and 9 in operation). In contrast, imagery 

acquired from airborne platforms—either aircraft or UAV’s— is acquired with a much finer 

spatial resolutions, in some cases 0.1 m, however these images are often collected on a one-off 

basis over relatively small spatial extents. 

Recently the operational use of satellite constellations has overcome some of these inherent 

trade-offs between spatial resolution and revisit time. Acquisition utilizing multiple, identical 

satellite platforms, allows increased temporal resolutions. For example, Cubesat constellations 
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such as from the Planet constellation, allow imagery to be collected at fine spatial resolutions (3 

m) similar to that acquired by aircraft but on a daily temporal revisit, due to the fact there are 

over 200 identical Cubesat satellites in orbit acquiring data (Francini et al., 2020; Leach et al., 

2019). However, it must be noted that data from Cubesat constellations are not radiometrically 

corrected or calibrated across sensors making time series analyses or model transferability 

difficult. Virtual constellations (Wulder et al., 2015), which integrate data from multiple existing 

satellites into a fused, standardized data stream, for example the Harmonized Landsat and 

Sentinel-2 (HLS) datasets (Bolton et al., 2020; Claverie et al., 2018), are also producing 

increased temporal revisit times while maintaining the 30 m spatial resolution and global 

coverage.  

Recently, there has been a large increase in off-the-shelf UAV’s that come ready to use out of the 

box to create detailed and geospatially accurate data sets (Ivosevic et al., 2015; Zhang et al., 

2016). Similar to other platforms, there are trade-offs between spatial resolution and image 

extent, with some sensors onboard UAVs being able to obtain sub-centimeter resolution but only 

over very restricted spatial extents limited by battery life of the UAV system itself (Coops et al., 

2019). Off-the-shelf rotary UAVs can generally fly for up to 1 hour, covering < 5 km2 per day, 

and can hold a variety of different sensors. The ability to acquire repeat imagery using these 

airborne or drone platforms essentially becomes user-defined although in practice acquiring 

multiple images overtime using these platforms can become cost prohibitive.  

2.3  Sensors 

In addition to platform considerations, remote sensing technologies are able to provide data from 

a broad range of spectral wavelengths and modalities that can provide unique insights into fish 

habitat and conditions. 
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2.3.1  Passive optical imagery   

Passive optical imagery is the most well-known of the remote sensing datasets and includes 

imagery acquired from the visible, near infrared (NIR) and shortwave infrared regions of the 

electromagnetic spectrum, typically covering between 400 - 3000 nm. This imagery can be 

acquired from a single (panchromatic) band, a small number of discrete bands (multispectral), or 

hundreds of narrow spectral bands (hyperspectral). The strength of multispectral and 

hyperspectral sensors is the ability to examine phenomena outside of the visible region of the 

electromagnetic spectrum. For example, unhealthy vegetation reflects less in the NIR region of 

the electromagnetic spectrum compared to healthy vegetation  (Chuvieco, 2016). In an aquatic 

environment the ability to observe a waterbody with increased spectral resolution allows for the 

characterization of aquatic vegetation, turbidity, water quality, and even chlorophyl (Marcus et 

al., 2012). Further, taking advantage of the relationship between different band combinations 

allows for the development of spectral indices (the most common being the normalized 

difference vegetation index (NDVI)) which has even been used to quantify the effect of 

spawning pacific salmon on bankside vegetation (Brown et al., 2020). Historically, panchromatic 

and multispectral sensors have been mounted on a variety of platforms from ground-based to 

satellites, with common instruments including conventional aerial cameras (which make use of 

the visible and / or near infrared regions of the spectrum) and satellite sensors such as the 

Landsat series of sensors (Multi Spectral Scanner (MSS), Thematic Mapper (TM), Enhanced 

Thematic Mapper (ETM) and the Operational Land Imagery (OLI) (Masek et al., 2020; Wulder 

et al., 2019), and Sentinel-2 (Multi-spectral imager (MSI);(Drusch et al., 2012)) which acquire 

data in 7–13 bands covering this entire region. Hyperspectral image acquisition to date has been 

restricted principally to airborne-based sensors such as the Airborne Visible / Infrared Imaging 
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Spectrometer (AVIRIS, Vane et al., 1993) from NASA JPL or the Compact Aerial 

Spectrographic Imager (CASI, Babey & Anger, 1989) from Canada. There have been a small 

number of space-based hyperspectral missions, most recently the Italian PRISMA (Cogliati et 

al., 2021), German EnMAP systems (Guanter et al., 2015) and  the American Earth Observing 

One (EO-1) – Hyperion (Ungar et al., 2003), and increased miniaturization is also allowing 

hyperspectral imagery acquisition from UAVs (Adão et al., 2017). 

2.3.2 Thermal 

At longer wavelengths, beyond the shortwave infrared regions of the spectrum, is thermal 

infrared radiation, which is emitted from both the atmosphere and surface objects on the Earth. 

Thermal imaging sensors are designed to detect this emitted radiation, which can provide key 

insights into surface temperature (Neinavaz et al., 2021). Typically, the relatively low energy 

associated with these thermal emissions requires spatial resolutions to be coarser than those 

acquired from optical sensors, resulting in satellite thermal images typically having resolutions 

ranging from 100 to 1000 m (Neinavaz et al., 2021). Again, miniaturization of these sensors is 

allowing thermal data collection from drones, thereby increasing spatial resolution to centimeters 

and allowing a wide range of fine scale applications of thermal data to be more comprehensively 

examined. For example, temperature heterogeneity within urban areas as well as habitats 

including surface temperatures of water, rocks and vegetation (Kuenzer & Dech, 2013). Surface 

temperature itself however, is often inadequate to fully describe the thermal conditions of the 

particular environment given that these detectors do not directly measure air temperature and as a 

result only provide a partial insight into the thermal regime of a habitat or environment. In 

addition, they also detect the instantaneous thermal conditions at one point in time and if the 

overall thermal conditions of a habitat or environment needs to be assessed, then multiple 
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thermal images would need to be acquired more frequently and subsequently linked into with 

some type of heat transfer model in order to understand the full thermal heterogeneity both 

temporally and spatially over the landscape over time. 

2.3.3  Lidar 

Lidar is an active remote sensing technology, meaning it emits its own energy (in the form of 

laser pulses) and then measures the time it takes for that energy to return (i.e. be reflected back) 

to the sensor. The rapid uptake of lidar technologies on a variety of acquisition platforms has 

revolutionized the capture of vegetation structure information through the acquisition of highly 

detailed three-dimensional point clouds (Lefsky et al., 2002b; Lim et al., 2003). Lidar sensors 

can be mounted on ground (or terrestrial), drones, and aircraft- or satellite-based instruments, 

with all being successfully applied to extract a range of forest structural attributes (White et al., 

2016). Small footprint airborne laser scanning (ALS) systems typically record between 1 – 5 

returns per laser pulse in discrete mode, or a fully digitized vertical profile of the returned energy 

in full-waveform mode (Wulder et al., 2008) and produce footprint sizes of 0.1 – 2 m (Lim et al., 

2003) and can achieve sub-meter accuracy of terrain surface heights (Lefsky et al., 2002b). 

Typically, lidar sensors utilise lasers tuned to the NIR region of the spectrum, maximising 

vegetation return energy, which limits however any water penetration due to the absorbance of 

the NIR signal by water (Höfle et al., 2009). Bathymetric lidar systems are available with lasers 

tuned to the green region of the spectrum, allowing water penetration and thus estimates of 

stream water depth however these systems are less common and can have more restrictions due 

to eye safety concerns (Bonisteel et al., 2009; McKean et al., 2008). Again, miniaturisation is 

allowing the development of drone-based lidar sensors, which allow extremely dense point 
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clouds to be acquired up to 1000 points per m2, however similar to optical systems, areal 

coverage is limited with only a few km2 be acquired in one day. 

Satellite laser sensors onboard the Ice, Cloud and land Elevation Satellite (ICESat-2, 

Neuenschwander & Pitts, 2019) provide global lidar data from 2018 and the full-waveform 

Global Ecosystem Dynamics Investigation (GEDI, Dubayah et al., 2020) on the International 

Space Station (ISS) provides large footprint lidar data with a 25 m footprint for environmental 

assessments, but are limited by the orbit extent of the ISS (between 51° north to south). 

 

2.3.4  Radar 

Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) are examples of active 

remote technologies that sense in the microwave/radiowave region of the spectrum. SAR data 

can be acquired in a range of wavelengths from the shortest (X band) through to the longest, P 

band (Sinha et al., 2015). Radar satellites such as the European Sentinel-1 (Torres et al., 2012), 

Canadian RadarSat  (Morena et al., 2004) and RadarSat Constellation Mission (Thompson, 

2015) acquire data with C band and provide global coverage, unimpeded by cloud cover. Longer 

wavelengths (L band)  have been shown to be more sensitive to changes in terrestrial biomass, 

especially at higher amounts of biomass, than the shorter radar wavelengths, but are only 

available on very limited satellite or airborne platforms (Lu et al., 2016). X band radar, acquired 

from the Tandem-X mission, has also been used to acquire elevation information as well as 

provide insights into the amount (and height) of forest vegetation when compared to 

conventionally derived digital elevation models  (Hyde et al., 2006). 
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2.3.5 Digital photogrammetry 

The advent of high spatial resolution optical image acquisition, be it from UAVs, aircraft, or 

even satellites, is allowing digital photogrammetric algorithms to be applied to map three-

dimensional surface features from images (Remondino et al., 2014). To do so, imagery needs to 

be acquired with extremely high lateral and side overall to facilitate automatic processing to 

derive sub-centimeter point clouds (Leberl et al., 2010). These point clouds in some respect are 

similar to lidar point clouds, as they represent three dimensional structures; however, as they are 

derived from imagery they are unable to provide three-dimensional information over areas 

obscured by dense vegetation or in dark shadows (Baltsavias, 1999). However, the derived point 

clouds can also provide spectral information if the images are colour. The low cost of image 

acquisition from drones or aircraft is an additional advantage allowing for example ongoing 

monitoring using these photogrammetric tools after initial surveys are completed with lidar 

systems to accurately capture the terrain surface under canopy (Goodbody et al., 2019). 

2.4 Characterizing freshwater fish habitat using remote sensing: literature review 

2.4.1 Methods 

2.4.1.1 Data Collection  

To find relevant publications on the use of remote sensing for freshwater fish habitat 

characterization, I conducted a systematic literature search within the Web of Science core 

collection. I searched the abstracts, titles, and main text of journal articles published in the last 50 

years (1973–2023; based on the beginning of the Landsat program) for keywords relating to fish 

habitat and remote sensing. Our keywords were categorized as follows and each paper was 

required to have at least one word from of the first three lists with a fourth list including 

keywords that should not be included: 
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1. Remote sensing keywords: “remote sensing” OR “LiDAR” OR “RADAR” OR “satellite” OR 

“DEM” OR “UAV” OR “UAS” OR “drone” 

2. Fish and fish species keywords: “fish” OR “salmon” OR “trout” OR “whitefish” OR “gar” OR 

“catfish” OR “pike” OR “muskie” OR “bass” OR “lamprey” OR “grayling” OR “carp” OR 

“sturgeon”  

3. Habitat Keywords: “habitat” OR “freshwater” OR “fluvial” 

4. Keywords NOT included: “bird” OR “marine” OR “Ocean” OR “Estuary”  

Further, additional literature was added manually by scanning the reference section of the 

identified literature for relevant papers that were not captured with our query.  

The initial search yielded 868 records  which were then manually assessed to meet our criteria. 

The scope of this review was limited to studies that explicitly used remote sensing technology to 

characterize freshwater fish habitat. Studies that did not explicitly mention the remote sensing 

technology that was used to create habitat indicators were removed. Further, I did not include 

studies that used a field-based approach for terrain generation (i.e. using surveying tools to 

measure elevations). Studies that used remote sensing approaches to characterize stream features 

but did not link either the approaches or features, directly or indirectly, to fish or fish habitat 

were also excluded. The majority of articles I identified through our aforementioned search 

criteria were removed because they focused on birds, mammal or other species, were in saltwater 

environments, did not use a remote sensing technology, or did not relate a back to fish. Further, I 

opted not to include, government reports, dissertations, and other forms of gray literature. 

Ultimately, 96 published studies were identified that met all of our search criteria. 
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2.4.1.2 Data organization and analysis  

To examine general trends, the identified studies were organized by remote sensing technology 

and further subdivided into type of indicator used, fish species of concern, geographic region, 

and year published (Table 2-2). Due to the wide variety of remote sensing technology found in 

this review, I grouped studies into six classes: multispectral, hyperspectral, thermal, lidar, radar, 

and digital photogrammetry with the possibility of multiple remote sensing technologies being 

assigned to a study. Next, studies were categorized based on type of indicator, which included: 

temperature, habitat type and complexity, hydrological features, landcover (forested, urban, etc.) 

and ice cover, passage, and the identification of spawning locations. There was some overlap 

between these indicators, for example, spawning locations and habitat type. However, studies 

assigned into the spawning category specifically used remote sensing to characterize and/or find 

nest locations. Further, I assigned studies into categories based on how the studies framed their 

research questions. Additionally, I examined which fish species were studied (grouped by 

genus), the study location and identified the habitat type (lentic, lotic). Lastly, I identified if 

studies collected their own fish data or utilized existing information from the literature.  
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Table 2-2. Indicators used to examine trends for using remote sensing to examine freshwater fish habitat 

features.   

Indicator group Indicator  Description  

General information      

  

  

  

Year Study publication year  

Location  Location of the study area   

Water body type Type of waterbody studied (river, lake, 

lagoon, reservoir)  

Remote sensing technology      

  

  

  Passive Optical  

  

  

  

Multispectral 

Small number of discrete bands, 

including true colour images (visible 

wavelengths red, green, blue) 

Hyperspectral Hundreds of narrow bands 

Thermal  
Imagery acquired from the thermal 

regions of the electromagnetic spectrum 

Lidar  
Data collected via the active remote 

sensing technology; light detection and 

ranging  

Radar  Data collected with the active remote 

sensing technology radar  

Digital photogrammetry  Use of photogrammetry data on any 

platform  

Fish    

  

  

Genus Genus of fish species examined 

Collection method Method used to collect fish data  

Habitat metrics     

  

  

  

  

  

  

  

  

  

  

  

  

  

Temperature Temperature of waterbodies  

Habitat units and complexity 

Mapping of physical river or lake 

complexity and habitat units (pools, 

riffles, etc) 

Hydrological features 

Using hydraulic modeling or other 

techniques to extract depth, flow rate, 

and gradient  

Landcover and Ice cover 

Classification of land cover types near 

rivers and lakes, classification of ice on 

rivers and lakes.  

Spawning Mapping and analyzing suitable 

spawning sites 

 

Passage 

Characterizing stream features related to 

fish migration and passage (Dams, 

culverts, steepness) 



 

25 

 

 

2.5 General trends  

Our review found that the majority of studies occurred in the northern hemisphere (87%) with 

80% in North America alone (Figure 2-1). Riverine habitats dominated the studies (85%) while 

15% and 1% examined lakes and lagoons, respectively. Only three studies were undertaken in 

Asia and a single study was published describing research undertaken in Africa. Two-thirds of 

the studies examined were published since 2015, with the greatest number of studies published in 

2022 (Figure 2-2).

 

Figure 2-1. Location and waterbody type of studies found in this review that used remote sensing data to 

characterize freshwater fish habitat. 
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Figure 2-2. Number of studies reviewed that use remotely sensed data to characterize freshwater fish habitat, 

by year published.  

 

With respect to sensor types, the most common remote sensing technology used for 

characterizing freshwater fish habitat was multispectral data, with a focus on moderate resolution 

optical satellite imagery (> 10 m spatial resolution), principally acquired from the Landsat series 

of satellites (Figure 2-3). The second most common applied technology was lidar. In general, 

studies that used lidar focused on characterizing terrain/ morphological features of streams 

(Dakin Kuiper et al., 2022; Duffin et al., 2021a). In contrast, the studies that utilized satellite 

imagery examined broader habitat features such as landscape structural complexity  (i.e. channel 

sinuosity, % of vegetated land, % water, floodplain width, channel length) or specific land cover 

information (Bellido-Leiva et al., 2022; Whited et al., 2013). 
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Figure 2-3. Number of studies reviewed using different remote sensing technology coloured by habitat metric. 

If multiple technologies are used in a study then both appear in the graph. 

 

The three most prevalent fish genera studied were Oncorhynchus (38%), Salmo (17%), and 

Salvelinus (4%), all of which are within the family Salmonidae (Figure 2-4). 22% of studies did 

not focus on a single species but rather examined assemblages of fish species often including 

more than four species or species groups and not limited to those listed in Figure 4. In order to be 

included in this review, the study must have indicated how the remotely sensed habitat metric 

was important for a specific fish species or group of fish species.   
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Figure 2-4. Number of studies reviewed that examined different genera. At least two studies were required to 

receive a unique column; other genera are included in the “Other” column. 

 

Of the habitat features examined, the most common were hydrological features, habitat type and 

complexity, followed by temperature, land cover/ and ice cover, spawning and passage (Figure 

2-5).  
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Figure 2-5. Number of studies reviewed that examined different habitat metrics coloured based on the remote 

sensing technology used. The other column includes habitat metrics that were only examined in a single 

study.   

 

Less than half of the studies collected their fish data at the same time as habitat was being 

assessed using remote sensing technologies. The majority used individual fish or population data 

from existing literature, either from the same sites or from laboratory-based studies (Figure 2-6). 

Of those studies that collected fish data, telemetry was the most common collection method 

followed by electrofishing and gillnetting. 
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Figure 2-6. Number of studies reviewed that collected fish data and the method used for collection. 

 

Multispectral and lidar sensors were used to examine the broadest range of habitat metrics 

(Figure 2-7). In contrast thermal sensors were used almost exclusively to analyze stream and lake 

temperatures. The characterization of habitat type and complexity were undertaken with broadest 

variety of remote sensing technologies while ice and land cover were exclusively examined with 

radar and multispectral technologies.  
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Figure 2-7. Chord diagram showing the remote sensing technologies that were used to examine habitat 

metrics in the studies reviewed. The width of each line represents the number of papers reviewed.  

 

2.6 Remote sensing of habitat features 

2.6.1 Hydrological features: depth, velocity, gradient 

Depth and velocity are primary drivers of habitat availability in streams. There is a long history 

of examining these properties using hydrological modeling approaches. Underpinning the 

generation of these hydrological models is high resolution Digital Elevation Models (DEM), 

derived from lidar, photogrammetry, or in some cases radar. However, it must be noted that 
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additional information on flow rate is required for these techniques. For example Tamminga et 

al. (2015) used a true colour camera mounted on a UAV to acquire  5 cm resolution imagery 

from which they produced a very fine scale terrain model to derive depth and velocity. The depth 

and velocity layers used in combination with manually extracted cover features (instream wood, 

vegetation overhang) were then used to create a habitat suitability index of the 1 km long study 

reach. The ability to measure elevation across a broad spatial scale allows for an examination of 

mesoscale habitat characteristics. Sundt et al, (2022) used bathymetric lidar and aerial images to 

examine the relationship between depth and velocity and European grayling (Thymallus 

thymallus, Salmonidae) and brown trout (Salmo trutta, Salmonidae) occurrence. The authors 

found that during spawning seasons river sections with a high occurrence of European grayling 

had shallower depths and slower velocities, a similar trend was found with brown trout, however 

brown trout occurrence levels were less related.   

Stream gradient is often an important metric when modeling fish occurrence and abundance. 

Remote sensing of stream gradient can be highly accurate across watersheds but becomes 

increasingly difficult at finer resolutions due to differences between detecting water surface 

gradient and terrain gradient. However, lidar and radar derived gradient measurements have been 

used to model fish presence absence and fish density throughout a watershed. Tompalski et al 

(2017), used breakpoint detection on lidar derived stream profiles to find stream reaches longer 

than 100 m with a continuous gradient greater than 20%, which can act as barriers to fish 

passage. Radar-derived stream gradients were used to predict juvenile coho salmon 

(Oncorhynchus kisutch) and Dolly Varden (Salmo malma) densities in a northern temperate 

rainforest on the Prince of Wales Island in south eastern Alaska (Wissmar et al., 2010). Wissmar 
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et al, (2010) found that the radar derived predictions were comparable to density predictions 

based off of a field-measured gradient.    

2.6.2 Habitat type and complexity  

Habitat complexity can be defined by the variation in scale, diversity, spatial patterning, size, and 

abundance of habitat features. Fish habitat complexity is often described by examining the 

variation in the physical characteristics of a stream or alternatively by examining areas of 

homogenous characteristics known as habitat units (i.e. pools and riffles). Habitat type and 

complexity is a primary driver of productivity and diversity in stream ecosystems (Kovalenko et 

al., 2012). These changes in productivity and diversity are influenced by stream size, gradient, 

structure, and slow water habitat units such as pools (Calderon & An, 2016; Naman et al., 2017; 

Rosenfeld et al., 2000). A variety of remote sensing data and techniques have been successful at 

identifying and analyzing habitat units and complexity at a variety of different spatial scales.  

Multispectral satellite imagery has allowed for broad scale, repeated observations of lakes and 

rivers (Pekel et al., 2016). For example, Carter et al (2021) used MODIS and Landsat derived 

ecological indicators to model habitat suitability and occurrence predictions of invasive rainbow 

trout (Oncorhynchus mykiss, Salmonidae) with 87% accuracy using 30-fold cross validation in 

the upper Flathead River system. Further, Liu et al (2021) used Sentinel-2 imagery to separate 

lotic and lentic habitat and examined the abundance pattern, shape pattern and spatial distribution 

pattern of lentic habitats in the Mobile River basin. The authors found that the majority of habitat 

objects are small oblong lakes and fish ponds densely distributed throughout the basin, which 

greatly increase the availability of habitat for the catfish aquaculture industry of this region. 

Perhaps the greatest strength of satellite imagery is at the capacity to examine very large 

geographic areas. Luck et al.  (2010) used Landsat imagery and a terrain model to examine the 
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relationship between salmon productivity and river physical complexity, measured as a ranked 

index, across 1509 catchments or 3,000,000 km2 area across the North Pacific rim. The authors 

found that the most complex rivers were located in the western Kamchatka Peninsula and in 

western Alaska, and that as physical complexity increased, so too did salmon productivity. 

McPhee et al (2014), further compared Landsat derived physical complexity, measured using the 

riverscape analysis tool (RAP) (Whited et al., 2012), with anadromy and genetic diversity of 

steelhead or rainbow trout  in the Pacific rim. While the proportion of anadromy was correlated 

with riverine complexity in their study, they stipulated that this was largely driven by a 

confounding negative relationship between drainage area and anadromy. The authors 

hypothesized that anadromy may be less frequent in larger drainages because of the higher 

energy requirements of migration and reported that genetic diversity decreased with latitude and 

in drainages with a larger ratio of floodplain area to total drainage area.  

Airborne lidar has also been used to examine habitat complexity, at the habitat unit scale and to 

examine at migration hindrances. For example, Hedger et al. (2020) used lidar to determine the 

location and effect of migration hinderances (stream crossings and culverts), on brown trout  in a  

stream network in the Trondheim Region in Norway. The authors found that sea trout prevalence 

was inversely related to the number of downstream crossing or culverts identified from the lidar 

data. Further, lidar has been used to delineate different habitat units (pools, riffles, glides, 

cascades), instream wood features, and stream width on Vancouver Island, British Columbia, 

Canada (Dakin Kuiper et al., 2022).   

Cheek et al. (2016), used UAV true colour imagery to manually delineate mesohabitat types and 

a variety of micro habitat characteristics including distance to nearest eroded upstream bank, 

sinuosity and distance to nearest barrier. Further, Cheek et al. (2016), used UAV imagery at the 
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reach scale to characterize the proportion of pools and riffles, and the perimeter area ratio of 

these habitat units. When paired with electrofishing and sonar data, this study found that very 

fine scaled microhabitat variables and the channel unit variables had the highest explanatory 

power on fish assemblage structure in their study area explaining 35% and 29% of variance 

respectively. 

2.6.3 Temperature  

Temperature influences all aspects of the aquatic environment from primary producers (e.g. 

algae and plants) to aquatic predators (such as fish) (Moore, 2006). Changes in water 

temperature can affect physical habitat features, and behaviour and physiological processes of 

fish (Quinn, 2004). Certain fish species such as salmonids are disproportionally affected by 

changing temperature regimes due to a narrow thermal tolerance. In a freshwater aquatic 

environment, stream temperature is driven primarily by environmental factors such as snow melt, 

air temperature, and shading through riparian vegetation (Poole & Berman, 2001). 

Remote sensing has transformed our ability to detect changes in surface temperature at a variety 

of different resolutions and this information can be applied to examine multiple habitat 

characteristics. For example, O’Sullivan et al. (2022) used a thermal sensor mounted on a UAV 

to compare habitat use by juvenile Atlantic salmon (Salmo salar, Salmonidae) during warm 

>19˚C and cool <19˚C stream temperature events in Atlantic Canada. During warm events the 

authors observed a grouping behaviour by the fish and found increased use of cooler regions of 

the stream. Wilbur et al. (2020) used aerial thermal infrared imagery to map cold water 

anomalies and found that brook trout (Salmo fontinalis, Salmonidae) and Atlantic salmon parr 

density and use increased near cold water anomalies across a 53 km reach of the Cains River in 

New Brunswick, Canada. Aerial thermal imagery has been used to characterize thermal 
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heterogeneity and fish assemblages across 350 ha of lowland river floodplain in the Oder River 

in Germany, with distinct species assemblages found based on spatial and seasonal thermal 

signatures (Tonolla et al., 2012). These aforementioned studies demonstrate the ability of 

thermal imagery as a non-invasive method for characterizing spatial heterogeneity and changes 

in temperature across complex and large study areas.     

Lidar data have also been used been used to examine factors influencing stream temperatures. 

Tompalski et al. (2017) used lidar data to determine the total hours of shade received by stream 

reaches on northern Vancouver Island, Canada. The authors found that 25% of fish bearing 

streams had at least 11.3 hours of shade, while only 7% of fish bearing streams had less than 10 

hours of shade. However, they found that small streams were less shaded than large streams in 

the study area. Loicq et al.(2018) used lidar-derived shading information in a regional stream 

temperature model and found that the cooling effects of vegetation ranged from -3.0 ˚C to -1.3 

˚C. The accuracy of the stream temperature model was improved with the use of lidar shading 

information compared to more simple shade models. These studies demonstrate that lidar is 

capable of accurately measuring the vertical structure of stream side vegetation making it very 

useful for shade modeling. However, lidar derived shading and stream temperature variations 

have not, to our knowledge, been explicitly linked to fisheries data but represent an area for 

future research. 

2.6.4 Land cover and ice cover 

There are well known relationships between landscape level metrics and the availability and 

quality of fish habitats in stream reaches. Significant research has taken place using multispectral 

satellite data for detailed characterizations of land cover. However, few studies have looked at 

the relationships between terrestrial land cover and available fish habitat use. Walther et al 
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(2021) used landscape level terrestrial metrics derived from remote sensing data such as drainage 

area, elevation, geology type, wetland presence, and precipitation data to explain species-specific 

differences in population neighbourhoods of coho salmon, steelhead trout and chum salmon 

(Oncorhynchus keta, Salmonidae) across habitats. The authors found that that drainage area, 

elevation and geology where important variables for predicting upper limit of occurrence across 

all three species with 78 – 89% accuracy.  High spatial resolution aerial photographs have been 

used to map landcover classes across large spatial areas. Dauwalter et at al (2015) used 

supervised classification aerial RGB imagery and found that the woody vegetation class was 

strongly positively associated with redband trout (Oncorhynchus mykiss gairderi, Salmonidae) 

occurrence and density. Further they found that together with stream temperature, the percent 

woody vegetation class was a stronger predictor of trout occurrence compared to instream and 

riparian field measured variables.  

Variations on the duration and extent in ice cover on lakes and rivers can affect primary 

productivity, as well as growth and survival of most freshwater fish species. Suitable data sets to 

examine the relationships between ice cover and fish species can be acquired via remote sensing. 

Recently, Sentinel-1 data has been used to classify ice cover in the Canadian great lakes region 

(Marcaccio et al., 2022). The authors found decreased movement in overwintering Walleye 

(Sander vitreus, Percidae) when habitat areas were covered in ice. In a riverine environment, 

Wirth et al, (2012) used data from the RADARSAT -1 to locate persistent ice-free areas on an 

Alaskan river and found that these areas served as core spawning areas for fall run chum salmon. 

Persistent ice-free features such as those found with radar would not be captured with a 

traditional in-situ field survey but rather are captured extremely well by the repeated survey 

nature of this particular remote sensing dataset.  
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2.6.5 Spawning   

While habitat features associated with spawning may be comprised or described by of some of 

the general attributes that were reviewed (i.e. hydrological or temperature features), this 

particular life-history focused suite of habitat features was frequently the focus of remote sensing 

research so it was examined separately.  A variety of remote sensing techniques have been used 

to map spawning habitat, such as lidar, hyperspectral and thermal sensors. For example, a study 

by Harrison et al. (2020), used true colour and hyperspectral sensors mounted on a UAV to 

accurately (76% and 90%, respectfully) map Chinook salmon (Oncorhynchus tshawytscha, 

Salmonidae) redd locations using machine learning and object based image analysis techniques. 

Further, UAV thermal sensors were used by Clawson et al, (2022) to identify warm thermal 

refugia in a subarctic river, finding increased use by spawning chum salmon in these areas. 

Duffin et al. (2021) used continuous wavelet analysis on lidar-derived DEMs to examine 

topographic variability on three rivers in the Salmon River basin in Idaho. They found that 

higher small-scale wavelet power related to pool-riffle topography and that wavelet power was 

an important factor in Chinook salmon spawning site selection. A habitat suitability index for 

alligator gar (Atractosteus spatula, Lepisosteidae) was developed by van der Most & Hudson 

(2018) using lidar and the authors found that 19% of the overall floodplain is available spawning 

habitat along the Lower Mississippi River.  

2.6.6 Passage  

The majority of freshwater fish species require unimpeded movement between spawning, 

rearing, and in some cases marine habitats. Impediments to movement include natural barriers 

such as waterfalls, landslides, and steep gradients, or anthropogenic barriers such as dams, and 

culverts, all of which can block access to quality habitat. Remote sensing technologies including 

lidar and digital photogrammetry have been used to characterize barriers to fish passage. For 
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example NIR lidar was used to quantify migration hindrances across the Trondheim Region in 

Norway (Hedger et al., 2020). This study found that that seatrout (Salmo Trutta, Salmonidae) 

prevalence was negatively related to the number of downstream crossings and culverts. Another 

study by May et al. (2017) used NIR lidar to characterize salmonid habitat above and below 

natural barriers in two watersheds along the Oregon coast. They found and increase in habitat 

quality and quantity above the waterfall due to the reduction in overall gradient above the barrier.    

2.7 Strengths, challenges, and opportunities for future research  

The reviewed studies highlighted key successes in characterizing freshwater fish habitat, 

however challenges remain for the adoption of remote sensing at several operational scales 

(Table 2-3).  

 

Table 2-3 Observations, challenges, strengths and opportunities for adopting the use of remote sensing 

technologies in freshwater habitat assessments.   

Observation Challenges Strengths 
Future Research and 

Development Opportunities 

Limited linkage 

between predicted 

habitat charicteristics 

and existing fisheries 

data  

Data availability. Matching 

temporal and spatial scales, 

domain knowledge.  

Landsat series of 

satelites has > 50yr of 

global  coverage.  

Use historical fisheries data 

and archival remote sensing 

data together.  

Minimal 

development of novel 

remote sensing 

metrics specific to 

fish habitat 

characterizations 

Research area is nascent. 

Difficult without common 

domain knowledge between 

fishery experts and remote 

sensing analysts.   

Increase colaboration 

between remote 

sensing and fisheries 

scientists.  

Basic science required to 

examine new spectral indices 

to detect for example, salmon 

redd sites, oxygen 

concentrations in stream water. 

Lack of automated 

workflows and 

models for existing 

methods  

Time consuming to develop, 

not scalable, lack of 

transferability studies 

between sites and species.  

Many remote sensing 

techniques can be 

automated in stand 

alone software or with 

code.  

Transferability studies, to 

examine if methods and 

models are applicable for other 

sites and species. Open access 

of code, and algorithms for 

refinement and application.  

Studies have a 

limited number of 

fish species or were 

undertaken in a 

limited number of 

regions or over a 

limited spatial extent 

Cost and data. Lack of 

awareness of the power of 

these remote senisng 

technologies.  

Coverage of remote 

sensing data is 

increasing annually 

with new satelite 

options and abilty to 

aquire own data with 

consumer level UAV 

systems.  

Test the applicability for these 

methods in different regions.  

Some habitat features might be 

simple or straightforward to 

obatin with some senors, but 

not applicable to certain 

species.   

Lack of reasearch 

using remote sensing 

data fusion  

Most studies limited to one 

platform or sensor type. Not 

analyzing all dimensions of 

the acquatic system. Lack of 

Many fusion 

techniques exist in 

remote sensing  

literature, especially 

More fusion between remote 

sensing technologies. Increase 

instrument payloads to allow 

simultaneous collection of 
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ground based remote 

sensing.  

between ground and 

aerial platforms.  

LiDAR and thermal data, for 

example.  

Lack of 

multitemporal studies 

Large datasets, lack of 

multitemporal fisheries data. 

Key benefit of remote 

sensing, specifically, 

satelite imagery, is 

repeated data 

acquisitions.  

Examine remote sensing 

datasets over time, to estimate 

habitat change and impacts on 

fisheries.  

 

Our review identified that over half of the remote sensing studies that examine fish habitat 

metrics did not explicitly use fish data (e.g. presence/absence, abundance, density, etc.) that were 

collected at the same time and locations as the remote sensing data. This is a major limitation in 

many current studies as much can change between years and seasons in fish populations and in 

the physical environment. To use remote sensing to its full potential in freshwater habitat studies 

it is important to further develop linkages between remote sensing metrics and in situ fisheries 

data. For future research I suggest pairing the collection of fish data with remote sensing data 

acquired at the same time. If fish data are not available, focus should be placed on developing 

novel remote sensing methodologies specifically for freshwater habitat monitoring that focuses 

on supporting existing monitoring protocols such as the fish habitat assessment procedures in 

British Columbia Canada (Johnston & Slaney, 1996), the Columbia Habitat Monitoring Program 

(CHAMP) in the Columbia river basin (Nortwest Fisheries Science Centre, 2023) and the 

PacFish InFish Biological Opinion (PIBO) Monitoring Program from the US forest service 

(Saunders et al., 2019). Developing linkages between remote sensing technologies and existing 

monitoring protocols will help to increase the accessibility of remote sensing data and methods 

to practitioners who are not well acquainted with remote sensing.   

Of the studies reviewed, 80% occurred in North America with a specific focus in the Pacific 

Northwest and salmonid species. This focus on North American study sites was also identified 

by Huylenbroeck at al. (2020) in their review on remote sensing of riparian vegetation. 
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Salmonids are an important group of species in this part of the world for their cultural, ecological 

and economic benefits, which could be a factor in their prevalence in the literature reviewed. 

Indeed, salmonids are umbrella species and the ability to characterize their habitat should be 

applicable to other species in similar ranges. However, by focusing on salmonids of the Pacific 

Northwest, a stenothermal group of fishes with specific habitat associations and requirements, a 

gap in knowledge has occurred in how the remote sensing techniques described above can be 

used to characterize freshwater habitat in different environments specifically for warm tropical 

waters.    Therefore, an avenue for future research could focus on the less prevalent species and 

regions, for example anabas (Genus Anabas) in the Mekong River (South East Asia), carp 

(Family Cyprinidae) in Yangtze River (China) or tilapia (Genus Oreochromus) in Lake Victoria 

(Kenya, Tanzania and Uganda) which are all managed species that have different habitat 

requirements compared to salmonids of the Pacific Northwest.  

Interestingly, spawning locations were the only habitat type related to a life history stage 

consistently identified in this review. I believe this is because spawning locations for salmonid 

species are generally in shallow, gravel bed, stream reaches with slow flow and can often be 

directly seen in the remote sensing data (i.e. Harrison et al. 2020). Future research could focus on 

developing relationships between other life history stages (rearing, migration) and remote 

sensing data. This would be especially important when using remote sensing-based habitat 

indicators in fisheries management and in conservation and restoration decision making.   

One of the major strengths of remote sensing is the ability to characterize large spatial areas 

across broad time periods (Pekel et al., 2016). I found a lack of studies that harnessed the full 

temporal power of remote sensing and believe more emphasis should be placed on using remote 

sensing technology for multitemporal analysis. For example, having over 50 years of coverage 
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with the Landsat missions highlights the potential for retrospective analysis pairing historical 

fisheries data with historical remote sensing data (Wulder et al. 2022). Pairing existing fisheries 

data sets with previously collected remote sensing data could greatly aid restoration and 

management practices in important habitat areas by identifying areas most effected by landscape 

change. Further, many of the studies identified in this review were one-off studies conducted 

over small areas. In order to gain operational capacity of remote sensing technologies emphasis 

should be placed on the replication of existing methods across different aquatic environments 

and over broader spatial extents. 

Often the remote sensing methods and approaches reviewed were relatively simple, for example 

image classification, simple spectral index derivation or the manual extraction of features from 

the imagery by interpreters, rather than automatic classification of the imagery. To fully harness 

the information capabilities of remote sensing data, focus should be placed on increasing 

automation and automatic extraction of habitat indicators. When the scale of studies shift from 

single reach to continental or even global scales, the ability to automate metric extraction 

becomes important. Further, remote sensing allows for the ability to uniquely characterize the 

environment and extract information that is difficult or even impossible to measure manually. 

The development of specific remote sensing indices and metrics directly related to fish habitat 

features is an important area of future research.  

The key remote sensing technologies and platforms for fish habitat characterization identified in 

this review were lidar, moderate resolution satellite imagery and UAV. I posit that airborne lidar 

has the most to offer because it provides detailed information on terrain and vegetation across 

large geographic areas, and currently is used operationally in the forest industry (White et al., 

2016). Moderate resolution satellite imagery such as the Landsat and sentinel series of satellites 
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have frequent and repeated coverage allowing for detailed time series analysis of freshwater fish 

habitat. Further, the global coverage of these data sets gives the ability to test methodologies 

across different watersheds and with a variety of species. Additionally, I recognize the role that 

consumer level UAV’s will have in advancing the linkages between in situ fisheries data and 

remote sensing data due to their relatively low cost and ease of use. The ability to acquire aerial 

imagery, photogrammetry data, or thermal data at the same time as fisheries data are crucial for 

advancing this science. Support should be given to develop these technologies and their linkages 

to in situ fisheries data as well as their synergies when combined.   

2.8 Operational considerations for use of remote sensing for fish habitat characterization  

In the final component of this paper, I offer some guidance to fish and habitat biologists and other 

related practitioners, with limited exposure to remote sensing technologies, who may be interested 

in utilizing remote sensing technology for freshwater fish habitat characterization, but who may 

lack knowledge of the appropriate platform, sensor and processing approach to use. In general, 

these three decisions are related to sensors, scales and standards.  

As I have demonstrated herein, there are a wide variety of information outputs that can be produced 

using remotely sensed data. As a result, fish and habitat biologists should consider their 

information needs: which aspects of fish habitat do they need to characterize and monitor, over 

what spatial extent and with how much spatial detail? If temperature is the primary habitat feature 

to be mapped, then thermal sensors are the required technology. Mapping of habitat type and 

complexity can be undertaken using either multispectral imagery (allowing classification of land 

cover) or active remote sensing imagery, such as lidar, in order to map the structural characteristics 

of the stream bank and surrounding vegetation. In the case of hydrological features, the underlying 

terrain model is of paramount importance, which therefore suggests that lidar data, which enables 
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a detailed high spatial resolution characterization of the terrain surface underneath the vegetation 

canopy, is needed in order to extract these hydrological characteristics.  

Imagery can be acquired at a variety of spatial scales. Given that many of the questions posed by 

fish biologists occur at local stream reach scales or lake nearshore scales, it is likely that most 

applications will be driven from either aircraft, UAV or using field-based instrumentation. The 

decision around which of these platforms to use in order to acquire the data is fundamentally a 

question of spatial scale. Fish biologists should consider the spatial extent of their area of interest, 

as well as the spatial resolution at which they require that information. Airborne sensors are able 

to provide very high-density remote sensing data such as lidar as well as fine spatial resolution 

optical or thermal imagery. There are significant cost savings with aircraft on a per km2 basis, 

compared to UAV's, which makes them a more cost-effective instrument at the watershed scale. 

If individual stream reaches are of interest, as well as integrating multiple flights in order to 

understand the dynamics of the system, then a UAV platform producing very fine scale imagery 

offers unique opportunities to consider. Beyond working at the finer scale, there are a variety of 

other trade-offs that need to be considered. Data with a higher spatial resolution equates to larger 

file sizes, larger storage requirements, and longer processing times. Therefore, additional 

considerations around data processing and storage need to be considered when dealing with these 

very fine scale aircraft and UAV based technologies. 

Lastly, standards refer to the protocols followed for both remote sensing data collection and the 

subsequent data processing to drive the key habitat characteristics. Satellite remote sensing data 

acquisition is managed by large government or private companies from which the data is 

purchased or is available for download. In contrast, UAV data collection may be undertaken by 
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end users themselves with a number of best practice guidelines around acquisition and 

processing needed to ensure high data quality (Goodbody et al., 2017). Lidar data collection 

often falls between the two, by contracting private companies for airborne lidar acquisition, or 

with researchers collecting data themselves with UAV or mobile mounted lidar sensors (White et 

al., 2013). Further, many governments are beginning to provide open access to their lidar data 

catalogues, providing tiles of either raw point clouds or pre-processing gridded data products.  

In terms of data processing standards remote sensing data often requires specific, often 

proprietary, software. In recent years there has been an increase in open-source tools used to 

process remote sensing data. Specifically, both the R and Python languages have a variety of free 

and open source libraries for processing remotely sensed data (Gillies, 2021; Hijmans et al., 

2022; Roussel, Auty, Coops, et al., 2020) while free and open source geospatial data processing 

software with large user bases are also available (QGIS Development Team, 2022).  

2.9 Conclusions  

This review highlighted a growing body of literature that uses remotely sensed data to map, 

monitor, and characterize freshwater fish habitat. In recent years, there have been rapid 

advancements in computational capacity and remote sensing technologies, resulting in reduced 

acquisition costs and processing requirements and thus an increased number of studies using 

these technologies. Further, I identified three key technologies/platforms: lidar, UAV, and 

moderate resolution satellite imagery that have been well studied and are positioned to transform 

approaches to freshwater fish habitat studies.  Currently, the majority of research in this field 

focuses on three genera of fish and is predominantly being undertaken in western North 

America. This review provides the context and background for fish and habitat biologists to 
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better understand the remote sensing technologies used for freshwater habitat characterization. I 

hope that this review will serve as an introduction, allowing for the increased use of remote 

sensing in fish habitat research and foster interdisciplinary collaboration between fish biologists 

and remote sensing scientists.  
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Chapter 3: Study area and data 

3.1 Study area  

The focus of this research is two watersheds; the Artlish River and Nahmint River, located on 

northern and central Vancouver Island, British Columbia, Canada, respectively (Figure 3-1). 

Both watersheds are within the coastal western hemlock biogeoclimatic zone, specifically the 

very wet maritime sub zone (CWHvm) across the lower elevations and the moist maritime 

biogeoclimatic subzone at higher elevations. The CWHvm ecosystem is dominated by a canopy 

of western hemlock (Tsuga heterophylla), western red cedar (Thuja plicata), and amabilis fir 

(Abies amabilis). The understory is composed of salal (Gaultheria shallon), deer fern (Blechnum 

spicant),  and Alaskan blueberry (Vaccinium alaskanense) with a diverse array of mosses on the 

forest floor (Meidinger & Pojar, 1991). These ecosystems are characterized by moderate winter 

temperatures, cool summers, and high annual precipitation (approximately 5000 mm), with a 

majority of the rainfall occurring between October and April (Meidinger & Pojar, 1991). 

Elevation in these areas ranges from sea level to 365 m for the Nahmint and sea level to 426 m 

for the Artlish.  
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Figure 3-1. Study area map showing the location of the two study watersheds relative to major Canadian 

cities and rivers. 

 

The Nahmint watershed is 192 km2 and is bisected into an upper and lower region by a large 

lake. The reaches in this study were all located in the upper Fisheries Sensitive Watershed 

portion of the catchment. There has been continuous logging since the early 1920s in the area 

with over 20% of the watershed having been harvested (Brayshaw, 2018b). Currently there is a 

well-established 60–75 year old second growth coniferous forest throughout the area (Brayshaw, 

2018b). In both watersheds, the primary inputs of large wood to stream channels are windthrow 

and mass wasting events. Historically, riparian harvesting and cross-stream yarding also 
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contributed wood to stream systems. Resident salmonid species can be found in the upper 

watershed including, rainbow trout (Oncohrynchus mykiss), kokanee (Oncorhynchus nerka), and 

Dolly Varden char (Salvelinus malma) (Narver, 1974) . A 4 m tall waterfall, located 4.8 km up 

the Nahmint river from the estuary, limits the distribution of anadromous salmonids including 

chum (Oncorhynchus keta), chinook (Oncorhynchus tshawytscha), coho (Oncorhynchus 

kisutch), sockeye (Oncorhynchus nerka), and pink salmon (Oncorhynchus gorbuscha) (Brydges 

et al., 1999). Summer and winter run steelhead trout (Onycorhynchis mykiss) can be found 

throughout the system, as they are able to pass through the falls and into the lake (Narver, 1974).  

The Artlish is a 125 km2 catchment that is also designated as a Fisheries Sensitive Watershed. 

The main river channel runs through a cave and eventually flows into the Tahsish Inlet on the 

west coast of Vancouver Island. The watershed supports runs of salmonids (Pink, Chum, Coho, 

Sockeye, Chinook, and steelhead) throughout its reaches from its mouth to the caves upstream in 

the provincial park. There are no barriers to fish passage downstream of the caves and fish have 

been recorded in the North Artlish sub basin but not upstream of the caves (Brayshaw, 2018a). 

Harvesting began in the late 1960s in this watershed but was not heavily established until the 

mid-1970s (Brayshaw, 2018a). Early forest harvesting including riparian harvesting and cross 

stream yarding have resulted in changes to instream wood and channel morphology in the 

watershed (Brayshaw, 2018a).  

In total, eleven focus stream reaches, three in the Artlish and eight in the Nahmint watershed 

were located and measured using the fish habitat assessment procedure (Johnston & Slaney, 

1996, section 3.1.2)(Table 3-1).  
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Table 3-1. Summary of study streams. Asterix in stream name indicates whether or not a stream was fish 

bearing.  All values are based on field measurements of the listed stream attributes. 

Stream 

(* indicates a non-

fish bearing stream) 

Length 

(m) 

Average 

stream 

surface 

gradient 

(degrees) 

Average 

bankful width 

(m) 

Average 

depth (cm) 

Dominant 

Substrate 

Nahmint Watershed 

Bug Creek* 196 1 3 55 Boulder/Cobble 

Elk Creek 196 1 7 59 Cobble/Gravel 

Gray Creek* 214 5 5 93 Boulder/Cobble 

Head Water Creek  255 2 5 79 Cobble/Gravel 

Headache Creek   254 1 11 98 Boulder/Cobble 

Rainbow Creek  128 2 5 73 Bedrock/Cobble 

Steep Creek *   103 11 3 55 Bedrock 

View Creek    249 1 9 81 Boulder/Cobble 

Artlish Watershed 

Bun Creek     263 1 8 69 Cobble/Gravel 

Lunch Creek* 212 1 13 104 Boulder 

Trickle Creek*  120 1 10 89 Boulder 

 

3.1.1 Instream wood field data  

In the summer of 2022 field data was collected at eight roughly 200 m long stream reaches in the 

Nahmint watershed and three 200 m long reaches in the Artlish watershed (Table 3-2). The 

location of individual pieces of instream wood were collected with a Trimble Geo7X GNSS unit 

with differential corrections obtained from BC Active Control System base stations, resulting in 

75% of positional accuracies falling between 30 and 200 cm and 14% above 200 cm. This range 

of error can be attributed to the rugged topography, dense vegetation and distance between the 

nearest base station and the study reaches. Additionally, I cannot attribute any directionality to 

this error and it should therefore be considered a radius of error around the points.  

For inclusion, pieces of instream wood needed to meet the following criteria: greater than 10 cm 

width at log center, dead, and at least partially contained within the bankfull width of the stream 
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channel. These criteria are based on previous studies detecting forest floor wood and the 

definitions of functional instream wood (Hassan, Hogan, et al., 2005; Jarron, Coops, MacKenzie, 

et al., 2021; Joyce et al., 2019).  

Table 3-2. Average recorded characteristics of field measured instream wood.  

Stream        Count   Length (cm) 

    Diameter 

(cm) 

Submerged   

Depth (cm) 

Bun Creek     27 608 90 3.78 

Elk Creek     15 620 62 0.80 

Head Water 

Creek  34 531 70 0.45 

Headache Creek   10 734 121 1.70 

Lunch Creek    6 521 86 0.00 

Rainbow Creek   5 480 78 1.00 

Steep Creek    9 509 85 0.11 

Trickle Creek   4 693 115 1.50 

View Creek     15 830 118 0.27 

 

Instream wood was separated into two classes, logjam (>3 pieces of wood) or individual pieces 

(Figure 3-2). For individual pieces the length, diameter, submerged depth, position relative to the 

stream (parallel versus across), and azimuth were measured and any additional notes of interest 

were recorded. Only the location of each logjam was recorded.  
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Figure 3-2. Examples of field measured (A) individual wood pieces and (B) a logjam.  

3.1.2 Field based stream characterization  

I selected six stream reaches, roughly 200 m in length each, within the upper Nahmint watershed 

based on the accessibility from logging roads to represent a variety of streams sizes. In the 

summer of 2019, the Fish Habitat Assessment Procedure (FHAP), developed by the British 

Columbia Ministry of the Environment, Lands, and Parks as a method to determine the quality of 

salmonid habitat instream reaches (Johnston & Slaney, 1996), was used to assess the stream 

reaches based on a number of physical characteristics. Starting at their downstream end, streams 

were classified into four geomorphic habitat units; pools, glides, riffles and cascades based on 

the classification system developed by Hawkins et al. (1993) (Figure 3-3). Pools are deep slow 

moving units with a water surface gradient near 0% (Johnston & Slaney, 1996). Glides are non-

turbulent fast flowing units with relatively flat bottoms (Johnston & Slaney, 1996). Similarly, 

riffles are turbulent areas of fast flowing water with gravel or cobble bed material often 

projecting above the water surface (Johnston & Slaney, 1996). Lastly, cascades are steep stepped 

areas with emergent boulders in channels with surface gradients greater than 4% (Johnston & 
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Slaney, 1996). Once categorized, the length, gradient, mean bankfull width, mean wetted width 

and mean bankfull, wetted depth and gradient (using a Suunto clinometer)  of each individual 

unit is measured. Instream wood is also counted in each habitat unit and split into three 

categories based on diameter, small (10-20 cm), medium (20-50 cm), large (>50 cm) (Johnston 

& Slaney, 1996) (Table 3-3). 

 

Figure 3-3. Examples of stream morphological units identified in our study area.   

Table 3-3. A summary of field measured stream attributes  

  

# of recorded 

Instream 

wood 

(medium and 

large)  

Mean 

Bankfull 

Width 

(m) 

Length 

(m) 

Gradient 

(%) 

# of 

Cascade 

# of 

Glide 

# of 

Pool 

# of 

Riffle 

Elk Creek 18 6.89 185.3 1.66 2 4 5 5 

Gray Creek 17 5.1 172.8 4.96 13 2 16 2 

Head Water 

Creek 
44 5.26 202.7 2.68 1 8 21 10 

Headache 

Creek 
15 10.57 231.1 1  0 7 11 11 
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Rainbow 

Creek 
7 5.3 116.2 2.5 5 4 7 7 

View Creek 19 9.86 179.9 1.34 5 5 10 5 

 

Location of the start and end of each habitat unit was determined using a Trimble Geo7X GNSS 

unit, with differential corrections obtained from BC Active Control System base stations 

resulting in an estimated accuracy between 5 - 50 cm. Individual points were then connected into 

stream segments and joined with the field data to be used in validation of the models described 

below.     

3.1.3 ALS data  

ALS data were acquired over the two watersheds using a Riegl Q1560 sensor (Table 3-4).  

Table 3-4. Details of ALS data collection.  

Watershed Artlish Nahmint  

Sensor Riegl Q1560 Dual-Channel  Riegl Q1560 Dual- Channel  

Point Density 25–35 points/m2 25–35 points/m2 

Date Flown  July 28th, 2016 September 12th, 2015 

Total Area 232 km2 154 km2 

Intensity (5 bytes) 2097–65535 6651–65535 

Scan Angle ±29° ± 29° 

Acquisition Altitude (above 

ground level) 

1600 m  1600 m  

Flight Speed  115 knots nominal 115 knots nominal  

Number of returns recorded  436337984 660910337 

Number of ground returns  12941164 257126231 
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Chapter 4: Characterizing stream morphological features important for fish 

habitat using airborne laser scanning data 

4.1 Introduction  

Habitat loss driven by climate change, forest harvesting and associated road construction, 

development, and other anthropogenic disturbances, are major threats to populations of Pacific 

salmon and trout (Salmonidae, Oncorhyncus spp; hereafter termed salmonids; Gregory and 

Bisson, 1997). The freshwater aquatic habitat of these species is influenced by a variety of 

terrain characteristics, which act as key drivers of hydrologic and geomorphic processes (Hogan 

& Luzi, 2010). Stream geomorphic processes, such as flow rate, sediment transport, and channel 

shape, create complex instream structures, which have been directly linked with quality and 

quantity of salmonid habitat (Bjornn & Reiser, 1991). These stream processes are determined by 

topographic features such as elevation, slope, and aspect and therefore have been widely adopted 

for use in both hydrologic and geomorphic models as well as stream classification systems 

(Jenson, 1991; Lidberg et al., 2017;Lindsay & Dhun, 2015; Strahler, 1957).   

While the importance of stream structure on salmonids habitat is well recognized, the existing 

methods for classifying stream structure and morphology are not standardized (Bisson et al., 

2017). Older stream classification systems are biologically founded, splitting streams into zones 

marked by shifts in dominant aquatic species (Huet, 1959). More recent classification systems 

have been developed based on a hierarchical scale, classifying stream systems into individual 

stream units to entire watersheds (Belletti et al., 2017). Physical factors including the structure of 

the stream network, morphology of the channels, size and mobility of the channel, and the ability 

of stream units to transport sediment have also been used in classification systems (Buffington & 



 

56 

 

Montgomery, 2013). These factors can in turn inform on changes in the physical properties of a 

stream and the instream channel morphology over time (Bizzi et al., 2019; Norman et al., 2017). 

Hawkins et al (1993) developed a stream classification system using a hierarchical framework of 

individual channel units, starting with fast and slow moving units (pools and riffles), further 

subdividing based on turbidity, slope, and formation process (riffles, falls, damned pools). With 

an accurate classification of  these physical factors and channel units, a description of the 

microhabitat requirements of aquatic organisms, such as salmonids can then be developed 

(Belletti et al., 2017; Bisson et al., 1988).  

Subsequent studies have linked a selection of the stream units characterized by Hawkins et al 

(1993), specifically pools (Bisson et al., 1988; Gonzalez et al., 2017; Rosenfeld et al., 2000) and 

riffles (Buffington et al., 2004; MacIsaac, 2010) to habitat and subsequently the quality and 

quantity of salmonids. Further stream structural attributes have been identified as important 

indicators of quality salmonid habitat. In small streams, wood inputs contribute to structural 

complexity by influencing the formation of channel units (predominantly pools) and influence 

the distribution of sediment size throughout a reach (Beechie & Sibley, 1997; Bjornn & Reiser, 

1991). Many previous studies have found positive relationships between density of instream 

wood and salmonid abundance in small coastal streams indicating that instream wood is an 

important habitat feature (Boss & Richardson, 2002; Gonzalez et al., 2017; Rosenfeld et al., 

2000). Stream bankfull width is another key predictor of salmonid abundance in small coastal 

streams (Rosenfeld et al., 2000). These small streams have a high bankfull width to depth ratios, 

which increases the availability of  habitat and ultimately the abundance of salmonids (Gomi et 

al., 2002).  
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In addition, these stream structural attributes and classification systems are important for a 

variety of other aquatic ecosystem services. Naman et al (2017), found that stream channel 

structure, specifically riffles and pools, has a direct influence on both the size and abundance of 

aquatic invertebrates. Furthermore,  Calderon and An (2016) found that pool units had greater 

amounts of nutrients and higher levels of sestonic algae compared to riffle units.  

While these stream features are important to habitat classification ,watershed management and 

water quality, field surveys of stream structure, salmonid habitat, and salmonid abundance are 

expensive, time consuming and constrained to small geographic areas (Alho et al., 2009; 

Hummel et al., 2011). Field surveys typically involve multi-person teams, walking in and along 

streams for extensive periods, which can be both costly and dangerous especially in remote or 

mountainous areas.  

A complement to these extensive field based approaches, is the use of  remote sensing systems, 

which have been used to examine the physical characteristics of streams and employed by forest 

and fisheries managers to reduce the costs of in situ surveys (Piégay et al., 2019). Spaceborne 

remote sensing platforms, such as the Landsat series of satellites, have allowed for attributes of 

large streams to be assessed at the watershed scale, however are generally limited to the main 

river system due to the 30 m spatial resolution of these satellites (Pekel et al., 2016). High spatial 

resolution imagery acquired from WorldView, Quickbird, or SPOT allow for the examination of 

smaller stream segments with some additional success (Johansenet al., 2010). However, overall 

these multispectral instruments are not ideal for characterizing salmonid habitat in small streams 

because of the inability to detect the three dimensional structures of terrain, and the inability to 

penetrate over-stream structures such as forest canopies, making it difficult to detect fine scale 

stream characteristics in dense forests (Doxaran et al., 2002; Johansenet al., 2010).  
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The use of Light Detection and Ranging (lidar), also known as airborne laser scanning (ALS), 

has a demonstrated capacity to penetrate forest canopies to generate fine scale digital elevation 

models (DEM) from which a variety of stream structure and physical terrain information can be 

derived (Johansen, Phinn, et al., 2010; O’Callaghan & Mark, 1984; Tompalski et al., 2017). ALS 

systems typically consist of three components, a laser scanner, a Global Positioning System 

(GPS), an Inertial Measurement Unit (IMU) all mounted on an airplane (Lefsky et al., 2002a). 

Working in unison, these components derive information on the 3-dimensional location of 

reflected objects, be it vegetation or terrain very accurately (Lefsky et al., 2002a). As ALS 

becomes increasingly popular for forestry applications (Coops et al., 2021), there are increasing 

amounts of Near-Infrared (NIR) ALS being flown. In contrast, bathymetric or green wavelength 

ALS, which has been specifically designed for aquatic applications is much less available and is 

rarely flown across large areas limiting its use in an operational management context (McKean et 

al., 2009). Therefore, the use of “ALS” and “LiDAR” in this study refers to the more common 

NIR version.  

Methodologies to delineate stream networks from a DEM, be it conventionally derived from 

topographic maps, or from ALS, are well documented and act as the base for additional research 

(Jenson, 1991; Jenson & Domingue, 1988; O’Callaghan & Mark, 1984). Subsequent studies have 

demonstrated that ALS-derived terrain models can successfully be used to characterize a variety 

of stream attributes in higher order wider streams. James et al. (2007) used ALS derived DEMs 

to measure the order and magnitude of head water streams in South Carolina, USA under dense 

forest canopies. They found that errors in mapping channel location and topological connectivity 

increased with smaller streams (James et al., 2007). Using a DEM-derived stream gradient 

estimate, Cavalli et al. (2008) found that ALS data were able to differentiate between step-pools 
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and riffle-pools reaches. Stream width has also been measured using ALS data with some 

success in European and Australian ecosystems (Biron et al., 2013; Johansen, Arroyo, et al., 

2010; Johansen et al., 2011; Michez et al., 2013).  Johansen et al. (2010) used object-based 

image analysis to measure the width of larger streams (R2 = 0.99, n = 11) using DEM and slope 

layers derived from ALS. A study by Tompalski et al. (2017) developed a full characterization of 

riparian ecosystems on Vancouver Island, Canada, using stream gradient as a proxy for fish 

bearing potential with 82.9 % accuracy, and used ALS-derived vegetation metrics combined with 

solar insulation to predict total daily hours of stream shade.     

ALS has also been used in conjunction with high-resolution orthophotos to quantify recruitable 

and instream large wood (LW) (Kasprak et al., 2012;Richardson & Moskal, 2016). Recently, 

Joyce et al. (2019) and Jarron et al., (2021) utilized ALS data to count and estimate the volume 

of forest floor coarse wood using a point cloud segmentation algorithm that also has potential to 

be adopted within stream environments. Key to this extraction is the use of ALS intensity 

information, which provides an indication of the returned energy in each pulse. Due to 

absorption characteristics of water for the ALS near-infrared  laser pulses (Höfle et al., 2009), 

variations in intensity within the stream may be indicative of coarse wood. 

While previous research has shown the successful application of ALS to derive both terrain and 

stream physical features, there has been limited research on characterizing smaller streams 

(defined in this research as <10 m wide), or the classification of specific individual channel units, 

which is needed to comprehensively assess salmonid habitat conditions over the landscape. The 

objective of this paper is therefore to apply state of the art techniques to examine how ALS point 

clouds can be used to develop a novel framework to characterize stream morphology important 

to salmonid habitat in small streams in Coastal British Columbia, Canada. To do so, I first 
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utilized ALS to delineate small stream reaches. I then examined local terrain characteristics to 

estimate stream bankfull width and developed a novel methodology to detect instream wood 

through point cloud processing. I generated a series of point cloud metrics from the ALS data for 

input into a Random Forest model to classify individual habitat units. Lastly, I compared the 

derived stream attributes to field data and assessed the accuracy of the approach. Through this 

work I hope to provide forest and fisheries managers with tools to better characterize stream 

features important in assessing the quality of salmonid habitat to be used as a framework for 

conserving critical aquatic ecosystems (Bjornn & Reiser, 1991; Mellina & Hinch, 2009a; 

Rosenfeld et al., 2000). 

4.2 Methodological approach  

The general approach for processing the ALS data consisted of three key steps: 1) producing a 

DEM and a set of standard ALS metrics, 2) delineating the study streams, 3) generating stream 

attributes from ALS metrics (Figure 4-1). 

  
Figure 4-1. Full methodological flowchart.  
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4.2.1 DEM and ALS metrics  

First, ALS ground returns were used to create two Digital Elevation Models (DEM) with a 1 m 

and 10 m spatial resolution. The 1 m DEM raster layer was then used to normalize point cloud 

heights above ground level. A suite of standard ALS-derived metrics were calculated for 1 x 1 m 

cells along the study reaches including maximum height of returns to create a canopy height 

model (CHM; Roussel et al., 2020),  the proportion of first returns above 2 m divided by the total 

number of first returns representing canopy cover (Wulder et al., 2008), 15th percentile of height 

returns (p15) to characterize understory and midstory vegetation (Roussel et al., 2020), and the 

mean value of the raw intensity, classified into five equal classes, as a proxy for water 

depth/occurrence (Hofle et al., 2009). Three topographic layers were then derived from the 1 m 

DEM including terrain slope, normalized elevation (Cavilli et al., 2008), and a terrain roughness 

index (edge density; Lindsay, 2016). Normalized elevation was calculated, based on the methods 

of Cavilli et al. (2008), by taking a moving window standard deviation of a cell-by-cell 

subtraction between the ALS derived DEM and a 5 x 5 moving window mean DEM. I used the 

edge density algorithm from Whitebox Tools (Lindsay, 2016) to quantify breaks in slope 

between DEM pixels, creating the terrain roughness index.  

4.2.2 Delineating streams   

Figure 4-2 shows the workflow for the second step of ALS processing, delineating the full 

stream network.  
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Figure 4-2. Stream delineation workflow.  

Due to the topographic complexity of the study area and size of the study streams, I initially 

delineated a stream network using the 10 m DEM for the process of “stream burning”, which 

allowed streams to flow freely through road embankments and enforcing flow paths (J. Lindsay, 

2015). The 1 m DEM was pre-processed using stream burning and a breach depression algorithm 

instead of a traditional sink filling algorithm to limit the amount of change to the DEM and had 

been shown previously to better match field measured points (Lindsay, 2016).  After pre-

processing of the DEM, I followed the workflow of Tompalski et al (2017), who delineated 

streams in a similar Vancouver Island watershed, calculating flow direction, accumulation, and 

stream extraction using a stream initiation area of two ha. Lastly, I clipped the delineated ALS 

streams to the field measured stream line to allow comparison with field data (Figure 4-3).  
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Figure 4-3.  Elk Creek as measured in the field and as delineated from ALS.  

4.2.3 Stream attributes 

In the third step I determined a series of stream attributes from the derived ALS layers 

specifically: bankfull width, instream large and medium wood, percent canopy cover, gradient 

and stream morphological unit. 

4.2.3.1 Bankfull width  

Stream bankfull width was estimated based on the methods of Johansen et al (2011) who 

expanded stream width from a centerline using terrain slope and elevation thresholds (Figure 4-

4).  
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Figure 4-4. A workflow for deriving stream width: A) terrain slope layer with the overlaid stream centerline 

(red); B) terrain slope layer after cost accumulation to nearest stream source; C) thresholds between 0 and 

200 applied to the cost accumulation layer (low threshold – dark blue, high threshold - red);D) threshold set 

to 18; E) threshold layer converted to a polygon; F) stream width derived for a set of perpendicular lines 

established along stream centerline. 

    

I first calculated the accumulated cost of moving from each terrain slope cell to the nearest 

stream source (Figure 5 A, B, C). A “wetness threshold” (<=18) was applied to the accumulated 

cost raster representing pixels which had marked water accumulation (Figure 5 D). To measure 

stream width, a series of perpendicular lines were generated at 1 m intervals across a smoothed 

version of the ALS derived stream line (Figure 5 E, F). The number of DEM grid cells along the 

perpendicular line that exceeded the wetness threshold were used as the stream width. In areas 

where streams became too wide, or where two streams converged and stream width exceeded 

reasonable stream width estimates for the region (based on mean width), only stream widths 

within ± 1 SD of the overall mean stream width were compared. The relationship between the 

ALS estimated stream width and the field-measured stream width was assessed using Pearson’s 

correlation coefficient, root mean square deviation (RMSD), mean absolute deviation (MAD) 
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and bias. Bias is the average difference between the ALS measured width and the field measured 

width and was calculated using the equation: 

(1)                                               𝐵𝑖𝑎𝑠 =  
∑(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

𝑛
 

4.2.3.2 Instream large wood  

Instream wood detection was adapted from the methods of Jarron et al. (2021) and Joyce et al. 

(2019) to both count and measure coarse wood on the forest floor. The methodology consists of 

two main workflows; beginning with point cloud filtering, followed by the skeletonization 

process (Figure 4-7).  

 

Figure 4-5. Instream large wood detection methodology: A) isometric view of a point cloud corresponding to 

one of the streams, colored by height (low elevations – dark blue, high elevations – yellow to red); B) 

normalized point cloud cropped to below 2 m above ground level; C) returns with highest 30% of intensity 

values; D) linear feature detection (linear features – red, non-linear feature – blue); E) points corresponding 

to linear features; F) a 1 m buffer applied to all points classified as linear features; G) centerlines through 

buffered points; H) centerlines clipped to stream width.  
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First, the ALS point clouds were limited to encompass the entire stream width and stream bank 

(Figure 45- A). Next,  point clouds were classified into ground and non-ground returns using a 

cloth simulation filter (Zhang et al., 2016;). The derived ground surface was then used to 

normalize point elevations filtered to only include returns less than 2 m above ground level 

before further processing (Figure 4-5 B). An intensity threshold was applied to include only 

returns with the highest 30% of intensity values to remove returns reflecting off water (Höfle et 

al., 2009; Figure 4-5 C). In order to differentiate instream wood from low lying shrubs and 

branches, only pulses with one return under the 2 m threshold were selected (Jarron et al 2021). 

ALS pulses with multiple returns under 2 m are unlikely to represent instream wood as denser 

objects such as wood generally allow for only single pulse returns. Lastly, a linear feature 

detection algorithm was used to classify each return as a linear or nonlinear relative to 

neighboring returns ( Jarron et al., 2021; Figure 4-5 D). Filtered points were buffered by 1 m and 

then converted to linear features by generating centerlines through each buffered point (Figure 4-

5 F, G). All resulting vectors representing linear piece of coarse instream wood were clipped to 

within the stream width boundary and lines with < 1 m in length were discarded (Figure 4-5 H). 

Two comparisons were then made, first I compared the total number of medium and large pieces 

(>20 cm) of wood per stream to the numbers detected by the ALS and second, I split the stream 

reaches in half and compared the field and ALS detected instream wood using Pearson’s 

correlation coefficient.   

4.2.3.3 Channel morphology and habitat units 

A Random Forest (RF) (Breiman, 2001) modelling approach was used to classify individual 

geomorphic habitat units within our study streams (Table 4-1). To do so, the predictor variables 

were extracted every metre along the delineated stream line. For instream wood a total count of 
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all detected segments within five metres of each measurement point along the delineated stream 

line was used as a predictor.  Prior to model development predictor variables were assessed for 

covariance with no significant inter-correlations found. To account for uneven class distribution, 

riffles (n = 375) were randomly under-sampled to n = 300, while pools (n = 167), cascades (n = 

295) and glides (n = 257) were randomly oversampled ensuring that each class had an equal 

sample size (n = 300). Data was split 75-25% for training and testing, respectively, with the final 

model applied to the testing dataset being reported in section 3.3. Additionally, predictor variable 

importance is assessed within the Random Forest algorithm by calculating the Mean Decrease in 

Accuracy (MDA). For final mapping purposes the most frequently predicted habitat type, meter 

by meter, along each unit was used.   

Table 4-1. Predictor variables used in the Random Forest model. 

Predictor Unit Description Category 

Width m Bankfull width of the 

stream channel  

Stream Structure 

Instream wood Count A count of instream large 

and medium wood 

Stream Structure 

Canopy Height m The maximum height of 

returns per pixel  

Vegetation Structure 

15th percentile of height m Height of the 15th 

percentile of returns 

Vegetation Structure 

Normalized Elevation Index between 0-1 Mean focal filter followed 

by a standard deviation 

filter of elevation  

Topography 

Edge Density/ roughness Index between 0-1 Surface roughness index Topography 

Intensity Class Very Low, Low, Med, 

High, Very High  

Equally distributed 

quantile classes of 

intensity from ALS 

ground returns  

Stream Structure 

 

All statistical analyses were conducted using the R programing language (R Core Team, 2022). 

ALS processing was done using the lidR package (Roussel, Auty, Coops, et al., 2020; Roussel, 

Auty, de Boissieu, et al., 2020). Stream delineation was done using the Whitebox tools R 

package (Lindsay, 2016; Wu, 2019). Stream width was calculated in ArcGIS and R (ESRI, 
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2020). Stream morphological units were classified using the RandomForest package in the R 

programing environment (Liaw & Wiener, 2018).  

4.3 Results  

4.3.1 Stream attributes  

Canopy cover was highest at Gray Creek with 87% cover and the lowest at Elk Creek with 48% 

cover (Table 4-2). Overall, the mean canopy cover was 72% across all of the study streams.  

Table 4-2 ALS derived stream level canopy cover. 

 Stream   Canopy Cover 

Elk Creek         48% 

Gray Creek        87% 

Headwater Creek  76% 

Headache Creek    78% 

Rainbow Creek     76% 

View Creek        80% 

 

The mean difference between field and ALS delineated stream reaches was 0.72 m. A strong 

linear relationship (r = 0.80, p < 0.01) was found between the ALS estimated and field-measured 

stream widths (Figure 4-6). A bias of -1 m signifies that this approach generally under predicts 

bankfull width with a mean absolute deviation (MAD) of 1.89 m and an RMSD of 2.05 m.  The 

approach was accurate at estimating width across a wide range of field measured widths.  Certain 

streams, in particular Elk Creek, had a wide range of field measured widths, which were captured 

accurately by the ALS approach. When applied to narrower streams with less variability in width 

(e.g. Head Water and Gray Creek), the predicted width was overestimated.  
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Figure 4-6. Field measured stream width versus ALS derived width coloured by stream reach.  

 

Superimposing the predicted stream width over ALS derived terrain and vegetation attributes, 

allows for an initial analysis of stream morphology (Figure 4-7). Normalised elevation shows the 

residual topography of an area, with higher values (shown in red) representing areas with a 

greater change in local elevation. Roughness represents a finer scale of variation in topography 

and shows breaks in slope derived from a DEM ranging from 0 to 1. Generally, higher roughness 

values represent more variability in local terrain surrounding and within streams, such as 

boulders emerging above water level and is likely indicative of more turbid channel units. The 
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intensity shows the near infrared return energy of the pulses divided into five classes (Table 4-1). 

Canopy height varies along the stream section ranging from 0 - 40 m with the height of 

understory cover (p15) ranging from 0 - 25 m along the stream reach with the vast majority 

being less than 5 m tall. Lastly, instream wood shows an overlay of ALS estimated locations of 

wood. 
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Figure 4-7. ALS derived predictor variables for Elk Creek.  
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4.3.2 Instream large wood  

In total, 76 of 95 (80%) individual pieces of instream medium and large wood were detected 

across the streams in the study area (Figure 4-8). When dividing the stream into upstream and 

downstream sections, ALS derived wood versus field measured wood showed strong correlation 

(r = 0.81). In 4 out of 6 streams the method over predicted the number of pieces of stream wood, 

in Gray Creek the number was greatly underpredicted with only 1 out of 13, while in Head Water 

Creek the approach moderately underpredicted the number detecting 21 of 32 pieces.   

 

Figure 4-8. ALS predicted and field counted instream wood by stream.  
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4.3.3 Channel morphological units  

The developed RF model to predict the four channel morphological units had a mean overall 

classification accuracy of 85% when applied to the testing data set (25% of features withheld for 

validation). Generally, the model had the greatest success predicting the “pool” morphological 

unit, with a user’s accuracy 96% and producer’s accuracy 83% (Table 4-3).  Riffles had the most 

variation in model accuracy with a user’s accuracy of 76% and a producer’s accuracy of 93%. 

Riffles were most often confused with glides, and least often confused with the pool class. In 

contrast, pools were equally miss-classified across all classes although overall maintained the 

highest accuracies.  

Table 4-3. Error matrix from Random Forest model.   

 

 

Furthermore, overall model accuracy was compared across the 6 different study streams (Table 

4-4). Elk creek had the highest overall accuracy at 96% while Headwater Creek had the lowest 

overall accuracy at 74%.  

 

 

 

 

 

 Cascade Glide Pool Riffle Total User’s 

Accuracy 

Cascade 65 4 5 1 75 87% 

Glide 3 65 5 2 75 87% 

Pool 1 1 72 1 75 96% 

Riffle 6 7 5 57 75 76% 

Total 75 77 87 61 300  

Producer’s 

Accuracy  

87% 84% 83% 93%  Overall 

accuracy 

= 86% 
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Table 4-4. Overall classification accuracy by study site.  

Stream Accuracy  

Elk Creek 96% 

Gray Creek 90% 

Headwater 

Creek 74% 

Headache Creek 92% 

View Creek 84% 

Rainbow Creek 81% 

 

Spatial mapping of the ALS predicted habitat units and visually comparing them to the field 

measured habitat units shows good correspondence (Figure 4-9). For Elk Creek I see a 

misclassified riffle as a pool in the north west section of the stream with the remaining units 

classified correctly. In Gray Creek there were more discrepancies between ALS units and field 

units especially in the narrower southern section of the stream. Head Water Creek shows the 

most misclassifications between riffle and glide units similar to what is shown in Table 4-3 with 

riffles and glides showing the greatest confusion. Overall, Figure 4-9 demonstrates that feature 

size impacts classification accuracy: the most misclassification was within smaller habitat units 

and the highest accuracy in wider and longer units.     
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Figure 4-9. Map showing field measured channel habitat units and ALS derived channel habitat units 

expanded from stream centerline points.  

 

The variable importance for the model indicates that all seven ALS derived predictor variables 

contributed to the model’s predictive power (Figure 4-10). The top three predictors all had very 
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similar Mean Decrease Accuracy (MDA) values, demonstrating the importance of topographic 

variables in morphological classification. MDA showed almost equal importance between 

intensity class (MDA = 73.9) and understory cover (P15; MDA = 73.5). Bankfull width and 

instream wood had lower MDA values, ranking them lowest in importance but still having a 

strong impact on overall model accuracy.  

 

Figure 4-10. Variable importance for stream morphological unit random forest model. 

4.4 Discussion 

In this study I examined the capability of ALS to characterize the morphology and structure of 

small streams important for salmonid species in a coastal western hemlock zone on Vancouver 

Island, BC, Canada. To do so, I used state of the art point cloud processing techniques to extract 

stream attributes to use as predictor variables in a novel modeling framework to classify channel 

morphological units.  Our results demonstrate that ALS data can successfully be applied to 

characterize stream width, instream wood, and discrete channel morphological units. With the 

growing popularity of ALS data acquisitions for forest inventories, fisheries and forest managers 
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have the capacity to use these types of data to extract these relevant habitat components and use 

them for improved habitat assessments in forested ecosystem, maximizing the data value.   

A critical stream characteristic that many management decisions and forestry practices are based 

on is stream width (Pike, 2010). After delineating our study streams from an ALS derived DEM, 

I used a slope thresholding algorithm to expand stream width into areas of homogenous 

elevation. Our methodology for estimating bankfull width showed a positive relationship (r = 

0.80) between ALS derived width and field measured width. Streams with high canopy cover, 

steeper gradients, and less variable field measured widths, resulted in less accurate ALS width 

estimations. Other studies e.g., Johansen et al.,( 2010a); R2 = 0.99, n = 11 and Johansen et al., 

(2011); R2 = 0.93 n = 35, have shown improved results for stream width models on larger rivers 

which generally have smaller gradients, consistent with our findings.     

The ability of ALS to estimate instream large wood is a key finding of this research. Our 

approach, based on Jaron et al (2021), found 80% of medium and large wood in our study 

streams. While previous research has used high-resolution optical imaging (J. Richardson & 

Moskal, 2016) to count instream and recruitable wood, our results demonstrate that ALS alone is 

a viable option. Streams with <80% canopy cover had much higher, and more accurate counts of 

instream large wood, suggesting that in very closed canopies such as those present in Gray Creek 

estimation is more difficult. While further studies are needed, ALS should be able to more 

accurately measure instream wood under closed canopies, particularly full waveform data, when 

compared to optical imagery.  

The classification of the channel morphological habitat units (pools, riffles, glides, and cascades) 

with 85% accuracy is a promising result, with the confusion matrix indicating that the model 

predicted well across the study area with the lowest user’s accuracy (76%) occurring in the riffle 
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class, likely due to the similarities between riffles and glides (Hawkins et al., 1993). Pools had 

the highest user’s accuracy (96%) which could be explained by their distinct topography and 

placement hierarchically within the Hawkins et al. (1993) classification scheme. Additionally, I 

examined model accuracy across the six study stream reaches. Elk Creek had the highest overall 

accuracy with 96% of units identified. A possible reason for the high accuracy at Elk Creek is the 

even distribution of habitat units across the classes and relatively low gradient, low canopy 

cover, and average bankfull width compared to the other stream reaches.  In contrast, Headwater 

Creek had the lowest accuracy at 74% and the largest distribution of classes with 21 pools and 

only a single cascade. Interestingly, Gray Creek, the stream with the largest gradient and highest 

canopy cover had the second highest classification accuracy at 90%. Gray Creek had 13 cascade 

units and 16 pool units, the two units that were most accurately distinguished, highlighting the 

importance of topographic variability in model accuracy.       

Importantly, spatial mapping of the stream reaches by habitat unit demonstrated a close spatial 

sequence correspondence between field measured and ALS derived morphological units. A key 

finding of the spatial mapping was that the most misclassification occurred within smaller habitat 

units and the highest accuracy in wider and longer units, confirming the difficulty of the 

approach when stream widths and unit lengths are commensurate with the spatial resolution of 

the derived lidar DEM. While all seven predictor variables contributed to the model’s predictive 

power, the three most important, at this analysis scale, were terrain roughness, normalized 

elevation and canopy height. Since stream morphology is influenced primarily through local 

terrain characteristics, it was expected that the two topographic variables (terrain roughness and 

normalized elevation) would have the largest effects on model accuracy. The importance of 
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canopy height could be attributed to the effect of stream side vegetation on bank stability 

(Krzeminska et al., 2019).  

ALS return intensity proved an important attribute for both instream wood detection and channel 

morphological unit classification. The magnitude and range of ALS intensity values can vary 

across different ALS sensors and manufacturers and is often uncalibrated making the use of 

intensity values across different datasets challenging. It is however a very useful ALS attribute to 

utilize within a single flight source and as a result I used intensity information with success. To 

ensure transferability between locations and datasets further work regarding the transferability of 

an intensity-based model would be required.  Our results demonstrate however an innovative use 

of ALS return intensity values and have shown a novel application of this understudied 

component of ALS data.  

Interestingly, the results suggest that the presence of instream large wood, despite still 

contributing to the model’s predictive accuracy, was among the least important predictors of 

channel morphology. In this study I was limited in the field description of instream large wood, 

as it was collected as part of standard fish surveys, which did not position these items along the 

stream reach, rather counted pieces within a channel unit. Additional data including the width, 

length, and geographic position of instream wood would allow for a more comprehensive 

examination of the approach (Jarron et al., 2021).   

The rugged topography and complex forested environments of Vancouver Island result in a 

variety of stream structural attributes important for salmonids. For example, pool units have been 

shown to positively influence fish abundance and biodiversity in small coastal streams 

(Rosenfeld et al., 2000). Other studies have demonstrated an increase in juvenile salmonid 

abundance instreams with a high amount of instream wood (Boss & Richardson, 2002; Gonzalez 
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et al., 2017). The ability of our model to differentiate between these morphological classes and 

detect instream wood, shows that these attributes could become key inputs for advanced 

salmonid habitat models. Protecting salmonid spawning and rearing fresh water habitats has been 

identified as a key measure to maintain declining populations (Gregory & Bisson, 1997).  A 

landscape level analysis of these features would provide important information on the 

availability and quality of salmonid habitat and develop a holistic understanding of a watershed 

helping forest managers make decisions concerning the conservation of these keystone species.  

Whilst the focus of this paper was the classification of fish habitat units, partitioning an aquatic 

ecosystem into different units is useful for a wide variety of additional ecological applications. 

The classification model developed in this study could be applied to the study of aquatic 

invertebrates (do Amaral et al., 2015; Naman et al., 2017), sediment distribution (D. M. 

Thompson & Wohl, 2009), and aquatic vegetation (Kuhar et al., 2007). Furthermore, the stream 

attributes directly extracted from the ALS point clouds, both stream width and instream wood, 

provide additional information on aquatic biodiversity (Schmera et al., 2012; Wondzell & 

Bisson, 2003). 

In a forestry context, these models can inform on forest management plans, influencing 

harvesting activity and riparian area management as these practices are commonly determined by 

stream size and fish occurrence (Richardson et al., 2012). ALS derived stream attributes used in 

conjunction with ALS derived riparian ecosystems assessments (e.g. Tompalski et al., 2017) 

provide forestry practitioners a powerful landscape level analysis tool to complement traditional 

field-based surveys. Additionally, the information on stream size, salmonid habitat quality and 

stream morphology that our methods provide could help guide road planning and culvert 

placement near streams. Globally, as ALS data acquisition becomes an increasingly common 
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tool used to guide sustainable forest management, decision makers are looking for additional 

applications and ultimately more information from the data. Using the methodologies described 

in the study, riparian ecosystem and fish habitat assessments could become standard attributes 

routinely derived from ALS data. 

While the approach developed in this paper was successful in predicting stream attributes, there 

are a number of areas where additional research would be warranted to ensure the methodology 

is more broadly applicable. These fall under two distinct categories: ALS data acquisitions and 

field data collection. With respect to the acquisition of ALS data, in a forestry context, ALS data 

are usually acquired in the near infrared wavelength. The near infrared wavelength allows for 

high reflectance of vegetation surfaces; however, it is restricted in its ability to penetrate the 

water column, limiting our ability to measure stream depth and streambed topography, which 

would be key indicators of channel morphology and ultimately salmonid habitat identification. 

Other types of ALS, such as green bathymetric LiDAR, would provide insights into the depth of 

the water, however they would be limited in their characterization of the vegetation and stream 

banks (J. McKean et al., 2009). Furthermore, these bathymetric systems are not frequently flown 

outside of marine coastal mapping applications, making their usable application in this context 

relatively weak.  A second issue concerns the density of the ALS data. The data for this study 

were acquired at 25-35 points/m2 , which is relatively high density for forestry applications. 

However, increased point density either from decreased flight elevation or scanner technology 

improvements, may allow for a finer demarcation of instream wood which may be limited based 

on the number of returns that penetrate the canopy due to the lower density. Additional research 

could focus on the acquisition of denser point clouds, from UAV LiDAR, for example, which 
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might be able to provide up to 500 points/m2 , thereby allowing for full characterization of these 

areas, in limited swaths due to increase in data size, for validation or calibration purposes.   

A second limitation of this study is the accuracy of the field data. Accurately mapping a stream 

using GPS technology is hazardous and difficult when streams banks get wide and deep. As a 

result, the ground data with which to relate the stream to the ALS might not be, positionally, the 

most accurate, thereby hindering a fully independent verification of the accuracy of this 

technique. Alternatively, additional remotely sensed data, such as Mobile Laser Scanning (MLS) 

or under canopy drone-derived orthophotos have the potential to be incorporated into this 

methodology as a validation data set for both instream wood and stream width delineation. 

However, the density of the canopy and underlying vegetation in our study region would make 

this style of validation difficult in small headwater streams. Whilst there may be some error in 

the position of the field data, I am confident that they represent a good delineation of the streams 

and in many cases represent the best that can be achieved in real world situations. 

Logical next steps, now that approaches for deriving habitat have been developed, would be to 

relate these ALS derived stream attributes to fish abundance, biomass, and fish presence / 

absence which is important for habitat modeling, riparian ecosystem management and salmonid 

conservation. In addition, extrapolation of this methodology to larger streams, with wider banks, 

deeper pools, and smaller gradients, is important for landscape level analysis and as a result, 

further research is required to see how our methodology could be applied in those situations.  

4.5 Conclusion  

Previous studies have demonstrated the ability of ALS to characterize basic stream attributes. In 

this research I used high resolution ALS point clouds and DEMs to extract stream characteristics 

associated with salmonid abundance and habitat quality from six small stream reaches located on 
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Vancouver Island, British Columbia, Canada. A series of stream characteristic models were 

compared to ground truthed data collected using the fish habitat assessment procedure. Estimates 

of stream width, instream large wood, and stream morphological units were tested against field 

data. This research demonstrates the capabilities of ALS data to model more complex attributes 

of stream morphology and structure that are important for salmonids and moves toward the 

application of identifying quality salmonid habitat for use in biological analysis. 
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Chapter 5: An automated approach to detecting instream wood using 

airborne laser scanning in small coastal streams 

5.1 Introduction 

Sustainable forest management requires holistic approaches to ensure that forests continue to 

offer social, environmental and economic benefits, while balancing forest resources, biodiversity 

and ecosystem function. An often overlooked component of sustainable forest management 

frameworks is the riparian ecotone, which acts as a transition zone between upland forests and 

aquatic ecosystems (Naiman & Décamps, 1997). The riparian forest influences thermoregulation 

of streams through channel shading, addition of nutrients to stream systems through leaf 

shedding, bank stabilization, and facilitates the input of large wood to aquatic ecosystems 

(Tschaplinski & Pike, 2010).  

In forested watersheds, forest management can influence water quality, sediment supply, and 

wood inputs to stream channels, which in turn can significantly affect channel morphology, 

channel stability, and aquatic habitat (Chamberlin et al., 1991). Specifically, harvesting practices 

and road building in steeper areas can increase the possibility of mass wasting events leading to 

changes in the size and amount of sediment input and the characteristics and amount of wood 

supplied to a stream (Hassan, Church, et al., 2005). Improving road design and harvesting 

practices can help mitigate the effects of logging, specifically through the reduction of channel 

instability in low order streams, which consequently reduces the impacts of increased sediment 

and modified wood budget (Hassan, Hogan, et al., 2005). 

Defined as pieces of dead wood of appropriate size to influence channel structure, not only does 

large instream wood influence stream structural complexity (Beechie & Sibley, 1997; Hassan, 
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Church, et al., 2005), but also provides nutrients (Bilby, 2003), is a primary driver of sediment 

distribution (Montgomery et al., 2003), and acts as habitat for aquatic plants and animals (Benke 

& Wallace, 2003; Dolloff & Warren Jr, 2003). Instream wood is actively introduced to the 

channel through blowdown, mass wasting and bank erosion and, in some cases, forest 

management practices. Wood moves and is transported throughout a watershed via streams 

through some of the same processes, as those listed above, but can also be transported through 

flotation, which can move wood in large groups of pieces or individual pieces (Hassan, Hogan, et 

al., 2005). Wood leaves a watershed via decomposition or as fine particulate matter rather than as 

large wood pieces (Swanson, 2003). Large pieces of wood relative to the stream size have a 

larger geomorphic effect therefore small streams are disproportionately impacted by changing 

wood dynamics (Hassan, Hogan, et al., 2005). Previous research has reported a correlation 

between the amount of instream wood and the abundance of salmonids in small coastal streams. 

(Boss & Richardson, 2002; Gonzalez et al., 2017; Rosenfeld et al., 2000). Further, studies have 

demonstrated a negative response between instream large wood removal associated with riparian 

logging and juvenile salmonids (Mellina & Hinch, 2009).  

Currently, collecting data on location, quality and quantity of instream wood within streams, 

requires extensive field work either by hiking or rafting, which is hindered by a lack of safe 

launch and landing sites. Additionally, field-based methods are often limited geographically to 

small study reaches, due to both budget and time constraints. Field-based methods are critical for 

quantifying the amount of wood stored in a watershed or stream reach at a set point in time, 

however it is difficult to use field-based methods to quantify long term changes in wood 

distribution (Hassan, Hogan, et al., 2005).  
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Remote sensing technologies offer an alternative for the monitoring of the presence and 

distribution of instream wood in a watershed and is an already well established research area for 

a variety of riverine applications (Piégay et al., 2020). Passive optical remote sensing systems 

such as the Worldview series of satellites that utilize both visible and near infrared spectral 

information have been used to map the location of large wood and logjams in streams (Atha, 

2014; Helm et al., 2020; Marcus et al., 2003; Smikrud et al., 2008). For example, Atha (2014) 

used satellite imagery within Google Earth to manually delineate pieces of wood in the Queets 

River basin in Washington, USA, and determined that manual delineation was possible if wood 

pieces were less than 50% submerged in water during low flow periods. Helm et al (2020) used 

remotely piloted aircraft (RPAS) derived orthophotos and digital elevation models (DEMs) to 

manually extract instream wood location throughout Carnation Creek on Vancouver Island, 

British Columbia, Canada, and used this information to help survey small forested streams. 

However, as noted by a number of these authors, techniques that use optical remote sensing have 

limitations where canopy cover is dense and obscures the stream channel, which is often the case 

in small streams in heavily forested environments. Furthermore, these techniques all require 

varying degrees of manual interpretation and lack the ability to derive wood structure, a 

necessary measurement when assessing instream wood volume.  

Airborne Laser Scanning (ALS), is an active remote sensing technology, which creates a 3D 

model of topography and vegetation based on the measured time between emitting a pulse of 

light and recording the return of the pulse. An ALS system generally consists of four key 

components; the sensor which sends and receives laser pulses, an inertial measurement unit to 

determine the pitch, roll and yaw of the sensor, a global position system to record the precise 

location information, and a platform, for example an airplane, for carrying the above components 
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(White et al., 2016). Airborne platforms offer a broad spatial scale compared to terrestrial 

platforms and are often used to characterized landscape level features (Harpold et al., 2015).  

Previous studies have demonstrated the ability of ALS to detect and characterize both functional 

(influencing channel processes) and recruitable (potential to become functional) instream wood 

in forested watersheds (Abalharth et al., 2015; Atha & Dietrich, 2016; Kasprak et al., 2012; J. 

Richardson & Moskal, 2016). To date, there have been two main methodologies for detecting 

wood features. The first, used primarily for forest floor coarse wood detection, involves DEM 

differencing wherein an ALS-derived high spatial resolution DEM is subtracted from a modified 

digital surface model (DSM) to highlight residual differences, which are then attributed to wood 

features (Nyström et al., 2014). The second approach is based on point cloud filtering, and 

consists of applying various filtering algorithms to a raw ALS point cloud to isolate the points 

located on wood pieces from those representing the ground or vegetation (Atha & Dietrich, 

2016). Both methods require manual delineation of the detected objects, which is both time 

consuming and difficult to scale across entire watersheds. Moreover, studies that described these 

methods have focused on large river reaches with limited canopy cover. Recent advances in the 

detection of downed wood on the forest floor are based on an automated point cloud filtering 

approach (Joyce et al., 2019) and a skeletonization process (Jarron, Coops, MacKenzie, et al., 

2021), which has the potential to be adopted within stream environments. The intensity 

information obtained from ALS serves as an indicator of the energy returned from each laser 

pulse. The absorption properties of water for ALS near-infrared laser pulses can result in 

variations in intensity within the stream, which may be indicative of the presence of coarse 

woody debris (Abalharth et al., 2015; Höfle et al., 2009). 
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The capacity to use ALS data for counting instream wood has been demonstrated at the reach 

scale (Dakin Kuiper et al., 2022) and for counting individual pieces and logjams in large rivers 

(Abalharth et al., 2015; Atha & Dietrich, 2016). However, further research is required to assess 

the capabilities of ALS to automatically detect instream wood and to generate an improved 

understanding of how the size and location of instream wood, as well as the characteristics of the 

stream and associated riparian forest impact the accuracy of instream wood detection. Given this 

context, our objectives were to 1) develop and test a new framework to automatically map 

functional instream wood in small (bankful width <= 10 m) coastal streams, and to determine  2) 

which ALS metrics, representing the riparian environment, and 3) which field-measured physical 

properties of the instream wood features, were important for the accurate detection of instream 

wood.  

5.2 Materials and methods 

5.3 Data processing  

Our framework for instream wood detection consists of three key steps: 1) lidar point cloud 

filtering; 2) filtered point cloud skeletonization; and 3) validation of results (Figure 5-1).  
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Figure 5-1. Workflow graphic demonstrating the process of point cloud filtering and skeletonization for the 

detection of instream wood features. A) Unfiltered ALS point cloud, coloured by height above ground; B) 

Normalized to height above ground and filtered to under 2 m point cloud coloured by height; C) Intensity 

filtered point cloud showing only points with linear relationships to neighbours; D) Polygons created by 

buffering points by one metre; E) Centerline of dissolved buffers shown in green; F) Green lines representing 

instream wood cropped to the ALS derived stream width  

 

5.3.1 Point cloud filtering 

First, watershed wide ALS ground returns were used to create a DEM from which a stream 

network and stream width were extracted. The stream network was delineated using a standard 

processing procedure beginning with DEM pre-processing, followed by calculating the flow 

accumulation and flow direction. Stream width was determined by expanding the delineated 

stream network centerlines into an area of homogenous slope and elevation (see Dakin Kuiper et 

al., 2022).  

In order to differentiate the instream wood features from the stream bed, the ALS point clouds 

were cropped to the extent of each study stream and points were subjected to a second, more 
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detailed ground classification routine. Points were classified into ground and non-ground returns 

using a cloth simulation filter (CSF) (W. Zhang et al., 2016). The CSF algorithm works by 

inverting the point cloud and draping a simulated cloth over the surface. If a return is touching 

the cloth the return is classified as ground, contrary if a return is too far from the cloth it is 

considered a non-ground return. Tuning the parameters of the algorithm adjusts the rigidness of 

the cloth and therefore is an important first step in determining which returns are the stream bed 

or the ground and which represent instream wood. The cloth simulation filter parameters were 

set to default, except slope_smooth (set to TRUE), and class_threshold (set to 0.1). 

After using the CSF algorithm, point clouds were normalized and all returns under 0 m and 

returns over 2 m representing upper and middle canopy were removed. An intensity threshold 

was applied to include only returns with intensity values in the highest 40% of returned energy to 

differentiate potential wood returns and those interacting with  wetted areas, that  are known to 

have low intensity values or are absorbed by the waterbody (Abalharth et al., 2015; Höfle et al., 

2009). It should be noted that the aforementioned filtering process uses the raw unnormalized 

intensity values.  The point cloud was further thinned to only select pulses with one return under 

2 m to differentiate instream wood from low lying bankside vegetation (Jarron, Coops, 

MacKenzie, et al., 2021). Denser objects such as wood often have only single return pulses. 

Therefore, ALS pulses with multiple returns under 2 m could represent understory vegetation 

instead of instream wood features.  Lastly, linearity between neighbouring points was assessed  

using the “shp_line” function in the “lidR” package (Roussel, Auty, Coops, et al., 2020). This is 

an implementation of an algorithm developed by Limberger and Oliveira (2015) which classifies 

each return into linear or non linear classes based on a  relationship between the angle (th1) and 

the number of neighbouring returns (k). Points without a linear relationship to at least 3 
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neighbours were removed before exporting the filtered point cloud into the skeletonization 

process (Roussel, Auty, Coops, et al., 2020).  

5.3.2 Skeletonization 

In the third step, skeletonization was used to connect the linear returns from the filtered point 

cloud. Skeletonization performs a series of spatial transformations to return line vector features, 

which in this case represent instream wood. The filtered points were buffered by 1 m with 

dissolved boundaries to create continuous polygon features. Next, polygon centerlines were 

computed along the longest axis through the greatest number of points. The vector centerlines 

were simplified to better match the topology of the field wood. The resulting vector line features 

were intersected with a stream width polygon to ensure that only linear features within the 

stream extent remained. Lines with a length < 2 m were discarded.   

5.3.3 Validation of instream wood detection 

Field data positions were transformed from points representing the end of a piece of wood or a 

logjam to polygons using the field measured azimuths, lengths, and widths. Validation protocol 

closely followed the logic presented in Nystrom et al (2014), if ALS delineated instream wood 

was within 5 m (representing the maximum error of the collected GNSS field data) and the 

azimuth was within 30° of the field measured azimuth, an individual piece of wood was 

classified as detected, when these criteria were not satisfied the individual piece of wood was 

classified as undetected.  

5.3.4 Factors influencing detection  

To examine the influence of the riparian vegetation and topography surrounding instream wood 

on instream wood detection, relevant point cloud metrics were calculated based on their 

importance for wood detection reported in previous studies (Abalharth et al., 2015; Jarron, 
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Coops, MacKenzie, et al., 2021; Joyce et al., 2019; Wulder et al., 2008) and their ability to 

characterize riparian vegetation; point density, the point density under 2 m, mean intensity, 

percentage of ground returns, canopy cover, the number of multi return pulses under 5 m, and the 

absolute scan angle of returns and topographic slope (Table 5-1).  

Table 5-1. Field-measured and ALS attributes used as independent variables in logistic regression models.  

Attribute 

category Metrics  Unit Description  

Field- 

measured 

Length cm Length of field measured wood  

Width cm 
Diameter of field measured wood  

Logjam 
yes or 

no  

Classification of field measured wood, 

logjams have 3 or more pieces of wood 

touching  

Depth cm 
Submerged depth of field measured 

wood, 0 represents wood that is only 

partially submerged  

Azimuth degrees  
Azimuth determined between the two 

ends of the field measured wood 

Position  

parallel 

or 

across  

Position of instream wood relative to 

the stream  

ALS 

Point Density pt/m2 Density of ALS returns per unit area  

Point density under 2 m  pt/m2 
Density of ALS returns per unit area 

under a height threshold  

Mean intensity   Average intensity value of points within 

field measured wood polygon  

Proportion of points 

classified as ground 
% 

(# of returns classified as ground/ # of 

total returns) * 100 

Canopy cover % 
# of first returns above 2m/ # of total 

first returns  

Multi return pulses under 5 

m 
Count  

Count of multi return pulses under 5 m  

Absolute scan angle Degrees 
Absolute scan angle value of points 

within field measured wood polygon 

Slope Degrees  
Gradient values of pixels within field 

measured wood based on neighbouring 

cells in a DEM  
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A suite of logistic regression models was developed with missed and detected instream wood as 

dependent variables and the ALS metrics and instream wood measurements as the independent 

variables. Influence of independent variables was assessed using p-values and the odds ratio 

calculated in the logistic regression.  

The point cloud filtering, and statistical analysis was completed using R version 4.2.1 (R Core 

Team, 2022) and lidR version 4.0.1 (Roussel, Auty, Coops, et al., 2020), while point cloud 

skeletonization workflow was carried out in ArcGIS Pro version 2.9.3 (ESRI, 2022).  

5.4 Results 

Overall, the method presented herein detected 79 of 125 field-measured pieces of instream wood 

resulting in an overall detection accuracy of 63.0% (Table 5-2). View Creek had the highest 

accuracy at 86.7%, while Bun Creek had the lowest accuracy at 37.0% (Figure 5-2). The Artlish 

watershed had an overall accuracy of 56.8% while the Nahmint at an accuracy of 69.2% (Figure 

5-2). Logjams had a much higher detection accuracy of 81.0% while individual pieces of 

instream wood had a detection accuracy of 49.0% (Figure 5-3). I detected instream wood 

positioned across the stream with 65.0% accuracy and instream wood positioned parallel to the 

stream with 53.0% accuracy (Figure 5-3).  

Table 5-2. Results of detected vs missed instream wood pieces by stream and total.  

Stream        Detected 

 

Missed 

 Accuracy 

(%) 

Elk Creek     11 4 73.3 

Head Water 

Creek  24 10 70.6 

Headache Creek   6 4 60.0 

Rainbow Creek   4 1 80.0 

Steep Creek    4 5 44.4 

View Creek     13 2 86.7 
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Bun Creek     10 17 37.0 

Lunch Creek    5 1 83.3 

Trickle Creek   2 2 50.0 

Total 79 46 63.0 

 

  

Figure 5-2. Count of detected and missed instream wood across study watersheds.  
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Figure 5-3. Comparison of logjam and individual instream wood and wood position relative to the stream to 

detection counts.  

 

Table 5-3 shows the average of the computed ALS metrics used in the logistic regression 

analysis sorted by individual stream reach. Notably, Bun Creek had the lowest percentage of 

returns classified as ground and one of the highest canopy covers. View Creek had the lowest 

average intensity (28019), whereas Trickle Creek had the highest (29728) while all other stream 

reaches were quite similar with the largest difference being 2833 between Rainbow Creek and 

Head Water Creek.  
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Table 5-3. Average ALS metrics by stream.  

Stream 

Density 

under 2 

m 

(pts/m2) 

Total 

density 

(pts/m2) Intensity 

% of all 

returns 

classified 

as ground 

Canopy 

Cover 

(%) 

# of 

Multipulse 

Returns 

Absolute 

Scan 

Angle Slope 

Elk 

Creek     8 23 28861 13 49 10 3 12 

Head 

Water 

Creek  16 24 28019 3 30 5 3 10 

Headach

e Creek   10 24 26366 2 53 9 1 8 

Rainbo

w Creek   18 21 29199 9 10 2 1 13 

Steep 

Creek    12 31 27054 8 46 14 4 30 

View 

Creek     11 37 20404 6 62 22 2 9 

Bun 

Creek     12 29 28432 1 57 15 5 7 

Lunch 

Creek    12 21 27292 12 34 7 6 9 

Trickle 

Creek   13 27 29728 1 45 10 3 15 

 

Results of the logistic regression demonstrated that both instream wood width and length did not 

significantly influence detection accuracy (Table 5-4). However, submerged depth, azimuth and 

logjam classification did significantly influence detection frequency (p < 0.05). As submerged 

depth increased, the ability to detect pieces of instream wood decreased (Odds Ratio = 1.16). 

Additionally, logjams were much easier to detect than individual pieces of wood (Odds Ratio = 

0.22). Of the tested ALS metrics, only the percentage of returns classified as ground and the 

absolute scan angle significantly impacted the detection rate. Density of returns under 2 m, and 

the number of multi return pulses had some influence on the detection rate but were not 

significant. 

  



 

97 

 

Table 5-4. Results of logistic regression for the influence of ALS and field-measured wood attributes on 

instream wood detections.  

 Metric Std- Error P-Value 
Odds 

Ratio 

Field 

Width           0.01 0.75 1.00 

Length          0.00 0.51 1.00 

Depth           0.07 0.05 1.16 

Logjam          0.42 0.00 0.22 

Azimuth    0.00 0.04 1.00 

Position  0.39 0.17 1.71 

ALS 

Slope           0.02 0.28 1.02 

Point Density          0.02 0.28 1.02 

Intensity         0.00 0.91 1.00 

% of points 

classified as 

ground returns    

0.04 0.02 0.91 

Canopy Cover       0.01 0.36 1.01 

Multi-pulse 

returns under 5 m 
0.02 0.19 1.02 

Point density 

under 2 m      
0.03 0.51 0.98 

Absolute Scan 

Angle        
0.10 0.02 1.21 

 

Figure 5-4 shows how the detection rate changed with various ALS and field measured variables 

further demonstrating the relationships analyzed using the logistic regression. Only three 

instream wood objects were detected with a submerged depth over 5 cm, two of which were 

logjams. I characterized detection of instream wood by ALS metric (Figure 5-4). Of note, as the 

percentage of returns classified as ground increased, the ability to detect instream wood features 

also increased. If more than 10% of the returns are classified as ground the detection accuracy is 

90%. Additionally, a higher detection rate is seen when the absolute scan angle is closer to 0˚.  

Detection accuracy was not significantly influenced by average ALS intensity or point density.  
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Figure 5-4. Number of detected and missed instream wood pieces and associated metrics and physical 

characteristics. Percentage of detected instream wood shown.  

 

Figure 5-5 exemplifies the result of the workflow by highlighting the location of ALS detected 

instream wood relative to field measured wood in View Creek (See appendix for other stream 

reaches). Generally, there is good overlap between the ALS wood and the field wood points. 

Missed field wood points generally occur along the edges of the stream.  
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Figure 5-5. Map showing the field measured wood points and the lidar derived wood points along View 

Creek.  

5.5 Discussion 

In this study I developed an automated approach to detect both individual pieces of instream 

wood and logjams, in small (<10 m wide) stream reaches. I assessed the impact that both the 

physical properties of the instream wood and a series of ALS metrics have on wood detection in 

two watersheds on Vancouver Island, BC, Canada. Our results demonstrated that an automated 

approach to instream wood detection can successfully be applied to multiple watersheds and 

study reaches. Further, our results showed that certain wood characteristics, specifically 

submerged depth, azimuth and logjam classification significantly influenced the detection rate. 

The accuracy of instream wood detection was also significantly influenced by the absolute scan 
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angle of ALS returns and the percentage of ALS returns classified as ground, which is indicative 

of the degree to which the emitted ALS pulses were able to penetrate the overstory and 

understory to reach the ground surface.  

The highest stream level detection accuracy reported in this study was 86.7% at View Creek and 

the lowest was 37.0% at Bun Creek, with the average detection accuracy across all study reaches 

as 63.0%. Other studies have reported a range of accuracies for instream and forest floor wood 

detection. Most notably Joyce et al. (2019) who had an overall accuracy of 26.0% and Abalharth 

et al (2015) with a reported overall accuracy of 87.0%. However, Abalharth et al (2015) used a 

manual approach to detect only logjams and should therefore be compared to our fully automated 

logjam detection accuracy of 81.0%. Our results reported herein are comparable to other 

automated approaches such as that of Jarron et al (2021) who reported an overall accuracy of 

64.0% for detecting forest floor woody debris. It is important to note that in contrast to these 

aforementioned studies, our methodology is completely automated, from instream wood 

detection to the comparison to the field data. Furthermore, the stream reaches used in our study 

are considerably smaller (with maximum bankful widths ranging from 5.05 m to 10.6 m) 

compared to the rivers surveyed by Abalharth et al (2015) and Atha and Dietrich (2016), which 

were wider than 50 m and 25 m, respectively. By comparison, our relatively narrow stream 

reaches likely have higher canopy cover leading to more occlusion and greater positional 

uncertainty.  

The analysis of the influence of instream wood characteristics and ALS metrics on detection 

accuracy provided some unexpected results. Our expectation was that the length and width of 

instream wood pieces would have greater influence on the detection rate. Previous studies using 

ALS to detect forest floor coarse wood found that both width and length were significant 
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attributes affecting the detection rate (Joyce et al., 2019; Nyström et al., 2014), although Jarron et 

al (2021) reported that size did not significantly influence detection accuracy. Our results 

indicated no significant effect of instream wood width or length. However, I found that logjams 

were more accurately detected, and as they represent larger clusters of 3 or more pieces of 

instream wood, this indicates that size may an effect on detectability.  

While previous studies using ALS to detect instream wood did not specifically test the influence 

of different point cloud metrics on detection accuracy, Atha and Deitrich (2016) noted the effect 

of point density on detection rate and stated that a point density lower than 8 points/m2 would 

make the manual detection of instream wood difficult. I found that average point density did 

have some, although insignificant, effect on detection rate. However, our ALS was much denser 

(>25 pts/m2) than previous studies detecting instream wood. Our results showed that two ALS 

metrics, specifically the percentage of returns classified as ground and the absolute scan angle, 

had a significant effect on instream wood detection. Interestingly, I found no significant effect of 

mean intensity on instream wood detection accuracy. This result could be because of similar 

intensity values found across the study areas. In contrast, Abalharth et al (2015), noted intensity 

as an important factor in the manual delineation of instream wood. Additionally, Abalharth et al  

(2015) discussed the notable improvements to using a filtered point cloud compared to an 

unfiltered point cloud for manual instream wood detection, which I took into consideration 

during the development of our methodology. However, I found no significant relationship 

between the amount of canopy cover and detection rate.  

I found similar detection accuracies between the Artlish and Nahmint watersheds, at 56.8% and 

69.2% respectively. Bun Creek had the lowest detection accuracy (37.0%) and contained 27 out 

of 37 instream wood objects in the Artlish watershed. The low detection accuracy in Bun Creek 
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could be explained by the low average percentage of returns classified as ground (1.0%) and 

relatively high average absolute scan angle (5°). In contrast, View Creek in the Nahmint 

Watershed had the highest detection accuracy (86.7%), a higher percentage of returns classified 

as ground (5.0%) and a lower mean absolute scan angle (1°). Both watersheds share similar 

climates and are within the coastal western hemlock biogeoclimatic zone. However, these 

watersheds and stream reaches have different management and disturbance histories causing the 

forests in each watershed and each stream reach to be at varying degrees of succession. Bun 

Creek is situated within a complex old growth forest, while View Creek is located in the portion 

of the Nahmint watershed that is now second growth forest. Previous studies have found that 

forest successional stage and management practices influence instream wood dynamics (Martens 

et al., 2020). Both stream reaches have similar average stream widths, substrate characteristics, 

gradients, and canopy covers. However, the instream wood pieces in Bun Creek are on average 

smaller (length = 608 cm, width = 90 cm) than those in View Creek (length = 830 cm, width = 

118 cm) and are submerged at greater depths on average (3.8 cm) compared to those at View 

Creek (0.3 cm). Despite the differences between these two streams, I point to the similar overall 

detection accuracies between the two different watersheds and believe that the presented 

framework is robust and could be applied across a variety of watersheds in different regions. 

A limitation and potential source of detection error for instream wood is the temporal difference 

between the ALS acquisitions in 2015–2016 and the field data collection in 2022. Previous work 

has demonstrated that marked changes in wood distribution are possible in small coastal streams 

after major flooding events (Hassan, Hogan, et al., 2005). This could be a contributing factor to 

the lower accuracies observed for detection of individual wood pieces, which are more likely to 

move during peak flow events, compared to logjams. I recommend that future research limit the 
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amount of time between ALS acquisitions and field data acquisitions.  This study focuses 

primarily on quantifying the number of true positive detections and identifying the ALS metrics, 

characteristics of the instream wood pieces and the local environment that influence the detection 

accuracy. I acknowledge that there are limitations to identifying if over segmentation of pieces of 

wood is occurring due to the complexity of the logjam features the difficulty in counting the 

number of individual wood pieces that make up a logjam feature in the field, and the time gap 

limitation discussed above. Additional inaccuracies could also arise from positional errors in the 

field data. Regardless, the field measures are important sources of validation information that 

have captured persistent instream wood features across a range of forest riparian conditions. 

Further, I believe that field validation is an important step in the framework and is helpful to 

assess the condition of instream wood based on decay rate, submerged depth, width and length.    

Whilst the focus of this paper was assessing the ability of a fully automated approach to detect 

instream wood and determine which factors influence its accuracy, mapping the distribution and 

presence of instream wood features is enormously useful for a variety of additional ecological 

applications. Indeed, instream wood presence and density have been positively corelated to 

salmonid abundance and biomass (Fausch & Northcote, 1992; Gonzalez et al., 2017; Rosenfeld 

et al., 2000). Further, the introduction of instream wood promoted invertebrate diversity in 

streams (Flores et al., 2017). Since instream wood acts as refuge for juvenile salmonids and 

invertebrates and is therefore an important habitat feature, I stipulate that the framework 

described herein could be used to generate important spatial layers to support watershed-level 

habitat modeling (Fausch et al., 2002).  

In the context of sustainable forest management, understanding the distribution of instream wood 

could influence harvesting and retention practices, specifically in riparian areas.  For example, 
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identifying streams with high instream wood volume (high quality salmon habitat) highlights 

where additional riparian retention above the legal minimum would be most effective. Further, 

areas with a below average amount of instream wood, leading to degraded salmon habitat, could 

be located and identified for habitat improvement. The framework presented herein, when used 

in conjunction with other ALS-derived riparian and aquatic ecosystem assessments (Dakin 

Kuiper et al., 2022; Tompalski et al., 2017), becomes an increasingly useful and value added 

application for forest managers who are currently using ALS data for existing inventory and 

operational needs.  

5.6 Conclusions 

In this research I developed and demonstrated a fully automated approach to detecting instream 

wood features in nine study streams across two watersheds on Vancouver Island, British 

Columbia, Canada. Increased detection accuracy was observed when mapping logjams compared 

to individual pieces of instream wood. Further, the submerged depth, and percentage of lidar 

returns classified as ground significantly impacted detection accuracy. The ability to map 

important habitat and geomorphic features such as instream wood could be integrated into 

operational forest management and conservation practices on a routine basis and could be used to 

facilitate decision making where needed. This paper presents a framework to detect instream 

wood at a single point in time. As ALS acquisitions become more frequent, both spatially and 

temporally, the ability to describe changes in the amount of wood stored in a watershed over 

time and the changes occurring due to disturbance event or management practices is becoming 

more feasible. Future work could examine the effects that disturbance events such as fire or flood 

and different management activities such as road building and harvesting have on the 

distribution, function, and amount of instream wood in a watershed. 
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Chapter 6: Enhanced watershed status evaluation: towards an integrated 

framework to assess fish habitat in forested watersheds using laser scanning 

6.1 Introduction 

A key tenet to modern forestry practices is the concept of sustainable forest management. In 

brief, sustainable forest management supplements a concern with economic values with concerns 

of biodiversity, ecosystem function, and future resource availability (Franklin, 2001). In practice, 

sustainable forest management, when implemented,  is designed to maintain and enhance the 

long-term health of forest ecosystems, while providing a variety of ecosystems services 

including ecological, social, economic, and cultural opportunities both in the present and the 

future (Canadian Council of Forest Ministers, 2003). Within a sustainable forest management 

framework, significant importance has been placed on aquatic resource protection and 

management, specifically riparian zone and watershed management, in order to facilitate a more 

resilient forest ecosystem (Tschaplinski & Pike, 2010). Indeed, it is important that forest 

management decisions are not made in isolation but with an integrated approach, considering 

multiple uses and resources including forest and watershed status in the decision-making process 

(Wang et al., 2016). Therefore, in addition to information on vegetation, forest practitioners need 

up-to-date landscape level information on riparian and stream ecosystems at the watershed scale 

in their management areas.  

Watershed status refers to the interaction and combination of watershed elements, including 

upslope, riparian, and stream channel components (Pickard et al., 2014). Together, these 

components generate a range of hydrological, vegetation, soil, channel structure, thermal energy 

transfer, and system productivity processes, crucial for fostering conditions conducive to fish 
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habitat and ecosystem function (Mehan, 1991; Quinn, 2004). A watershed is deemed to be in a 

'good' state when all these attributes are able to sustain robust fish habitats, fostering a thriving 

diversity and abundance of aquatic and riparian-dependent species (Pickard et al., 2014).  

Previous studies have demonstrated the impacts of harvesting in a watershed and specifically in 

the riparian zone adjacent to a stream on the quality of nearby, and downstream, aquatic habitats. 

The Alsea watershed study (Hall & Stednick, 2008) was one of the first long term studies to 

assess the effects of different harvesting practices on water quality, aquatic habitat, and salmonid 

resources. They found marked difference in streamflow, stream temperature, sediment levels, 

and salmonid populations across the different harvesting prescriptions (clear cut, riparian buffer, 

and no harvesting: Hall and Stednick, 2008). This study is often cited as the keystone paper on 

riparian management in the Pacific Northwest of North America, for example most jurisdictions 

require riparian buffers around streams to provide shade, large wood, and bank stability to 

increase habitat availability (Hall & Stednick, 2008; Ministry of Forests, 2019; Pike, 2010). 

Furthermore, other research streams like Carnation Creek in British Columbia, Canada have 

found similar results and have built upon the Alsea study (Bisson et al., 2008; Hogan et al., 

1998), further demonstrating the need to examine the short and long-term effects of forest 

harvesting on watersheds.   

Watershed evaluations programs assess the state of a watershed by examining and characterizing 

a series of indicators relating to both the pressures facing a watershed, such as urbanization, road 

construction, and forest operations (Tsai et al., 2021) and a watershed's current functioning 

condition. Specific examples of watershed indicators include the density of roads in a watershed, 

the number of stream and road crossings.  Previous studies have identified how these processes 

can damage fish habitats effecting distribution, abundance, and survival of fish species (Mellina 
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& Hinch, 2009; Peacock et al., 2023). Indicators of watershed condition are used to characterize 

if a watershed remains in proper functioning condition, examples include, fish passage 

assessments, measurements of stream complexity, and riparian vegetation condition (Bjornn & 

Reiser, 1991; Rosenfeld et al., 2000).    

Multiple jurisdictions across the Pacific Northwest have developed both field and GIS-based 

watershed assessments to provide practitioners with the information they require for sustainable 

forest management. For example, in British Columbia, the Forest and Range Evaluation Program 

(FREP) was established under the Forest and Range Practices Act (FRPA) (Forest and Range 

Practices Act, 2002).  FREP supports the sustainable management of BC’s forest resources by 

monitoring and evaluating the condition of BC’s resources and the effectiveness of resources 

practices. For fish habitat and watershed monitoring there are two different assessments used by 

FREP: a Tier 1 GIS based assessment which examines the current pressures facing a watershed 

to facilitate and analyze of the risk of habitat degradation  (Porter et al., 2019) and a Tier 2 field 

based watershed assessment (Pickard et al., 2014) based on a field assessment for evaluating the 

condition of streams and riparian management areas (Tripp et al., 2020). Other jurisdictions 

within the Pacific Northwest have also implemented watershed status monitoring programs 

including the Columbia Habitat Monitoring Program (CHAMP) in the Columbia river basin 

(Northwest Fisheries Science Centre, 2023) and the PacFish InFish Biological Opinion (PIBO) 

Monitoring Program from the US forest service (Saunders et al., 2019).  

The majority of watershed status indicators are assessed through in situ measurements. However, 

these field-based programs are expensive, time consuming, and difficult to scale spatially and 

temporally. Remote sensing technologies allow for large scale characterization of these 

indicators. Whited et al. (2012) created the riverscape analysis tool using multispectral imagery 
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from the Landsat series of satellites and the Shuttle Radar Topography Mission (SRTM) global 

digital elevation model (DEM) to derive a set of watershed, river and floodplain indicators that 

are important for salmon across the Pacific Northwest at a 30 m resolution. The riverscape 

analysis tool includes indicators relating to watershed condition for example, floodplain area, 

channel sinuosity, and watershed mean elevation. Additionally, watershed pressure indicators 

were also derived, including a human footprint index, urban area mapping, and road mapping. 

The Whited et al. (2012) study demonstrates the ability of remote sensing indicators to 

accurately assess the status of a watershed, however, at a 30 m spatial scale, this methodology 

and technology is limited to larger rivers and excludes smaller headwater streams under dense 

canopy cover that are important spawning and rearing habitat for fish (Dakin Kuiper, Coops, 

Hinch, et al., 2023). 

Airborne laser scanning (ALS) is an active remote sensing technology that uses laser beams to 

create accurate three-dimensional point clouds representing terrain and objects, including 

vegetation. The use of ALS is well-established in a forestry-context, providing information on 

forest attributes relevant for sustainable forest management (White et al., 2013; Wulder et al., 

2008). As the collection and the availability of ALS data increases, there is an increasing interest 

to develop and assess the opportunities and limitations associated with the use of ALS systems to 

provide information on the health and quality of streams and aquatic ecosystems in forested 

environments.  

Previous studies have demonstrated the ability of ALS to characterize riparian and stream 

characteristics that can be used as indicators of watershed status and watershed pressures. 

Michez et al. (2017) presented a methodology of using ALS for monitoring riparian buffer 

systems across a large (>12,000 ha) study area in southern Belgium using physical parameters of 
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the stream (channel width and emerged depth) and riparian forest (height, longitudinal continuity 

and water accessibility). With this methodology Michez et al. (2017) were able to identify clear 

regional patterns in riparian vegetation across a large study area. Furthermore, Tompalski et al. 

(2017) developed a full characterization of riparian ecosystems for a 52,000 ha study area on 

Vancouver Island, Canada, using stream gradient as a proxy for fish bearing potential with 82.9 

% accuracy, and used ALS derived vegetation metrics combined with solar insolation to predict 

total daily hours of stream shading. Stackhouse et al. (2023) used a random forest model to 

predict riparian forest class probability with roughly 70% accuracy across two Vancouver Island 

watersheds. However, these studies are focused primarily on riparian vegetation with only 

limited application for fish bearing potential and fish habitat quality.  

ALS data have been used to characterize a variety of fine scale stream habitat features that can 

serve as indicators into the current conditions of a watershed and the pressures that a watershed 

is facing (Dakin Kuiper, Coops, Hinch, et al., 2023). For example, Duffin et al. (2021), used 

green bathymetric lidar to characterize stream morphology and related it to Chinook salmon 

(Oncorhynchus tshawytscha) spawning selection. Dakin Kuiper et al. (2022) used ALS derived 

predictor variables in a random forest model to classify stream morphology at the individual 

habitat unit scale. Additional stream habitat features have also been modeled with ALS including 

instream wood (Dakin Kuiper, Coops, Jarron, et al., 2023) and stream temperature based on solar 

insolation (Stackhouse et al., 2023).  ALS can be used to characterize stream habitat features in 

forested watersheds across a variety of scales, however, it is rare that these studies combine the 

extracted or modeled attributes into one framework.  

Given this context, the objective of this research is to examine the capacity of ALS data to 

integrate into existing watershed status evaluations. Using ALS data and advanced remote 
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sensing techniques to extract stream and vegetation attributes that are important for fish, I 

present a framework to assess watershed status in forested watersheds. I develop and apply 

methods to extract and model stream and riparian vegetation features including stream 

complexity, riparian condition, and instream wood and stream morphology. By providing 

detailed and accurate information on stream features and watershed status, ALS data can help 

researchers and managers make informed decisions about the sustainable management of forests 

and by association, forested watersheds.  

6.2 Methods 

6.2.1 Methodological approach  

In British Columbia, watershed status is evaluated using a two-Tier watershed status evaluation 

protocol. The Tier 1 protocol uses open source data layers to determine if a watershed is at risk 

of habitat degradation and at risk of losing proper functioning condition. If the Tier 1 assessment 

determines that a watershed is at a high-risk threshold then the Tier 2 protocol is initiated. The 

Tier 2 protocol assesses the condition of fish habitat in the watershed by conducting a series of in 

situ measurements.    

The general methodological approach I applied consists of four steps. First, to demonstrate the 

potential of ALS to characterize indicators relating to the pressures facing a watershed I 

conducted a current Tier 1 watershed status evaluation using the existing BC open data and 

compare the results to an integrated Tier 1 watershed status evaluation that is supplemented with 

ALS data. Second, to demonstrate the ability of ALS to examine fine spatial scale indicators of 

watershed condition I use ALS data to characterize streams and bankside vegetation at the stream 

reach scale based on the Tier 2 watershed monitoring protocol. Third, to demonstrate how ALS 

can be used to as a tool to identify important areas for forest managers, I project the individual 
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reach level indicators across the watershed and classify the values of each indicator into “Good”, 

“Fair”, and “Poor” categories, as per the classification system used in the existing assessment 

approach. Lastly, I combine all the indicators and present an overall ranking to assess habitat 

quality and watershed condition in the Nahmint and Artlish.   

6.2.2 Watershed status evaluation   

6.2.2.1 BC open data Tier 1 watershed status evaluation protocol 

I calculated a subset of the Tier 1 watershed status evaluation indicators (Porter et al., 2019) for 

both watersheds. The Tier 1 assessment is intended to provide a broad watershed level 

assessment of risks to ecosystem health and proper functioning condition using readily available 

open source GIS layers (Porter et al., 2019). The evaluation protocol consists of deriving a series 

of indicators described in Table 6-1.   

Table 6-1. Tier 1 Watershed Status evaluation Protocol Indicators (from Porter et al. 2019) 

Indicators  Units  Description  Data Source 

Peak Flow 

Index 

Index 0-1 Peak flow index is a 

weighted measure of the 

proportion of the 

watershed that has been 

harvested. 

DEM, Vegetation 

Resource Inventory 

(VRI) 

Road Density 

for entire sub-

basin  

km/km2 Calculated as the total 

length of roads in a 

watershed divided by the 

watershed area.  

Digital Roads Atlas 

Road density 

<100 m from a 

stream  

km/km2 Calculated as the total 

length of roads within 

100m of a stream 

divided by the total 

watershed area.  

Freshwater Atlas & 

Digital Road Atlas 

Road density on 

erodible soils  

km/km2 Road density on slopes 

greater than 60 degrees 

divided by the total 

watershed area 

VRI 
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Stream 

Crossing 

density  

No./km2 A count of stream road 

crossings divided by the 

total watershed area.  

Freshwater Atlas 

Portions of 

streams logged 

or otherwise 

disturbed  

km/km The length of streams 

intersecting a cutblock 

divided by the total 

length of streams in the 

watershed 

VRI 

 

6.2.2.2 ALS integrated Tier 1 watershed status evaluation protocol 

The integrated ALS/BC open source data Tier 1 watershed status evaluation protocol developed 

herein consists of replacing the open-source BC government data, specifically the FWA streams, 

vegetation resource inventory (VRI) vegetation height, and the terrain model dataset with their 

ALS-derived equivalents.     

Ground points were classified in the ALS data by the data provider. Once we obtained the data 

we generated a series of standard raster layers including a DEM, digital surface model (DSM), 

and a canopy height model (CHM) along with a suit of point cloud metrics at a 1 m pixel level. 

The metrics included measures of central tendency (mean, median, mode), measures of 

dispersion (variance, standard deviation, interquartile distance) and percentiles, and were 

generated with the lidR library for R (Roussel et al., 2020). 

Streams were delineated based on the method described in Dakin Kuiper et al. (2022). The first 

step involves processing ALS ground returns into a 10 m and 1 m spatial resolution DEM. The 

10 m DEM was subjected to a standard stream delineation methodology consisting of breaching 

depression (Lindsay, 2016a), flow accumulation (O’Callaghan & Mark, 1984) and flow direction 

calculations. The delineated stream layer derived from the 10 m DEM was used for the process 

of stream burning on the 1 m DEM to enforce flow patterns through road embankments 

(Lindsay, 2015). The stream burned 1 m DEM was then subjected to the same delineation 
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methodology described above, with the final vector stream layers extracted using an initiation 

area of 2 ha. Each individual stream reach was then identified and assigned a Strahler stream 

order value used for subsequent analysis. 

6.2.3 ALS derived Tier 2 enhanced habitat indicators  

The ALS derived key indicators are based upon previous studies that identified habitat 

characteristics important for salmonids and British Columbia Tier 2 field assessment procedure 

(Pickard et al., 2014: Table 6-2).  

 

Table 6-2. Tier 2 Watershed Status and Stream Condition Evaluation Protocol Indicators as per Pickard et 

al. 2014 

Riparian/ Stream Indicators  

Question 1. Is the channel bed undisturbed? 

Question 2. Are the channel banks intact? 

Question 3. Are channel LWD processes intact? 

Question 4. Is the channel morphology intact? 

Question 5. Are all aspects of the aquatic habitat sufficiently connected to allow for 

normal, unimpeded movements of fish, organic debris, and sediments? 

Question 6. Does the stream support a good diversity of fish cover attributes? 

Question 7. Does the amount of moss present on the substrates indicate a stable and 

productive system? 

Question 8. Has the introduction of fine inorganic sediments been minimized? 

Question 9. Does the stream support a diversity of aquatic invertebrates? 

Question 10. Has the vegetation retained in the RMA been sufficiently protected from 

windthrow? 

Question 11. Has the amount of bare erodible ground or soil disturbance in the riparian area 

been minimized? 

Question 12. Has sufficient vegetation been retained to maintain an adequate root network 

or LWD supply? 

Question 13. Has sufficient vegetation been retained to provide shade and reduce bank 

microclimate change? 

Question 14. Have the number of disturbance-increaser species, noxious weeds and/or 

invasive plant species present been limited to a satisfactory level? 

Question 15. Is the riparian vegetation within the first 10 m from the edge of the stream 

generally characteristic of what the healthy, unmanaged riparian plant 

community would normally be along the reach? 
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I then examined the ability of ALS to characterize the above indicators and selected six ALS 

indicators from existing literature that could help provide insight into the question listed in Table 

4 and contribute to the enhanced watershed status evaluation (Table 6-3).   

  

Table 6-3. ALS derived indicators of habitat quality. Q = question listed in Table 6-2 

Indicator  Tier 2 indicator (see 

Table 4) 

Source 

Structural 

complexity  

Passage indicator, 

Q.1,2,4 

Johnston and Slaney, 

1996 

% Pool by area Q. 1,2,4 Johnston and Slaney, 

1996 

Instream wood  Q. 3,6 Johnston and Slaney, 

1996 

Riparian condition Q. 15 Stackhouse et al.  2023 

Overhead Cover  Q. 6,9,12,15 Johnston and Slaney, 

1996 

Solar Radiation  Q. 13,15 Stackhouse et al. 2023 

 

6.2.3.1 Stream complexity: width, sinuosity, and gradient 

Stream complexity typically refers to the heterogeneity of physical stream characteristics. The 

greater the heterogeneity of such features the greater the complexity. In this study I use three 

stream characteristics to examine complexity, these include: stream width, sinuosity, and 

gradient. Stream width is extracted using the methods described in Dakin Kuiper et al. (2022), 

where the stream centerline is expanded into neighboring cells based on the accumulated cost of 

moving from each terrain slope cell to the nearest stream source. Stream sinuosity is calculated 

by dividing the length of the stream reach by the straight-line distance between start and end 

points of the reach. A stream flowing in a perfectly straight line will have a sinuosity value of 

one, meanwhile meandering stream reaches will have a value greater than 1. Stream gradient, 

also known as stream slope, is calculated by dividing the change in elevation between the start 
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and end of a stream reach by the length of the stream reach. Stream sinuosity and gradient were 

combined to create a stream complexity index.  

6.2.3.2 Morphological units: % pool by area  

Stream morphological units were classified into pools, riffles, glides and cascades using the 

random forest algorithm developed by Dakin Kuiper et al. (2022). Seven predictor variables 

were extracted from the ALS data including: normalized elevation, terrain roughness, return 

intensity, canopy height, understory cover, instream wood, and stream width across the entire 

delineated stream layer. Predictor variables were then used to train a random forest model to 

predict morphological units, more information on this process can be found in Dakin Kuiper et 

al. (2022). To summarize the morphological units per stream reach I calculated the proportion of 

pool area per stream link.  

6.2.3.3 Instream wood  

Instream wood is extracted from the raw ALS data using the approach presented in Dakin Kuiper 

et al. (2023). The methodology contains two key steps beginning with point cloud filtering, then 

filtered point cloud skeletonization (Dakin Kuiper, Coops, Jarron, et al., 2023). Validation of 

results was previously presented in Dakin Kuiper et al. (2022) with 80% accuracy at the stream 

reach level and 63% accuracy at the individual instream wood feature level (Dakin Kuiper et al., 

2023). For the purpose of this study I summarized the instream wood data by counting the 

number of instream wood pieces per stream segment.  

6.2.3.4 Riparian condition and overhead cover  

To examine the riparian extent and indirectly the health or function of the riparian environments, 

I used a riparian probability layer developed by Stackhouse et al. (2023). In short, a conditional 

random forest model was used to predict riparian and upland vegetation classes using 14 ALS 
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derived predictor variables (Stackhouse et al., 2023). It should be noted that the probability of 

riparian class occurrence is only calculated in watershed areas where harvesting has not 

occurred. To characterize riparian condition, I summarized the average probability of riparian 

extent within 30 m of each stream reach to represent common riparian management buffers in 

the area (Ministry of Forests, 2019) .  

Overhead cover was calculated using the proportion of returns above 2 m within the stream 

width layer. Previous studies have found that the relationship of returns below the canopy to total 

returns has strong correlation to canopy cover (Solberg et al., 2006). Overhead cover was then 

summarized by taking the mean across each stream reach.  

6.2.3.5 Stream solar insolation  

Previous studies have demonstrated a strong relationship between incoming solar radiation 

modeled from ALS data and stream temperature (Richardson et al., 2019; Stackhouse, Coops, 

Kuiper, et al., 2023). Solar insolation is the energy from the sun that reaches the earth’s surface, 

and was calculated using the methods of Rich et al. (1994). A viewshed model was used in 

addition to a DSM to account for potential shading from surrounding topography and vegetation 

(Fu & Rich, 2002). I computed the solar insolation hourly for the 22nd day in September (fall 

equinox) using the 1 m Digital surfaceModel and then averaged the hourly values to get a daily 

insolation value using the Area Solar Radiation tool in ArcGIS Pro 3.0.1. Lastly, I summarized 

the amount of solar insolation per stream reach by calculating the average solar insolation within 

the stream width area.    

6.2.4 Ranking criteria  

Each stream attribute was then classified into one of three habitat quality or risk level categories: 

poor, fair, or good. The Tier 1 watershed status indicators were transformed into an index value 
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based on the thresholds listed in the watershed status evaluation protocols Tier 1 guidebook 

(Porter et al., 2019: Table 6-4). Index values less than 0.2 are considered low risk, index values 

between 0.2 and 0.4 are moderate risk and index values above 0.4 were at high risk of habitat 

degradation and loss of proper functioning condition. The Tier 2 indicators of habitat condition 

(morphology, instream wood, and gradient) were classified based on the fish habitat assessment 

procedure guidebook (Johnston and Slaney, 1996: Table 6-5). Solar insolation and riparian 

condition were classified into high, medium, and low. Solar insolation was classified using the 

first and third quartile values. Riparian condition was classified based on the riparian class 

probability with class threshold values set at 80%, 60%, and 40%.  

 

 Table 6-4. BC open data and ALS integrated watershed status evaluation Tier 1 index value ranking criteria.  

Index Peak 

Flow 

Index 

Road 

Density 

(km/km2) 

Road 

Density on 

Erodible soil 

(km/km2) 

Road Density 

within 100 m 

of a stream 

(km/km2) 

Number of 

Stream 

Crossings 

(no/km2) 

Portion of 

Streams 

logged 

(km/km) 

0 0.00 0.00 0.00 0.00 0.00 0.00 

0.1 0.06 0.30 0.05 0.04 0.20 0.03 

0.2 0.12 0.60 0.10 0.08 0.40 0.06 

0.3 0.18 0.90 0.15 0.12 0.60 0.09 

0.4 0.24 1.20 0.20 0.16 0.80 0.12 

0.5 0.30 1.50 0.25 0.20 1.00 0.15 

0.6 0.36 1.80 0.35 0.25 1.20 0.18 

0.7 0.42 2.10 0.45 0.30 1.40 0.21 

0.8 0.48 2.40 0.55 0.35 1.60 0.24 

0.9 0.54 2.70 0.65 0.40 1.80 0.27 

1 0.60 3.00 0.75 0.45 2.00 0.30 
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Table 6-5.  Tier 2 ALS derived habitat attributes ranking criteria. 

 

 

 

 

 

 

 

 

The overall rank for the Tier 2 enhanced watershed status evaluation was derived by assigning a 

numerical value to each rank of each individual indicator, where good, fair, poor, became 3,2,1 

respectively. The numerical values were then averaged and assigned to good, fair, and poor 

categories with cut off values of greater than or equal to 2.5 for good habitat condition and less 

than or equal to 1.5 for poor habitat condition.  

6.3 Results  

6.3.1 Tier 1 watershed status evaluation 

Across the suite of indicators, the ALS Tier 1 evaluation gave more indicators with a high risk 

ranking when compared to the conventional Tier 1 evaluation using open-source government 

data (Figure 6-1). All the attributes in the Artlish watershed exceeded the high-risk threshold 

using both methods. However, the ALS derived index values exceeded the standard values for 

the portion of logged streams, and for the number of stream road crossings. Interestingly, the 

roads on erodible soil had a higher index value for the conventional approach compared to the 

ALS derived index value.  In contrast, the Nahmint watershed had indictors in the low risk, 

Indicator  Poor Fair Good  Source 

Instream Wood <1 1 to 2  >2  Johnston and Slaney, 

1996 

% Pool Area < 30 % 30 - 40 % > 40 % Johnston and Slaney, 

1996 

Overhead Cover  < 10 % 10 - 20 % > 20 % Johnston and Slaney, 

1996 

Solar Insolation >1061 

(kWh/m2)  

533 – 

1061 

(kWh/m2) 

<533 

(kWh/m2) 

 

Riparian Condition <60% 60-80 % >80% Stackhouse et al.  2023 

Structural 

Complexity  

< 0.28 0.28-0.51 >0.51 
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moderate risk, and high risk thresholds. The ALS integrated approach found three indicators in 

the high risk category (number of stream crossings, roads within 100 m of streams, and portion 

of streams logged) three indicators (road density, peak flow index, and roads on erodible soil) in 

the moderate risk category and no indicators in the low risk category. In contrast, the standard 

methodology, ranked three indicators in the high risk category (number of stream crossings and 

roads within 100 m of a stream), two indicators at moderate risk (peak flow index and road 

density), and two indicators at low risk (portion of stream logged and roads on erodible soil). 

Interestingly the portion of streams logged moved from the low risk category using the standard 

method to high risk when the indicator was assessed with the ALS integrated approach. In both 

watersheds the density of streams within 100 m of roads had an index value of 1 indicating that 

both watersheds a density exceeding 0.45 km/km2.   
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Figure 6-1. Results of the ALS and provincial Tier 1 watershed status evaluation protocol, by watershed. 
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6.3.2 ALS derived Tier 2 enhanced reach scale habitat condition 

Based on the results presented above and keeping with the existing BC protocol the enhanced 

Tier 2 indicators were derived for only the Nahmint watershed to better highlight the driving 

factors between differences in the Tier 1 indicators.   

6.3.2.1 Indicators  

Table 6-6 shows the minimum, maximum and mean values across the entire Nahmint watershed. 

Two indicators, instream wood and overhead cover, exceeded the good ranking threshold. Three 

indicators, percent pool area, solar insolation, and structural complexity were within the fair 

ranking threshold. Riparian condition was the only indicator across the watershed to be within 

the poor ranking criteria.  

Table 6-6. Minimum, maximum, mean and rankings for each Tier 2 indicators across the entire Nahmint 

watershed. 

Metrics Min Max Mean Rank 

Instream Wood  0.00 88.81 7.75 Good 

Percent Pool Area 0.12% 97.53% 37.27% Fair 

Overhead Cover  0.00% 98.46% 45.94% Good 

Solar Insolation  
23.13 

(kWh/m2) 

3108.66 

(kWh/m2) 

897.53 

(kWh/m2) 

Fair 

Riparian Condition 0.00% 100.00% 44.7% Poor 

Structural 

Complexity  0.03 1.06 0.42 

Fair 

 

Figure 6-2 shows the ALS derived indicators within a subset of the study area. In the top two 

panels the influence of vegetation on the stream is apparent with lower canopy cover and higher 

solar insolation present within stream areas. Both the instream wood and morphology panels are 

limited to the extent of the delineated stream network.  

 



 

123 

 

Figure 6-2. ALS derived indicators of watershed and habitat status for a subset of the Nahmint river 

watershed.  
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The overall ranking criteria of all stream reaches in the Nahmint watershed was 28%, 65% and 

7% ranked as good, fair, and poor respectively (Table 6-7). The morphology indicator had the 

highest percentage of stream reaches with a poor ranking (45%: Table 6-7). Overhead cover had 

the highest percentage of stream reaches in the good category and the lowest percentage in the 

fair category (Table 6-7).   

Table 6-7. Percentage of stream reaches in the watershed that meet the habitat condition thresholds for each 

condition indicator in the Nahmint river watershed.  

  Good  Fair  Poor 

Overall Rank  28% 65% 7% 

Solar Radiation  33% 33% 34% 

Riparian extent  33% 28% 39% 

Complexity 34% 33% 33% 

Morphology  38% 11% 45% 

Wood 68% 12% 20% 

Overhead Cover 81% 8% 11% 

 

Figure 6-3 shows the proportion of stream reaches categorized by stream order that are within 

each habitat condition indicator ranking. It should be noted that of the 1,821 stream reaches 

delineated in the Nahmint watershed: 941, 455, 198, 148, 79 reaches were assigned a Strahler 

order of 1 to 5 respectively. The general trend is that as stream order increases so too does the 

percentage of stream reaches in the poor habitat condition. However, order 4 streams had the 

highest percentage in the good category for riparian extent. Solar radiation has the opposite 

trend, as stream order increases the percentage of stream reaches with poor habitat conditions 

decrease, with the exception of order 5 streams.  
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Figure 6-3. Ranking of ALS derived enhanced watershed status evaluation indicators stratified by Strahler 

stream order. 

 

After each stream reach was given a ranking in each indicator they were mapped across the 

entire Nahmint watershed, however, a subset of the area is shown in figure 6-4 and figure 6-5 as 

an example to demonstrate the spatial detail provided by these indicators.  Figure 6-5 shows the 

overall rank indicator cropped to the derived stream width overlayer on an ALS derived hillshade 

layer.  
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Figure 6-4. Individual ranking criteria mapped across a subset of the Nahmint watershed.  
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Figure 6-5. Overall habitat quality ranking for a small subset of the Nahmint river watershed overlayed on a 

hillshade raster layer.  

 

6.4 Discussion 

Understanding where quality salmonid habitat is distributed throughout a forested watershed is a 

critical piece of information that forest managers can use to make informed decisions within a 

sustainable forest management framework. The lack of spatial information provided by 

traditional watershed status assessments makes it difficult for forest managers to make decisions 

regarding the conservation of salmonids and the restoration of their habitat. Additionally, the 

majority of studies that use ALS to characterize salmonid habitat focus on only a single or 
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limited number of stream features (Dakin Kuiper et al. 2023a). By combining these stream 

habitat condition indicators and riparian vegetation features into an assessment framework I can 

provide useful and spatially explicit information. 

I presented a framework to assess the risk of habitat degradation within a forested watershed 

using ALS data and found that including ALS derived attributes generally ranked in the higher 

risk category compared to indicators derived from existing open government data. Indeed, the 

increased spatial detail contained in the ALS derived stream network and ALS derived terrain 

and vegetation variables reason for this discrepancy could be due to increased spatial detail 

found in the ALS data. Further, our results showed that the overall stream reach habitat quality 

varied by stream order with the lower order streams generally having a higher proportion of 

stream reach in the “good” category. Together, these results suggest that ALS data has a high 

capacity to be used by forest managers to make informed decisions regarding factors that 

influence the habitat conditions within watersheds.  

6.4.1 ALS for watershed status evaluation  

The research presented demonstrated the ability to integrate ALS data and more specifically 

ALS-derived stream and riparian characteristics into existing watershed status and habitat 

condition evaluation protocols. The conventional Tier 2 watershed status evaluation protocol 

involves answering a series of questions regarding the habitat conditions at specific reaches 

within a watershed using in situ data. Tier 2 evaluations are triggered by Tier 1 evaluations that 

indicate a high risk level and the reaches are selected and stratified based on a sampling protocol 

and then an assessment is made for the entire watershed (Tripp et al., 2020). The enhanced ALS-

derived condition assessment uses similar indicators to the conventional approach but allows for 

an assessment of every stream reach in a watershed in a spatially explicit manner, rather than 
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having to select a sample of reaches. The ability to assess habitat conditions within each stream 

reach throughout a forested watershed provides a level of insight not possible with traditional 

field sampling approaches. However, some aspects of the Tier 2 assessment are not currently 

possible or may never be possible to characterize with ALS data exclusively. For example, the 

capacity of ALS to characterize the amount of moss present on stream substrate is low. 

Additionally, answering questions regarding suspended sediment load will also be difficult. 

However, completing aspects of the fish passage assessment, specifically, examining culvert 

locations and characteristics is possible (Arsenault et al., 2023). Further, the ability of ALS to 

characterize insects and other invertebrates and their habitat is a developing field and could help 

to address question 9 of the Tier 2 protocol (Rhodes et al., 2022). 

Understanding the strengths and limitations of our methods is important for interpreting the 

results of this study. Delineating the stream network is an essential early step in our proposed 

framework. Previous studies have found discrepancies between ALS stream networks and stream 

networks derived from interpreted imagery and other sources (James et al., 2007; Tompalski et 

al., 2017). Indeed, this is a major factor in the differing rankings between the ALS and open data 

watershed level status evaluation indicator values. Generally, due to the increased detail in the 

ALS-derived terrain models, differences occur in the length and locations of stream features 

(Tompalski et al., 2017). The number of stream reaches delineated is influenced from the 

accumulation threshold applied during the initial delineation workflow. Limited work has been 

accomplished to determine what threshold value to use as it is difficult to assess the accuracy of 

the different threshold values (Ozulu & Gökgöz, 2018). Further research on the most accurate 

method of flow accumulation thresholding is required, specifically for ephemeral streams.   
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Previous research using ALS data in a fish habitat context has generally focused on modeling or 

characterizing a specific habitat feature in a few stream reaches or across the network (Dakin 

Kuiper et al., 2022; Duffin et al., 2021; Stackhouse et al., 2023). This study derived a series of 

indicators from the literature and combined them to create a holistic understanding of habitat 

condition throughout the example watershed.  A strength of this approach is the ability to only 

calculate a small subset of the indicator values depending on the project requirements and the 

availability field data. For example, the stream morphology is derived using a random forest 

model trained on a subset of the collected field data, additionally, thresholds in the extraction of 

stream width and instream wood counts were also tuned using field data (Dakin Kuiper et al., 

2022). However, it is becoming more common that a forestry practitioner has access to only ALS 

data and limited field data. In this case, the watershed scale status evaluation can still be used, 

and ALS indicators such as canopy cover, gradient, structural complexity, and insolation could 

be calculated as part of a routine management protocol.  

I chose to focus on ALS derived indicators in or adjacent to the stream.  However other 

watershed indicators such as location and type of roads and presence and scale of landslides have 

been derived using ALS (Baldo et al., 2009; Roussel et al., 2022, 2023). Future research could 

add more ALS indicators to replace or supplement current open data sources derived from air 

photo interpretation. Further, additional remote sensing technologies could be integrated within 

this framework. For example, passive optical remote sensing technologies such as the Landsat or 

the Sentinel series of satellites have been used to quantify salmon habitat (Luck et al., 2010; 

Whited et al., 2012). Additionally, as the use of remotely piloted aerial vehicles (RPAS) and 

mobile laser scanning technologies increase, these technologies could be integrated into this 

framework potentially replacing field data.    
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6.4.2 Spatial distribution of condition indicators  

The ALS derived enhanced indicators presented in this study varied spatially throughout the 

watershed. As I moved from the lower order streams in the upper portion of the watershed to the 

higher order larger rivers nearer to the outlet, the percentage of stream reaches in the “Good” 

category of the overall rank generally decreased. The opposite trend is seen in the solar radiation 

rank and the percentages are fairly even in the riparian extent indicator rankings.  The even 

distribution seen in these two indicators could be driven by riparian management strategies such 

as fixed width buffers. The low percentage of “Good” reaches in the overall indicator category is 

influenced heavily by the complexity and morphology indicators with 1% and 0% of stream 

reaches ranked “Good” in these categories. The model for classifying stream morphology was 

trained and tested in small headwater streams and may not adequately capture the variations in 

larger river reaches. For example, in larger rivers, the predictor variables of intensity and zq15 

(understory canopy) will be different than in headwater streams because of the absorption 

properties of deep water and limited bankside and overhanging vegetation.  

Looking at how the indicators vary spatially throughout the watershed is important for 

interpreting the habitat indicators in a species-specific and life-stage-specific context. For 

example, using these indicators an approach could be tailored for different life stages. For 

spawning salmonids riffles, solar insolation and gradient become important indicators, whereas 

instream wood and percent of pools become less important (Quinn, 2004). For rearing fish that 

utilize cover to a greater degree, instream wood, complexity and canopy cover become more 

important indicators. At the species level, species like chum or pink salmon which spawn closer 

to the river outlet, I can stratify reaches by distance to the outlet and look at available habitat 
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quality. For species that migrate further upstream like sockeye salmon or steelhead trout, 

gradient and road stream crossings become more important habitat indicators.    

6.4.3 Management implications 

ALS continues to be a valuable asset for sustainable forest management planning. Indeed, ALS 

has already reached a realized operational feasibility for applications such as timber resource 

assessment (Næsset, 2014; White et al., 2016), and is nearing an operational capacity for 

terrestrial habitat modeling (Merrick et al., 2013) and carbon and biomass assessments (Næsset, 

2014). The operational readiness of the indicators presented in this research ranges from realized 

to developing. Delineating stream networks, calculating canopy cover, and stream complexity 

measurements require limited computational power and can be computed with limited or no 

available field data and are operationally realized in some areas (Dakin Kuiper et al., 2022; 

O’Callaghan & Mark, 1984; Tompalski et al., 2017). Instream wood, stream width, riparian 

condition, and solar radiation require limited field data for calibration; however, instream wood 

detection, and solar radiation are computationally intensive at the watershed scale. Further, 

riparian conditions require the development of a random forest model and the computation of a 

series of ALS derived predictor variables. Predicting stream morphological units at this scale 

requires field data to train a random forest model (Dakin Kuiper et al., 2022). However, methods 

at different scales (Cavalli et al., 2008), or using different remote sensing technologies including 

photogrammetry (Helm et al., 2020) and bathymetric lidar (Duffin et al., 2021b) are promising 

and could be adapted to ALS data. 

As the availability of ALS data increases, there is growing incentive to extract more information 

from these datasets. It is the hopes of the authors that ALS applications for characterizing stream 

habitat indicators and watershed status indicators reach operational maturity alongside other ALS 
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data products such as enhanced forest inventory. Further, as multi-temporal ALS acquisitions 

become more common, there will be an increased capacity to quantify the natural (fire, pest) and 

anthropogenic (harvesting, urbanization) pressures facing forested watersheds. By developing 

the capacity to characterize and quantify these cumulative effects, I can begin to formulate a 

more fulsome understanding of how management decisions could impact habitat condition and 

watershed pressures at a landscape level.  

6.5 Conclusion 

This study presents a framework to understand watershed status and riparian habitat quality in a 

forested watershed that builds upon and integrates existing assessment protocols. I found that 

integrating information derived from highly detailed ALS data into a watershed status evaluation 

protocol universally increased the risk of losing proper functioning condition to habitat 

degradation across the indicators. Further, the level of detail available in ALS dataset allows for 

a stream-reach scale habitat condition assessment. Within the Nahmint river watershed, two 

habitat condition indicators were good, three indicators were fair, and one was poor. Stratifying 

these habitat quality indicators by stream order provides valuable information on the spatial 

distribution of available quality salmonid habitat throughout the landscape. Specifically, I found 

that the overall condition of reach-level stream habitat features across the Nahmint watershed 

was 28% good, 65% fair and 7% poor. Value-added approaches that avail upon existing ALS 

datasets, such as the one presented in this study, are important for providing forestry practitioners 

and forest managers a full picture of forested ecosystems. Increasingly, provinces throughout 

Canada, including British Columbia, are committing to provincial wall-to-wall ALS acquisitions, 

creating enormous opportunity to leverage these datasets for applications to support forest 

management planning, such as those demonstrated herein. 
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Chapter 7: Conclusions 

7.1 Dissertation objectives 

The primary goal of this dissertation was to assess the ability of ALS data to characterize stream 

habitat features important to salmonids in forested watersheds. This objective was met by 

addressing the four research questions described below.  

How have remote sensing technologies been used to characterize freshwater fish habitat? 

Chapter 2 provides a systematic review on the ability of remote sensing technologies to 

characterize fresh water fish habitat examining the general trends in the literature and identifying 

strengths, challenges, and opportunities. Using a suite of keywords to search the Web of Science 

database, I identified 96 published studies that used remotely sensed data to map, monitor, or 

measure important fish habitat features. There was an increase in papers published through time, 

peaking in 2022, with multispectral sensors being the most common technology implemented 

(>50% published studies). I found minimal development of novel remote sensing metrics and 

automated methodologies specific to fish habitat characterizations. Key recommendations made 

in the review included, development of novel and automated remote sensing methodologies, 

examining the transferability of already developed models, and linking historical fisheries data to 

archival remotely sensed data.   

To what extent can individual fish habitat units be characterized in small streams using ALS 

data? 

Chapter 4 demonstrated the ability to accurately extract stream features such as stream width and 

to model individual habitat units using a series of ALS-derived predictor variables. Key to this 

chapter is the development of a methodology to derive stream width using ALS. Stream width 

was directly extracted from an ALS-derived digital terrain model by expanding the stream 
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centerline into areas of homogenous slope and elevation. Next a workflow for extracting 

instream wood features was used to count the number of wood features in each study reach. 

Using the derived stream width as a spatial constraint, seven predictor variables were computed 

from the ALS data, specifically stream width, instream wood, normalized elevation, terrain 

roughness, intensity, understory vegetation, and canopy height. These predictor variables were 

then used in a random forest model to classify study reaches into four distinct morphological 

units (pools, riffles, glides, or cascades).  ALS-derived stream bankfull width was positively 

corelated (r = 0.8, RMSD = 2.05 m) with field measurements. Individual stream morphological 

units modeled using the random forest algorithm had a mean overall accuracy of 85%, with pool 

morphological units having the highest accuracy (96%) and riffles the lowest (76%). Further, 

ALS predictors variables representing local terrain were most important for model predictions.    

How can ALS data be used to characterize instream wood and what physical and environmental 

properties effect detection rate?  

Chapter 5 built upon the results presented in chapter 4 by examining the accuracy of instream 

wood detection for individual wood pieces and for logjams. Further, this research identified the 

environmental features and ALS data attributes that significantly impacted detection rate. In this 

chapter, I presented a framework to detect instream wood features. The general workflow 

consisted of three steps 1) ALS point cloud filters: 2) filtered point cloud skeletonization and 3) 

automated validation of results. Point cloud filtering involved classifying ground points using a 

cloth simulation filter algorithm and removing returns above 2 m, with low intensity values and 

pulses with multiple sub 2 m returns. Skeletonization involved identifying points with a linear 

relationship to neighboring points and performing a series of spatial transformations to return a 

vector feature representing either a logjam or a single piece of instream wood. Then a suite of 
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logistic regression models were developed using missed and detected instream wood as the 

dependent variable and ALS metrics and instream wood field measurements as independent 

variables.   Overall mean detection frequency for instream wood features was 63%. However, the 

accuracy varied by stream reach, and was higher for logjam features (81%) and lower for 

individual wood pieces (49%). Submerged depth, % of points classified as ground and absolute 

scan angle had a significant impact on detection rate (p< 0.05).     

How can ALS derived indicators of habitat condition and pressure integrate into existing 

landscape scale habitat monitoring protocols?   

Chapter 6 presented a framework to assess watershed risk status and condition using the stream 

attributes described in the previous two chapters and other indicators of watershed condition 

found in the literature. Further, this chapter demonstrated an integrated approach to using ALS 

data in existing watershed status assessment protocols and determined how ALS can supplement 

existing field-based evaluation protocols. In this chapter, I calculated six watershed-level risk 

status indicators including; the number of stream road crossings, the density of roads on erodible 

soils, the density of roads within 100 m of a stream, the portion of streams in logged areas, peak 

flow index, and the road density of a watershed, using provincial, open-source data, and then 

calculated the same six indicators using ALS derived streams, vegetation heights, and slope. 

Next, I computed six reach- level indicators of habitat condition, including incoming solar 

radiation, canopy cover, gradient, instream wood, riparian vegetation extent, and individual 

morphological units. When comparing provincial indicators of watershed pressure to ALS 

indicators of watershed pressure, the ALS derived indicators consistently ranked in the higher 

risk category. At the stream-reach scale, 28%, 65%, and 7% of stream reaches within the study 

watershed ranked as “good”, “fair”, and “poor” respectively for overall habitat condition. When 
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stratified into stream orders, lower order streams generally had a higher percentage of “good” 

ranking habitat conditions compared to higher order streams. This chapter demonstrates the 

capacity of ALS to provide both fine stream reach scale and broad watershed scale information 

on habitat condition and habitat pressures within a watershed.   

7.2 Innovations 

This research has innovated and contributed to an enhanced understanding of the ability of ALS 

data to characterize stream habitat features:  

• As highlighted in the introduction, limited research has been done on developing methods 

to characterize individual morphological units in small headwater streams. Chapter 4 

developed a novel methodology to use ALS data to classify a stream reach into individual 

morphological units. To my knowledge it is the only study to do so at this scale with NIR 

ALS data.  

• Chapter 5 presented an automated framework to extract instream wood features from an 

ALS point cloud and provided a detailed assessment of the environmental and ALS 

attributes that affected the detection rate. This provides one of the first studies that 

automatically extracted and validated instream wood features using ALS intensity 

information in the extraction process.  

• Chapter 6 contributed to the development of an approach used to assess watershed status. 

It takes the methods described in the previous chapters and in the literature to develop a 

novel framework for watershed status assessment. This demonstrates the ability of ALS 

data to be integrated into existing watershed evaluation protocols and further, 

demonstrates the ability of ALS data to supplement field measured variables or habitat 

condition.   
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7.3 Limitations  

7.3.1 Model Transferability   

This dissertation focused on two study watersheds located on Vancouver Island British Columbia 

Canada. Both watersheds are within the Coastal Western Hemlock (CWH) bio geoclimatic zone 

and share similar disturbance mechanisms, specifically forest harvesting, however over different 

timescales and extents. The use of relatively similar study areas is a recognized limitation of this 

study.  How these methods would work in other watersheds such as those in the interior of North 

America with less tree cover, and different topography (less mountainous), is unknown. The 

study stream reaches in this dissertation were primarily small (< 10 m wide) headwater streams. 

A limitation is the unknown ability of how these methods scale to wider, faster flowing stream 

reaches. Due to cost and data availability, testing the transferability of the methods developed in 

this dissertation were not undertaken. 

7.3.2 Field Data 

A recognized limitation of this dissertation and many other studies that use ALS data is the 

disconnect between the locational accuracy of field data and the ALS data. In this study, the 

known error of the GNSS acquired ranged from 30 cm – 300 cm. When extracting features such 

as stream width, or instream wood, from an ALS point cloud, the locational accuracy of the field 

data is a limitation in achieving high accuracy and has the possibility to create compounding 

errors throughout the developed methodologies.  

Additionally, streams, watersheds and forests are dynamic environments in a constant state of 

change driven by natural and anthropogenic influences. It should be noted that there is a time-lag 

between the ALS acquisitions in 2016, and the field campaigns (2019,2020, 2022). This leads to 

the limitation that features measured during the field campaigns might not align with the same 
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features found in the ALS or that features in the field data will not even exist in the ALS data. 

This temporal difference between the two data sets means that models could be under or over 

performing and could lead to incorrect predictions.     

7.3.3 ALS Data  

An objective of this dissertation was to determine what important habitat features can be 

characterized using ALS data. It should be noted that the majority of ALS systems use lasers in 

the near infrared (NIR) portion of the electromagnetic spectrum. These systems were developed 

primarily for terrain and vegetation monitoring. It is a known limitation that NIR photons are 

absorbed by a waterbody. As a result, NIR ALS pulses do not penetrate into the water and some 

interpolation is often required within the wetted channel area to determine elevation and other 

topographic variables. It should be noted that NIR ALS might not be the best data source for 

these applications and that bathymetric lidar, with laser scanners in the green portion of the 

electromagnetic spectrum, might be more suited for riverine applications. However, NIR ALS 

data is much more common than bathymetric data, especially in forested environments. Indeed, 

there are 10s of millions of ha of NIR lidar data over Canada’s forests. Although limited by the 

capacity of NIR ALS, this dissertation presents a series of value-added approaches to extract 

more information from NIR ALS data, which facilitates a broader understanding of these 

ecosystems.   

7.3.4 Methodological Constraints   

The methods presented in this dissertation attempted to “stand on the shoulders of giants” when 

characterizing stream habitat features. This means that, when possible, I tried to use the best 

available algorithms for creating the initial data products, such as the delineated stream layers, 

DEMs and CHMs. In some cases, like delineating the stream network I had deviated from 
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conventional routines in order to accurately match the collected field data (i.e., stream burning). 

Significant research has been dedicated to which stream delineation and DEM generation 

algorithms are best suited for the application of mapping habitat features. I acknowledge that a 

limitation in this study is a lack of testing how these initial preprocessing algorithms impact the 

final accuracy of the models and methods described in this thesis.   

7.4 Future directions  

7.4.1 Model transferability  

More research is required to demonstrate the transferability of the models and methods 

developed in this dissertation to watersheds in different biogeoclimatic zones with different 

vegetation, soil, watershed dynamics, and harvesting histories. For example, watersheds in the 

interior of British Columbia could have less forest cover and morphology may not be influenced 

to the same extent by bankside vegetation. Further, examining how the models developed in this 

dissertation work on bigger streams is an important future direction to generate a comprehensive 

picture of a forested watershed. A major advantage of using ALS data is that it is becoming 

increasingly common across forested areas. In Canada, the government of British Columbia has 

already begun releasing current ALS acquisitions for free through an online open data portal and 

has recently announced an investment to acquire wall-to-wall ALS data for the entire province 

(BC Gov News, 2023). These readily available ALS data will greatly increase the capacity to 

evaluate the methods described in this dissertation across a range of study sites.    

7.4.2 Other data sources and data fusion  

Future work should examine the potential of other laser scanning data sources to characterize 

salmonid habitat. Specifically, single photon lidar (SPL, green wavelength) is increasingly 

available, with Ontario, Canada, acquiring wall-to-wall data coverage for the managed forest 
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area. As these data become more available, methods to extract stream habitat characteristics 

important to fish should be tested. Mobile laser scanning, and remotely piloted aerial systems 

(RPAS) are promising new technologies. These systems create ultra-dense point clouds but 

generally have a less powerful sensor leading to a decreased capacity to penetrate dense upper 

canopy vegetation. These platforms are less expensive than conventional airplane based 

platforms and allow for a less costly multitemporal data acquisitions. Further, many of these 

platforms collect both the three dimensional data associated with laser scanning and 

multispectral RGB data concurrently. With that in mind, future work could use these new 

technologies to see how habitat features important to salmonids are changing through time and 

assess the value of fusing multispectral information with structural information to characterize 

habitat features.  

7.4.3 Additional habitat features for freshwater fish 

This dissertation only explored a subset of the habitat features important to freshwater fish 

species. Future work could explore the feasibility of modeling other habitat features with ALS 

data. For example, as off-channel habitats provide numerous benefits to salmonid species, 

methodologies to characterize off-channel habitat features should be developed. Specifically, 

assessing the potential of the methods described in this dissertation in braided channels. Other 

avenues of future research could include culvert or barrier assessment, linking ALS derived 

riparian structure to the thermal properties of streams, or characterizing sediment size within 

stream reaches. This thesis focused on characterizing habitat feature important to salmonid 

species. More work could be done to examine the capacity of ALS data to characterize habitat 

features important to other genera of fish.    
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7.5 Closing statement   

Understanding changes in salmonid populations and their habitat is a critical issue given 

changing climate, their importance as a keystone species, and their cultural significance. With 

the increased use and collection of ALS data for forest management, there is an opportunity to 

develop value-added methodologies to further characterize salmonid habitat from these datasets.  

This dissertation presents a series of methodologies to harness ALS data to characterize 

important habitat features in forested watersheds. I hope the results and discourses presented in 

the dissertation facilitates the uptake of both ALS and other remote sensing approaches in the 

broader fish habitat research sphere and that the methodologies and products presented herein 

become a part of the standard outputs from ALS data when working in forested watersheds.  
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Appendix   

 

Figure A1: Map showing the field measured wood points and the lidar derived wood points 

along Elk Creek. 
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Figure A2: Map showing the field measured wood points and the lidar derived wood points 

along Head Water Creek.  

 

Figure A3: Map showing the field measured wood points and the lidar derived wood points 

along Headache Creek.  
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Figure A4: Map showing the field measured wood points and the lidar derived wood points 

along Rainbow Creek.  
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Figure A5: Map showing the field measured wood points and the lidar derived wood points 

along Steep Creek. 

 

 

 


