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Abstract

In the underwater realm, marine mammals rely heavily on acoustic signals for their

communications. Being able to accurately and easily detect these signals can aid in

studying factors such as creature presence and migratory habits. Additionally, re-

cent research in the field of covert Underwater Acoustic Communications (UWAC)

has begun to incorporate marine mammal signals to utilise naturally-occurring

sounds. Compared to traditional methods, marine mammal signals allow trans-

missions to occur at higher power levels, increasing the range of covert communi-

cations. Commonly, there are two categories of acoustic marine mammal signals:

clicks and whistles. Both can be detected by converting audio waveforms to spec-

trogram images, and the detection process is often done visually by human experts.

This image data type is particularly important for whistle detection, as these tend

to be lower power and have a narrow-band, time-varying frequency profile. Given

the potential uses of these signals, the creation of accurate, consistent automated

detection methods has been an active area of research.

This thesis investigates the utility of Neural Networks (NNS) in application to

dolphin whistle detection and generation. We seek to provide a detection pipeline

which is robust to changing environments and requires no context-specific work to

be done. This is accomplished by performing minimal preprocessing on data and

utilising transfer learning from a large dataset into a newer, smaller one. Using

these techniques, we are able to achieve detection accuracy greater than 95% for

our tested models. For whistle generation, we investigate two methods known as

Generative Adversarial Networks (GANS) and Denoising Diffusion Probabilistic

Models (DDPMS), the latter of which is found to be more effective. We separate

the task of generating synthetic realistic whistles into two steps: contour and varia-
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tions. The end result is a cascaded DDPM system which generates whistles follow-

ing these two steps. We demonstrate an iterative detection application to assess the

efficacy of this generative method, integrating our synthetic samples into the task

of improving automated signal detection.
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Lay Summary

Dolphin whistles are one example of the diverse acoustic signals that can be used to

track presence and population of marine mammals. The detection of these signals

is vital to research in the marine field, and the ability to automate this otherwise

time-consuming process can be a boon to anybody wishing to develop a compre-

hensive database. Whistles tend to be assessed visually in their spectrogram form,

and thus image classification neural networks can be levied to perform this task.

We propose a data preprocessing method which allows for higher adaptability to

different oceanic environments, enabling wider and easier automated detection.

Additionally, we develop image generation networks to create original, realistic

whistle samples. These generated whistles are used in an example application to

train a detector in a novel oceanic environment with no previously tagged whistles.
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Chapter 1

Introduction

The underwater world shows a breadth and depth of diversity that has yet to be fully

explored and understood by humankind. In particular, marine mammals are known

to communicate in a wide variety of conditions and manners, conveying complex

information through their acoustic signals. These sounds can differ greatly depend-

ing on the species and context.

In the marine biology field, these signals indicate presence of creatures and

can convey information about the population, which can be indicators of general

health and migration patterns. Additionally, some scientists seek to understand the

semantic and contextual meanings being conveyed, the why or what of these sig-

nals. Marine mammal acoustic signals can be also used in biomimicry schemes for

covert Underwater Acoustic Communications (UWAC), which will be discussed

in more depth in Section 3.1. The varied, multiple uses of these communications

leads us to exploring methods with which they can be detected and generated.

1.1 Dolphin Signals
In this thesis, while odontocetes or marine mammals may be referenced in general,

we focus on dolphins. Although the terminology for the types of signals they emit

can differ, [31] reviews multiple sources and broadly classifies these many types

into two categories that are also used in other literature: clicks and whistles. A

visual depiction of some dolphin whistles can be found in Figure 1.1.

1



Figure 1.1: Labelled spectrogram with various types of signals from dol-
phins. Source: [12].

Clicks are higher energy and thus more distinct or obviously noticed in record-

ings. They can occur in a series of individual clicks, which is as a whole called a

“click train”. This type of signal is commonly used for echolocation, which aids

in navigation under varying environmental conditions. [31] describes clicks as be-

ing broadband with “a sharp instantaneous front” as well as being short-duration,

typically lasting between 0.1 s and 3.0 s. The assumed frequency range of clicks

varies depending on the source. This range has widened over the years, and it

is now known to extend past 200 kHz which is outside a dolphin’s hearing range

[31]. Even if it can be included in research, [31] states that a low-pass filter at

200 kHz will often be used. Visually, clicks occupy a short time-span but large

frequency-span, appearing on spectrograms as vertical lines.

[31] states that whistles are created by pulses with high enough repetition rates

to be heard as continuous sounds. Whistles are composed of a fundamental fre-

quency which is concentrated in a narrow bandwidth, and this is transmitted along-

side harmonics that occur at integer multiples. In the early decades, it was thought

that the fundamental frequency was limited to a range of 7 kHz to 15 kHz. Sources

such as [5] indicate that this frequency will rarely exceed 20 kHz. The upper range

of this was expanded gradually as recording hardware improved and more research

was conducted. [31] states that whistles have been seen to exceed 40 kHz. How-

ever, works in dolphin whistle detection rarely consider signals beyond 25 kHz,

and they are sometimes more restrictive than that. This is often a limit imposed

by recording quality, particularly when a mix of older and newer samples are used
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and consistency is maintained between the datasets. The duration of whistles varies

greatly but is typically approximately 0.5 s and less than 1.0 s [31]. While they are

lower-energy signals than clicks, whistles have distinct time-frequency variations

that create shapes known as “contours”. These contours contain inflection points

over their duration, and a single whistle can have as few as 0 or as many as 26

inflection points [31]. In spectrograms, whistles appear similar to chirp signals,

with differing degrees of variability and shape. A subtype of whistle observed in

bottlenose dolphins is known as a “signature whistle”. These are understood to be

used to convey identity and location information, and they are unique contours that

dolphins develop in the early months of their lives [31]. In [11], over a hundred bot-

tlenose dolphins were studied and it was found that signature whistles accounted

for the majority of their whistle emissions.

1.2 Application of Neural Networks
To use or analyse marine mammal signals, they must first be detected. This can

be a time-consuming process which requires manually sifting through hours upon

hours of recordings that contain noise or confounding sounds. This is especially

true for the lower-volume dolphin whistles that we focus on in this thesis. Although

there are several different automated alternatives, as we will cover in Section 2.1,

modern technology makes the application of Neural Networks (NNs) a very natu-

ral progression. Artificial intelligence can accomplish tasks previously considered

to be inaccessible by computer programs or mathematical models, and dolphin

whistle detection can be difficult using non-learning methods. Image classification

networks are capable of handling extremely complicated tasks with great variance

in the data, indicating that these may apply well to this detection task. Additionally,

a well-trained NN has a degree of consistency, unlike multiple humans operators

of differing skill levels working across different environments. This can be a huge

benefit in creating a versatile tool for whistle detection that can be widely used. In

effect, we seek to minimise the human effort needed in dolphin whistle detection.

We will also be investigating the way that data creation and composition may affect

this goal, elaborated further in Chapter 2.

Application of NNs to whistle detection may be hindered by insufficient data.
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Image classification tasks tend to fare better when there are tens of thousands of

varied samples, but most whistle databases have merely a few hundred or thousand

signal samples. In the realm of NNs, transfer learning is a technique where pre-

viously learned knowledge is used for another task. It is particularly common in

image classification tasks, as most models will learn basic patterns at initial lay-

ers that are later composed into more complex shapes. Inspired by [32], we utilise

transfer learning from popular image classification models trained on the ImageNet

dataset [16]. Since the model was trained on a large and diverse dataset previously,

we use that as a starting point for the smaller and more similar data within our

whistle spectrograms.

In addition to detection, the application of NNs to dolphin whistle generation

is explored. The generated whistles are left in the image domain, and the focus

is on generating synthetic samples that can pass for real dolphin whistles. Using a

generative model can allow creation of contours not based on existing recordings or

parameterised by equations. This allows generation of “original” data that can be

used in a variety of ways. One application that we explore is in data augmentation,

which can expedite the detection process when labelled data is sparsely available.

1.3 Contributions
In this thesis, we first demonstrate the efficacy of NNs in dolphin whistle detec-

tion on two separate datasets. Several models are used throughout, the majority

of which are from popular image classification families. We also utilise a basic

Convolutional Neural Network (CNN) [33] to provide demonstrate baseline NN

capability. In line with the overarching goal to minimise human effort and involve-

ment in the detection process, we develop a data preprocessing method that is bare

and push the burden of detection as much onto the model’s ability to learn as possi-

ble. This is compared to another preprocessing method adapted from [32], and its

efficacy is proven in detection performance in a different environment. We utilise

transfer learning from models trained on an ImageNet classification task as well as

models trained on one dataset and then re-trained on the second. In conjunction

with experiments on freezing model parameters and reducing the size of the train-

ing set, we demonstrate that this minimal preprocessing and transfer learning can
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allow models to learn with sufficient accuracy and perform well across different

environments.

Additionally, we investigate generative models and their ability to create origi-

nal, realistic samples in the image domain. We divide this generation task into two

steps: contour and variations. We start by training two styles of models – Gen-

erative Adversarial Networks (GANs) [44] and Denoising Diffusion Probabilis-

tic Models (DDPMs) [25] – on whistle contours generated by polynomial fitting.

DDPM was found to be a more effective model type for this task. Then, we de-

velop an optimal set of variation parameters to create realistic-looking whistles.

NN-based metrics for evaluating generative model performance are utilised to de-

termine suitable parameters, and these are used to guide a second DDPM with the

task of modifying a given contour to mimic what the parameters would do. The

two DDPMs are sequentially used in a “cascaded” fashion to generate our synthetic

samples. These are applied to the task of enhancing detection capability when in a

new oceanic environment with no tagged samples.

1.4 Organisation
Chapter 2 outlines the application of NNs to detection of dolphin whistles. We

start by exploring how the data is pre-processed and converted into a format usable

for the NNs before reviewing the results. Additional results related to general-

isability and parameter freezing are also explored. Chapter 3 describes the gen-

eration of dolphin whistle contours. The various models attempted are described

and reviewed for effectiveness when trained to generate whistle contours. Chap-

ter 4 demonstrates how generated whistle contours can be made to look realistic

through variations in their appearance. We develop a set of parameters to control

this, which are optimised using a set of metrics to assess the synthetic whistles’

resemblance to real whistles. Additionally, we examine how this can be integrated

into a cascaded DDPM system and pose an example for the utility of this feature.

Finally Chapter 5 presents conclusions and outlines possible future work.
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Chapter 2

Automated Detection

Any work investigating or utilising dolphin whistles first requires that a collection

of these signals exists. While this can be done manually by human eyes and often

is, reliably automating this process can be a boon, particularly in the day and age of

massive amounts of data. This chapter covers the process through which NNs – in

particular image classification networks – can be used to detect dolphin whistles.

We start by reviewing existing methods of detection before discussing the datasets

we use and the preprocessing conducted to create input data for the models. Then,

we briefly outline how image classification networks function. The specific models

used in this thesis are explained, and the results are presented. We then examine

how the models are able to perform across different datasets to prove utility in the

real world. Finally, we include expansions on these basic concepts with parameter

freezing, dataset size decreasing, and a combination of the two.

2.1 Existing Methods
Attempts at automating marine mammal acoustic detection have been years in the

making, targeted at a variety of animals and sound types. Gillespie [19] develops a

method for detecting and classifying right whale calls based on their spectrograms.

This starts by smoothing with a Gaussian kernel before an edge detection algo-

rithm is used to detect the presence of these signals, and this method was able to

detect 90% and 60% of calls identified by human operators in two different envi-
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ronments with low False Alarm (FA) rates. Both [39] and [2] use a spectrogram

correlation method applied to different whale species, which applies a base “truth”

kernel to novel sounds and achieves a closeness score used to detect signals. These

were applied to longer-duration signals – whale songs in this case – and achieved

success rates of 97.5% and 74% with real-time functionality. In the realm of dol-

phin signals, [48] uses entropy as a detection measure for both clicks and whistles,

theorising that the presence of these signals among the general ocean noise would

increase the similarity between successive time samples. They achieve 96.6% and

97% accuracy; however, these reported results are skewed towards samples with

non-presence of signals. [20] uses several algorithms to reduce noise in signals

and applies amplitude thresholding before applying a region search for odontocete

whistle detection and classification. They are able to achieve a 76% detection rate

for human-labelled sounds, with 88% of all detections being valid.

There are also many detection methods that include NNs. In particular, image

classification networks are often seen since spectrograms are particularly useful

for lower-strength signals (i.e. whistles). Bergler et al. [6] develop a toolkit called

ORCA-SPOT with a positive predictive value of 93.2% using state-of-the art CNNs

and large amounts of data. [51] involves use of the chimp optimisation algorithm

on dolphin whistle detection, achieving accuracy up to 95.45%. Utilising one of

the same datasets as in this thesis, [32] tested a well-known image classification

network on its ability to identify dolphin whistle signals with the additional benefit

of transfer learning, achieving 98.9% accuracy.

Oftentimes, the work goes beyond the task of detection. A typical task involves

whistle contour extraction, as the time-frequency shape of the signals carry infor-

mation. Sermani et al. [47] apply independent component analysis followed by

wavelet denoising to separate bottlenose dolphin emissions from other underwater

noise in an effort to extract the signals. In [22], the authors utilise a Monte-Carlo

probabilistic view and require a set of measurements for every moment in time

to reduce background noise. [45] demonstrates two methods, one using Bayesian

filtering to estimate contours from spectral peaks while the other uses adaptive

polynomial prediction to connect peaks in graphs.

Our work in this chapter – particularly Section 2.2.2 – is motivated primarily

by that found in [32], as well as providing an extension on and reproduction of
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their methods. Additionally, we seek to provide an alternative to the preprocess-

ing and denoising processes discussed above. The aforementioned detection and

classification methods found in literature near-universally include several prepro-

cessing steps, typically aimed at denoising and thus enhancing the relevant signal.

We theorise that this limits a detection method’s ability to easily be used in differ-

ent environments as the process is developed with one dataset in mind and could

potentially result in lower-quality samples elsewhere. Thus, we intend to use as

little preprocessing as possible, performing only what is required to convert our

data from audio to image.

2.2 Image Classification Networks
This section starts by reviewing the theory behind image classification networks,

including the types of layers utilised within them. Then, we provide an outline of

the model architectures used in this thesis.

2.2.1 Overview

NNs began as models with few layers, but they have long since grown into compli-

cated structures. This is commonly indicated with the word “deep” [24] nowadays,

a reference to the many-layered architectures. In this thesis, we will continue to

use the term NN. Initial NN nodes were what is now termed “linear” or “dense”.

Every dense node receives all of the previous layer’s outputs as input, and these

are combined in a linear equation where the weights for each input are the learnt

parameters for each node. This linear combination is passed through a non-linear

activation function, which theoretically allows a model to approximate any func-

tion. The expression for a single dense node is given by

y = σ
(
wT x

)
, (2.1)

where y is the node’s output, x is the node’s inputs from the previous layer as a

vector, w represents the learned weights as a vector, and σ is the activation func-

tion. A constant term is often included within the linear combination as well but is

not explicitly notated.
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Figure 2.1: Convolution result of a 3× 3 input matrix with a 2× 2 kernel
resulting in a 2× 2 output matrix. This example uses a stride of 1 and
padding of 0.

The archetypal and generally successful formula for networks utilising image

data relies on the use of convolution operations. An example of this process can be

seen in Figure 2.1.

Rather than producing a single value, each node produces a matrix whose size

will depend on the convolutional parameters. The weights in a node represent a ker-

nel which uses a spatially-correlated subset of the inputs, and this kernel “slides”

over the entire input matrix to obtain the outputs. It is also possible to add con-

stant terms after the convolution is performed. Elements of the output matrix are

individually passed through a non-linear activation function, and this results in the

final output of a convolutional node. A convolution operation allows information

to be collated over a local area, thereby maintaining the spatial relationships be-
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tween input data points that are inherent to an image. Factors such as kernel size

(i.e. number of weights in the node), stride (i.e. how many pixels the kernel moves

over), and padding (i.e. pixels used to increase the input image size) affect the

output shape.

Typically, a CNN will begin with a certain number of convolutional layers.

After, the output matrix will be flattened and dense layers will complete the model’s

architecture. While this is not necessary since a model can be entirely composed

of convolutional layers, that is the style for NNs used in this thesis. One way to

view this structure is that the convolutional layers are feature extractors while the

dense layers learn how these features correspond to the desired model output. The

final output of the CNN depends on its purpose. Often, the task at hand is image

classification and thus the model outputs a vector of probabilities corresponding to

the possible classes. For our purpose, we have created a single value output for a

detector that indicates the probability of the input image containing a whistle.

Another layer seen in many image classification networks is a “pooling” layer.

Rather than using a learned kernel, a fixed operation will be performed; this is

commonly “max pooling”, which outputs the maximum value within the kernel’s

reach. This is generally done to reduce spatial dimensions while emphasizing the

important values within the inputted matrix.

Finally, dropout layers are also used. During training, they mask out certain

nodes with a chosen probability, which prevents models from learning to rely on

only specific elements in their architecture. When deployed, this probability be-

comes a multiplier across the entire set of inputs.

2.2.2 Neural Networks Utilised

As a benchmark of NN capability, we developed a basic CNN composed of the

standard layers mentioned in Section 2.2.1. The architecture was selected over a

series of experiments to determine a suitable structure that could sufficiently per-

form the task at hand while using relatively few parameters. This model (Simple)

was created with the goal of being lightweight and to test how well a basic CNN

could perform at the detection task. It does not have the benefit of any pre-training.

The model first utilises five sets of convolution-dropout-pooling layers followed by
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Figure 2.2: Architecture of Simple network.

three dense layers. This is visualised in Figure 2.2.

Pre-trained models are taken from one of three well-known series: VGGNet

[49] [35] (VGG), ResNet [23] (Res), and DenseNet [27] (Dense). The VGGNet

series began with a desire to create deeper convolution networks. These models

were of comparable size to other existing, non-convolutional architectures, made

possible by using small kernel sizes [49]. Later, in [35], they explored the benefits

of techniques such as batch normalisation and increased dropout to reduce over-

fitting. While a deeper network has more capacity, it is increasingly vulnerable to

problems such as vanishing gradients which cause difficulties in training and poor

performance. In [23], the ResNet series sought to address this primarily through the

use of residual connections. This allows “shortcuts” to be made, bringing earlier

parts of a network directly to later nodes without passing through intermediate lay-

ers. Similarly, DenseNet accomplishes the same through even more connections,

allowing every layer to be directly connected to each subsequent one.

As inspired by [32], using the pre-trained models is motivated by a desire to ap-

ply transfer learning to the detection task. The weights are taken from PyTorch [42]

and are trained on the ImageNet-1k dataset. These pre-trained models are struc-

tured to produce 1000 outputs as class likelihoods, so each model’s final layer is

replaced to output only one value. In addition to choosing our own models, which

will be explained in Section 2.4.1, we replicate the one produced in [32] using

their preprocessing method. Their VGG16 model replaces the final dense layers

with those of size 50, 20, and 1. Two versions were created, one with (VGG16d**)

and one without (VGG16**) dropout layers between these dense layers since the
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Figure 2.3: Architecture of VGG16**/VGG16d** network.

original architecture has these while [32] does not. The overall structure of these

models can be found in Figure 2.3.

2.3 Data
This section describes the data that is used in this thesis. We first discuss the

sources and amount of data available from each. Then, we cover how the audio

data is converted into a usable form for our NNs. Finally, we explain the specific

composition of data samples. We refer to samples as “positive” to indicate presence

of a dolphin whistle signal and “negative” elsewise.

2.3.1 Sources

In this thesis, there are two datasets of dolphin whistles available. Dataset A con-

tains recordings made at a depth of 50 m and a distance of 200 m away from

bottlenose dolphin (tursiops truncatus) reefs in Eilat, Israel. They were recorded

over 27 days in the summer of 2021 using two Geospectrum M18 hydrophones

suspended 1.5 m above the seabed. Dataset A consists of 2-channel audio data

which is tagged in an ongoing process by a human expert; the tagging informa-

tion used in this thesis was updated in late 2022. In total, there are 5247 whistles,

which also have time-frequency points along the contour notated. This dataset is

also used in [32] and is available at [1].

Our second dataset (B) is from the 8th DCLDE workshop [15]. These files

were recorded in the Western Atlantic Ocean and involve an unknown mixture of
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dolphin species. Dataset B is single-channel with unknown recording conditions

and hardware. The dataset consists of 1598 manually tagged whistles.

In both cases, far more non-whistle audio data exists, and a random subset was

chosen to serve as negative samples. The negative subset has the same number

of samples as the positive subset, which was done to avoid class imbalance. Both

subsets were individually split into three portions: 80% training set, 10% test set,

and 10% validation set. The training sets were seen and used by the models for

backpropagation, and the validation sets were used to select the best model param-

eters to reduce overfitting. Unless indicated otherwise, loss and accuracy values in

this section are expressed for the relevant test set.

2.3.2 Preprocessing

Most work with marine mammal communications is done through the spectrogram

version of acoustic signals, particularly if non-click sounds are being investigated.

As image data, the signals tend to be more evident, especially to a human operator;

the distinctive contours of whistles are more easily identifiable by eye in spectro-

grams than by ear in audio clips. Spectrograms are a method of representing audio

data that allows a viewer to visually interpret the change in signal frequency over

time. The presentation of spectrograms may vary, but in this thesis we use x-axis

as “time”, y-axis as “frequency”, and pixel intensity as power. This waveform-to-

spectrogram conversion is done by decomposing the audio signal into its composite

frequencies using the Discrete Fourier Transform (DFT). N data points are taken

from the Ts-sampled acoustic signals. This segment is transformed via

X(k) =
N−1

∑
n=0

x(n)e
−i2πkn

N , k = 0,1, . . . ,N −1. (2.2)

X(k) is the transformed signal at the k-th frequency bin corresponding to the fre-

quency f = k
NTs

.

While performing a DFT of an entire waveform will reveal the composite fre-

quencies, doing this operation over small snippets of the waveform will show the

progression over time. This is known as a Short Time Fourier Transform (STFT),

which provides temporally-localised information about the frequency components
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in a signal. The full waveform is thus broken into consecutive and often over-

lapping segments of data, each of which individually undergoes an STFT. These

segments are often combined with a windowing function w(k) of length L, which

can help to emphasize the most relevant moment in time (i.e. the “centre” of the

segment). The STFT can be expressed as

X(m,k) =
m

∑
l=m−(L−1)

x(l)w(m− l)e
−i2πkl

N , k = 0,1, . . . ,N −1, m ∈ Z . (2.3)

The STFT is a function of time and frequency, where the m identifies the location

of the time window and k is the frequency bin. Once this transform is created,

the absolute value or square of the complex result is taken to provide the ampli-

tude/power. These consecutive transforms are the columns of the spectogram. The

amplitude/power is represented through the visual “brightness” of the image pixel.

While this can be shown in a colour (RGB) image, there is no tangible benefit

to this since it is only the relative intensity that matters. Therefore, we present

spectrograms in grayscale.

In our datasets, the time frame chosen for this conversion was audio clips of

1.0 s in length, which we review in Section 1.1 to be sufficient. Based on the

data available, this encapsulates the vast majority of whistles without being overly

large as to make the shorter-duration samples insignificant. The frequency range

for spectrograms was 0 kHz to 25 kHz, which matches existing works as discussed

in Section 1.1. Additionally, this encompasses the frequencies that a human oper-

ator noted the whistles in database A to be within. Due to the Nyquist limit, we

therefore require that the audio data is sampled at a minimum of 50 kHz, twice

that of our highest relevant frequency. Each audio clip thus consists of 50,000 data

points. The spectrogram conversion is done using Hamming windows of length

1024 and overlap of 128, and these parameters were chosen based on visual as-

sessment of different options. The resulting images are scaled to the appropriate

size (224 × 224) for the NNs. Each spectrogram is min-max normalised between

0 and 1 to ensure consistency between samples.

The vast majority of the aforementioned works in Section 2.1 utilise a degree

of data preprocessing aimed at enhancing the signal quality. This is commonly
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a filter applied to the audio signal (i.e. bandpass or low/high pass) to isolate the

frequency band that appears to be most relevant. Some authors perform additional

steps, such as attempting to remove undesired noise in the background (e.g. click

signals) or augmenting the appearance/strength of the desired signal. However,

we aim to put as much of this work onto the NN as possible, thus minimising the

amount of preprocessing that must be performed. We theorise that the changing

environments across datasets would require some degree of customisation to ob-

tain the most effective denoising schemes, whether this is simply changing certain

threshold values or accounting for new noise. For example, this could be due to a

different composition of creatures resulting in different noises or weather patterns

dictating how the ocean itself may move and sound. To obtain consistent data sam-

ples in differing environments, the preprocessing scheme would likely need to be

altered. If we eliminate these steps, we are able to leverage the huge learning capac-

ity of NNs to adapt to novel conditions. This method of preprocessing is referred to

as “Min-Pre” in following sections and only involves the specific windowing and

spectrogram conversion method as discussed, and min-max normalisation for each

sample. This represents, in our opinion, the minimal amount of work necessary to

provide usable inputs to a NN if we are to use spectrograms.

Additionally, we replicate the work done in [32] by reproducing their prepro-

cesing pipeline, referred to as “Add-Pre”. Both [32] and our work utilises dataset A,

but we remove less/different samples compared to their selection process. For con-

sistency, we use our selected samples; this allows us to best assess performance

using different models and preprocessing methods. In [32], audio clips are con-

strained to a duration of 0.8 s and frequency range of 3 kHz to 20 kHz. [32] uses

different parameters for their spectrogram conversion, which we copy. As well,

the audio is first fed through a bandpass filter from 5 kHz to 20 kHz. At the end,

the spectrogram image is also resized and normalised as in Min-Pre. Any model

trained on data preprocessed using Add-Pre is notated with “*” appended to their

name in this thesis.

In Figure 2.4, examples of the images produced by these two preprocessing

methods are shown. Since only one channel is used for a grayscale image, any

additional input channels can be used to convey other information. Specifics about

channel composition will be discussed in Section 2.3.3.
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(a) Dataset A Min-Pre. (b) Dataset A Add-Pre.

(c) Dataset B Min-Pre. (d) Dataset B Add-Pre.

Figure 2.4: Spectrograms produced by data preprocessing methods on a sam-
ple whistle from dataset A and a sample whistle from dataset B.

2.3.3 Data Sample Composition

The pre-trained models were trained to classify colour images, which involves

three input channels. In a pre-trained model’s first layer, a single RGB channel’s

weights (arbitrarily chosen to be R) was copied across all three channels. This was

done in hopes of encouraging a more equal assessment of the three channels and

to break the typical dependence/relationship implied by the RGB structure.

We utilised multiple channels to enhance the data available for the model.

Since dataset A has two-channel audio data, it is a sensical conclusion to use both.

Additionally, we utilised the average of both channels as a third channel. This is

a technique borrowed from [32], and they theorise that an averaged image may be

able to moderate the background noise. This resulted in a 3-channel input for each

data sample. In addition to this method, we also copy the data composition found
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in [32] which stacks the average across all three channels as well as utilising Add-

Pre. These models are noted with “**” appended to their name in this thesis. A

single “*” only indicates that Add-Pre was used in the place of Min-Pre, and the

input is composed of channel 1, channel 2, and averaged channel.

Dataset B only has a single channel of audio information. To maintain the

easiest cross-usage of NNs between datasets, we triplicated this single channel to

obtain a 3-channel image input.

2.4 Results
In this section, we discuss the results obtained using datasets A and B. We started

by reviewing how model selection was conducted among the series of pre-trained

models mentioned in Section 2.2.2. Then, we discuss results obtained in three

training cases. First, models trained fully on dataset A. Second, models trained

fully on dataset B. Third, models using hyperparameters and parameters developed

from dataset A but trained on dataset B. The section concludes by briefly outlining

experiments where only 1-channel inputs were used.

2.4.1 k-Fold Cross Validation

To start, we conducted k-fold cross validation on the three series of pre-trained

models to determine the most effective model in each case. Each series considers

several models which had the highest metrics as provided by PyTorch [42]. The

entirety of dataset A was split into k = 5 segments, one of which was held out every

time to serve as the test set. The resulting output of these models is in the range

of [0,1] as a probability, where 1 indicates presence of whistle. In our models,

whenever the output exceeded 0.5, we consider this to be prediction of a whistle.

Adam optimisation is used to train the models, and the relevant hyperparameters

include learning rate, β1, β2, and decay. The models are trained using binary cross-

entropy loss with a tuned hyperparameter that allowed the class weighting to be

shifted. Typically, the binary cross-entropy loss of a single sample is calculated as

Lbce = y log(ŷ)+(1− y) log(1− ŷ) . (2.4)
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y represents the true value of the sample (either 0 or 1) and ŷ the predicted value

as given by the model (a probability in range [0,1]). The class weight parameter

modifies Equation 2.4 to become

Lbce = pwy log(ŷ)+(1− ytrue) log(1− ŷ) . (2.5)

When pw > 1, the model is biased in favour of positive predictions (increased re-

call). When pw < 1, this is in favour of negative predictions (increased precision).

The model was trained k times to utilise each segment as the test set while

training with the rest. The models were trained on dataset A until they showed

no improvement on training loss for a consecutive number of epochs. In total, we

performed this three times for each model to obtain the results found in Table 2.1.

Multiple trials were used to obtain a better sense of which models would be able to

consistently perform better. This is true in the following sections as well, since we

attempt to verify the benefits or drawbacks of the pre-processing methods.

Based on these results, we selected the three following pre-trained models:

Dense161, Res152, and VGG19bn. The architectures for these models are shown

in Figure 2.5, which also indicates which layers are modified from their original in-

carnations. There are indications of where model freezing checkpoints are located,

which will be explained in Section 2.5.1.
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Model kkk === 111 kkk === 222 kkk === 333 kkk === 444 kkk === 555 Trial Avg Total Avg

0.2306 0.3200 0.3634 0.2586 0.2735 0.2892
0.2957 0.3035 0.2911 0.2587 0.2454 0.2789Dense161

0.3372 0.3024 0.3197 0.2127 0.3687 0.3082

0.2921

Dense169
0.2837 0.4600 0.4012 0.3987 0.2188 0.3525

0.32710.3946 0.3035 0.2709 0.3713 0.2332 0.3147
0.3464 0.3292 0.3173 0.2942 0.2834 0.3141

Dense201
0.4309 0.2118 0.3336 0.2828 0.3792 0.3276

0.32450.2888 0.2588 0.3167 0.3766 0.3743 0.3231
0.3669 0.3251 0.2171 0.4055 0.2992 0.3228

Res50
0.4384 0.3588 0.3032 0.3582 0.3254 0.3568

0.37290.4403 0.3688 0.2742 0.4043 0.3196 0.3614
0.4349 0.3705 0.4172 0.5107 0.2691 0.4005

Res101
0.4379 0.3224 0.3634 0.3534 0.4983 0.3951

0.38820.4471 0.2830 0.4879 0.4265 0.5741 0.4437
0.4526 0.3608 0.2353 0.2996 0.2802 0.3257

0.5279 0.3858 0.4005 0.4395 0.2607 0.4029
0.3917 0.4202 0.2007 0.3881 0.2307 0.3263Res152

0.3876 0.2837 0.3494 0.4022 0.3905 0.3627

0.3639

VGG16
0.9557 0.2551 0.5278 0.9563 0.5301 0.6450

0.61690.4787 0.6725 0.9557 0.3057 0.6513 0.6128
0.3006 0.3301 0.4187 0.9599 0.9557 0.5930

VGG16bn
0.5601 0.3573 0.2480 0.6942 0.3795 0.4478

0.41330.5240 0.3113 0.2024 0.5910 0.3305 0.3918
0.4610 0.3107 0.4159 0.4188 0.3950 0.4003

VGG19
0.9555 0.2736 0.9562 0.9596 0.9583 0.8207

0.86090.9559 0.9574 0.6502 0.9566 0.5055 0.8051
0.9581 0.9588 0.9558 0.9561 0.9557 0.9569

0.5520 0.3269 0.3589 0.4095 0.2898 0.3874
0.4821 0.3925 0.2524 0.4652 0.2861 0.3757VGG19bn

0.2087 0.3079 0.3359 0.4113 0.4905 0.3509

0.3713

“Avg” indicates “average” as calculated by mean.

“bn” appended to a model name indicates that it is the batch normalised version.

Table 2.1: k-cross accuracy results for all tested pre-trained models, done us-
ing dataset A with a set of standard hyperparameters and k = 5.
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(a) Dense161.

(b) Res152.

(c) VGG19bn.

Figure 2.5: Architecture of selected pre-trained models.
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2.4.2 Detection in Dataset A

We first train the models using both preprocessing methods. We start with dataset A

and conducted hyperparameter tuning using optuna [4] for each of the following:

Simple, Simple*, Dense161, Dense161*, Res152, Res152*, VGG19bn, VGG19bn*,

VGG16**, and VGG16d**. A set of optimal hyperparameters was reached for

each model, referred to as hyperparameter set A. Since the class weight hyperpa-

rameter varies between models, losses are no longer shown. Instead, Table 2.2

displays three trial results for each model reporting Accuracy (Acc), Missed De-

tection (MD), and False Alarm (FA). These are each calculated as follows:

Acc =
T P+T N

T P+T N +FP+FN
(2.6)

MD =
FN

FN +T P
(2.7)

FA =
FP

FP+T N
. (2.8)

True Positive (TP) refers to the number of positive samples labelled (correctly) as

1. True Negative (TN) refers to the number of negative samples labelled (correctly)

as 0. False Positive (FP) refers to the number of negative samples labelled (incor-

rectly) as 1. False Negative (FN) refers to the number of positive samples labelled

(incorrectly) as 0.

Overall, the NNs achieve detection accuracy values ranging from approxi-

mately 93% to 96%. This is comparable to or better than existing detection meth-

ods, and this dataset does not reflect a class imbalance that may bias the reported

accuracy. VGG16** and VGG16d** do not reflect the same 98.89% performance

as mentioned in [32]. A contributing factor in this is likely the slight difference

in data selection; although the same dataset is used, [32] is more selective with

the samples specifically included. As well, they use an earlier iteration of tagged

whistles different from those that we utilise. In general, the models are slightly

biased towards producing MDs as opposed to FAs. This is in spite of the class

weight hyperparameter, which is greater than 1 in all cases. For the vast majority

of models, it is between 1 and 1.5.

For Dense161, the Min-Pre version shows an average accuracy improvement
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Model Ep. Acc (%) FA (%) MD (%) Avg Acc (%)

89 92.95 4.00 10.10
174 94.10 4.00 7.81Simple

169 94.48 1.52 9.52

93.84

221 94.10 2.29 9.52
195 92.48 2.67 12.38Simple*

268 94.10 1.90 9.90

93.56

10 96.86 0.95 5.33
21 95.33 1.90 7.43Dense161

18 96.00 1.33 6.67

96.06

19 95.24 0.95 8.57
8 94.19 2.48 9.14Dense161*

26 94.57 2.86 8.00

94.67

8 94.48 1.33 9.71
35 94.29 4.19 7.24Res152

11 94.10 1.90 9.90

94.29

9 94.76 1.33 9.14
7 94.76 1.71 8.76Res152*

5 94.67 1.52 9.14

94.73

28 95.90 3.24 4.95
19 94.67 5.14 5.52VGG19bn

15 95.81 2.10 6.29

95.46

7 96.10 1.14 6.67
7 95.24 4.38 5.14VGG19bn*

9 95.62 1.52 7.24

95.65

6 95.24 3.81 5.71
4 94.95 5.52 4.57VGG16**

2 94.76 2.67 7.81

94.98

6 94.95 2.10 8.00
6 95.33 2.10 7.24VGG16d**

7 95.14 3.24 6.48

95.14

“Ep.” indicates the number of epochs required to reach these results.

Table 2.2: Performance of models on dataset A using hyperparameter set A.
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larger than 1%; all other models show very little difference between Min-Pre and

Add-Pre. While the values do not vary greatly across the board, it can be seen

through these results that the additional bandpass filter and closer cropping of the

spectrogram used in Add-Pre do not tangibly benefit the final accuracy. The num-

ber of epochs required to train these models is generally the same for Simple and

Dense161. However, in the VGGNet series and Res152, it seems to be lower when

using Add-Pre, although this is only particularly noticeable in a few cases. This

may be the result of the additional data preprocessing creating inputs that have less

variability, as well as the cropping process exaggerating the whistle relative to the

overall image.

The results from this section prove the effectiveness of NNs in application to

dolphin whistle detection. We are able to achieve high accuracy with these models,

and this appears to be a consistent result. As well, we show that a basic CNN is

able to achieve reasonable performance but is generally outperformed by the other

models. It also takes longer to converge, which is largely due to the lack of transfer

learning. Additionally, it is a simpler model with fewer parameters, which typically

indicates a lower capacity to learn. However, due to its size, it is also quick to train

and does not occupy much storage space which may be useful if many different

models need to be trained.

2.4.3 Generalisability in Dataset B

At this stage, there is no clear difference in the preprocessing methods. To fur-

ther assess the potential benefit of using Min-Pre, we move to dataset B. The same

hyperparameter tuning was conducted using this second dataset to obtain hyper-

parameter set B, and results can be found in Table 2.3. Comparisons between

Table 2.2 and Table 2.3 are also graphically represented in Figure 2.6 for simpler

viewing. This first provides a baseline, theoretically “optimal” performance in the

second dataset since the hyperparameters are tuned for this dataset.

All models using Min-Pre experience a change in accuracy within 2% com-

pared to the results from Table 2.2, with all models except for Res152 and VGG19bn

showing a slight decrease in performance. However, the models using Add-Pre

uniformly perform worse, ranging from 2% to 7% accuracy decrease. In addition,
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Model Ep. Acc (%) FA (%) MD (%) Avg Acc (%)

21 93.44 4.38 8.75
33 93.75 8.75 3.75Simple

41 92.19 11.88 3.75

93.13

65 90.94 4.38 13.75
38 90.63 3.75 15.00Simple*

31 92.19 1.25 14.38

91.25

36 95.31 5.00 4.38
22 95.63 6.25 2.50Dense161

50 95.94 3.13 5.00

95.63

32 90.00 4.38 15.63
63 92.50 2.50 12.50Dense161*

59 91.88 5.00 11.25

91.46

7 96.25 2.50 5.00
1 95.31 3.75 5.63Res152

13 96.25 4.38 3.13

95.94

18 92.19 4.38 11.25
13 91.56 1.88 15.00Res152*

36 87.19 10.00 15.63

90.31

2 95.94 3.75 4.38
2 95.63 3.13 5.63VGG19bn

5 96.56 2.50 4.38

96.04

6 86.25 0.00 27.50
12 88.13 10.63 13.13VGG19bn*

15 86.56 18.13 8.75

86.98

2 90.00 2.50 17.50
3 90.31 1.88 17.50VGG16**

3 91.25 1.88 15.63

90.52

3 92.19 4.38 11.25
5 92.19 3.13 12.50VGG16d**

3 92.50 3.75 11.25

92.29

Table 2.3: Performance of models on dataset B using hyperparameter set B.
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Figure 2.6: Visual depiction of results from Table 2.2 (orange per trial, red
average) and Table 2.3 (green per trial, blue average).

Add-Pre models all suffer from MD rates of over 10% and as high as 27.50%, with

the exception of VGG19bn* trial 3 being 8.75%. This lends credence to the idea

that additional preprocessing elements may be detrimental to the model’s learning

process. Oftentimes, the end product of such preprocessing is assessed by eye or

by training on a single dataset, which does not reflect how it may affect data from

other environments. While it is true that this process may be changed, our results

indicate that it can skipped altogether without a notable negative impact on detec-

tion performance. This shifts the burden of work nearly entirely onto the model

and requires less contextual adjustments to be made by human operators.

The main benefit of this is in practical deployments of detection models. In the

real world, we would like to have a single process that is as streamlined and widely
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applicable as possible. We can expect that recordings from different environments

will have a diverse range of background noises and conditions which may regularly

require differing denoising algorithms to result in similar-looking spectrograms. In

addition to the background differences, the dolphins whistles themselves may be

variable. Literature such as [17] report that some characteristics of dolphin whis-

tles, specifically duration and contour shape, tend to vary greatly between different

populations. Specific groups of dolphins may have unique characteristics to their

whistles as well. The geography and isolation of dolphin groups seem to impact

the character of their communications, and it is suggested that migration between

different regions may result in shared similarities. Additionally, [38] shows that

anthropogenic noise such as ship engine sounds correlates with different dolphin

whistles. Populations exposed to more engine noise tend to increase their fre-

quency, duration, and modulation of communications. Altogether, while dolphin

whistles may share a general structure and likeness, an individual spectrogram may

vary significantly in both the background and the signal itself, particularly when

taken from a different geographical context. Rather than accounting for these vari-

ations each time, we should allow the models to learn them.

2.4.4 Transferability Between Datasets

Additionally, we wanted to test if models pre-trained on spectrogram data would

reach better results compared to those pre-trained on ImageNet-1k with the default

weights provided by PyTorch. We also want to eliminate the need for hyperpa-

rameter tuning in every new dataset. Therefore, while the models are trained on

dataset B, they start from the best iteration obtained in Table 2.2 and train using

hyperparameter set A. The results can be found in Table 2.4. Comparisons between

Table 2.3 and Table 2.4 are also graphically represented in Figure 2.7 for simpler

viewing.

Overall, the performance of models from Table 2.4 does not differ greatly from

Table 2.3. Almost all differences in average test accuracy remain with 1.5% be-

tween the two sets of results; VGG19bn* is an exception, as it sees an improvement

of nearly 5%. As well, there does not seem to be a notable change in the distri-

bution of errors belonging to FA or MD. For most models, the number of training
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Model Ep. Acc (%) FA (%) MD (%) Avg Acc (%)

58 93.75 5.63 6.88
62 94.69 3.13 7.50Simple

42 94.69 3.13 7.50

94.38

15 90.63 0.63 18.13
19 90.00 0.63 19.38Simple*

16 90.00 1.25 18.75

90.21

2 95.31 3.75 5.63
13 96.25 2.50 5.00Dense161

3 95.31 3.13 6.25

95.63

5 92.19 5.63 10.00
2 91.88 1.88 14.38Dense161*

4 92.50 2.50 12.50

92.19

12 95.00 5.63 4.38
20 95.63 2.50 6.25Res152

5 96.56 3.75 3.13

95.73

3 91.25 4.38 13.13
2 92.50 6.25 8.75Res152*

1 90.94 3.75 14.38

91.56

9 96.25 0.63 6.88
3 97.81 0.63 3.75VGG19bn

6 96.88 1.25 5.00

96.98

2 90.94 1.88 16.25
2 93.44 3.75 9.38VGG19bn*

3 91.25 3.75 13.75

91.88

2 91.56 10.00 6.88
2 92.81 5.63 8.75VGG16**

3 91.25 3.75 13.75

91.88

5 90.63 3.75 15.00
3 91.88 0.63 15.63VGG16d**

2 90.94 3.75 14.38

91.15

Table 2.4: Performance of models on dataset B using hyperparameter set A
and starting from their respective best model in Table 2.2.
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Figure 2.7: Visual depiction of results from Table 2.3 (orange per trial, red
average) and Table 2.4 (green per trial, blue average).

epochs required is not significantly different. However, Dense161 and Dense161*

appear to converge at a noticeably lower epoch number here as opposed to in Ta-

ble 2.3. In general, using a starting point of more similar data than that taken from

ImageNet-1k does not have a large impact in this section. This seems to indicate

that when enough data is available, the starting point of the model may not matter

for the final performance. This will be explored further in Section 2.5.3.

2.4.5 Single Channel

A verification on findings reported in this section are conducted using a different

data input style. Since dataset A comes in the form of two-channel audio data, we
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look at three different cases: channel 1, channel 2, and averaged channels. Rather

than having a 3-channel image data where these are stacked, we utilise them indi-

vidually. This more closely allows dataset A and dataset B to resemble one another

– since dataset B is one-channel – and eliminates any potentially confounding fac-

tors in investigating the utility of Min-Pre as opposed to Add-Pre. Results from

these experiments can be found in Appendices A, B, C, and D displayed in the

same tables/figures as found in this chapter.

Overall, these results confirm that Min-Pre is sufficient in dataset A compared

to Add-Pre and actually outperforms the latter in dataset B. Additionally, utilising

the 3-channel data input method does appear to represent a performance increase

of several percent in dataset A. Based on training accuracy values that we obtained,

this does not seem to be a case of overfitting in dataset A’s training set as opposed

to its test set. Instead, we conclude that it is like a characteristic of the dataset itself.

It is likely that there are some cases where the spectrogram whistle is particularly

faint in one channel as opposed to the other, which results in a better performance

when the stacked data method is used. As well, the tagged whistles in dataset B

were manually reviewed by us rather than an expert in the marine biology field; as

such, the positive samples are likely biased towards stronger signals.

2.5 Additional Experiments
In this section, we return to using the 3-channel input style as described in Sec-

tion 2.3.3. Since previous results have shown that Add-Pre does not provide ben-

efits to the overall detection scheme, we only investigate models using Min-Pre

hereon out. We consider the effects of parameter freezing and training set size, as

well as combining the two.

2.5.1 Parameter Freezing

For models from the VGGNet, ResNet, or DenseNet series, we have thus far

utilised a pre-trained model as a starting point for training and allowed the en-

tire model to train. This is intuitively sensible since we expect many differences

between the ImageNet-1k samples and our spectrogram samples, particularly in the

way that the 3-channel inputs are laid out. However, some applications of transfer
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learning will use a fine-tuning approach where only part of the model is able to

update; the remaining layers will be “frozen”. This is particularly used in image

classification models since it is widely understood that early layers in the models

detect patterns (e.g. vertical or horizontal lines). Therefore, these patterns can

be building blocks for nearly all image classification tasks. We would want to fix

the learned patterns in place when a much larger dataset was used rather than risk

overfitting on a newer task with a smaller dataset. Especially for our dolphin whis-

tles, the diversity of data is much less than for image ImageNet-1k classification

samples and retraining could potentially lose some of that diversity.

[53] explores how well freezing model parameters can be applied to different

tasks. They test this on two classification tasks made from discrete subsets of

the ImageNet dataset. CNNs are trained and cross-trained while being frozen at

various points throughout their architecture. Overall, [53] finds that utilising a

trained model as a starting point for a new task and allowing the entire system to

relearn is more successful than performing any parameter freezing. The authors

theorise that this is due to connections which are learned between layers and likely

need to be refined together. When a layer is frozen, it loses this ability to adapt.

In this section, we attempt a similar experiment with our detection task. As

seen in Section 2.4.1, the three model architectures in Figure 2.5 have various

freezing checkpoints indicated. These “Freeze Points” denote the point up to where

a model is frozen. For example, model Dense161 with f = 1 freezes only the

first convolution layer while the rest of the model is able to train; by contrast,

Dense161 with f = 9 only allows the final dense layer to train while the rest of

the model is frozen. Models Dense161 and Res152 are composed of a series of

distinct, repeated blocks that serve as logical breakpoints for freezing parameters.

VGG19bn has repeating sets of convolutional layers followed by a pooling layer, so

freezing checkpoints were inserted throughout after pooling layers. For all models,

the first checkpoint is always after the first convolutional layer and the last only

excludes the final dense layer(s). The number of trainable parameters remaining

in each model based on the freeze point can be found in Table 2.5. We train the

frozen models on dataset A and using hyperparameter set A, the results of which

are shown in Figure 2.8.

In general, our findings align with [53]. A model’s performance decreases as
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(a) Dense161. (b) Res152.

(c) VGG19bn.

Figure 2.8: Three trials of parameter freezing conducted for each NN using
dataset A and hyperparameter set A. The results at various partially-
frozen conditions are shown in orange and red, while the blue line indi-
cates the best test accuracy from Table 2.2.
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Model Freeze Parameters % Parameters

- 26,474,209 100.00
1 26,459,905 99.95
2 25,708,513 97.11
3 25,634,017 96.83
4 23,572,513 89.04
5 23,276,065 87.92
6 11,727,841 44.30
7 9,493,345 35.86
8 6,625 0.025

Dense161

9 2209 0.008

- 58,145,857 100.00
1 58,136,321 99.98
2 57,930,049 99.63
3 55,590,209 95.60
4 14,976,321 25.76

Res152

5 11,585 0.020

- 139,585,345 100.00
1 139,546,369 99.97
2 139,324,417 99.81
3 137,256,961 98.33
4 128,993,281 92.41
5 119,549,953 85.65

VGG19bn

6 4097 0.003

Table 2.5: Number of parameters in each of the freeze-able models. “% Pa-
rameters” indicates the percentage utilised of total trainable parameters.

more of its parameters are frozen, with accuracy suffering an approximate 20%

decrease in the worst case. The only exception is f = 1 in models Res152 and

VGG19bn, where the performance is approximately equal to and occasionally bet-

ter than the best trial with no freezing. This trend is also reflected in the loss values,

which are not depicted. In most cases, the MD rate is higher than the FA rate, as it

is in the baseline. While parameter freezing alone appears to be harmful to model

performance, we attempt this under different circumstances in Section 2.5.3.
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2.5.2 Dataset Size Reduction

While the ideal image classification task would involve tens of thousands of data

samples, this is not always realistic, particularly for a set of dolphin whistles. Man-

ual whistle tagging can be time-consuming and slow, and oftentimes there are only

several hundred samples available. Our datasets number in the low thousands. The

quality of these samples can also vary, which makes consistency difficult. As such,

we investigate the ability of these models to perform at smaller training set sizes.

For the sake of comparability, the training, validation, and test sets are split in

the same manner as previously. While the validation and test sets are untouched,

the training set is reduced since this represents what the model is actually seeing.

While a real life situation would likely also reflect in a reduced validation set, this

was the best way to directly examine the desired impact of fewer training samples.

We first use dataset A’s training set of originally 4197 whistles (80% of the total

whistle count). In conjunction with the negative samples, there are a total of 8397

samples in the training set. This was reduced to 50% (4196 samples), 25% (2098

samples), 10% (838 samples), and 5% (418 samples). Both validation and tests

remain at 1050 samples throughout. Models are trained until they reach a maxi-

mum number of epochs or until they show no improvement for a certain number

of consecutive epochs. This stopping condition was increased inversely propor-

tionally to the training set size reduction which would result in an approximately

equal training time at the end. We train the frozen models on dataset A and using

hyperparameter set A, the results of which are shown in Figure 2.9.

In general, we obtain the expected result that a smaller training set obtains sig-

nificantly poorer performance. Simple seems to suffer the most consistent down-

grade, with the smallest training set size (5%) obtaining on average barely above

50% accuracy, effectively a random guess. Interestingly, the pre-trained models are

occasionally able to obtain results with semi-reasonable performances even at the

smallest training set size, each obtaining at least one version of the three trials that

exceeds 85% test accuracy in every case. However, this is an inconsistent accom-

plishment, as can be witnessed by the large spread of results in the 10% and 5%

cases. Models Res152 and VGG19bn also show an unexpected case of the 10%

training set having a worse average accuracy than its 5% counterpart, which rein-
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(a) Dense161. (b) Res152.

(c) VGG19bn. (d) Simple.

Figure 2.9: Three trials of reduced training set sizes conducted for each NN
using dataset A and hyperparameter set A. Results at various partially-
frozen conditions are shown in orange and red, while the blue line indi-
cates the best test accuracy from Table 2.2.
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forces the degree of inconsistency in using a small number of samples. Overall, a

small dataset severely hampers the reliability and consistency of model results.

2.5.3 Combined Freezing and Size Reduction

A final experiment was done to assess if parameter freezing could help in the case

of a smaller dataset size, combining the techniques in Section 2.5.1 and 2.5.2. This

is an intuitive application since we are re-using parameters obtained from a large

dataset into a smaller one. This is comparable to the benefits obtained by starting

on pre-trained ImageNet-1k models to the dolphin whistle detection task, and po-

tentially better since this transference is more directly comparable as the datasets

are more alike. Freezing the early parameters may help prevent the models from

overfitting, which a task with a small sample size can be very prone to, and it could

potentially yield more consistent results. Dataset B consists of 5114 training sam-

ples, which are reduced as follows: 50% for 2557 samples, 25% for 1279 samples,

10% for 512 samples, and 5% for 256 samples. The same freezing checkpoints are

used as in Section 2.5.1, and thus we only consider models Dense161, Res152, and

VGG19bn. In each case, examples for f = 0 are included as references for what

the training results may be in the absence of any parameter freezing.

In order to assess the potential benefit of freezing and size reduction in a real-

istic environment, we use dataset B in two situations: trained from scratched (i.e.

ImageNet-1k starting parameters, similar to Section 2.4.3) and re-trained from the

best on dataset A (i.e. the best from Table 2.2, similar to Section 2.4.4). In the

the first case, we are providing optimal conditions for models to learn the whistles

of our dataset but without learned whistle-detection parameters. Hyperparameter

set B is used in this scenario. In the second case, we mimic entering a new envi-

ronment with previously learned information which includes the hyperparameters.

Figures 2.10, 2.11, and 2.12 present the first case aforementioned, where the

models are trained from scratch.

For every freeze parameter/partial training set possibility, no average test ac-

curacy beats the baseline comparison, and in fact only one trial overall manages to

beat the baseline. However, we can also see that every model and partial training

set greater than 5% is able to come within approximately 5% of the best baseline
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(a) Training set size 50%. (b) Training set size 25%.

(c) Training set size 10%. (d) Training set size 5%.

Figure 2.10: Three trials of frozen and partial training set size conducted for
Dense161 using dataset B and hyperparameter set B. Each graph rep-
resents a different training set size reduction, with freezing parame-
ters indicated on the horizontal axis. f = 0 is provided as a baseline
for when no freezing is conducted. Results at various conditions are
shown in orange and red, while the blue line indicates the best test
accuracy from Table 2.3.
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(a) Training set size 50%. (b) Training set size 25%.

(c) Training set size 10%. (d) Training set size 5%.

Figure 2.11: Three trials of frozen and partial training set size conducted for
Res152 using dataset B and hyperparameter set B. Each graph rep-
resents a different training set size reduction, with freezing parame-
ters indicated on the horizontal axis. f = 0 is provided as a baseline
for when no freezing is conducted. Results at various conditions are
shown in orange and red, while the blue line indicates the best test
accuracy from Table 2.3.
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(a) Training set size 50%. (b) Training set size 25%.

(c) Training set size 10%. (d) Training set size 5%.

Figure 2.12: Three trials of frozen and partial training set size conducted for
VGG19bn using dataset B and hyperparameter set B. Each graph rep-
resents a different training set size reduction, with freezing parame-
ters indicated on the horizontal axis. f = 0 is provided as a baseline
for when no freezing is conducted. Results at various conditions are
shown in orange and red, while the blue line indicates the best test
accuracy from Table 2.3.
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performance. When using a smaller dataset, parameter freezing is an advantage.

There are several instances where a small amount of parameter freezing ( f = 1

or f = 2) can result in a better performance than none. However, none of the

models achieve a good performance when the freezing parameter is at a maximum.

This represents the case where only the dense layers at the end of a CNN are

allowed to train, which is often the case for transfer learning. These can suffer a test

accuracy decrease as high as 30%. Potentially due to the differences in data type

between ImageNet-1k and spectrograms, this method is non-ideal. A final notable

impact is that the training results are more consistent when parameter freezing is

involved. In Figure 2.9, it can be seen that the 10% and 5% cases generally show a

spread of test accuracy values within approximately 10%. Although there are some

instances in which the three trials of figures 2.10, 2.11, and 2.12 achieve widely

different test accuracy values (differing up to approximately 30%), this is rare.

Figures 2.13, 2.14, and 2.15 present the second case, where the models are re-

trained from a starting point. Hyperparameter set A is used, and this simulates a

”realistic case” scenario since the hyperparameters and model were taken from the

large, known dataset.

Overall, it can be seen that this yields much more useful results when param-

eter freezing is utilised. The difference between a non-frozen model’s as opposed

to partially-frozen model’s performances is considerably less stark than previously,

indicating that useful patterns have been preserved. This is in spite of the data com-

ing from different environments and being composed differently, since dataset B

has only one channel being replicated three times as opposed to a combination of

multi-channel and averaged data. While a maximum f parameter still does not

yield an ideal training process, every graph shows that f = 0 also does not, indi-

cating that early freezing will definitely improve the model’s performance.

Finally, we want to compare the results from these two cases more directly. In

Figure 2.16, we contrast these directly, and a positive value shows an improvement

in performance when using the second case. Nearly all combination of freezing

parameter and partial training set size are improved when using a better starting

point, and this improvement is very large (approximately 40%) in a few cases.

It is also generally more significant the smaller the training set is, which can be

particularly useful in real life when a new dataset is very sparsely tagged.
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(a) Training set size 50%. (b) Training set size 25%.

(c) Training set size 10%. (d) Training set size 5%.

Figure 2.13: Three trials of frozen and partial training set size conducted for
Dense161 using dataset B and hyperparameter set A and model start-
ing point from best version obtained in Table 2.2 Each graph represents
a different training set size reduction, with freezing parameters indi-
cated on the horizontal axis. f = 0 is provided as a baseline for when
no freezing is conducted. Results at various conditions are shown in
orange and red, while the blue line indicates the best test accuracy from
Table 2.4.
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(a) Training set size 50%. (b) Training set size 25%.

(c) Training set size 10%. (d) Training set size 5%.

Figure 2.14: Three trials of frozen and partial training set size conducted for
Res152 using dataset B and hyperparameter set A and model starting
point from best version obtained in Table 2.2 Each graph represents
a different training set size reduction, with freezing parameters indi-
cated on the horizontal axis. f = 0 is provided as a baseline for when
no freezing is conducted. Results at various conditions are shown in
orange and red, while the blue line indicates the best test accuracy from
Table 2.4.
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(a) Training set size 50%. (b) Training set size 25%.

(c) Training set size 10%. (d) Training set size 5%.

Figure 2.15: Three trials of frozen and partial training set size conducted for
VGG19bn using dataset B and hyperparameter set A and model start-
ing point from best version obtained in Table 2.2 Each graph represents
a different training set size reduction, with freezing parameters indi-
cated on the horizontal axis. f = 0 is provided as a baseline for when
no freezing is conducted. Results at various conditions are shown in
orange and red, while the blue line indicates the best test accuracy from
Table 2.4.
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(a) Dense161. (b) Res152.

(c) VGG19bn.

Figure 2.16: Comparison of average results from results in figures 2.10, 2.11,
and 2.12 against those found in figures 2.13, 2.14, and 2.15. The grey
line represents 0% difference, and positive shows improvement in the
latter set’s favour.
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Chapter 3

Contour Generation

Generative neural networks have managed in recent years to progress towards pro-

ducing extremely high-quality samples, particularly in the realm of image genera-

tion. By applying these models to the task of dolphin whistle contour generation,

we aim to to obtain “original” whistles that can be used in a variety of circum-

stances. We consider a full dolphin whistle to consist of its general contour shape

and the variations that affect it; visually, these variations appear in spectrograms

through the “brightness” of pixel values and the “thickness” of the signal. In this

chapter, we focus on generating only the guiding shape (i.e. the contour) of the

whistle. Synthetic whistles are those produced through any means that do not

originate from a marine mammal. Whistles which are produced by dolphins are

interchangeably referred to as “true”, “real”, or “biological”.

This chapter begins with an outline of the existing whistle contour generation

schemes. Then, we explain the process through which data is obtained. Finally,

we outline the two types of image generation networks attempted in this thesis:

Generative Adversarial Networks (GANs) and Denoising Diffusion Probabilistic

Models (DDPMs). The results of these network types are shown, and a best model

is chosen. Overall, this chapter demonstrates the basics of generating whistle con-

tours, with further expansion on generating a realistic, usable whistle in Chapter 4.
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3.1 Existing Methods
Whistle generation has been far less explored than the realm of whistle detection.

However, a recently emerging use for marine mammal signals is to enable covert

UWAC. Covert communications refer to the transmission and receipt of informa-

tion in a manner that is hidden from observers, and in the underwater domain, this

is typically done through acoustic signals. A common technique to accomplish this

is to use spread spectrum, where a signal is spread over a large bandwidth and thus

each frequency band has a very low power output. However, these methods are

not fool-proof; in particular, they result in reduced communication performance

due to the lowered power output [36]. As well, they can be detected by integrating

over a sufficiently long detection period [36]. The output of this type of covert

UWAC is emission of non-natural noise in an oceanic environment. As such, there

has been interest in using biologically-inspired covert UWAC, wherein a signal

such as a dolphin whistle can be used to convey hidden communications. Because

these produced signals would appear as naturally occurring, they do not need to be

weakly transmitted and can have the benefit of larger ranges. With this as a final

goal, it becomes obvious that there is need to produce signals which are absent of

recorded background noises and can be modified in some way to carry this infor-

mation. In general, existing methods incorporate varying degrees of what we call

“model-based” and “recreation-based” techniques.

We refer to model-based generative methods as those which produce whistles

using mathematical models with little reference to recorded signals other than as

a baseline for general comparison. While these whistles can be regarded as more

original, they may also be very simple and thus not realistic. Some simpler cases

involve generating a signal that is merely whistle-like. For instance, in [8], dolphin

whistles are studied for their mixed-directional properties as a method of gaining

insight on their behaviours. Synthetic whistles are generated to recreate recordings

to circumvent the additive background noises. This paper uses MATLAB to gen-

erate pure tones with terminal up-sweeps, adding harmonics as integer multiples

of the fundamental frequency to mimic the harmonic profile of the original record-

ings. The use case for these generated signals is not as heavily reliant on their

realism and resemblance to true dolphin whistles, so the generative method is less
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attached to existing recordings and ensuring realism.

On the other end, there are certain situations where the “generated” signal is

merely a replay or recreation of a recorded one in what we would call a recreation-

based technique. These whistles tend to be more complex and have contours that

visually resemble biological signals, but this results in a lack of originality in the

generation process. If used for biocovert communications, an individual, distinct

unit of sound will typically stand in as a symbol that can be decoded in conjunction

with others to reveal the intended message. Generating rather than only replaying,

however, involves either modifying or recreating a whistle. A simplistic technique

of achieving this can be found in [14]. Tagged time-frequency points on real whis-

tle contours are used to fit a polynomial function that is recreated in the audio

domain to produce a synthetic whistle waveform. In [36] and [52], covert UWAC

is conducted using more than one signal, in a format that is not uncommon for this

field. Firstly, there is a synchronisation signal in the form of a specific replayed

dolphin whistle, which can be used to inform the listener of channel characteris-

tics or simply that there is oncoming communications. Secondly, the authors use

different, existing signal’s contours to carry information. In [36], the following

signals are either up-sweep or down-sweep to represent a bit of information. In

[52], they segment the whistle and use frequency offsets or time delays from the

known baseline to encode data. Similarly, [3] modifies an existing scheme of bit

encoding into dolphin whistles wherein the contour is segmented and each piece is

formulated as an up-chirp or down-chirp based on the desired bit output.

Existing works also use a combination of model-based and recreation-based

techniques, using a model that less strictly recreates a signal but more follows the

general trend of its contour for guidance. [30] groups conventional signal mod-

els for marine mammal sounds into two categories, either consisting of weighted

superposition of sinusoidal frequencies or a simple frequency-modulated system.

An example of the former is found in [9], where the generated signal is of the

form s[n] = ∑
R
r=1 ar[n]sin(2πθr[n]). This directly formulates the generated dolphin

whistle as a sum of R harmonics, with amplitudes and phases represented by ar[n]

and θr[n] respectively. The authors in [30] generate signals based on piecewise

construction of short segments drawn from the two mentioned categories, choos-

ing either sinusoidal or power frequency modulation depending on which better
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matches the segment of whistle they are trying to mimic. Motivated by the desire

for a novel form of covert UWAC, [18] aims to model a form of dolphin whistles

where the parameters can be used to encode the desired information. They use a

generalized frequency-modulated signal formula s(t;b)=Aα(t)exp j2π(cζ (t/tr)+ f0t),

wherein the relevant parameters of amplitude, carrier frequency, chirp rate, and du-

ration are used to encode covert communications. While the generated signals may

be judged on their ability to resemble real whistles, the models developed are able

to organically create these signals with varying levels of realism.

Evidenced by these generative methods, it is clear that the structure of dolphin

whistles is not well-understood. While observations about the typical parameters

of these whistles can be made (e.g. frequency range, duration, inflection points),

there is little understanding about the correlation of these with any behaviours or

environmental conditions. The mentioned works judge the ability of their genera-

tive methods either based on recreation of the desired whistle contour or a general

assessment on appearance/sound. Additionally, there has been little integration of

NNs into this topic of research. We speculate that this is at least partly due to

the current gap in generative networks when using audio data; while many models

are now able to create images that pass as real, audio data is still lacking. Further-

more, most audio work is centred on human voices, which have extremely different

characteristics and requirements than dolphin whistles.

In this thesis, we focus on generating whistle contours in the image domain.

This allows us to integrate NNs into the realm of whistle generation by creating the

time-frequency shapes that would characterise the signal. This builds the first half

of generating usable synthetic dolphin whistles, which is generating the contour;

this generative process will be expanded and applied in Chapter 4. The models in

this chapter are assessed through a combination of their respective loss values and

visual quality of the produced samples.

3.2 Data
For expediency of the training process, the dimensionality of synthetic data as com-

pared to what was using in Chapter 2 is halved; thus the whistle contours have spa-

tial dimensions of 112×112. We are also only concerned with generating a single
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Figure 3.1: Eight examples of clean contours used for inputs in generative
models.

channel of image data since using RGB spectrograms adds no discernible value.

The desired output of our generative NNs is a synthetic whistle free from any

background noise. This firstly simplifies the training process since models are

not required to generate signal and background; as well, this allows for genera-

tion of usable contours, regardless of what environment we are in. Since we want

the generative models to create clean contours, we need training data of the same

format. Therefore, the data from Chapter 2 cannot be used directly. Dataset A

includes manually labelled time-frequency points for the positive samples, which

were previously unused. This information can be used to recreate the whistle con-

tour shapes; we follow the technique in [14] and use polynomial fitting (degree 3)

on these points. This is considered a clean synthetic whistle, and images of the

same likeness are the desired output of our generative models. While not a fully

accurate reproduction of a whistle contour, this method offers an approximation

that can be used as inputs for these generative models. Examples of these clean

contours can be found in Figure 3.1.
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3.3 Generative Adversarial Networks
This section covers the use of GANs to our contour generation task. We start by

providing an overview of this model structure and the concepts behind its training

process. Then, we outline the model architecture used. Finally, we apply this

architecture to contour generation and assess its suitability.

3.3.1 Background

The overarching framework of a GAN system pits two models against one another:

the generator (G) and the discriminator (D) [21]. While G attempts to create re-

alistic samples from random noise inputs, D attempts to distinguish between true

and fake samples. In the ideal situation, G advances to the point where D is un-

able to separate true from fake. D outputs predictions of a given sample belonging

to the true data distribution, and the ideal GAN ends at the point where G is able

to produce realistic data while D is constrained to 50% accuracy since it cannot

distinguish between real and generated samples. Both G and D are constructed as

neural networks, so the entire system can be trained using backpropagation.

In the GAN, we use random noise z of arbitrarily dimensionality sampled from

pz as the input to G. Generally, z will be a vector of empirically determined length

n of values drawn from a normal Gaussian distribution, and so z ∼ N(0,In). On the

other end, we have true data samples x which come from an unknown distribution

px. In image generation, each data sample is of shape H ×W , where often H is

equal to W for simplicity. True data x is pitted against the result of our G network,

which is G(z). A visualisation of this layout can be found in Figure 3.2

D and G are two players in a minimax game, and the value function as defined

in [21] is

min
G

max
D

V (G,D) = Ex∼px [log(D(x))]+Ez∼pz [log(1−D(G(z)))] . (3.1)

D trains using both components of the value function in Equation 3.1, while G only

needs to consider the second term. In a training epoch for a GAN, we first obtain

a batch of fake samples G(z) labelled 0 and a batch of true samples x labelled 1.

D is trained using this data’s loss and backpropagated accordingly. Then, a new
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Figure 3.2: Illustrative flow of data through a GAN.

batch of fake samples is drawn and labelled as 1 in an attempt to assess G’s ability

to fool D (i.e. assess the realism of the generated samples). This loss is then used

to train G.

3.3.2 Architecture

Our network architecture is founded in the Deep Convolutional Generative Adver-

sarial Network (DCGAN) [44] architecture, with code based on PyTorch’s tutorial

at [28]. Prior to [44], there were difficulties encountered when attempting to gen-

erate larger-scale, high-resolution images using GANs. Often, the networks would

be unable to produce realistic images and have non-informational loss values where

a lower G loss did not necessarily correspond to better outputs. There are several

architectural guidelines for creating DCGANs that are stable in training: replace

pooling with strided convolutions, use of batch normalisation, elimination of most

dense layers, using ReLU in the generator, and using Leaky ReLU in the discrimi-

nator [44].

In the DCGAN framework, D and G are made to mirror one another. D uses

conventional convolution layers as described in Section 2.2.1. G, however, uses

transposed convolutions, also known as fractionally-strided convolutions or decon-

volutions. While referred to as a deconvolution, that is not the true operation since

these layers are not the inverse of the convolution operations. Rather, the input

is treated as a weight for the learned filter parameters, and this creates the result-

ing, typically upscaled output. A visual example of this transposed convolution

operation can be found in Figure 3.3.
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Figure 3.3: Transposed convolution result of a 2×2 input matrix with a 2×2
kernel resulting in a 3×3 output matrix. This example uses a stride of
1 and padding of 0.

Both models are primarily built on convolutional-type layers which change the

data’s spatial and channel dimensionailty as it progresses. For an input sample of

size (1×W ×H) being channels by width by height, D produces a single value

output in the range [0,1] indicating the probability of the input being a real sample.

Our model G takes inputs of size (n× 1× 1) (i.e. there are n random variables

drawn from N(0,1)). G’s output is the same dimensionality as our discriminator’s

input, producing an image that is ideally as realistic as possible. Empirical testing

showed that the most consistent results were produced when G had a final layer of
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tanh rather than ReLU; as such, images used as input and produced as output in

Section 3.3 were scaled to the range [−1,1]. The specific layers involved in both

D and G can be found in Tables 3.1 and 3.2 respectively.

Layer Type Relevant Parameters

chin = 1 chout = 16
Convolution

k = 6 s = 2

Leaky ReLU ns = 0.2

chin = 16 chout = 32
Convolution

k = 4 s = 2

Batch Normalisation ch = 32

Leaky ReLU ns = 0.2

chin = 32 chout = 64
Convolution

k = 4 s = 2

Batch Normalisation ch = 64

Leaky ReLU ns = 0.2

chin = 64 chout = 128
Convolution

k = 5 s = 1

Batch Normalisation ch = 128

Leaky ReLU ns = 0.2

chin = 128 chout = 256
Convolution

k = 5 s = 1

Batch Normalisation ch = 256

Leaky ReLU ns = 0.2

chin = 256 chout = 1
Convolution

k = 4 s = 1

Sigmoid –

Table 3.1: Architecture for D used in Section 3.3. Channels in for convolu-
tional layer (chin), channels out for convolutional layer (chout), kernel for
convolutional layer (k), stride for convolutional layer (s), negative slope
for leaky ReLU (ns), channels in/out for batch normalisation layer (ch).
Where not specified, default as provided by PyTorch is used.
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Layer Type Relevant Parameters

chin = Z chout = 256
Transposed Convolution

k = 4 s = 1

ReLU –

chin = 256 chout = 128
Transposed Convolution

k = 5 s = 1

Batch Normalisation ch = 128

ReLU –

chin = 128 chout = 64
Transposed Convolution

k = 5 s = 1

Batch Normalisation ch = 64

ReLU –

chin = 64 chout = 32
Transposed Convolution

k = 4 s = 2

Batch Normalisation ch = 32

ReLU –

chin = 32 chout = 16
Transposed Convolution

k = 4 s = 2

Batch Normalisation ch = 16

ReLU –

chin = 16 chout = 1
Transposed Convolution

k = 6 s = 2

Tanh –

Table 3.2: Architecture for G used in Section 3.3. Number of random noise
points drawn for input (Z), channels in for transposed convolutional layer
(chin), channels out for transposed convolutional layer (chout), kernel for
transposed convolutional layer (k), stride for transposed convolutional
layer (s), channels in/out for batch normalisation layer (ch). Where not
specified, default as provided by PyTorch is used.
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Figure 3.4: Learning curve for a GAN model with D and G architectures as
indicated in Tables 3.1 and 3.2 respectively.

3.3.3 Results

Using the architecture as outlined in Section 3.3.2, hyperparameter tuning was con-

ducted manually using grid search. The optimal results were based on the models’

losses as well as visual assessment of produced images throughout, since the losses

in a GAN system can be unstable and unclear. The system was allowed to train for

500 epochs, with checkpoints of the models taken every 25 epochs. For the best set

of hyperparameters we were able to find, the learning curve with D and G losses

can be found in Figure 3.4.

While the loss values seem to stabilise and indicate that the generator is per-

forming well, this is not necessarily true when we visually assess the generated

images. The outputs produced at select checkpoints corresponding to the learning

curve in Figure 3.4 are shown in Figure 3.5. The images produced at all check-

points can be found in Appendix E.

There are several issues with the images produced by the GAN models. First,

it is difficult to directly correlate loss values with quality of image. In Figure 3.4,
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(a) Epoch 1. (b) Epoch 25.

(c) Epoch 125. (d) Epoch 500.

Figure 3.5: Multiple samples of generated outputs of GAN at epochs 1, 25,
125, and 500.
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it appears that the losses stabilise and become fairly consistent after approximately

epoch 100. However, it is clear in Figure 3.5 that the results at epoch 500 are

a downgrade from those at epochs 25 or 125. In Appendix E, it becomes even

clearer that the later epochs do not necessarily have better results. As such, it

can be difficult to save the appropriate best models. Second, there are artifacts

in the perimeters of the generated images that do not correspond to the desired

contour as was provided by inputs such as those in Figure 3.1. While these can be

removed post-generation, this is a non-trivial adjustment. Third, the GAN system

seems to be suffering from mode collapse. While there is some diversity in the

images produced at epoch 125, this does not remain nor is it a consistent amount

of diversity. This is well-known weakness of GANs, and a strong motivator for

attempting a different style of generative model.

3.4 Denoising Diffusion Probabilistic Models
This section covers the use of DDPMs to our contour generation task. We start by

providing an overview of this model structure and the concepts behind its training

process. Then, we outline the model architecture used. Finally, we apply this

architecture to contour generation and assess its suitability.

3.4.1 Background

DDPMs [25] use variational inference in a Markov chain to generate data samples.

DDPMs define a forward process, where structured data becomes noise, and a

backward process, where structured data is recovered from noise. GANs bridge the

gap between noise input to structured output in one pass of the network; however,

DDPMs achieve this gradually.

In the forward process of a DDPM, input data x is iteratively combined with

Gaussian noise over T timesteps [25]. The strength of the noise is controlled over

the timesteps with a series of parameters βt . Thus, at each step, we have the condi-

tional Probability Density Function (PDF)

q(xt |xt−1) = N(xt ;
√

1−βtxt−1,βtI). (3.2)
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This is a Markovian process, and so

q(x1:T |x0) =
T

∏
t−1

q(xt |xt−1). (3.3)

The noise updates can become larger as time goes on, so β1 < β2 < .. . < βT .

This variable can be learned but tends to be controlled by a schedule. Over the

forward process, x0 loses its structure and becomes indistinguishable from random

noise. Theoretically, the forward process would require that an initial image is

distorted over T iterations with noise. Practically, reparameterisation allows xt to

be determined directly rather than necessitating a lengthy iterative calculation by

xt(x0,ε) =
√

ᾱtx0 +
√

1− ᾱtε, (3.4)

where ε ∼N(0,I), αt = 1−βt and ᾱt =∏
t
s=1 αt . Everything in the forward process

is done without the use of a NN.

In the backward process, we attempt to recover xt−1 from xt . This step is done

using a NN, which at every timestep is provided with the appropriate xt and t, the

latter of which can be used to find βt . This NN is learning to undo the diffusion

process. Similar to the forward process, this is a Markov chain with the Gaussian

transitions

p(xt−1|xt) = N(xt−1; µθ (xt , t),Σθ (xt , t)), (3.5)

where µθ and Σθ are learned and parameterised by some set of parameters θ . Both

the forward and backward processes are depicted in Figure 3.6. Throughout the

entire iterative process, xt retains the same spatial dimensions.

While we are trying to obtain xt−1 from xt , the former is rarely predicted di-

rectly. Instead, [25] found it more effective to predict the noise that was added in

that timestep. This would imply that both µθ (xt , t) and Σθ (xt , t) from Equation 3.5

are model outputs. However, [25] also found that it was sufficient to only predict

µθ (xt , t). Σθ (xt , t) is treated as an untrained constant that can be produced given

time t by setting it equal to
Σθ (xt , t)) = σ

2
t I. (3.6)

When using x0 ∼ N(0,I), [25] finds that σ2
t = βt is optimal.
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Figure 3.6: Illustrative flow of data through a DDPM. Both forward and
backward processes are depicted. Only the red squared labelled G is
a NN in this process.

DDPM training is done by optimising the variational bound on the negative

log likelihood, the full derivation of which can be found in [25]. While the model

can be made to predict µθ directly, this is often not the case. Reparameterising the

relevant equations changes the target output of the model to predicting the noise ε

from a given xt . This results in gradient descent being taken on

||ε − εθ (
√

ᾱtx0 +
√

1− ᾱtε, t)||2 . (3.7)

When training, a random batch of real images is taken and a timestep t is drawn
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randomly. These values are used for Equation 3.7, and this is repeated until the

model converges.

To generate a sample (i.e. the backward process), xT is drawn from N(0,I) at

the same dimensionality of the desired image. This is the assumed final product of

a forward diffusion process. Over T time steps, xt is updated as

xt−1 =
1

√
αt

(
xt −

1−αt√
1− ᾱt

εθ (xt , t)
)
+σtz, (3.8)

where

z ∼ N(0,I) if t > 1, else z = 0. (3.9)

One notable benefit of DDPMs is that they do not suffer from mode collapse. In

the case of GANs, the adversarial component can often drive the generative model

to produce only one type of output, which can accomplish the goal of fooling the

discriminator well. Additionally, the training process for a DDPM tends to be more

stable than that of a GAN, which is hampered by the adversarial models working

against one another.

3.4.2 Architecture

DDPMs have a semi-unique property that the model’s input and output will have

the same spatial dimension. The model architecture will need to account for this,

and oftentimes U-Net [46] is utilised. U-Net expands on NNs that are fully convo-

lutional, aiming to create a precise segmentation model which is able to work with

a smaller training dataset that previous ones. A typical CNN downsizes the input

image due to the nature of the convolution operation. This is retained in the U-Net

structure, but [46] supplements this by a second half which performs upsampling.

This results in a mirrored network structure which compresses the image before in-

creasing its resolution back to the original dimensions. Additionally, U-Net makes

use of skip connections which directly feed data from earlier layers into layer ones,

bypassing the intermediate layers. The original U-Net architecture from [46] can

be found in Figure 3.7.

Our DDPM model and training process is built on code found at [43]. This

architecture incorporates time and context embeddings into the training process.

59



Figure 3.7: Architecture of U-Net model as illustrated in [46, Figure 1].

The former is used to make the model aware of how far along it is in the generation

process, relative to the total number of time steps. The latter is used when classes

are involved, guiding the model to conditional generation. Throughout the model,

a parameter known as “number of features” (n f eat) or an integer multiple of this

value is used to dictate the number of input/output channels. There are several

components in the DDPM we use: residual convolution blocks (Table 3.3), U-

Net downscaling (Table 3.4), U-Net upscaling (Table 3.5), and embedding block

(Table 3.6). As a whole, the model is structured using these components as seen in

Table 3.7.

In our model, the number of features n f eat is implemented as a hyperparameter.

U-Net upscaling layers have increased input channel dimensions due to the addi-

tion of time and class embeddings. For our data in this chapter, chin = chout = 1

since we are using 1-channel clean whistle contours.
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Sub-block Layer Type Relevant Parameters

Convolution chin = chin chout = chout k = 3
Batch Normalisation ch = chout1

GeLU –

Convolution chin = chout chout = chout k = 3
Batch Normalisation ch = chout1

GeLU –

Table 3.3: Composition of a residual convolution block. When residuals are
activated, the output of this block is a scaled sum of either input and sub-
block 2 output or sub-block 1 and sub-block 2 outputs. Otherwise, the
model simply passes through these layers sequentially. Requires chin and
chout parameters.

Layer Type Relevant Parameters

Residual convolution block chin = chin chout = chout

Max pooling k = 2

Table 3.4: Composition of a U-Net downscaling block. Does not use residu-
als for residual convolution block. Requires chin and chout parameters.

Layer Type Relevant Parameters

chin = chin chout = choutTransposed Convolution
k = 2 s = 2

Residual convolution block chin = chout chout = chout

Residual convolution block chin = chout chout = chout

Table 3.5: Composition of a U-Net upscaling block. Does not use residuals
for residual convolution block. Requires chin and chout parameters.

Layer Type Relevant Parameters

Dense dimin = dimin dimout = dimout

GeLU –
Dense dimin = dimout dimout = dimout

Table 3.6: Composition of an embedding block. Requires dimin and dimout

parameters.
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Component Type Relevant Parameters

Residual convolution block chin = chin chout = n f eat

U-Net Down chin = n f eat chout = n f eat

U-Net Down chin = n f eat chout = 2n f eat

Average pooling k = mid

GeLU –

chin = 2n f eat chout = 2n f eatTransposed Convolution
k = mid s = mid

Group normalisation group = 8 ch = n f eat

ReLU –

Embed (time) dimin = 1 dimout = 2n f eat

Embed (class) dimin = nclasses dimout = 2n f eat

U-Net Up chin = 4n f eat chout = n f eat

Embed (time) dimin = 1 dimout = n f eat

Embed (class) dimin = nclasses dimout = n f eat

U-Net Up chin = 2n f eat chout = n f eat

Convolution chin = 2n f eat chout = n f eat k = 3
Group normalisation group = 8 ch = n f eat

ReLU –
Convolution chin = n f eat chout = chout k = 3

Table 3.7: Architecture for DDPM used throughout Section 3.4. Parameter
n f eat is a tuneable parameter. Parameter mid is set to the dimension of
the data at that time, such that the average pooling results in a spatial
dimension of 1× 1. When the residual convolution block is used on its
own, the residuals are activated; otherwise, in the U-Net upscaling/down-
scaling component, they are not.

3.4.3 Results

Hyperparameter tuning and model selection were conducted similarly to Section 3.3.3.

While DDPM losses tend to be stable, it can be difficult to select a best model it-

eration or cross-compare between different training sessions; the lowest loss does

not always correspond to the best output images. This is likely due to the sparsity

of the data and thus how small the general differences between the generated and

predicted noise are, resulting in a consistently low loss value even when the gener-
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Figure 3.8: Learning curve for a DDPM. Orange “x” markers indicate epochs
at which a new lowest loss value was found.

ated image is not ideal. However, because the loss values are stable, they can still

be used to guide the selection process. The models were allowed to train for 250

epochs, and checkpoints of model parameters and generated images at the moment

in time were taken every time the loss reached a new low. Loss values over the

training session for our model can be found in Appendix F.

From these values, we utilise the last six markers (epochs 72, 81, 99, 132, 155,

232) as the desired checkpoints, since these loss values are all very low and seem

to occur when the loss graph has effectively plateaued. Using these checkpoints,

we generate samples as found in Figure 3.9. Samples produced by earlier epochs

can be found in Figure F.1.

There are no noticeable artifacts in the background/edges of the images, other

than a faint speckling of noise that can be easily removed with pixel-value thresh-

olding unlike the corner traces left by GAN. Additionally, the origin of these is

more understandable, as they result from the process of image generation; in the
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(a) Epoch 72. (b) Epoch 81.

(c) Epoch 99. (d) Epoch 132.

(e) Epoch 155. (f) Epoch 232.

Figure 3.9: Multiple samples of generated outputs for DDPM at epochs 72,
81, 99, 132, 155, and 232.
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GAN, there is more unknown to the process that can be difficult to debug and re-

move. An outstanding issue with the DDPM that we notice is some samples not

producing usable data and remaining as random noise. This is similar in principle

to the cases in our GAN where the network would produce nothing but background

artifacts. Both cases are easily detectable, however, and they can be discarded. The

DDPM model is also prone to generating samples with multiple whistles rather

than one. This is an interesting variation on the training data, since no provided

samples have multiple distinct whistles. However, there are cases in the true posi-

tive samples – as well as in real life – when multiple whistles can overlap in time

and produce something similar. As such, this does not provide as large of an issue

as the mode collapse in our GAN. Based on these assessments and the general sta-

bility of training, we utilise this trained DDPM for Chapter 4 rather than the GAN.

Specifically, we use the models saved at epoch 132, since this iteration produces

the most consistent results with the least number of unusable samples.
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Chapter 4

Variation Generation

In Chapter 3, the contours generated by our NNs differ from true whistles in several

ways. The most visually obvious is that they do not vary over the time-frequency

profile. Primarily, these variations appear through width and intensity. Contour

width refers to the frequency band that the contour occupies (i.e. how many pixels

in height the whistle occupies at each point in time). Contour intensity refers to

the actual pixel values of the contour (i.e. how “bright” the line is which may vary

along the frequency-axis even at the same point in time). While there are reasons

that exist for these variations – physical and biological – these are not well-explored

or understood, thus we are limited to mimicking existing data.

In this thesis, synthetic sample generation occurs in two steps. First, we gener-

ate a simple shape of constant width/intensity. These outputs are called “contours”

and the results are as found in Chapter 3. Second, we generate variations for these

contours that change the width/intensity at points throughout their duration. This

is primarily controlled by a set of variation parameters, and we call these “syn-

thetic whistles”. Previously unseen negative samples are used as “backgrounds”

to these synthetic whistles, and when combined in a manner to be explained in

Section 4.1.3, we have the final product called a “synthetic sample”.

This chapter continues with the second half of whistle generation in the image

domain. We begin with details about the variation parameters and how they affect

the synthetic whistle’s appearance. Then, we assess several scoring metrics that

can be used to quantitatively judge how closely the synthetic samples resemble
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our positive samples. Finally, we show the optimised sets of parameters that were

found and the resulting whisles of using these modifiers before applying generated

synthetic samples to an example application.

4.1 Variation Parameters
The methods we use to create these variations is primarily random with some guid-

ance based on visual assessment compared to positive samples. This is mainly due

to the fact that are no definitive answers on how the width/intensity variances of

these whistles come about, thus we are limited to using comparisons between syn-

thetic and real samples. The specifics of how we decide on the optimal parameters

is outlined in Section 4.2. Throughout this section, we discuss the parameters used

to alter the appearance of these contours in width and intensity. These are broken

into four categories which will be elaborated on in further detail: width, intensity,

relative strength, and softening.

4.1.1 Width

The width of whistle contours can vary little or a moderate amount depending on

the sample, but it is rarely consistent throughout the entire signal. In particular, the

contours tend to taper off on either end (i.e. start and end). Whether this is due to

the frequencies involved in the signal or the strength of its emission is unknown,

but it is visually expressed in contour width.

For our purposes, width of a whistle is represented as a random variable. A se-

ries of width values is produced over the timespan (image width) where the whistle

is active; these control the frequency range (image height) that the contour will oc-

cupy at each moment in time. Width values are drawn from N(µwidth,σwidth), with

these two parameters controlled by the optimisation process. Additionally, mean

filtering is used to smooth the widths so they are not as drastically different be-

tween consecutive values. This adds a third parameter kwidth to represent the mean

filter’s kernel length. The width values are also constrained by a maximum value

that is determined based on what seemed visually coherent with positive samples

from dataset A. Examples of the same contour being varied using different sets of

parameters are shown in Figure 4.1.
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(a) Changed σwidth.

(b) Changed σwidth and kwidth.

(c) Changed µwidth, σwidth, and kwidth.

Figure 4.1: Different sets of width parameters resulting in different synthetic
contours (8 each), all shown with no background.
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4.1.2 Intensity

Over the course of the signal, its strength will also change. One factor would be

in the signal itself, as the transmission volume may increase or decrease. This,

however, is an unknown quantity and will not be considered. Another factor is the

channel that the signal is received through, which in the case of dolphin whistles

is an oceanic environment. Many factors can affect how sound propagates through

the water, such as the physical surroundings (e.g. sea floor, depth, salinity, temper-

ature) or non-constant conditions (e.g. weather, season) [10]. The end results can

be signal scattering, absorption, and reflection which will change how the signal

is received at an endpoint. As well, signals travelling underwater will be subject

to multipath propagation, which can also contribute to signal fading [10]. For our

work, we use Bellhop [41] to simulate the effects that an underwater channel would

have on a whistle signal’s intensity. Bellhop is a beam tracing model that can be

used to simulate acoustic pressure in ocean environments, and it can generate a

variety of outputs. As it may not be practical to obtain the oceanic environment

for a location every time we wish to use this generation process, we instead use an

example one. This provides the bathymetry for an environment that is realistic, if

not exactly accurate to the conditions from our datasets.

We use Bellhop’s ability to generate impulse responses to determine what dis-

tortions an underwater environment would impart upon a whistle contour. These

responses are converted from time to frequency domain using a DFT. Multiple re-

sponses are used per contour to represent how the channel would affect the whistle

signal at every point in time. When these are put together, we refer to this as an

intensity “mask”, which is overlaid with the baseline contour to allow for intensity

variations. The original spectrograms have a dimensionality of 278× 513, which

is used for this portion. Thus, we create 278 arrival impulse responses for each

mask, and each individual response is ensured to have a length of 513 when a DFT

is applied to it. While this process does not fully encapsulate how the channel dis-

tortion would affect a dolphin whistle, it is able to modify the intensity in a manner

that is visually satisfactory and based in a realistic foundation.

These channels are generated based on randomised locations, with certain lim-

itations on potential positioning to be realistic. A receiver (i.e. hydrophone) and
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Figure 4.2: Same whistle contour overlaid with differing masks, shown with
no background.

a sound source (i.e. dolphin) are initialised in Bellhop. The source has its posi-

tion updated for every column in the mask that is generated, based on speed and

direction. These position updates are based on viable speeds that a dolphin could

move at, biased to continue traveling in the same direction as previous but with

potential for change. This allows a simple but semi-realistic simulation of how the

channel may vary due to changes in the positioning between the two. No adjustable

parameters are included for the intensity factor; rather, hundreds of masks are gen-

erated and randomly multiplied with a contour. Examples of the same contour with

varying intensity masks is shown in Figure 4.2.

4.1.3 Relative Strength

It is easiest to consider both the synthetic whistle and background as their own im-

ages normalised [0,1]. This allows the combination of the two to be controlled with

a single parameter that represents the relative strength of the whistle. In essence,

we have Xc for the synthetic whistle and Xb for the background. The variable sw
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(a) sw = 0.50.

(b) sw = 0.25.

Figure 4.3: Same whistle contours overlaid with differing relative strength
values, shown on same background for all contours.

controls the strength of the whistle, and we have a final Xs synthetic sample as

Xs = swXc +Xb. (4.1)

Xs must be normalised between [0,1] to remain consistent with our positive

samples. Examples of the same contour being generated using different sets of

parameters are shown in Figure 4.3.
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(a) αso f t True and small σso f t .

(b) αso f t True and large σso f t .

Figure 4.4: Different sets of softening parameters resulting in different syn-
thetic contours (8 each), all shown with no background.

4.1.4 Softening

A final pair of parameters is included to “soften” the edges of the contour. The

first parameter controls whether or not this process is utilised at all, implemented

as a True/False switch we will refer to as αso f t . This softening is accomplished

using a Gaussian filter, which replaces a target pixel with a linear combination

if its neighbours. This is controlled by several factors, and we choose to vary the

σso f t , which dictates how much influence the neighouring pixels have on our target.

Examples of the same contour being generated using different softening parameters

is shown in Figure 4.4.
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4.2 Optimisation of Parameters
In this section, we outline how the parameters mentioned in Section 4.1 are opti-

mised to produce more realistic synthetic whistles. The end goal is to have syn-

thetic samples which are indistinguishable from the positive samples we already

have.

4.2.1 Scoring Metrics

A difficulty encountered in image generation NNs is the ability to quantitatively

define how well the output images resemble the target dataset. Images are often

easy for humans to visually judge, but this does not easily translate into a scoring

system. There have been many proposed methods, all of which target different

criteria and have varying benefits or drawbacks. [7] judges the efficacy of many

existing evaluation metrics for GANs. The primary and most important quality

for these metrics is that they should favour models that generate high fidelity and

diverse samples, in a manner that is coherent with human judgement. Several

specific metrics discussed in [7] will be mentioned in this section, as well as the

ones we elected to use. When discussing scoring metrics, we may refer to “true”

and “generated” samples as this is the terminology used in the context where these

are most often seen. For our case, these correspond to “positive” and “synthetic”

samples.

An intuitive standard is to utilise the probability densities of true and generated

data. On the simplest level, the two probability densities calculated with finite num-

bers of samples can be directly compared using methods such as Kullback Leibler

or Jensen Shannon divergence. [7] states that this technique has been questioned

for suitability in GANs, and instead mentions the use of the generated samples as

centroids in a Gaussian mixture. This can then be used in Parzen window density

estimation to compute log-likelihood of true data from a test set belonging to this

density. The largest drawback of this family of metrics is that they tend to be un-

informative about the actual quality of generated images. They do not inform on

diversity and learning capability of the model, and can potentially favour models

which simply replicate training data.

Inception score and associated variants are some of the most commonly seen
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metrics for GANs. These metrics are aptly named for the pre-trained NN they use

in obtaining the score: Inception Net trained on ImageNet samples. The original

inception score measured average divergence between conditional label distribu-

tion p(y|X) and the marginal distribution p(y). While this metric was better able

to correlate high-quality and diverse images with better scores, they suffer similar

drawbacks as using probability densities alone. Another popular, related metric is

Frechet Inception Distance, which utilises intermediate layers of Inception Net al-

though any CNN would suffice. The embedding layer is assumed to be a multivari-

ate Gaussian distribution, and thus the mean/covariance are estimated for generated

and real data samples. Frechet distance is calculated between these distributions,

and in general [7] finds that this metric performs well. It also, however, makes

the sometimes-false assumption that a Gaussian distribution can accurately repre-

sent the intermediate embeddings. While these metrics using Inception Net seem

promising, works such as [13] establish flaws in their usage. When calculated over

a finite set of samples, which is by necessity what must be done, the result does not

represent a true or accurate assessment of the proper score. This difference also

varies depending on the model used. In conjunction, this makes both scores flawed

in their ability to properly assess generative performance across different models.

Since we are attempting to find the most realistic set of parameters for data gener-

ation, this by necessity requires that we would be training models on different data

and creating different models.

[7] also mentions the utilisation of classifier two-sample tests, which simply

attempt to assess if two samples are drawn from the same distribution. A holdout

set of true samples is pitted against generated samples by training a discriminator

to differentiate between the two. While this is classically measured by the final

model’s discrimination accuracy, [7] also mentions normalised relative discrimina-

tive score which is focused on the idea that more epochs are required to distinguish

between true and generated samples if the latter are realistic. Additionally, GANs

can often be used to generated training samples to enhance a dataset, and this can

be seen as a way to determine the diversity of generated samples. A model trained

on generated samples – alone or mixed with true samples – can be assessed on a

test set of true samples. These metrics are all dependent on the models at hand, but

they are intuitively driven by the idea that a better generative model should result
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in certain results for other, related tasks (i.e. poor discrimination with true samples,

better classification when utilised as augmentation).

In our implementation and inspired by these metrics, we use NN-driven ap-

proaches. In particular, we consider two differing metrics scored each in two differ-

ent ways, all with the goal of creating synthetic samples that are indistinguishable

from – or at least similar to – positive samples.

First, we base performance on how well a NN is able to discriminate between

positive and synthetic samples, with the ideal state being that the model is unable

to converge. This is done in a similar fashion to the whistle detection conducted in

Chapter 2, only we replace negative samples with synthetic ones. While we could

theoretically create a 3-class classifier (positive, negative, synthetic), we instead

chose to use only two classes (positive, synthetic) in hopes of eliminating potential

confounding factors and creating the strictest test. We refer to this generally as the

“discrimination” metric, and positive samples from dataset A are used. The first

way this is evaluated is the intuitive metric of minimising the NN model’s perfor-

mance, which we choose to be the test accuracy. Therefore, we want the Synthetic

Discrimination Accuracy (SDisA) score to be as close to 50% as possible. The

second way this is evaluated is to measure how long the model requires for conver-

gence. Thus, we want to maximise the Synthetic Discrimination Epochs (SDisE)

score.

Second, we base performance on how well a model trained on synthetic and

negative samples is able to label a real dataset. Ideally, if synthetic samples are re-

alistic enough, a NN trained using no positive samples and only synthetic samples

should still perform comparable to a model trained on positive samples. This is al-

ways assessed on samples that have not been seen in the training process; therefore,

we use all the positive samples from dataset A and an equal number of unseen neg-

ative samples from dataset A. The first method labels only positive samples, and

we wish to maximise the Synthetic Detection Positive Accuracy (SDetPA). The

second method uses both positive and negative samples in the unseen set, and we

wish to maximise the overall Synthetic Detection Accuracy (SDetA).
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Opt. Metric Nth Best Score SDisA SDisE SDetPA SDetA

1 56.45 96.56 146 23.43 61.57
2 56.45 96.56 285 33.43 66.52SDisA

3 56.45 96.67 197 100.0 50.00

1 290 97.63 212 40.19 69.57
2 290 97.10 164 14.00 56.86SDisE

3 287 89.78 191 28.10 63.67

1 28.69 95.38 207 33.81 66.57
2 26.83 89.25 231 35.14 67.33SDetPA

3 24.64 56.45 50 47.43 72.86

1 57.27 99.57 63 2.29 51.14
2 57.08 99.25 159 11.33 55.62SDetA

3 57.06 99.46 92 6.86 53.38

“Opt. Metric” indicates the metric that was used to obtain the row’s

parameters.

“Nth Best” indicates the ranking in the metric of the row’s parameters.

Table 4.1: Top three parameter set results based on each metric are shown,
and their scores for all metrics are presented.

4.2.2 Results

As mentioned in Section 4.1.2, intensity masks are created and randomly com-

bined with contours. The contours used in this section are the same as input data

for our DDPM (i.e. polynomial-fitted). These contours are modified by variation

parameters in the manners specified in Section 4.1. When using polynomial-fitted

contours and variation parameters directly, we deem the resulting synthetic sam-

ples as “procedurally-generated”. The optimisable parameters are µwidth, σwidth,

kwidth, sw, αso f t , and σso f t . Using these parameters assessed with the four metrics

explained in Section 4.2.1, we obtain the results in Table 4.1.

Optimisation is done using the optuna [4] library and all models are trained

as was done in Chapter 2. The dataset is split into training (80%), testing (10%),

and validation (10%) subsets, and the models are trained until they undergo a con-

secutive number of epochs without improvement on validation loss. Channel 1

of dataset A is used, so input data to the models is 1-channel as it was in Sec-
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tion 2.4.5. The hyperparameters for these models are those found to be optimal in

Appendix B for dataset A channel 1. The optuna process was allowed to run 50 sets

of parameters for each metric, and the top three trials in each are shown. The last

four columns are not obtained in the optimisation process; once the parameter set

has been chosen, the relevant discrimination or detection process as indicated by

the column and described in Section 4.2.1 is applied to the procedurally-generated

synthetic samples. The column corresponding to the parameter set’s own score is

also calculated and this can function as a confirmation of consistent performance

in that metric.

Overall, it can be seen that the top three trials in each metric did not have large

differences between how they scored when being optimised. When comparing the

metric’s score (column “Score”) to how it performs when re-assessed (one of the

last four columns), there are some differences. Interesting to note is that all trials

of SDisA initially showed that the models were unable to converge, but this was

untrue when it was run again. This seems to indicate that these parameter sets were

sometimes able to fool the Simple model but were not of high enough quality to

consistently do so. When assessing a model’s SDetA score, we are able to view

the associated MD and FA. Although it is not depicted here, these parameters

uniformly achieved very low FA rates with the except of SDisA (3). All FA values

were less than 2%, with the majority being less than 1%. While their MD rates

were higher, this is a reasonable trade-off since having falsely labelled positives

could contaminate the true whistles dataset and result in extra work.

Based on these results, there are three sets of hyperparameters that seem to

perform at relatively high levels in all four metrics: SDisE (Nth Best = 1), SDetPA

(Nth Best = 2), and SDetPA (Nth Best = 3). All three showed the lowest classifi-

cation accuracies and reasonably high numbers of epochs to reach that value, with

the except of SDetPA (3) since it did not converge at all. Additionally, they achieve

the highest SDetPA and SDetA values. The resulting images using the associated

parameter sets for these three optuna trials are shown in Figure 4.5.

Visually, the samples generated from these parameter sets seem realistic if

weak to the eye. At the same time, we can see from the results in Table 4.1 that

quantitatively, they do not seem promising. Based on the lack of improvement in

further trials and the sufficient visual appeal of these samples, however, we decided
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(a) SDisE (1).

(b) SDetPA (2).
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(c) SDetPA (3).

Figure 4.5: Different sets of width parameters as labelled resulting in differ-
ent synthetic samples (8 each), all shown with the same background.

to perform some additional realism assessment.

4.2.3 Realism Assessment

While the Simple model seems to indicate that some sets of whistle parameters may

produce semi-realistic samples – reducing the discrimination accuracy to 90% – we

also assess the truth of this with more complicated image classification networks.

We perform the process for determining SDisA with these models. As such, Ta-

ble 4.2 shows the discrimination accuracy for models Simple, Dense161, Res152,

and VGG19bn.

As can be seen, there is a strong difference between the synthetic and posi-

tive samples. The models near-universally achieve classification performance at

approximately 99%, which indicates that they can almost always identify which

samples are synthetic as opposed to positive. While the synthetic samples may be

similar enough to be useful, as we will explore in Section 4.4, they cannot pass as
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Opt. Metric Nth Best Model Ep. SDisA (%)

Simple 290 97.63
Dense161 45 99.68
Res152 15 99.46

SDisE 1

VGG19bn 5 99.89

Simple 231 89.25
Dense161 13 98.17
Res152 3 99.68

SDetPA 2

VGG19bn 1 99.68

Simple 50 56.45
Dense161 9 96.24
Res152 7 99.89

SDetPA 3

VGG19bn 1 99.46

“Ep.” indicates the number of epochs required to reach

these results.

Table 4.2: Results from discrimination of positive/synthetic samples, where
synthetic samples are procedurally-generated with specified parameters.
Values for Simple model are the same as found in columns of Table 4.1.

positive samples.

Alternatively, however, we also examine if a model trained on positive samples

would be able to detect these samples. This was motivated by the visual assessment

of generated samples, which seemed to be sufficiently similar that we believed they

should be able to interchangeably be used with positive samples in some situations.

The models are trained on positive samples in channel 1 of dataset A, and the best

models from Table B.1 are chosen for each model type. Then, the synthetic samples

are labelled with this trained model and the accuracy is reported. These results are

found in Table 4.3

These results indicate a strong similarity between positive and synthetic sam-

ples. Therefore, while they can be used in an interchangeable application to be

seen in Section 4.4, this resemblance is not strong enough to merit trustworthiness

for use in covert UWAC. This will be elaborated upon further in Section 5.2.
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Opt. Metric Nth Best Model Acc (%)

Simple 92.33
Dense161 89.37
Res152 95.14

SDisE 1

VGG19bn 97.36

Simple 86.28
Dense161 83.32
Res152 91.78

SDetPA 2

VGG19bn 95.02

Simple 85.84
Dense161 83.47
Res152 90.55

SDetPA 3

VGG19bn 94.00

Table 4.3: Results from detection of synthetic samples from model trained
on dataset A channel 1 real samples, where synthetic samples are
procedurally-generated with specified parameters.

4.3 Cascaded DDPMs
In Section 4.2, we use a fully procedural method to generate synthetic whistles.

Chapter 3 allowed us to use a model to produce the contour, and in this section, we

use a model to add variation to the produced contours to create a fully model-based

generative pipeline. We start with an overview of how a cascaded DDPM system

functions. Then, we develop a second model to cascade with our existing contour-

generator. Finally, we assess the realism of the results as done in Section 4.2.3.

We call the synthetic samples created through usage of a cascaded DDPM system

“model-generated”.

4.3.1 Background

While it is possible to provide the DDPM with the synthetic whistles as inputs,

thus skipping the intermediate step of generating a contour, there can be benefits

to separating the two steps as follows. We can more easily change one without the

other. The contour generator is able to create the shapes of whistles that we desire
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while the variations can be customised to fit the dataset at hand. For instance,

environmental context could affect how much the intensity of whistles changes

over their duration, which can be adjusted by relearning the second component.

In [26], the authors use a series of cascaded DDPMs to increase the resolu-

tion of images. They begin by using a baseline DDPM to generate an original

image of shape 32× 32, based on the training dataset. Then, a DDPM model is

used to spatially upscale the image without the artifacts that interpolation or other

methods of resolution increase can result in. This can be done an arbitrary num-

ber of times, and [26] uses two DDPMs to change the dimensionality to 64× 64

and then 256×256. These subsequent models differ from the first in a few ways,

the most important being the input data. The resolution-increasing DDPMs still

start from an input of noise which gradually becomes data, but they also receive

an image as part of the input. For instance, the model which produces high-quality

64×64 images will take as input noise stacked with an algorithmically upsampled

32× 32 image. In the training process, [26] has access to the original images of

size 256× 256. This allows them to create the required model inputs and target

outputs for all three of the DDPMs.

For our situation, we would use DDPMc to generate the contour and DDPMv to

generate the synthetic whistle. This has the same format as what is done in [26], but

our cascaded models all use a dimensionality of 112×112. DDPMc receives only

noise as an input and produces contours with constant width/intensity. DDPMv

receives noise stacked with constant width/intensity contours as an input – thus

having 2-channel data – and a synthetic whistle. This whistle will have the same

general shape as its input contour, and its width/intensity will vary in a similar

manner a desired set of variation parameters. The desired outputs of our DDPMv

can be created through procedurally-generated whistles, which provides the target

dataset. The step from synthetic whistle to sample is still done by multiplying our

whistle with the appropriate sw value.

Overall, the cascaded DDPMs system is used as follows to produce a single

model-generated synthetic sample. This process is visually depicted in Figure 4.6,

with the three labelled steps to be described. First, DDPMc is trained on the poly-

nomial fitted time-frequency points to produce contours. A noise sample is pro-

vided as input to the model, and a contour is produced as output. Second, DDPMv
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Figure 4.6: Illustrative process for creating a synthetic sample using the cas-
caded DDPM approach. A sample from SDisE (1) is shown here.

is trained using polynomial fitted time-frequency points which have been modified

with the variation parameters and intensity masks. The training data includes a sec-

ond channel of data which is a noise sample stacked with a contour from DDPMc,

and a whistle is produced as output. Third, using the sw modifier, we stack this

whistle onto a background to produce a synthetic sample.

4.3.2 Results

We use the process outlined in Section 4.3.1 to generate synthetic samples for

dataset B, which will be shown and explained in Section 4.4.2, and thus we will

generate at least 1598 samples to match the original dataset size. To begin, we

generated 5000 contours and determined how many were usable. We first elimi-

nate any samples which did not produce a contour and instead only look like noise;

examples of this can be seen in Figure 3.9 and were discussed in Section 3.4.3.

This occurred in 602 samples, which is 12.04% of the total number generated. Ad-
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Figure 4.7: Example of a generated contour which could not be used because
of its extremely short duration.

Figure 4.8: Example of a generated contour which was used despite being
disconnected because the components could be from one signal.

ditionally, we eliminated a few cases where the produced contour was infeasibly

small, such as Figure 4.7. This occurred in 72 samples, which is 1.44% of the

total number generated. Finally, since we had a surplus of samples, we eliminated

the samples which included more than one distinct contour that could not be in-

terpreted as a single signal which was either interrupted or faded. An example of

a DDPMc output that is composed of disjoint components but could be a single

signal is found in Figure 4.8. There is a degree of subjectivity to this selection, and

we eliminated 1901 samples (38.02%). Overall, we retain 2571 samples (51.42%)

that could be used as synthetic contours.

These contours were then stacked with noise for our DDPMv to create 2-

channel input data. The target whistles were generated using variation parameter

sets SDisE (1), SDetPA (2), and SDetPA (3). Examples of synthetic samples gen-
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(a) SDisE (1).

(b) SDetPA (2).

(c) SDetPA (3).

Figure 4.9: Eight synthetic samples generated from the cascaded DDPM sys-
tem. Each was produced using a different DDPMv model, trained using
the labelled set of parameters.

erated from the cascaded DDPM system and overlaid onto the same background

are shown in Figure 4.9. As mentioned in Section 3.4.3, DDPMc typically had faint

traces of noise remaining in the generated image; the non-contour pixels were faint

but not all were 0. The same phenomenon appears in outputs of DDPMv, and it

becomes less trivial to fix now that our relevant pixels are not all of the same inten-

sity. Currently, we do not perform any cleaning on the synthetic whistles produced

by DDPMc or DDPMv.
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Opt. Metric Nth Best Model Ep. SDisA (%)

Simple 110 92.19
Dense161 33 100.00
Res152 26 99.69

SDisE 1

VGG19bn 37 99.69

Simple 145 92.81
Dense161 29 99.69
Res152 46 99.38

SDetPA 2

VGG19bn 22 99.38

Simple 121 95.31
Dense161 35 100.00
Res152 57 99.69

SDetPA 3

VGG19bn 29 100.00

Table 4.4: Results from discrimination of positive/synthetic samples, where
synthetic samples are model-generated based on training data using spec-
ified parameters.

4.3.3 Realism Assessment

In Section 4.2.3, we used classification and detection to assess the synthetic sam-

ples’ realism. This is done again, this time using model-generated synthetic sam-

ples using a cascaded DDPM. The results for classification of positive/synthetic

samples and detection of positive samples are found in Tables 4.4 and 4.5 respec-

tively.

The discrimination test performs approximately the same as in Section 4.2.3

(comparing Table 4.2 to Table 4.4). On average, it seems that there are more epochs

required to reach the best result. The detection test performs marginally poorer in

this section than in Section 4.2.3 (comparing Table 4.3 to Table 4.5). We suspect

that this is due to the fact that dataset B – which we are using here – has been biased

toward having only stronger positive samples because of the manual reviewing

process as we stated in Section 2.4.5. Therefore, these model-generated samples

likely appear weaker in the spectrogram, and it is more likely for a model trained

on dataset B to not detect some synthetic samples. It is interesting to note that the

detectors seem to be performing in the opposite direction as those previously; in
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Opt. Metric Nth Best Model Acc (%)

Simple 93.87
Dense161 90.99
Res152 85.79

SDisE 1

VGG19bn 86.67

Simple 91.61
Dense161 88.17
Res152 86.92

SDetPA 2

VGG19bn 85.67

Simple 92.37
Dense161 90.30
Res152 87.98

SDetPA 3

VGG19bn 87.23

Table 4.5: Results from detection of synthetic samples, where synthetic sam-
ples are model-generated with DDPMv trained using whistles of specified
parameters. The model is trained on channel 1 of dataset A, and the best
models from Table B.1 are chosen for each model type.

other words, the models which achieved higher detection accuracy in Table 4.3 do

worse in Table 4.5 and vice versa. The overall realism assessment is the same as

in Section 4.2.3: while the synthetic samples can be used in an application that

requires similarity to positive samples, they are not similar enough to fool NNs in

a strict discrimination test.

4.4 Application to Iterative Detection
A scenario of where these realistically-generated synthetic samples may be use-

ful is when whistle detection occurs in a novel environment. This is particularly

true when we have very little or potentially no positive samples that have been

labelled, but negative samples exist and there is a desire for automated detection

based in this context. We can overlay generated contours with the backgrounds to

create a synthetic/negative dataset, which can be used to drive future labelling in

an automated fashion. This is similar in principle to the metric SDetA utilised in

Section 4.2.
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In this section, we demonstrate the extreme case where there is no positive

labelled data available but sufficient negative data. Thus, we need three non-

overlapping sets of negative samples: one for training, one for backgrounds, and

one for “unseen” labelling. For simplicity, the sets will have the same number of

samples. The iterative detection application is demonstrated twice using different

datasets. We experiment with a naive technique that involves trusting the models

and their results, incorporating any sample labelled as positive into the training set

and replacing synthetic samples with these new ones.

4.4.1 Known Environment

First, we start by using procedurally-generated synthetic samples. All real data

is from dataset A. This example demonstrates iterative detection in a best-case

scenario, since the polynomial-fitted contours and the positive samples used in

parameter optimisation were both based on dataset A.

Our procedurally-generated synthetic samples are matched by an equal number

of negative samples. Once a model is trained as a detector on the synthetic (output

1) and negative (output 0) samples, we test its capability on an unseen set of real

data. This unseen set consists of 5247 positive samples (all labelled whistles in

dataset A) and 5247 negative samples. 20% of these samples (1050 of each type)

is held out of the training process, and these are used to judge detection accuracy

on true samples at every iteration. We refer to this subset as the “Holdout” (HD).

The remainder (4197 of each type) is labelled by the model and integrated as output

1 training/validation/testing samples for the next iteration of training. We refer to

this subset as the “Integratable” (IG). The number of total samples used in these

subsets is kept consistent, so synthetic samples are replaced by real samples which

were previously labelled as positive. We refer to this method as a naive technique

since we are trusting that any sample labelled “1” deserves to be integrated as a

positive. This will reveal how much a model’s abilities may degrade when the

training/validation/testing samples become contaminated, and several iterations of

detection using this process for the Simple model are shown in Table 4.6. The

percentage of the available samples to be integrated into the training set which have

been flagged at the end of every iteration is also shown visually in Figures 4.10.
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Opt. Metric Nth Best Iter IG Pos. Acc (%) IG Neg. Acc (%) HD Pos. Acc (%) HD Neg. Acc (%)

1 26.78 99.26 25.62 99.62
2 53.56 98.26 52.57 98.76
3 68.48 97.71 67.81 99.14
4 77.32 95.52 73.62 95.62

SDisE 1

5 82.37 93.21 79.62 95.43

1 32.95 99.31 33.52 98.86
2 60.57 98.02 59.90 98.19
3 77.48 96.43 76.10 97.05
4 83.58 94.38 80.19 96.67

SDetPA 2

5 87.09 92.47 82.76 96.76

1 43.60 99.24 42.38 99.05
2 58.35 98.98 55.62 99.14
3 74.43 97.90 72.00 98.57
4 83.15 96.38 80.48 97.62

SDetPA 3

5 86.9 93.88 83.52 96.29

“Iter” indicates the iteration number used to achieve the row’s results.

Table 4.6: Iterative detection results on procedurally-generated synthetic
samples using Simple.

(a) Positive IG samples. (b) Negative IG samples.

Figure 4.10: Iteration IG accuracy values for Simple. Values are taken from
Table 4.6.
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Overall, it appears that the chosen parameter sets are able to be used for iter-

ative detection with fair success. The number of negative IG samples being acci-

dentally integrated as positives is a low percentage of the total number available.

Using Simple, we are able to detect the majority of true positive samples with

only 5 iterations. A drawback of this process that is not depicted here is the oc-

casional occurrence of model non-convergence. Table 4.6 only depicts sequences

of events where the model was able to converge, but experimentally we occasion-

ally found that the model would train for a consecutive number of epochs that we

determined to be sufficient for early stopping without reaching a sufficiently low

loss value. For the Simple model, this occurred only with parameter set SDetPA

(3) in our experiments. This would typically be loss values greater than 0.5 with

training/validation/test accuracy values lower than 70%. In terms of IG or HD ac-

curacy, it would typically show 100% and 0% or values close to, indicating that

the model was effectively becoming a “1” or “0” output in nearly all cases. This

was, however, an inconsistent result – typically, a second run of the model was

able to produce a result as found in Table 4.6. This would typically occur on the

second or third iteration, indicating that it could potentially be a case of model

confusion where the synthetic samples mixed with some positive samples made it

more difficult for the model to produce clear results.

This can also be done with the other NN architectures used in Chapter 2:

Dense161, Res152, and VGG19bn. The results are Tables 4.7, 4.8, and 4.9 re-

spectively with their accompanying Figures 4.11, 4.12, and 4.13.

Dense161 suffers from the same occasional non-convergence issue as Simple.

Since these two models are the smallest (less parameters), it appears that this non-

convergence is mitigated by having a larger model with more parameters. Overall,

these trials with more complicated models show the same results as with Simple.

The performance does not vary greatly between the different type of model, and all

are able to achieve high levels of accuracy for the IG and HD subsets.
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Opt. Metric Nth Best Iter IG Pos. Acc (%) IG Neg. Acc (%) HD Pos. Acc (%) HD Neg. Acc (%)

1 16.58 99.98 16.95 99.90
2 33.55 99.81 31.14 99.62
3 55.59 99.38 54.10 99.71
4 72.98 98.43 70.48 99.05

SDisE 1

5 77.60 97.97 72.67 99.05

1 30.71 99.36 29.43 98.95
2 56.35 98.95 53.81 99.33
3 70.34 98.09 69.90 98.38
4 78.48 97.90 74.86 99.62

SDetPA 2

5 86.23 95.28 84.86 95.62

1 35.00 99.81 34.10 99.90
2 67.45 99.09 67.52 98.48
3 77.15 98.38 74.76 99.62
4 82.51 97.52 78.57 98.67

SDetPA 3

5 83.15 97.31 76.67 99.14

Table 4.7: Iterative detection results on procedurally-generated synthetic
samples using Dense161.

(a) Positive IG samples. (b) Negative IG samples.

Figure 4.11: Iteration IG accuracy values for Dense161. Values are taken
from Table 4.7.
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Opt. Metric Nth Best Iter IG Pos. Acc (%) IG Neg. Acc (%) HD Pos. Acc (%) HD Neg. Acc (%)

1 0.21 100.00 0.29 100.00
2 4.91 100.00 5.71 100.00
3 29.26 99.74 28.00 99.90
4 52.63 99.50 51.05 99.71

SDisE 1

5 69.29 99.31 69.05 99.05

1 32.79 99.71 32.19 99.90
2 51.16 99.43 49.24 99.43
3 73.20 98.43 71.14 98.76
4 84.44 93.73 82.38 94.29

SDetPA 2

5 86.42 93.42 75.43 99.52

1 13.60 99.88 13.81 99.71
2 43.67 99.71 42.57 99.81
3 63.64 99.52 63.14 100.00
4 76.96 97.40 76.76 97.24

SDetPA 3

5 82.94 96.21 78.10 98.48

Table 4.8: Iterative detection results on procedurally-generated synthetic
samples using Res152.

(a) Positive IG samples. (b) Negative IG samples.

Figure 4.12: Iteration IG accuracy values for Res152. Values are taken from
Table 4.8.
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Opt. Metric Nth Best Iter IG Pos. Acc (%) IG Neg. Acc (%) HD Pos. Acc (%) HD Neg. Acc (%)

1 7.86 99.95 9.43 100.00
2 40.12 99.79 39.24 99.81
3 59.80 99.26 59.52 99.62
4 69.22 98.55 68.00 98.95

SDisE 1

5 77.51 97.38 75.43 98.76

1 7.31 99.98 6.95 99.90
2 34.74 99.86 33.14 99.71
3 61.95 99.57 61.81 99.52
4 74.79 98.76 74.00 98.86

SDetPA 2

5 83.35 96.57 81.90 96.38

1 12.53 99.98 14.19 100.00
2 41.01 99.83 40.29 99.71
3 58.47 99.52 58.95 99.43
4 70.48 99.24 67.81 99.33

SDetPA 3

5 80.94 98.45 79.52 99.14

Table 4.9: Iterative detection results on procedurally-generated synthetic
samples using VGG19bn.

(a) Positive IG samples. (b) Negative IG samples.

Figure 4.13: Iteration IG accuracy values for VGG19bn. Values are taken
from Table 4.9.
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4.4.2 Novel Environment

The application of this iterative detection to a new environment is the best assess-

ment of its applicability. The time-frequency points were found based on positive

samples from dataset A, so now we transition to using dataset B for all other as-

pects. This includes the negative backgrounds used to create the synthetic samples,

the negative samples used for the model, the positive samples used to assess the

model, and the unseen negative samples used to assess the model. The cascaded

DDPM is used to generate our synthetic whistles, as explained in Section 4.3. We

test it in the same manner as in Section 4.4.1 using Simple (Table 4.10 and Fig-

ure 4.14), Dense161 (Table 4.11 and Figure 4.15), Res152 (Table 4.12 and Fig-

ure 4.16), and VGG19bn (Table 4.13 and Figure 4.17).

Overall, we see that the results from this section are similar to and actually

better than those in Section 4.4.1. Nearly all models are able to detect 50%+ of

positive whistles on the first iteration, with the exception of VGG19bn which only

manages this one. Additionally, the accuracy values after five iterations are higher

than in Section 4.4.1. As stated previously, we believe this is due partly to the

nature of how positive samples in dataset B were chosen and checked. However,

it does indicate that although the time-frequency points we used to create training

data for DDPMc were taken from dataset A, the model was able to learn diverse

and general enough whistles that the generated outputs were usable for dataset B.

Therefore, we can say that the cascaded DDPM system is effective at generating

whistle samples which can be used across different oceanic environment.

This section has shown the efficacy of using generated synthetic whistles in

training detectors to effectively detect real positive whistles with low rates of er-

ror. We suggest that it may be more effective to train with synthetic samples that

are particularly weak so long as the detectors are able to sufficiently converge,

as dataset A seems to be compared to dataset B. This allows the detectors to be

“stronger” since they become accustomed to searching for the dolphin whistle

time-frequency traces even when they are less distinguishable from background

noise.
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Opt. Metric Nth Best Iter IG Pos. Acc (%) IG Neg. Acc (%) HD Pos. Acc (%) HD Neg. Acc (%)

1 65.02 98.36 67.50 99.38
2 81.61 96.87 80.00 99.38
3 85.60 95.93 83.13 99.06
4 88.42 94.60 85.31 99.69

SDisE 1

5 91.39 93.11 86.56 97.50

1 56.81 98.90 59.38 99.69
2 70.89 98.28 71.25 100.00
3 79.03 97.89 78.44 99.38
4 84.04 96.95 80.00 99.38

SDetPA 2

5 86.62 96.09 83.44 98.44

1 51.17 98.67 53.44 99.38
2 68.86 98.67 68.75 99.69
3 75.74 98.44 74.06 100.00
4 81.69 97.89 80.00 100.00

SDetPA 3

5 84.98 97.65 81.88 99.69

Table 4.10: Iterative detection results on model-generated synthetic samples
using Simple.

(a) Positive IG samples. (b) Negative IG samples.

Figure 4.14: Iteration IG accuracy values for Simple. Values are taken from
Table 4.10.
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Opt. Metric Nth Best Iter IG Pos. Acc (%) IG Neg. Acc (%) HD Pos. Acc (%) HD Neg. Acc (%)

1 59.08 97.42 62.19 96.88
2 80.75 96.09 78.44 99.06
3 86.07 95.38 80.94 100.00
4 92.49 93.35 88.44 96.56

SDisE 1

5 93.51 92.49 88.44 96.88

1 60.49 99.92 65.31 100.00
2 80.13 99.53 79.06 100.00
3 85.99 98.98 82.81 99.69
4 93.11 94.21 93.75 94.69

SDetPA 2

5 93.58 94.05 88.75 99.06

1 71.75 99.77 75.00 99.38
2 82.79 99.06 83.44 99.69
3 85.52 98.59 80.94 100.00
4 89.05 98.36 86.25 99.69

SDetPA 3

5 92.10 96.95 88.44 99.06

Table 4.11: Iterative detection results on model-generated synthetic samples
using Dense161.

(a) Positive IG samples. (b) Negative IG samples.

Figure 4.15: Iteration IG accuracy values for Dense161. Values are taken
from Table 4.11.
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Opt. Metric Nth Best Iter IG Pos. Acc (%) IG Neg. Acc (%) HD Pos. Acc (%) HD Neg. Acc (%)

1 56.49 99.45 59.69 99.69
2 80.13 98.51 79.06 99.06
3 84.82 98.28 79.38 100.00
4 89.36 97.42 85.94 99.06

SDisE 1

5 93.27 94.91 89.69 97.19

1 57.75 99.77 59.69 99.69
2 83.10 99.06 82.50 99.69
3 88.81 98.90 86.25 99.69
4 89.83 98.75 83.75 99.06

SDetPA 2

5 93.43 96.87 90.63 95.94

1 64.40 99.45 67.19 99.69
2 77.78 99.45 76.56 100.00
3 84.82 99.22 83.13 100.00
4 89.59 98.51 87.50 99.69

SDetPA 3

5 94.13 95.85 90.31 98.13

Table 4.12: Iterative detection results on model-generated synthetic samples
using Res152.

(a) Positive IG samples. (b) Negative IG samples.

Figure 4.16: Iteration IG accuracy values for Res152. Values are taken from
Table 4.12.
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Opt. Metric Nth Best Iter IG Pos. Acc (%) IG Neg. Acc (%) HD Pos. Acc (%) HD Neg. Acc (%)

1 40.85 99.61 44.69 100.00
2 74.96 99.06 75.31 99.69
3 85.13 98.83 83.13 99.38
4 89.91 98.36 87.19 99.06

SDisE 1

5 91.71 96.87 87.19 98.75

1 38.50 100.00 42.19 100.00
2 62.21 99.92 60.94 100.00
3 79.66 99.69 80.00 100.00
4 88.58 97.50 86.88 98.75

SDetPA 2

5 91.78 94.99 89.38 96.25

1 64.40 98.98 64.69 99.06
2 80.83 98.51 79.69 99.69
3 88.50 97.42 87.81 99.38
4 92.25 97.26 90.00 99.69

SDetPA 3

5 93.11 96.56 91.25 99.38

Table 4.13: Iterative detection results on model-generated synthetic samples
using VGG19bn.

(a) Positive IG samples. (b) Negative IG samples.

Figure 4.17: Iteration IG accuracy values for VGG19bn. Values are taken
from Table 4.13.
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Chapter 5

Conclusions and Future Work

In this chapter, we outline the main contributions of the thesis and propose direc-

tions for related future work.

5.1 Conclusions
This thesis demonstrated the utility of NNs for the application of dolphin whistle

detection and generation. We started by developing an automated detection sys-

tem for dolphin whistles using image classification networks, including one basic

architecture and several which leveraged transfer learning from pre-trained clas-

sifiers. After k-cross validation and hyperparameter tuning, the trained networks

were able to consistently achieve detection performance which matched or beat ex-

isting methods and in particular on a balanced dataset. This was tested on a second

dataset in a different oceanic environment. We explored the impact of freezing lay-

ers of pre-trained models and reducing the training set size, both of which tended to

degrade model performance. However, when combined, the tested networks were

able to resist overfitting more effectively and achieved better performances than ei-

ther effect alone. The key findings in this Chapter 2 are in the generalisability and

transferability of our techniques. Generalisability describes the ability to perform

across different datasets. When using Min-Pre (i.e. bare minimum preprocessing

when converting to spectrogram data format), we are able to achieve comparable

performance across different datasets without needing to adjust any noise filtering,
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unlike the drop in performance that Add-Pre experiences. This was proven using

multiple trials for each experiment, which verifies that the results are consistent

rather than one-off happenstances. We showed that the closer cropping and addi-

tional filter in Add-Pre was detrimental to performance in dataset B, which is likely

due to the fact that those procedures were chosen based on samples from dataset A.

Thus, we can leverage the power of the NNs and minimise human effort in this de-

tection process. Transferability refers to the utility of transfer learning. Initially,

our non-Simple models retain parameters from an ImageNet [16] classification task

and this allows the models to quickly converge. We tested the transference of pa-

rameters found from dataset A to training models on dataset B. The benefit of this

is most obvious when parameter freezing and dataset size reduction occur; as such,

we can say that if an additional, small dataset exists, it can be very beneficial to

have a model which is pretrained on a sufficiently large set of similar spectrogram

data. This can allow future models to converge faster, and overfitting can poten-

tially be reduced by freezing part of the model parameters.

Chapters 3 and 4 outlined the process for generating dolphin whistles using

NNs. This generation process is broken into the contour (i.e. whistle shape) and

the variations (i.e. “width” and “pixel intensity” of the signal over time). Starting

with the contour generation, we tested two popular generative model styles – GANs

and DDPMs – before deciding that DDPM were more effective in producing varied

samples without inexplicable background artifacts. To generate realistic whistles

with the appropriate variations, we decided on six tuneable parameters and integra-

tion of randomly synthesized Bellhop impulse responses. These parameters were

optimised using a series of NN-driven metrics aimed at creating synthetic samples

which closely resemble positive samples. The top performing sets of parameters

were used to train a cascaded pair of DDPMs which generated contours from noise

and then synthetic whistles (i.e. with variations in width and intensity) from con-

tours. These generated whistles were applied to the scenario of supplementing a

dataset, which in our case started with 0 positive samples. A detector was trained

on synthetic and negative samples and would gradually integrate positive/negative

samples which it flagged as having a whistle, creating an iterative detection pro-

cess which requires very little data to begin. This was tested on our second dataset,

proving cross-environmental efficacy for our generative network and whistles. The
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key findings in these chapters is the efficacy of using synthetic whistles. Chapter 3

is the foundation for the application in Section 4.4, first creating whistle contours;

then, Sections 4.2 and 4.1 allow us to make these contours into synthetic samples

which resemble true positive samples. When these synthetic samples were used in

the place of positive samples during whistle detection training, we found that iterat-

ing even twice would allow us to detect over half of the positive samples with very

few negatives accidentally labelled as positive. This was true even across datasets,

indicating that the synthetic whistle samples we created were sufficiently realistic

to guide detection in a novel environment. This can be particularly useful when

we want to perform detection on large datasets that have few labelled samples; if

a reasonable amount of negative samples and background noise can be obtained,

we would be able to apply this detection technique to automatically find marine

mammal signals without requiring that a dataset first be built manually. While it

is inevitable that a human expert should be included in the process to verify the

tagged data, that is a quicker and easier job than searching through all existing data

for possible signals. The low FA rate is promising in that this system is unlikely

to create much unnecessary/extra work; while the MD rate is initially fairly high,

applying this detection process iteratively – until a sufficiently large number of

positive samples are found – has been shown to be successful at lowering that.

5.2 Future Work
In this thesis, we utilised two datasets which are relatively clean; thus, our work

does not cover environments where there are significant noise sources or other

marine mammal signals. Additionally, the models and preprocessing we use are

open to use in future work as classifiers rather than merely detectors. [29] utilises

CNN to classify whistles from different whale species, and [34] applies a similar

technique to dolphin clicks from different species. If Min-Pre is applied to this

task, it may prove to be equally effective for automated classification.

Another avenue for future work is in developing better variation parameters

for the contours. Ideally, this would be done with grounded justification in how

dolphin whistles truly change over time, frequency, environments, etc. Regardless,

as noted in Section 4.2.2, the scores obtained by our even our best metrics are far
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from their ideal values. As well, the synthetic samples generated procedurally or

by model fail the discrimination test against positive samples. An earlier iteration

of produced samples resulted in extremely consistent high discrimination accuracy,

and we were able to determine that this was a result of unnoticeable differences in

how data was being normalised by the different libraries. Switching to the same

library fixed this particular issue, but we speculate that there may be some artifacts

in the data that may be interfere with achieving better discrimination.

For the developed DDPM, we utilise basic techniques which were sufficient for

the task at hand to demonstrate the ability of these networks in generating whis-

tles. However, there are areas for improvement for sample quality and generation

speed. [40] finds several modifications which created competitive log-likelihood

values while also decreasing the number of timesteps required. In [50], the dif-

fusion process is reworked to be non-Markovian, which effectively allows a gen-

eration schedule which “skips” timesteps. As well, we noted that the generated

samples were not always usable; for instance, the contour-DDPM would occasion-

ally produce images which were merely noise without a noticeable contour. With

further work and fine-tuning of the model parameters, it is possible that this is ei-

ther eliminated or reduced. Alternatively, it would be possible to create a process

which could assess samples and automatically discard those that could not be used.

Finally, a next step for utilising these signals in biological covert UWAC is to in-

corporate the embedding of information into the generation process. This could be

done, for instance, using conditional generation with an associated classifier at the

receiver end. Finally, as mentioned, our DDPMs tended to produce images with

faint, noise-like pixels still lingering. Removing these is left to future work and

may aid in creation of better samples.

This thesis used spectrograms as the data format of choice. This was suit-

able for our application purpose and allowed us to leverage pre-existing work in

image classification/generation networks, which is currently a more robustly ex-

plored field than audio generation. For real transmission of dolphin whistles, how-

ever, this would require that these signals are either converted into or generated as

audio data. Thus, as next steps, spectrogram-to-audio methods and audio genera-

tion NNs should be assessed for their capabilities. This would create signals that

could be used in biological covert UWAC.
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Appendix A

1-channel detection using
dataset B as training data

In this appendix, we show detection of dolphin whistle samples using 1-channel

NNs. All results reported in this appendix are trained using a hyperparameter

set developed from dataset B’s only channel. The model takes 1-channel inputs,

unlike the 3-channel versions in most of Chapter 2 which would take the single

dataset B channel replicated three times. This exists as a baseline of performance

on dataset B is and referenced in Section 2.4.5. Values shown in Table A.1 are

based on the test subset (10% of total dataset).
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Model Ep. Acc (%) FA (%) MD (%) Avg Acc (%)

111 95.00 3.75 6.25
26 94.06 4.00 8.13Simple

29 91.88 5.00 11.25

93.65

70 90.63 0.00 18.75
27 91.25 1.25 16.25Simple*

53 89.38 3.13 18.13

90.42

33 96.25 2.50 5.00
33 97.50 1.25 3.75Dense161

11 95.00 4.38 5.63

96.25

24 91.25 1.88 15.63
9 89.06 5.00 16.88Dense161*

17 90.63 6.25 12.50

90.31

2 95.00 7.50 2.50
3 91.88 13.13 3.13Res152

1 94.38 6.88 4.38

93.75

12 90.31 3.13 16.25
19 91.56 1.25 15.63Res152*

14 91.56 5.63 11.25

91.15

6 95.31 5.00 4.38
2 92.81 1.25 13.13VGG19bn

2 93.75 1.88 10.63

93.96

8 90.63 3.75 15.00
5 90.94 0.63 17.50VGG19bn*

10 91.88 6.88 9.38

91.15

“Ep.” indicates the number of epochs required to reach these results.

“Avg” indicates “average” as calculated by mean.

Table A.1: Performance of models on dataset B. Comparable to results from
Table 2.3.

111



Appendix B

1-channel detection using channel
1 of dataset A as training data

In this appendix, we show detection of dolphin whistle samples using 1-channel

NNs. All results reported in this appendix are trained using a hyperparameter set

developed from dataset A channel 1. The model takes 1-channel inputs, unlike the

3-channel versions in most of Chapter 2. This exists as an assessment of perfor-

mance using dataset A channel 1 and its transferability to dataset B. The results are

referenced in Section 2.4.5.
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B.1 Results on dataset A
The models were trained using dataset A channel 1 and the test results are found in

Table B.1.

Model Ep. Acc (%) FA (%) MD (%) Avg Acc (%)

159 89.52 7.24 13.71
104 90.00 4.19 15.81Simple

142 90.48 4.19 14.86

90.00

319 89.24 5.71 15.81
392 86.95 5.33 20.76Simple*

439 89.24 5.14 16.38

88.48

3 92.38 2.10 13.14
3 91.71 2.10 14.48Dense161

3 92.19 1.14 14.48

92.10

1 89.43 1.52 19.62
1 94.19 6.10 12.76Dense161*

1 90.48 1.71 17.33

90.16

9 91.43 5.33 11.81
20 92.48 5.71 9.33Res152

9 89.14 0.38 21.33

91.02

19 91.24 6.48 11.05
24 89.05 7.24 14.67Res152*

25 89.90 2.10 18.10

90.06

28 95.90 3.24 4.95
19 94.67 5.14 5.52VGG19bn

15 95.81 2.10 6.29

90.38

2 90.67 2.29 16.38
3 92.38 1.90 13.33VGG19bn*

7 92.95 4.38 9.71

92.00

Table B.1: Performance of models on dataset A. Comparable to results from
Table 2.2.
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B.2 Results on dataset B
The models started from the best iteration found in Table B.1. They were then were

trained using dataset B’s only channel and the test results are found in Table B.2.

Model Ep. Acc (%) FA (%) MD (%) Avg Acc (%)

30 92.50 5.00 10.00
51 93.75 5.63 6.88Simple

42 94.06 4.38 7.50

93.44

138 90.94 2.50 15.63
97 90.31 3.13 16.25Simple*

135 90.94 2.50 15.63

90.73

12 96.88 4.38 1.88
6 96.25 1.88 5.63Dense161

7 97.81 2.50 1.88

96.98

1 91.56 9.38 7.50
1 91.25 7.50 10.00Dense161*

1 88.13 1.88 21.88

90.31

2 94.69 3.13 7.50
3 95.63 6.25 2.50Res152

7 95.94 1.88 6.25

95.42

6 90.00 9.38 10.63
7 90.63 4.38 14.38Res152*

2 91.25 1.88 15.63

90.63

2 94.38 0.63 10.63
4 97.19 1.88 3.75VGG19bn

2 95.31 0.63 8.75

95.63

2 91.88 6.88 9.38
2 92.38 0.63 12.50VGG19bn*

2 89.06 7.50 14.38

91.46

Table B.2: Performance of models on dataset B. Comparable to results from
Table 2.4.
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Appendix C

1-channel detection using channel
2 of dataset A as training data

In this appendix, we show detection of dolphin whistle samples using 1-channel

NNs. All results reported in this appendix are trained using a hyperparameter set

developed from dataset A channel 2. The model takes 1-channel inputs, unlike the

3-channel versions in most of Chapter 2. This exists as an assessment of perfor-

mance using dataset A channel 2 and its transferability to dataset B. The results are

referenced in Section 2.4.5.
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C.1 Results on dataset A
The models were trained using dataset A channel 2 and the test results are found in

Table C.1.

Model Ep. Acc (%) FA (%) MD (%) Avg Acc (%)

65 91.71 8.95 7.62
83 90.10 9.90 9.90Simple

64 92.19 7.05 8.57

91.33

22 90.57 3.24 15.62
18 90.57 5.90 12.95Simple*

20 89.62 4.19 16.57

90.25

3 94.76 2.10 8.38
2 93.52 0.95 12.00Dense161

1 93.05 2.29 11.62

93.78

9 93.24 3.05 10.48
9 92.67 4.76 9.90Dense161*

14 92.48 6.86 8.19

92.79

24 93.62 2.29 10.48
14 93.90 3.24 8.95Res152

12 93.33 6.48 6.86

93.62

31 92.38 3.43 11.81
16 92.67 3.43 11.24Res152*

20 91.62 3.24 13.52

92.22

5 93.81 2.48 9.90
5 94.10 4.95 6.86VGG19bn

9 93.24 2.86 10.67

93.71

11 92.76 3.43 11.05
7 91.43 2.67 14.48VGG19bn*

6 93.24 1.14 12.38

92.48

Table C.1: Performance of models on dataset A. Comparable to results from
Table 2.2.
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C.2 Results on dataset B
The models started from the best iteration found in Table C.1. They were then were

trained using dataset B’s only channel and the test results are found in Table C.2.

Model Ep. Acc (%) FA (%) MD (%) Avg Acc (%)

17 90.31 9.38 10.00
14 89.06 11.88 10.00Simple

18 89.06 13.75 8.13

89.48

6 91.56 1.88 15.00
5 91.88 2.50 13.75Simple*

7 90.63 3.13 15.63

91.35

1 96.88 1.88 4.38
3 97.50 1.25 3.75Dense161

1 96.25 1.25 6.25

96.88

5 92.81 5.63 8.75
5 91.88 4.38 11.88Dense161*

3 92.19 4.38 11.25

92.29

6 94.06 2.50 9.38
15 92.50 9.38 5.63Res152

15 96.88 1.25 5.00

94.48

5 91.88 6.25 10.00
4 92.19 6.88 8.75Res152*

6 91.88 5.63 10.63

91.98

1 96.25 0.63 6.88
5 96.25 0.63 6.88VGG19bn

3 96.25 1.88 5.63

96.25

5 92.50 4.38 10.63
3 91.56 3.75 13.13VGG19bn*

4 90.31 5.00 14.38

91.46

Table C.2: Performance of models on dataset B. Comparable to results from
Table 2.4.
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Appendix D

1-channel detection using
averaged channels of dataset A as
training data

In this appendix, we show detection of dolphin whistle samples using 1-channel

NNs. All results reported in this appendix are trained using a hyperparameter

set developed from dataset A by averaging its two channels. The model takes

1-channel inputs, unlike the 3-channel versions in most of Chapter 2. This exists

as an assessment of performance using dataset A averaged channels and its trans-

ferability to dataset B. The results are referenced in Section 2.4.5.
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D.1 Results on dataset A
The models were trained using dataset A averaged channels and the test results are

found in Table D.1.

Model Ep. Acc (%) FA (%) MD (%) Avg Acc (%)

193 91.52 6.67 10.29
180 95.33 2.67 6.67Simple

123 94.67 2.10 8.57

93.84

119 92.38 4.95 10.29
100 92.10 3.62 12.19Simple*

120 91.71 2.48 14.10

92.06

2 96.29 1.14 6.29
3 95.43 2.86 6.29Dense161

2 96.57 0.76 6.10

96.10

3 95.81 2.86 5.52
2 94.29 1.33 10.10Dense161*

2 95.62 1.33 7.43

95.24

3 94.57 0.95 9.90
5 94.76 2.48 8.00Res152

8 94.67 4.57 6.10

94.67

18 93.43 0.95 12.19
14 94.00 0.76 11.24Res152*

17 94.95 1.90 8.19

94.13

1 96.10 3.62 4.19
1 96.76 2.48 4.00VGG19bn

1 96.57 3.05 3.81

96.48

6 94.48 0.19 10.86
4 95.81 3.05 5.33VGG19bn*

4 95.14 1.52 8.19

95.14

Table D.1: Performance of models on dataset A. Comparable to results from
Table 2.2.
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D.2 Results on dataset B
The models started from the best iteration found in Table D.1. They were then were

trained using dataset B’s only channel and the test results are found in Table D.2.

Model Ep. Acc (%) FA (%) MD (%) Avg Acc (%)

53 94.06 6.25 5.63
78 94.38 4.38 6.88Simple

44 93.13 5.00 8.75

93.85

62 89.06 5.63 16.25
48 89.69 5.00 15.63Simple*

75 86.56 11.25 15.63

88.44

2 95.63 2.50 6.25
7 95.94 2.50 5.63Dense161

5 96.88 3.13 3.13

96.15

2 93.13 3.13 10.63
1 93.13 2.50 11.25Dense161*

1 92.50 2.50 12.50

92.92

3 95.00 4.38 5.63
1 93.75 0.63 11.88Res152

8 94.69 6.88 3.75

94.48

1 91.25 2.50 15.00
2 88.75 4.38 18.13Res152*

3 91.88 0.00 16.25

90.63

2 95.94 3.13 5.00
1 95.94 3.75 4.38VGG19bn

1 96.25 3.13 4.38

96.04

3 92.19 3.13 12.50
3 91.25 4.38 13.13VGG19bn*

2 92.81 1.25 13.13

92.08

Table D.2: Performance of models on dataset B. Comparable to results from
Table 2.4.
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Appendix E

Checkpointed outputs by GAN

A GAN model was hypertuned and trained as specified in Section 3.3. This was

used to create whistle contours that serve as the basis for generation of realistic

synthetic samples. The model was allowed to train for 250 epochs and a checkpoint

was taken every 25 epochs. At every step, the model state was saved and sixteen

samples were randomly generated. These can be seen in Figure E.1.
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(a) Epoch 25. (b) Epoch 50.

(c) Epoch 75. (d) Epoch 100.

(e) Epoch 125. (f) Epoch 150.
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(g) Epoch 175. (h) Epoch 200.

(i) Epoch 225. (j) Epoch 250.

(k) Epoch 275. (l) Epoch 300.
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(m) Epoch 325. (n) Epoch 350.

(o) Epoch 375. (p) Epoch 400.

(q) Epoch 425. (r) Epoch 450.
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(s) Epoch 475. (t) Epoch 500.

Figure E.1: Multiple samples of generated outputs of GAN at epochs 25, 50,
75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400,
425, 450, 475, and 500.
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Appendix F

Checkpointed outputs by DDPM

A DDPM model was hypertuned and trained as specified in Section 3.4. This was

used to create whistle contours that serve as the basis for generation of realistic

synthetic samples. The model was trained for 250 epochs and a checkpoint was

saved every time the loss value reached a new low. At these checkpoints, the model

state was saved and sixteen samples were randomly generated. Epochs aside from

the last six (which can be found in Figure 3.9) can be seen in Figure F.1.
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(a) Epoch 1. (b) Epoch 2.

(c) Epoch 3. (d) Epoch 4.

(e) Epoch 5. (f) Epoch 6.
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(g) Epoch 7. (h) Epoch 9.

(i) Epoch 10. (j) Epoch 13.

(k) Epoch 14. (l) Epoch 15.
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(m) Epoch 16. (n) Epoch 17.

(o) Epoch 26. (p) Epoch 31.

(q) Epoch 40. (r) Epoch 43.
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(s) Epoch 58.

Figure F.1: Multiple samples of generated outputs of DDPM at epochs 1, 2,
3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 26, 31, 40, 43, and 58.
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