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Abstract

It is now possible to estimate 3D human pose from monocular images with off-

the-shelf 3D pose estimators. However, many practical applications require fine-

grained absolute pose information for which multi-view cues and camera calibra-

tion are necessary. Such multi-view recordings are laborious because they require

manual calibration, and are expensive when using dedicated hardware. Our goal is

full automation, which includes temporal synchronization, as well as intrinsic and

extrinsic camera calibration. This is done by using persons in the scene as the cali-

bration objects. We attain this generality by partitioning the high-dimensional time

and calibration space into a cascade of subspaces, and introduce tailored algorithms

to optimize each efficiently and robustly. The outcome is an easy-to-use, flexible,

and robust motion capture toolbox that we release to enable scientific applications,

which we demonstrate on diverse multi-view benchmarks.
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Lay Summary

Camera calibration is the problem of finding out the camera setup. This entails the

camera’s location, the camera’s orientation, and the field of view of the camera.

This is important because it gives us information on how the points in the image

are related to points in the real world. Usually, this multi-camera calibration is

done manually using a known reference object in the scene. However, this requires

a dedicated preprocessing step. Since humans are present in many scenes, we seek

to determine these parameters using humans as reference objects. Synchronizing

multiple cameras such that the frames between different views match is another

problem that requires complicated hardware or manual labor. We seek to use the

motion of humans that all cameras can see to simultaneously match frames between

camera views and to calibrate the cameras.
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Chapter 1

Introduction

Computer vision based 3D reconstruction has now reached the mainstream, en-

abling detailed 3D reconstructions from handheld video recordings with ubiqui-

tous mobile phones [49]. However, when aiming for the reconstruction of dynamic

human performances, it still demands multiple cameras as single-view methods

suffer from occlusions and depth ambiguities [10]. Additionally, the cameras re-

quire calibration [20], which is the process of estimating the camera’s intrinsic

parameters, which include focal length, focal center, and the camera’s extrinsic

parameters, which include camera orientation and position. Together these param-

eters form the camera matrix, which gives us a relationship between 3D objects

in the scene, and their 2D representation in an image. Traditionally, this is de-

termined manually before filming is done. Hence, applications in visual effects

[38] and medical studies, such as those in neuroscience studying motion deficits

[59], still rely on dedicated motion capture studios or fairly technical camera se-

tups. However, their manual calibration is cumbersome and error-prone, and their

high cost renders them entirely inaccessible to smaller companies and labs with a

non-technical background.

Another problem that occurs with multiple cameras is synchronization [37],

which is the problem of having multiple cameras take frames at the same point in

time. Traditionally, this is done in the hardware, where one camera is known as

the master camera, which triggers all the other cameras in the system. This how-

ever also requires some technical background to wire cameras before filming starts,
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which may be difficult for people without this knowledge using commodity cam-

eras that do not provide a hardware link. We believe huge opportunities are missed

in life and social sciences, where highly technical experiments are traditionally less

common than in neuroscience and medicine. For example, 3D reconstruction could

have a wide range of applications, from studying athlete’s motion on a sports field

to detecting falls and accidents in an elderly care home.

Many approaches towards automating 3D capture exist, but only for special-

ized settings. Structure-from-motion techniques require either a continuous video

stream of a static [44] or slowly deforming object [4], or a dense array of cameras

that have largely overlapping fields of view. These are popular for settings where

there is only one slowly moving camera or dozens of static cameras, but fail when

only a few views are available. We refer to the setting with a few static cameras

as the sparse camera case and show that classical multi-view geometry approaches

fail. For sparse camera setups, manual calibration with a checkerboard or other

markers arranged in a predetermined two-dimensional pattern is the most common

approach [8]. However, the calibration object needs to be carefully placed and

re-positioned by trained operators to ensure that the entire capture volume is cov-

ered, and multiple cameras see the calibration object. Moreover, re-calibration is

required when cameras move ever so slightly, and fabricating calibration objects at

very small or big scales, for example, meter scale for sports events, is challenging.

To achieve fully automated calibration, a promising fully automatic direction

is to use humans [15, 30, 47, 54, 58], which are usually present in the scene, as

calibration objects. Fei et al. [15] calibrate the focal length and ground plane under

the assumption that all people have roughly the same height and the ground is flat,

but do not address synchronization and the multi-view case. Takahashi et al. [47]

and Liu et al. [30] subsequently use 2D keypoint detections in individual views

to calibrate the extrinsic parameters of two or more cameras using classical fun-

damental matrix estimation, which requires seven or more correspondences across

views. However, to establish the correspondence, they assume that cameras are

synchronized, and only a single person is in view and visible from all cameras. In

turn, Zhang et al. [58] establish temporal synchronization but assume intrinsic and

extrinsic calibrated cameras, and still use a single person. Xu et al. [54] rely on

reidentification, but synchronization is required and appearance matching is chal-
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Figure 1.1: Cascaded Calibration Overview From top to bottom, we show
how we break up the optimization problem into smaller subproblems by
solving for a subset of the parameters at a time, with subsequent steps
refining the earlier ones. The first step is the Single View Calibration
step where we estimate the normal vector n and the intrinsics K. Then,
we estimate the time synchronization offset ∆t. Finally, with the last
three steps, we estimate and refine the rotation matrix R and the trans-
lation T.

lenging when humans look alike, such as when a sports team dresses in the same

uniform. To the best of our knowledge, there is no solution for unsynchronized

sparse camera setups with a variable number of persons that are only partially vis-

ible.

We propose a cascaded calibration algorithm, shown in Figure 1.1, that breaks

down the calibration of high-dimensional parameter space into subspaces that can

be searched or optimized efficiently. For N cameras, we solve for N(4× 6+ 1)

3



parameters which correspond to 4 intrinsics, 6 extrinsics, and 1 temporal shift pa-

rameters. The outcome is a sequential process with steps having the cascading

dependencies visualized in Figure 1.1, with subsequent steps starting from pre-

ceding estimates that are further refined. In the first stage, camera focal length

(intrinsic) and their orientation with respect to the ground (extrinsic) are estimated

similarly to [15, 48], independently in each view so that we don’t need temporal

synchronization across cameras. In the second stage, we estimate the temporal off-

set by taking the scalar distances of the ankles from the center of the ground plane

in order to reduce the dimensions to one. Then we align the sequence temporally

by searching for the frame offset that results in the minimum distance between the

sequences. In the third stage, we use these to reduce the 6D extrinsics problem to

solving for 2D rotation and translation in the estimated ground planes, a 3D space

optimized by least squares, and a greedy yet efficient search of the rotation on the

ground plane. In the fourth stage, we refine the initialized extrinsic parameters

alongside the additional temporal offset using ICP ([2] and [57]) in a 5D space. In

the final stage, the entire 11D space is optimized using bundle adjustment [50].

This thesis is structured as follows: First, we review the existing literature on

camera calibration and temporal synchronization. Second, we comprehensively

explain our methodology, focusing on our cascaded pipeline. Third, we derive the-

oretical results from our single view step. Fourth, we conduct trials on synthetic

data to gain insights into the impact of noise on our single view step. Fifth, we

present Empirical results from various datasets. Sixth, we discuss various limita-

tions within our pipeline. Lastly, we conclude this thesis with a summary and a

discussion of potential future research directions as well as the societal impact of

our work.
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Chapter 2

Related Work

We categorize methods for multi-view calibration based on human poses by their

reconstruction methodology, such as optimization or deep learning. We also con-

sider whether they can handle a single person or multiple persons, the required prior

knowledge, and the outputs, such as intrinsics, extrinsics, and temporal synchro-

nization. Table 2.1 compares the capabilities and requirements of existing methods

to ours.

Method Framework Finds Sync. Finds Intrins. Finds Extrins. w/o GT Intrins. w/o GT Extrins. w/o GT Sync. Multi-Person Multi-View
Lee[26] Deep No No Yes No Yes No No Yes
Zhang[56] Deep Yes No No No No Yes Yes Yes
Zhang[55] Deep No Yes Yes No No No N/A Yes
Grabner[18] Deep No Yes Yes No No No N/A No
Ling[33] Deep Yes No No No No No N/A No
Jarved[24] Optim. No No No Yes Yes No Yes Yes
Xu[54] Optim. No No Yes No Yes No Yes Yes
Troung[51] Optim. No No Yes No Yes No Yes Yes
Liu[30] Optim. No Yes Yes Yes Yes No Yes No
Fei[15] Optim. No Yes Yes Yes Yes Yes No Yes
Takahashi[47] Optim. Yes No Yes No Yes Yes Yes Yes
Zhang[58] Optim. Yes No No No No Yes No No
COLMAP[43] Optim. No Yes Yes Yes Yes No N/A Yes
Ours Optim. Yes Yes Yes Yes Yes Yes Yes Yes

Table 2.1: Comparison of related methods. We summarize the differ-
ences, including which parameters they estimate and whether they re-
quire ground truth input. Only ours is able to calibrate and synchronize
multi-person sequences.
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2.1 Optimization Based Camera Calibration
These methods approach the calibration problem by obtaining keypoints in the

scene from each camera, and then geometrically solving for the camera poses. We

primarily focus on methods that use human poses as the keypoints, however, we

start with more general methods to provide context.

Structure from motion (SfM) methods seek to estimate the 3D structure of a

scene from a set of 2D images. There are many publicly available methods and

software packages to perform this task. One of the most widely used examples

is COLMAP [43]. COLMAP extracts features from the 2D images, matches the

features, and then geometrically reconstructs the scene by triangulating between

the views, using RANSAC [16] to remove outliers and bundle adjustment to refine

the reconstruction. Although this method is easy to use and effective, it requires

a large amount of images with a high degree of overlap. In particular, Brachmann

et al [3] report that they need to store hundreds of thousands of feature vectors for

matching as well as requiring several hours for the reconstruction. Additionally,

the method is less effective in scenes that are featureless like a plain white back-

ground, or if they have repeating textures which can cause errors in the multi-view

matching stage. Thus, we focus on using human poses as calibration objects since

humans are fairly distinct objects in the scene and do not have repeating patterns

of keypoints since we do the calibration and matching using the joint keypoints of

the person rather than the appearance of the person, which could be unreliable if

people are wearing the same clothes.

Fei et al. [15] performs intrinsic and extrinsic calibration on single view cam-

eras using humans in the scene to solve direct linear transform (DLT) equations

[46], using RANSAC [16] to remove outliers. This method is most similar to the

first stage of our pipeline since it uses persons in the scene to estimate the focal

length and ground plane position and orientation. However, this method only con-

siders a single camera, which means they also don’t need to consider temporal

synchronization. Our method alleviates these limitations by subsequent steps that

consider multiple cameras in the scene.

Liu et al. [30] performs intrinsic and extrinsic calibration on videos containing

a single person. Because the videos contain a single person and are temporally

6



synchronized, they do not need to find multi-view correspondences between the

cameras since the person in one camera will always correspond to the person in

the other camera. First, they obtain 2D keypoints using OpenPose [7], then they

use multi-view correspondences of a single person to triangulate the 3D keypoints.

Finally, they reproject the 3D keypoints back to 2D image coordinates and they

optimize the reprojection error between the cameras. Similar to our last processing

step, the intrinsic and extrinsic parameters are further optimized using a RANSAC

loop [16], followed by bundle adjustment to optimize the camera poses. Takahashi

et al. [47] calibrate extrinsic and intrinsic parameters in a similar way except they

extend the method by using prior information about human poses such as bone

length constraint and smooth motion constraints. However, neither Liu et al. [30]

nor Takahashi et al. [47] solve the multi-person case, which requires obtaining

multi-view correspondences. In addition to the requirement of multi-view corre-

spondences, they also depend on temporal synchronization. By contrast, we also

solve the multi-person case.

Many methods try to solve the multi-person case using person re-identification.

Xu et al. [54] use matches bounding boxes between views. This method per-

forms relatively well on datasets where people wear distinct clothing, as such on

the Terrace and Basketball sequences [17], but performs comparatively worse on

their ConstructSite dataset where everyone is wearing the same uniform. Another

method of matching is to take reprojections between each camera and match the

closest pose in 3D to each other. This is used in several methods [24, 51, 58] and

has the advantage that they do not depend on visual features on the persons such as

clothing since those could have high variation even on the same person, although

combinatorically optimizing the matches can be expensive even with efficient al-

gorithms like the Hungarian algorithm [25].

2.2 Deep Learning Based Camera Calibration
These approaches solve the calibration problem by fully regressing the camera pa-

rameters or predicting intermediate estimates through training on a labeled dataset.

Lee et al. [26] use a 3D pose estimator and then use the predicted 3D poses as a

3D calibration object to optimize the camera poses such that 3D poses match and
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re-project to 2D pose estimates. This process alternates between optimizing the

camera pose and intrinsics and optimizing the human pose. Zhang et al. [55] per-

form camera calibration on pan tilt zoom (PTZ) cameras that rotate and zoom but

do not translate. Their application requires an online estimation. They take in as

input two images from two views and use a three-part pipeline: a feature extractor

based on a Siamese Network architecture [5], feature matching using correlation,

and a regression network, to automatically estimate the intrinsic and extrinsic pa-

rameters, as well as the distortion parameters. Although this method can solve a

more challenging problem, in the case where the cameras are not static, they re-

quire a large training set of over 100,000 image pairs. In addition, they do not

handle the case where cameras are unsynchronized. Grabner et al. [18] approach

the problem by extending the Faster/Mask R-CNN framework [21], by augmenting

it with a focal length predictor and refining it using the reprojection error. How-

ever, despite the fact that their method gets 10 percent better focal lengths than

the baseline, they use a very specific dataset of common objects as references such

as chairs, sofas, and cars without occlusion. In general, these objects may not be

present. Additionally, all deep learning methods introduce the need for a training

set and a training procedure, which may not generalize to real-world scenes.

2.3 Synchronization
The previously described methods rely on the fact that the cameras are tempo-

rally synchronized with each other, which is an assumption that is often violated

in practice. Besides methods such as hardware synchronization, which requires a

pre-recording step to do, human pose can be used for temporal synchronization.

In [58], Zhang et al. find the temporal offset by minimizing error in epipolar lines

from reprojecting 2D pose detections. However, this method is in turn limited by

the need for the cameras to be calibrated. In [13], Eichler et al. perform both cam-

era synchronization and camera calibration using distances between joints from 3D

pose detectors for synchronization, followed by a multi-view reconstruction for the

extrinsic parameters. However, this method requires using a 3D pose detector, as

well as assuming intrinsics are known. Zhang et al. [56] perform camera synchro-

nization using a neural network architecture by warping one view to another, which
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does not assume a constant frame rate but intrinsic and extrinsic calibrations. Mei

et al. [33] solves the problem using a two-stage weakly-supervised deep learning

pipeline. The first stage tracks and estimates the trajectories of objects on a multi-

view data set, and the second stage determines similarities between the two views

and estimates an offset between them. Although this method can obtain finer pre-

cision, it is trained on a fairly narrow range of datasets that may not generalize to

the real world and also requires synchronized data for training.

2.4 Summary
Although these methods have been shown to be effective, as shown in Table 2.1,

they all require some sort of ground truth such as temporal synchronization, intrin-

sic, and extrinsic which they use to solve for the unknowns. We seek to use only

2D keypoint information without assuming calibration, synchronization, a training

dataset, or person re-identification.
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Chapter 3

Method

Figure 3.1: System Overview. A fine-grained view of the five stages in Fig-
ure 1.1, including how detections of single persons in single views are
treated independently in Stage I and jointly subsequently. Variables are
in the plate notation, with n the number of cameras and m the number
of people in the scene.

To solve the camera calibration problem from multiple uncalibrated and un-

synchronized views, we propose to break down the problem into several lower-

dimensional problems. In a cascaded fashion, we start with a few variables that

are solved globally and subsequently add details while reducing the range of the

search space to stay practical.

We take in as input the 2D key point detections pimg ∈ R2 of the major human

joints, such as the head, neck, and ankles. Figure 3.1 shows how the variables are

passed and refined between modules.
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3.1 Single View Geometric Calibration
In the single view calibration case, our goal is to find the intrinsic camera parame-

ters K of the projection transformation

pimg = Kpcam, where K =

 f1a s o1

0 f2 o2

0 0 1

 , (3.1)

mapping from 3D camera coordinates pcam to 2D image coordinates pimg. For

simplicity, we assume that there is no skew or distortion so a = 1 and s = 0. We

estimate K, the ground plane position g, and orientation n relative to the camera

origin using a direct linear transform (DLT) [46]. To make the estimation feasible

with only pimg as input, we assume that persons are standing up-right in some of

the frames which makes them parallel to the ground plane normal vector and have

a constant metric height h. Furthermore, following the cascaded, coarse-to-fine

principle, we fix the principal point (o1,o2) to the image center and do not consider

any relations across cameras as synchronization is missing. In the next section, we

show the derivation of these DLT equations. Note that these strong assumptions

are lifted in later refinement stages.

Direct Linear Transform

Using homogeneous coordinates, the ankle and shoulder positions of three or more

people on a common ground plane are related by a linear system of equations that,

when solved for its null space, reveal the sought-after camera parameters in closed

form. The derivation of the direct linear transform equations is analogous to that

in [15], However, we show our own derivation of it below.

We follow the well-established direct linear transform (DLT) [46] method to

solve projective relations. We first write our constraints as a linear system of equa-

tions that are solved using Singular Value Decomposition (SVD) by finding the

singular vector that corresponds to the smallest singular value, up to the unknown

scale factor arising from the projection. To reach the form Mx = 0, we take the

11



cross product of Eq. 3.1 and

pcam
shoulder = pcam

ankle +hn (3.2)

and we take the cross product of Eq. 3.1 and pankle. Then we subtract the two cross

products to derive

pcam
shoulder ×K(pcam

ankle +n ·h)−pcam
ankle ×K(pcam

ankle) = 0 (3.3)

with h the person height, n the normal direction and pshoulder and pankle the shoul-

der and ankle positions. In the following we subscript variables with an x,y,z to

indicate the x,y,z-coordinates and with a number 1,2... to refer to different person

locations.

In matrix form, using ∆px = pimg,x
shoulder −pimg,x

ankle , ∆py = pimg,y
shoulder −pimg,y

ankle , and z to

represent the unknown depth of the ankle, Eq. 3.3 can be expressed as

(
0 −1 pimg,y

shoulder 0 −1 ∆py

1 0 −pimg,x
shoulder 1 0 −∆px

)


f1nx

f2ny

nz

nzox

nzoy

z/h


= 0, (3.4)

where f is the focal length and o the principal point of the camera intrinsics K. By

using at least three 2D shoulder pshoulder and ankle pankle detections, we form the

constraint matrix

D =



0 −1 pimg,y1
shoulder ∆py1 0 0

1 0 −pimg,x1
shoulder −∆px1 0 0

0 −1 pimg,y2
shoulder 0 ∆py2 0

1 0 −pimg,x2
shoulder 0 −∆px2 0

0 −1 pimg,y3
shoulder 0 0 ∆py3

1 0 −pimg,x3
shoulder 0 0 −∆px3


(3.5)
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that gives the system of equations

D



f1nx +nzox

f2ny +nzoy

nz

z1/h

z2/h

z3/h


= 0. (3.6)

We solve Eq. 3.6 using SVD by finding the singular vector that corresponds to

the smallest singular value. Having more than three ankles and shoulders results in

an over-determined system, for which we can find a least-squares solution.

Ground normal extraction. Since Eq. 3.6 is a 6× 6 system with rank five, any

solution we find is unique up to a scalar. In order to determine n from the SVD

or least-squares solution, we use the fact that the normal vector is perpendicular to

any vector formed by a pair of ankles. Using

n̄x

n̄y

n̄z

z̄1

z̄2

z̄3


= λ



nx +nzox/ f

ny +nzoy/ f

nz/ f

z1/(h f )

z2/(h f )

z3/(h f )


, (3.7)

If we do not have a given focal length, we can derive the equation for the focal

length. Using the assumption that f1 equals f2, we will simply write f to represent

both focal lengths. First, we take the cross product between the normal vector and

a vector in the ground plane consisting of two person’s ankles, which we write as

nx(pcam,x1
shoulder −pcam,x2

shoulder)+ny(pcam,y1
shoulder −pcam,y2

shoulder)+nz(pcam,z1
shoulder −pcam,z2

shoulder) = 0

(3.8)
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Then, by substituting Eq. 3.7 with Eq.3.8, we get

f =

√
(−(n̄x − n̄zox)p̄x − (n̄y − n̄zoy)p̄y)

(n̄z(z̄1 − z̄2))
(3.9)

with

p̄x = ((pimg,x1
ankle −ox)z̄1 − (pimg,x2

ankle −ox)z̄2) (3.10)

and

p̄y = ((pimg,y1
ankle −oy)z̄1 − (pimg,y2

ankle −oy)z̄2). (3.11)

If we assume that f1 is not equal to f2, we can a second pair of ankles, take the

cross product of it with the normal vector to get

nx(pcam,x1
shoulder −pcam,x3

shoulder)+ny(pcam,y1
shoulder −pcam,y3

shoulder)+nz(pcam,z1
shoulder −pcam,z3

shoulder) = 0.

(3.12)

Then we can perform the same substitution Eq. 3.7 with Eq.3.8 and Eq. 3.7 with

Eq.3.12 and solve the system of equations using least squares. Either the estimated

focal lengths or a given focal length enables us to recover λn and λ (z1, z2, z3). We

normalize λn and λ (z1, z2, z3) by dividing them by the L2 norm of λn. This results

in a unique n of length one and ankle depths z1, z2, and z3 since we assume that

n is a normal vector with length one, this means that the norm of λn is equal to

λ . Using the normal vector n and the known depths z1, z2, and z3, we recover the

orientation and position of the ground plane.

RANSAC

In practice, we apply RANSAC [16] to filter out outliers and we select the largest

inlier set. In order to determine which detections are inliers, we first reproject

the ankle coordinates pimg
ankle to 3D pcam

ankle. Second, we add hn to pcam
ankle to get the

predicted pcam
shoulder = pankle + hn. Finally, we reproject this point back to image

coordinates using Eq. 3.1. We use two metrics, shoulder pixel error,

Pixel Error =
∥pimg

shoulder −pimg
pred shoulder∥

∥pimg
pred shoulder −pimg

ankle∥
. (3.13)
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and the angle error,

Angle Error = arccos

(
(pimg

pred shoulder −pimg
ankle) · (p

img
shoulder −pimg

ankle)

∥pimg
pred shoulder −pimg

ankle∥∥pimg
shoulder −pimg

ankle∥

)
, (3.14)

to determine if it is an inlier. The pixel error is computed as the pixel Euclidean

distance between the shoulder detection and the predicted shoulder. We normalize

this by the 2D pixel height of the person. The angle error is computed by computing

the angle between the vector from the pimg
ankle to the pimg

shoulder and the vector from

pimg
ankle to the predicted pimg

shoulder. An ankle-shoulder pair is considered an inlier if is

less than both the angle and pixel threshold.

For our experiments, we use an angle threshold of 2.86 degrees and a pixel

threshold of 5 percent of the pixel height, which was determined on a validation

set. Once we have the largest inlier set, we run our DLT method on the entire inlier

set to get the final focal length and ground plane position and orientation. We show

an example of our single view calibration algorithm outcome in Figure 3.2.

Filtering Since we have an assumption that the persons are standing straight up,

we must filter out the non-standing poses in the scene. To determine this, for every

2D pose p, we measure the 2D angles between the vectors from shoulder to hip,

hip to knee, and knee to ankle. We use equation

Filter(pimg) = min(Lright,Lleft) (3.15)

where

Lright = |
p̂right1 · p̂right2

∥p̂right1∥∥p̂right2∥
−π|+ |

p̂right2 · p̂right3
∥p̂right2∥∥p̂right3∥

−π|, (3.16)

Lleft = | p̂left1 · p̂left2
∥p̂left1∥∥p̂left2∥

−π|+ | p̂left2 · p̂left3
∥p̂left2∥∥p̂left3∥

−π|, (3.17)

p̂right1 = pimg
right ankle −pimg

right knee, (3.18)

p̂right2 = pimg
right hip −pimg

right knee, (3.19)
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Figure 3.2: 2D Reconstruction. Visual results for the single view calibration
for Human3.6M Subject 1. The blue grid represents the ground plane
predicted by our method with a coordinate axis defined at the bottom of
the image. The green line from the ankle to the shoulders represents the
ankle to shoulder keypoints.

p̂right3 = pimg
right shoulder −pimg

right knee, (3.20)

p̂left1 = pimg
left ankle −pimg

left knee, (3.21)

p̂left2 = pimg
left hip −pimg

left knee, (3.22)

p̂left3 = pimg
left shoulder −pimg

left knee, (3.23)

to determine if a pose is standing straight up by measuring the angle of the knee

keypoint and the angle of the hip keypoint.
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Figure 3.3: Time Synchronization. Time synchronization results between
ref (red) and sync (blue) sequences for subject 1 walking sequence in
Human3.6M.

Relating multiple cameras through their ground planes The relation between in-

dividually calibrated cameras is unknown, but the estimated ground plane is shared.

We select one camera to be the reference camera, and use its plane coordinates as

the world coordinate system. To simplify subsequent steps, we compute for each

other camera the homography transformation from image coordinates pimg to the

estimated ground plane,

pplane = [Rcam→plane|τττplane]K−1pimg. (3.24)

Figure 3.4 shows the resulting birds-eye view of the ground plane with estimated

person positions. The plane normal vector n is shared between all cameras and

defines one column of Rcam→plane. For each camera, we derive the other 2 basis

vectors by the back-projection of the 2D horizontal line to 3D as the new x-axis,

and finally the cross product of the normal vector with the x-axis as the z-axis. The

position τττplane is the back projection of the image center to the ground plane. This

construction is intermittent. It remains to align the 2D position and orientation
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Figure 3.4: Ground Plane View Bird’s eye view of the ankles on the Terrace
sequence, with inliers in green and outliers in red.

within the ground plane to fully determine the camera extrinsics, as well as to

estimate the time shift.
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3.2 1D Temporal Search
To support cameras starting or ending at different times, we model the time re-

lationship pairwise between cameras as tref = tsync +∆tsync, a linear relationship

between reference camera sequence tref and tsync of the target camera. To find the

translation ∆tsync, first, we project the detected ankle points onto the ground plane

using Rcam→plane and shift them such that the mean of the reference set is the same

as the mean of sync set. In order to get a signal that is time-sensitive but does not

depend on the unknown camera extrinsics, we compute the distance d from the

center for each point. Since the search space is 1D, we can afford a brute-force

search, with candidate offsets ranging from 0 to one-third of the length of the sync

sequence. Note that if there is more than one person in the frame, then that time

step has more than one distance associated with it, which we handle with an op-

timal assignment step. We show an example of the temporal alignment in Figure

3.3.

Search criteria The alignment is scored by the absolute difference of dsync and

dref within the same time step. If there is more than one person in the frame, we

compute an optimal matching using the Hungarian algorithm [25]. While shift-

ing the curves temporally, we continue the endpoints of the curves by repeating

the endpoint values. This helps prevent the curve from shifting too much since

larger shifts lead to smaller overlap and hence larger uncertainty since we are not

matching large amounts of the curve.

Filtering Since noisy detections could cause outlier points to appear on the ground

plane, we remove outlier points on the ground plane using a density-based spatial

clustering of applications with noise (DBSCAN) [14] to find the largest cluster of

points on the ground plane, and then remove all the outlier points.

3.3 2D Rotation Search
Once we match the videos temporally, we complete the extrinsic calibration be-

tween the cameras. First, we shift the means of the ankle positions in 2D plane

coordinates from the sync camera sequence to align with the reference camera’s
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(a) Initial orientation (b) Best rotation

Figure 3.5: 2D rotation search. Visual results for 2D rotation search on Hu-
man3.6M subject 1 with 2 cameras. Axes are in meters.

sequence. Then we search rotation angles from 0 to 360 degrees and apply the ro-

tation to each sequence. For each camera i, we compute our error augmenting our

detections pplane
i with the time step, p̂plane

i = (x,y, t), and computing the distance

between the closest points in the point cloud. Note that no closed-form solution is

possible, since correspondences between the two point clouds are unknown.

We compute our error using Equation 3.25, where we augment our detections

pplane
i with the time step, which we notate as p̂plane

i = (x,y, t) we define c1 and c2 as

camera 1 and camera 2 or the ref camera and the sync camera. We also define F̂ ,

P̂c, j, and K̂c, j,p to represent the sets of indices of the frames, poses for view c and

frame i, and keypoints for view c, frame i, and pose p.

Lmin(c1,c2, i,k1) = min
k2∈P̂c2 ,i

∥p̂plane
c1,i,k1,ankle − p̂plane

c2,i,k2,ankle∥

Lt(c1,c2) = ∑
i∈F̂ ,k1∈P̂c1 ,i

Lmin(c1,c2, i,k1)

Lrot(c1,c2) = Lt(c1,c2)+Lt(c2,c1)

(3.25)

We show an example of the point cloud alignment process in Figure 3.5.
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3.4 Iterative Closest Point
The previous section yields a first estimate of all camera extrinsics by estimating

the 2D plane rotation and position of cameras relative to each other that remained

unknown in Step 1. We refine that estimate using the Iterative Closest Point (ICP)

[57]. We find the closest points by utilizing the previously estimated time synchro-

nization to match the frames from the reference view to the synchronization view

and also the same Hungarian matching process, when multiple persons are present.

We then optimize the rotation and translation by minimizing the Euclidean dis-

tance between the 2D point clouds in the plane. Iteratively, we re-associate the

points and repeat the process. Note that the initial 2D rotation search searches all

angles between 0 and 360, making adjustments from the ICP small.

3.5 Joint Camera Refinement (Bundle Adjustment)
Once we get the result from our ICP step, we pick the top k poses with the highest

confidence to use in the final bundle adjustment [50] step that refines all calibra-

tion parameters jointly, by using the association of keypoints from the previous

timesteps. As opposed to previous steps using ankle and shoulder, we can now

incorporate all body part detections. However, because the head and arm keypoints

have a larger range of motion and are often self-occluded, we exclude them during

the bundle adjustment. For camera pairs i and j, we can define the relationship

from 2D to 3D as a line using ℓ(k) = m jk+ τττ j, with k ∈ R and

m j = Rplane→world
j (Rcam→plane

j K−1
i Pimg

j − τττ
cam→plane
j ). (3.26)

We optimize every camera pair c1 and c2 with gradient descent using the ob-

jective function

Lc1,c2 = α0Lc1,c2
3D +α1Lc1,c2

left, right +α2(L
c1
h +Lc2

h )+α3(Lc1
p +Lc2)

p . (3.27)

The terms include the intersection error

Lc1,c2
3D =

∑ j∈F̂ ,p∈P̂j,k∈K̂ j,p
∥pworld

c1, j,p,k −pworld
c2, j,p,k∥2

|F̂ ||P̂||K̂|
(3.28)
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which is the Euclidean distance between the two projections, where F̂ , P̂, and K̂

represents the frames, poses, and keypoints with |F̂ |, |P̂|, and |K̂| representing the

cardinality; left and right joint symmetry error

Lc1,c2
left,right =

∑ j∈F̂ ,p∈P̂j,k∈K̂ j,p
|∥Jworld

c1, j,p,k∥2 −∥Jworld
c2, j,p,k∥2|

|F̂ ||P̂||K̂|
, (3.29)

which constrains bones on the left and right body side to be equal lengths; the

height error

Lc
h =

∑ j∈F̂ ,p∈P̂j,k∈K̂ j,p
∥Jworld

c1, j,p,k∥2

|F̂ ||P̂||K̂|
, (3.30)

which constrains the sum of the lengths of the joints from ankle to shoulder to be

the same; and the constraint that the ankle is on the plane Lp

Lcam
p =

∑ j∈F̂ ,p∈P̂j
∥pworld(z)c, j,p,ankle∥
|F̂ ||P̂||K̂|

. (3.31)

We weight these components using α0 = 1, α1 = 10, α2 = 10, and α3 = 0.1. We

use the EPFL terrace2 as a validation set for our hyperparameters.
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Figure 3.6: Bundle Adjustment. Visual 3D pose reconstruction for Hu-
man3.6M subject 1 with 2 cameras. The red and blue lines represent
the triangulation of the pose from the two views. The dotted lines rep-
resent the reprojection lines from the camera to the person.
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Chapter 4

Statistical Analysis

Throughout this chapter, we derive theoretical results for our DLT method, which

we introduced in Chapter 3, in order to have a better understanding of the effects

of detection noise and height variations. This chapter is divided into three sections:

rank of the DLT matrix, probabilistic interpretation, and the experiments.

4.1 Rank of the DLT matrix
First, we establish a few properties of the DLT matrix,

D =



0 −1 pshoulder
y1 ∆py1 0 0

1 0 −pshoulder
x1 −∆px1 0 0

0 −1 pshoulder
y2 0 ∆py2 0

1 0 −pshoulder
x2 0 −∆px2 0

0 −1 pshoulder
y3 0 0 ∆py3

1 0 −pshoulder
x3 0 0 −∆px3


. (4.1)

The rank of the D matrix is not entirely obvious. However, we can determine

24



the rank by computing the determinant of D, which is given by the equation 4.2,

detD =−pa
x1pa

x2pa
y3ps

y1 +pa
x1pa

x2pa
y3ps

y2 +pa
x1pa

x2ps
y1ps

y3 −pa
x1pa

x2ps
y2ps

y3+

pa
x1pa

x3pa
y2ps

y1 −pa
x1pa

x3pa
y2ps

y3 −pa
x1pa

x3ps
y1ps

y2 +pa
x1pa

x3ps
y2ps

y3−

pa
x1ps

x2pa
y2pa

y3 +pa
x1ps

x2pa
y2ps

y3 +pa
x1ps

x2pa
y3ps

y1 −pa
x1ps

x2ps
y1ps

y3+

pa
x1ps

x3pa
y2pa

y3 −pa
x1ps

x3pa
y2ps

y1 −pa
x1ps

x3pa
y3ps

y2 +pa
x1ps

x3ps
y1ps

y2−

pa
x2pa

x3pa
y1ps

y2 +pa
x2pa

x3pa
y1ps

y3 +pa
x2pa

x3ps
y1ps

y2 −pa
x2pa

x3ps
y1ps

y3+

pa
x2ps

x1pa
y1pa

y3 −pa
x2ps

x1pa
y1ps

y3 −pa
x2ps

x1pa
y3ps

y2 +pa
x2ps

x1ps
y2ps

y3−

pa
x2ps

x3pa
y1pa

y3 +pa
x2ps

x3pa
y1ps

y2 +pa
x2ps

x3pa
y3ps

y1 −pa
x2ps

x3ps
y1ps

y2−

pa
x3ps

x1pa
y1pa

y2 +pa
x3ps

x1pa
y1ps

y2 +pa
x3ps

x1pa
y2ps

y3 −pa
x3ps

x1ps
y2ps

y3+

pa
x3ps

x2pa
y1pa

y2 −pa
x3ps

x2pa
y1ps

y3 −pa
x3ps

x2pa
y2ps

y1 +pa
x3ps

x2ps
y1ps

y3−

ps
x1ps

x2pa
y1pa

y3 +ps
x1ps

x2pa
y1ps

y3 +ps
x1ps

x2pa
y2pa

y3 −ps
x1ps

x2pa
y2ps

y3+

ps
x1ps

x3pa
y1pa

y2 −ps
x1ps

x3pa
y1ps

y2 −ps
x1ps

x3pa
y2pa

y3 +ps
x1ps

x3pa
y3ps

y2−

ps
x2ps

x3pa
y1pa

y2 +ps
x2ps

x3pa
y1pa

y3 +ps
x2ps

x3pa
y2ps

y1 −ps
x2ps

x3pa
y3ps

y1.

(4.2)

What equation 4.2 tells us is that in general, we cannot be certain if matrix 4.1

is singular or not. This means that for detections p in general, the nullspace has

dimension 0, so this problem only has a trivial solution. However, detections p are

not arbitrary since if our assumptions hold, detections p follow Equation 4.3,

pankle
x = ( f x+ zox)/z,

pankle
y = ( f y+ zoy)/z,

pshoulder
x = ( f (x+n1h)+(z+n3h)ox)/(z+n3h),

pshoulder
y = ( f (y+n2h)+(z+n3h)oy)/(z+n3h).

(4.3)

We show in the next section that if detections p satisfy Equation 4.3, which cor-

responds to the projection from 3D camera coordinates to 2D image coordinates,

then the rank is 5.
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4.1.1 Showing that the DLT matrix has rank 5

If detections p satisfy 4.3, we can show by substitution in 4.2 that the determinant

is 0. This means that the rank of Matrix 4.1 is less than 6. In order to determine that

the rank is 5, we must find a submatrix of size 5 by 5 with a nonzero determinant.

We define the submatrix Dsub as Equation 4.4,

Dsub =


0 −1 (pshoulder

y1 −pankle
y1 ) 0 0

1 0 (pankle
x1

−pshoulder
x1

) 0 0

1 0 0 (pankle
x2

−pshoulder
x2

) 0

0 −1 0 0 (pshoulder
y3 −pankle

y3 )

1 0 0 0 (pankle
x3 −pshoulder

x3 )

 .

(4.4)

We compute the determinant of Dsub, which is given in Equation 4.5,

detDsub =−( f 3h3n2
1n3y1z2z3 − f 3h3n2

1n3y3z1z2 − f 3h3n1n2n3x1z2z3+

f 3h3n1n2n3x3z1z2 + f 3h3n1n2
3x1y3z2 − f 3h3n1n2

3x2y1z3+

f 3h3n1n2
3x2y3z1 − f 3h3n1n2

3x3y1z2 + f 3h3n2n2
3x1x2z3−

f 3h3n2n2
3x2x3z1 − f 3h3n3

3x1x2y3 + f 3h3n3
3x2x3y1)/

(h3n3
3z1z2z3 +h2n2

3z2
1z2z3 +h2n2

3z1z2
2z3+

h2n2
3z1z2z2

3 +hn3z2
1z2

2z3 +hn3z2
1z2z2

3+

hn3z1z2
2z2

3 + z2
1z2

2z2
3).

(4.5)

It is not immediately obvious if 4.5 is nonzero, however, by using the SymPy

symbolic algebra package [34], we can row reduce it to the identity matrix, which

shows that the matrix has a rank of 5. Since we found a rank 5 submatrix in matrix

4.1, and we know that it has a rank less than 6, the rank of the matrix in Eq. 4.1

is 5. Since the rank is 5, this means that the nullspace is 1 dimensional, and the

solution vector in unique up to a scalar.
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4.2 Closed form solution
Assuming our assumptions hold, we can derive closed forms that are dependent on

the variable Z3 and by a scaling factor λ .

The full equations are given in the Appendix as equations A.1 and A.4. For the

sake of brevity, we rewrite this as

f n1 = λ z3
c̄1

h3
,

f n2 = λ z3
c2

h3
,

n3 = λ z3
c̄3

h3
,

z1 = λ z3c̄4
h1

h3
,

z2 = λ z3c̄5
h2

h3
.

(4.6)

We denote the coefficients by

c1 =
c̄1

h3
,

c2 =
c̄2

h3
,

c3 =
c̄3

h3
,

c4 = c̄4
h1

h3
,

c5 = c̄5
h2

h3
.

(4.7)
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From these coefficients, we can derive a formula for the focal length, given by

f 2 =
−c1(c4(pankle

x1
−ox)− c5(pankle

x2
−ox))− c2(c4(pankle

y1 −oy)− c5(pankle
y2

−oy))

c3(c4 − c5)
.

(4.8)

4.3 Probabilistic Interpretation
In practice, the assumption that all persons are of the same constant height is easily

violated. We seek to model the effects of height variation on the focal length prob-

abilistically. For the set Ω, with sigma algebra H , we define a probability space

(Ω,H ,P). We define random variables to represent the uncertainties. θk : Ω →R2

represents the 2D detections. θh : Ω → R represents the difference in the actual

height and the predicted height. θ f : Ω → R+ represents the focal length.

4.3.1 Probabilistic Focal Length

We assume that θh is distributed normally with mean µ and variance σ2. Since we

need 3 people to solve the DLT matrix, we need 3 i.i.d normal random variables,

θh1 , θh2 , θh3 . However, upon rewriting equation 4.8,

f 2 =
−c̄1(c̄4h1(pankle

x1
−ox)−c̄5h2(pankle

x2
−ox))−c̄2h1(c̄4(pankle

y1 −oy)−c̄5h2(pankle
y2

−oy))

c̄3(c̄4h1−c̄5h2)
,

(4.9)

we notice that θh3 cancels out so we only need two random variables: θh1 , θh2 . Each

θh variable has an induced probability space, namely (R,B(R),U(E)), where U

is defined by the integral of the pdf of the normal distribution

U(E,µ,σ) =
∫

E

1√
2πσ2

e−
(x−µ)2

2σ2 dx. (4.10)

Thus, we can consider equation 4.9 as a function f 2(θh1 ,θh2) :R2 →R that induces

an image probability space: (R,B(R),Ū(E)).

The goal of the next part is to show what the image measure Ū(E) is.
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4.3.2 Deriving the Image Measure

Replacing h1 with θh1 with h2 with θh2 , we get,

f 2 =
(−c̄1c̄4(pankle

x1
−ox)−c̄2c̄4(pankle

y1 −oy))θh1+(c̄1c̄5(pankle
x2

−ox)+c̄2c̄5(pankle
y2

−oy))θh2
c̄3c̄4θh1−c̄3c̄5θh2

.

(4.11)

Suppose that θh1 and θh2 are normal distributions with mean µ and σ2. We can

rewrite Equation 4.11 using multiplication properties of Gaussians to derive

f 2 =
ˆθh1 +

ˆθh2

¯θh1 +
¯θh2

. (4.12)

From equation 4.12, we know that ˆθh1 is a normal distribution with mean

(−c̄1c̄4(pankle
x1

− ox) − c̄2c̄4(pankle
y1 − oy))µ and variance (−c̄1c̄4(pankle

x1
− ox) −

c̄2c̄4(pankle
y1 − oy))

2σ2 and ˆθh2 is a normal distribution with mean (c̄1c̄5(pankle
x2

−
ox)+ c̄2c̄5(pankle

y2
−oy))µ and variance (c̄1c̄5(pankle

x2
−ox)+ c̄2c̄5(pankle

y2
−oy))

2σ2.

We also know that ¯θh1 is a normal distribution with mean c̄3c̄4µ and variance

c̄3c̄4
2σ2. ¯θh2 is a normal distribution with mean c̄3c̄5µ and variance c̄3c̄5

2σ2.

Using the additional properties of independent Gaussians, we can rewrite equa-

tion 4.12 as

f 2 =
n1

n2
. (4.13)

where n1 is a normal distribution with mean µN1 = (−c̄1c̄4(pankle
x1

− ox)−
c̄2c̄4(pankle

y1 − oy))µ + (c̄1c̄5(pankle
x2

− ox) + c̄2c̄5(pankle
y2

− oy))µ and with vari-

ance σ2
N1

= (−c̄1c̄4(pankle
x1

− ox) − c̄2c̄4(pankle
y1 − oy))

2σ2 + (c̄1c̄5(pankle
x2

− ox) +

c̄2c̄5(pankle
y2

− oy))
2σ2, and n2 is a normal distribution with mean µN2 = c̄3c̄4µ +

c̄3c̄5µ and variance σ2
N2

= c̄3c̄4
2σ2 + c̄3c̄5

2σ2

4.3.3 Ratio of Two Normal Distributions

We can consider equation 4.13 to be a ratio of two dependent normal distributions.

We can compute the covariance of this using Cov(aX +bY,cX +dY ) = acVar(X)+

bdVar(Y )+(bc+ad)Cov(X ,Y ). We use this formula on equation 4.11 to compute

Cov(n1,n2). First, we compute the mean of the squared Gaussians. To do so,

29



we use the fact that a squared normal distribution with mean µ and variance σ2

are equivalent to a noncentral chi-squared distribution with 1 degree of freedom, a

non-centrality of ( µ

σ
)2, and a mean of 1+( µ

σ
)2.

Thus, the covariance is given by

Cov(n1,n2) = ab(1+(
µ

σ
)2 −µ

2)+ cd(1+(
µ

σ
)2 −µ

2), (4.14)

where

a = (−c̄1c̄4(pankle
x1

−ox)− c̄2c̄4(pankle
y1 −oy)),

b = c̄3c̄4,

c = (c̄1c̄5(pankle
x2

−ox)+ c̄2c̄5(pankle
y2

−oy)),

d = c̄3c̄5.

(4.15)

The correlation coefficient is simply ρ = Cov(n1,n2)√
Var(n1)Var(n2)

.

4.3.4 Closed-Form Probability Density Function

The pdf of the ratio of two dependent normals is derived by Pham-Gia et al. [39].

Thus, we can express the closed-form PDF using

ū(E) = K2
2(1−ρ2)σ2

x σ2
y

σ2
y w2 −2ρσxσyw+σ2

x
1F1(1;

1
2

;θ2(w)), (4.16)

where

θ2(w) =
[−σ2

y µxw+ρσxσy(µyw+µx)−µyσ2
x ]

2

2σ2
x σ2

y (1−ρ2)(σ2
y w2 −2ρσxσyw+σ2

x )
, (4.17)

and

K2 =
e
− σ2

y µ2
x −2ρσxσyµxµy+µ2

y σ2
x

2(1−ρ2)σ2x σ2y

2πσxσy
√

1−ρ2
. (4.18)

Since we have a term in the denominator of the form σ2
y w2 − 2ρσxσyw+σ2

x

where w ∈ R, we will check to see if there are any discontinuities in the function.
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We can find the roots given by

pσxσy −
√
−σ2

x σ2
y +ρ2σ2

x σ2
y

σ2
y

,

pσxσy +
√
−σ2

x σ2
y +ρ2σ2

x σ2
y

σ2
y

.

(4.19)

Since −1 ≤ ρ2 ≤ 1,

This means that −σ2
x σ2

y +ρ2σ2
x σ2

y < 0. Thus, the only roots of this polynomial

are complex, which shows that the denominator is non-zero for all real numbers,

so equation 4.16 is defined on all of R.

4.4 Experiments
The code for the experiments is linked in this GitHub repository. For the ex-

periments, we pick a general set of parameters to generate our scene and we re-

port them for reproducibility. We generate a scene in Python in order to sim-

ulate a camera calibration scenario. We generate a scene with normal vector

(0.298,0.638,−0.710), and plane position (−1.729,−6.409,1.661). We generate

a camera with a focal length of 2345.164 pixels. To generate the head positions,

we multiply the normal vector by a fixed height of 1.6 meters and add it to each

ankle.

We generate three ankles with coordinates (4.71,−8.88,2.15),

(5.67,−7.29,3.98), and (6.01,−8.23,3.27).
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Figure 4.1: Generated scene with the blue plane representing the ground
plane, the coordinate system representing the camera, and the 3 lines
representing people from ankle to head.

For the experiments, we make the heights in the equation stochastic by sam-

pling from a normal distribution with mean 1.6 and std 0.1. We plot our derived

distributions for f in 2 ways. In the first method, we draw 10,000 pairs of sam-

ples from the height normal distribution and plot the values of equation 4.8. In

the second method, we plot a grid of integers from 1 to 2.5× 107 and pass them

through the PDF we derived as equation 4.16. We compute the mean and stan-

dard deviation using numerical integration of our closed-form equation 4.16 with

the quadrature method and compare them with the mean and standard deviation of

our samples. We plot our results in Figure 4.2, which shows that the derived PDF

roughly matches the histogram of random samples.
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Method Mean Std
Closed-Form 2347.465 361.474
Samples 2365.188 484.407

Table 4.1: The mean and std of the samples compared to the mean and std
derived from the closed-form PDF.

Figure 4.2: The Red curve is the PDF being graphed using the closed-form
PDF, and the blue graph is graphed using samples.

In Table 4.1, we can see that the closed-form method and the sample method

produce relatively similar results for the mean of the focal length. However, the

result obtained through the sampling method has a 34 percent higher standard de-

viation than the closed-form method. This is most likely caused by the error from

numerical integration since the variance is (E(X2)−E(X)2), and as a consequence

could be less numerically stable since any error in the expectation gets squared.
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Chapter 5

Simulations

Following our statistical analysis, we ran trials on simulated data with various lev-

els of noise added. We conduct simulation experiments as in [15], using the same

or similar specifications that were given in their simulation study. In our simulated

experiments, we seek to test the effects of measurement noise, height variations,

and number of people on our single view calibration algorithm, without the ef-

fects of detection noise present from pose detectors. This also allows us to get

ground truth heights of the people, which we would not have access to in any of

the datasets. We generate a scene with a random ground plane and random shoul-

der and ankle center detections. We specify image dimensions 1920.0 by 1080.0

with focal length fX = 960 and fy = 540, which corresponds to a 90 degree FOV.

We run each experiment for 5000 trials. We show an example of our generated data

in Figure 5.1. We use the same metrics that were used in Fei et al. [15].

Metrics.
• Focal error: the percent focal error is simply computed by 100 ·

| fgt− fpred |
fgt

.

This is represented in the tables as fx% and fy%

• Normal error: The degree normal error is the angle difference between the

ground truth and predicted normal vectors, represented in the table as N().

• Position error: The position error is computed by taking the taking the pre-

dicted Euclidean distance from the camera to the ground plane ρpred, and

computing |ρpred−ρgt|
ρgt

. This is represented by ρ%.

• Reconstuction error: The reconstruction error is the percent error between
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Figure 5.1: Simulation. This shows an example of a scene generated by
our simulation where the green dots in the distance represent ankle and
shoulder center detections, and the blue lines represent the ground plane.

Euclidean distance between the predicted 3D points and the ground truth 3D

points divided by the ground truth distance to the camera. This is represented

in the table by X%

• Failure rate: Since this could lead to an unsolvable linear system, we record

the failure rate which is the percentage of noisy systems that are unsolvable.

This is represented as fail%

5.1 Measurement Noise Trials
For these experiments, we fix the height to be 1.7 meters and use 3 pairs of shoulder

and ankle center positions. We add a zero mean Gaussian with varying standard

deviations to these generated positions. We solve our DLT equations with a height

of 1.7 meters. We record our results in Table 5.1. For these trials, adding zero error
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results in an error for all the metrics that were virtually zero, which shows that our

method is implemented correctly and works for perfect data. As the noise standard

deviation grows, the error for all metrics increases as expected.

5.2 Height Variation Trials
For these experiments, we fix the detection noise to be sampled from a zero mean

Gaussian with a standard deviation of 0.5 and we sample heights from a Gaussian

centered at 1.7 meters with varying standard deviations. In our algorithm, we solve

the DLT equations with a height equal to 1.7m. We report our results in Table

5.3. As expected, as the standard deviations of the heights increase, the worse the

results become since our algorithm uses a fixed height of 1.7 meters.

5.3 Number of People Trials
For these experiments, we fix the detection noise as in the height variation trails,

but we sample the height from a Gaussian centered at 1.7 meters with a standard

deviation of 0.1 meters. Within our DLT equations, we fix the height to be 1.7

meters like the Gaussian mean. We vary the number of pairs of shoulder and ankle

center detection and record our results in Table 5.2. As the number of people

increases, the system becomes more and more over determined which reduces the

resulting error. However, we note that the x focal length improves more than the y

focal length. This is because people are standing up and are oriented more along

the y-axis than the x-axis. Therefore, adding more people adds more information

along the y-axis than it does along the x-axis.

36



Measurement noise std. in pixels
Error 0.1 0.2 0.5 1.0 2.0 5.0
fx% 1.86 3.65 6.16 9.88 16.73 27.45
fy% 0.98 2.15 3.85 5.56 9.67 17.27
N (°) 0.12 0.33 0.52 1.09 1.94 4.10
ρ% 0.25 1.45 1.68 10.65 5.50 14.85
X% 1.00 1.68 3.23 5.78 8.65 16.97
fail% 0.66 1.00 2.4 4.78 8.56 15.94

Table 5.1: Measurement noise. We show the error from our calibration for
varying measurement noise standard deviations.

Number of people
Error 5 10 20 50 100
fx% 27.33 27.68 26.29 18.21 21.98
fy% 32.40 25.64 25.25 14.94 14.17
N (°) 3.74 3.33 2.62 1.76 1.13
ρ% 21.46 21.66 18.92 21.64 24.09
X% 20.96 21.24 20.65 30.07 42.82
fail% 15.98 12.2 8.8 5.72 3.78

Table 5.2: Number of people. We show the error from our calibration for
varying numbers of people

Std. of height in meters
Error 0.05 0.1 0.15 0.2 0.25
fx% 7.00 8.75 10.36 10.71 13.22
fy% 3.64 4.258 5.27 6.04 6.48
N (°) 0.58 0.63 0.82 0.87 1.05
ρ% 6.98 10.388 13.29 16.99 21.43
X% 6.69 10.85 14.60 18.048 21.54
fail% 2.62 3.5 4.18 4.7 5.98

Table 5.3: Height. We show the error from our calibration for varying ran-
dom heights that are drawn from a Gaussian distribution with varying
standard deviations.
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Chapter 6

Experiments

For our experiments, we test different components of the pipeline on a variety

of datasets including Human3.6m [22], EPFL Terrace and Laboratory [17], and

vPTZ [40]. To aid comparisons with future work, we will make the code publicly

available. As in Fei et al. [15], we adopt HRNet [45], as implemented by mmpose

[9], to obtain 2D keypoint detections and tracking.

Metrics. We use three different metrics to evaluate different components of the

camera calibration. The simplest metric is the percent focal error which is com-

puted by taking the absolute difference between the predicted and ground-truth

focal and dividing it by the ground truth focal length. Since the coordinate system

for the ground truth extrinsic may be different than ours, in order to evaluate the

camera pose, we compute the relative rotation and translation from the reference

camera to all the other cameras for both the predicted and the ground truth camera

systems. Then, we compute the angle in degree of both relative rotations and take

the absolute difference to compare them. We do the same for relative translations

except first we normalize both camera poses, then we scale them to the same scale

as the ground truth camera pose, and finally we take the norm of the difference

between the two translations. We find this scale by translating the camera pose to

the mean of the camera pose points, and then taking the average distance of the

points to the center. For temporal offset, we use one metric; we simply take the

absolute difference between the ground truth offset and the predicted offset.
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Datasets. We evaluate on the following datasets, each modeling a different set-

ting in terms of the number of people and cameras, and the scale.

• Human3.6M [22] contains 4 cameras temporally synchronized and cali-

brated cameras that are recorded on a variety of subjects and actions. For

our experiments, we use subjects 1,5,6,7,8,9,11 and use the walking action.

Each video only contains one subject at a time.

• Terrace, Laboratory, and Campus [17] from EPFL multi-camera pedes-

trian videos contains 4 temporally synchronized and calibrated cameras film-

ing an outdoor scene with up to 7 subjects (Terrace), an outdoor scene with

3 cameras with 7 subjects (Campus), and a indoor scene with up to 4 sub-

jects (Laboratory). Although the cameras are calibrated, the dataset has two

versions of the calibrations. We show how we process these files in the next

section.

• vPTZ [40] contains 3 outdoor scenes with numerous pedestrians with 4 cam-

eras. Each video is filmed from a fairly high view and is representative of

outdoor security camera footage.

6.1 Data Preprocessing
Although the Terrace, Campus, and Laboratory cameras are calibrated, the datasets

have two versions of the calibrations. In one of them, instead of the usual intrinsic

and extrinsic matrices, the calibration files contain 2 homographies representing

the transformation to the head plane and ankle plane. The other one contains in-

trinsic extrinsic calibrations using the Tsai calibration method [52], however, the

calibrations are based on a different-sized image than the ones in the dataset. To

rectify this, we use the homographies to create a virtual checkboard on the ground

plane as well as the image dimension in the data and use OpenCV to compute the

camera matrix. We show examples of the virtual checkerboards in Figure 6.1.

6.2 COLMAP
Before we run our method, we check if publicly available SfM methods can handle

the datasets that we use. We use COLMAP [43] on single frames from each camera

from each dataset since the method expects a static scene with moving cameras. We
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(a) Laboratory. 4p-c0 (b) Laboratory. 4p-c1

(c) Laboratory. 4p-c2 (d) Laboratory. 4p-c3

Figure 6.1: Data Preproccessing. Virtual checkerboards based on the pro-
vided ground plane homographies for the EPFL Laboratory sequences.

found that COLMAP is unable to provide reconstructions from only three or four

images of a scene. In addition, the backgrounds contain many repeating patterns

or are featureless which results in COLMAP matching being unable to produce

matches. Thus, we proceed with the experiments for our method using human

keypoints instead of the image backgrounds in the next section.

6.3 Single View Experiments
To test the single view calibration stage, we test our method on vPTZ and the EPFL

Terrace sequences. We compare against [15] single view calibration method, and

their results. In addition, we also compare against the other methods that Fei et
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al. implemented for testing, including [28], [29], [6], and [48]. We report our

numerical results in Table 6.1 and visual results of the ground plane and shoulder

reprojections in Figure 6.2. We find that our method is comparable to the related

methods in the table, getting an average error of 11 percent of the ground truth

focal length. Although our method does not outperform the other methods, we

deemed it to be a good enough reproduction to proceed with the main focus of

this paper, as we did not have the code with additional implementation details and

hyperparameter choices.

In addition to these experiments, we also evaluate our single view calibration

on synthetic data, which is described in detail in the supplementary section.

Method set1-cam-131 set1-cam-123 set2-cam-132 terrace1-cam0
[28] 1.00 29.00 N/A N/A
[29] 2.00 19.00 N/A N/A
[6] N/A 15.00 24.92 5.33
[48] N/A 10.14 12.07 1.43
[15] 4.70 0.35 10.74 2.51
Ours 11.31 0.66 18.36 13.18

Table 6.1: Single View Calibration Results. Percent focal error on se-
quences 1 to 4, corresponding to vPTZ set1-cam-131, vPTZ set1-cam-
123, vPTZ set2-cam-132, and Terrace terrace1-cam0.

6.4 Temporal Synchronization Experiments
For comparing against existing synchronization methods, we test our method on

Human3.6m. We randomly cut a section of each video that is half the length of

the sequence for the Walking sequence for each subject. This is similar to the

experiments that Zhang et al. [58] do except they only test their method when

the true offset is zero, which is too simplistic because it doesn’t test whether the

method isn’t biased towards zero. For our experiments, we shift the sequence with

offsets 0, 50, 100, 150, and 200. We run the experiments using ground truth focal

length and the focal length predicted by our method. We show that our method

has a mean and median prediction that is close to the true offset, up to an error of

10 frames with a standard deviation of around 10 frames when we use the ground
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(a) vPTZ. set1-cam-131 (b) vPTZ. set1-cam-132

(c) vPTZ. set2-cam-132 (d) Terrace. terrace1-cam0

Figure 6.2: Single view calibration results. Visual results of our single view
calibration algorithm from table 6.1 with the predicted ground plane
represented as a blue grid where every square is one meter. The green
and red lines represent reprojected ankle and head detections from the
entire sequence. Red represents outlier detections and green represents
inlier detections.
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Pred offset (gt f) Pred offset (pred f) [58]*
offset gt mean median std mean median std mean

0 4.0 1.0 10.0 2.90 2.5 14.05 0.0
50 53.93 51 10.05 52.81 52.5 14.12 N/A
100 103.88 101 10.17 102.67 102 14.22 N/A
150 154.5 154 10.15 153.48 153 15.04 N/A
200 204.76 205 10.082 189.26 201 51.70 N/A

Table 6.2: Temporal Synchronization Experiments. This table shows the
predicted offset given pairs of videos of Human3.6M with varying offsets
as well as their standard deviations. (gt f) means that we run our synchro-
nization using ground truth focal length, and (pred f) means we run our
synchronization using predicted focal length. ∗using GT calibration and
not tested on large offsets.

truth focal length. When we use our predicted focal length, we get an error of up to

about 11 frames and a standard deviation of 15 frames for most of the experiments.

We report our results in Table 6.2 and we also report a more detailed Table A.1

with the results for each individual subject in the appendix. We discuss one failure

case happening for large shifts in the limitations section.

For the multi-person case, we perform a similar experiment as with the single-

person case, except we shift the sequence with offsets 0, 25, and 50 on the EPFL

Terrace and Laboratory sequences using our predicted focal lengths. We report our

results in Tables 6.5 and 6.6. For these sequences obtain an error within 5 frames

of the ground truth offset.

6.5 Synchronized Bundle Adjustment Experiments
To compare against existing methods requiring synchronized cameras, we test

on the EPFL Terrace sequence without introducing temporal shift. We compare

against Xu et al. [54] as well as the other methods that Xu et al. tested including

SIFT [32], BFM [23], SuperPoint [11], SuperGlue [42], and WxBS [36]. The or-

acle method in Table 6.3 simply means that they used manual pose annotations.

Some methods, such as Sift [32] + BFM [23], use the first method to extract the

keypoints, and the second method to match the keypoints. The Sift [32] + BFM
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Method mm degree
SIFT [32] + BFM [23] 4599 55.03
SuperPoint [11] + [23] 358 54.68
WxBS [36] 1302 54.14
[11] + SuperGlue [42] 9934 36.96
Oracle(Manual-pts) 390 1.18
[54] (Manual-bbox) 308 0.52
[54] (ReID-bbox) 308 0.52
Ours 138 1.82

Table 6.3: Synchronized Bundle Adjustment Experiments. Camera pose
error for the Terrace sequence.

[23], Superpoint [11] + BFM [23], and Oracle methods use Xu et al. Geosolver

after finding the correspondences. We find that our method gives reasonable re-

constructions compared to the other methods, only being outperformed by Xu et

al. and the oracle. However, only by a small margin and they both utilize ground

truth intrinsics while we use our estimated intrinsics.

6.6 Multiview Offset Experiments
For multiview offset experiments, we test our method using a similar setting as

in the Temporal experiments, except we also apply our multiview calibration al-

gorithm afterward in order to analyze the effects of synchronization accuracy on

the complete calibration pipeline. As a baseline, we also run our multiview cali-

bration method on the unsynchronized sequences. For these experiments, we do

not run our bundle adjustment algorithm since two views provide insufficient con-

straints under noisy keypoint estimates. For the single-person case, we test it on

Human3.6M with 4 cameras for subjects 1,5,6,7,8,9, and 11. We report our results

in Table 6.4. We show that although our synchronization method is not perfect,

it performs much better than running the multiview calibration algorithm without

temporal synchronization.

For the multi-person case, we utilize the EPFL sequences Terrace, Campus,
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offset (gt) 0 100 150 200
offset (pred) 5.36 105.21 156.21 191.96

No Sync
° 5.78 36.24 42.71 73.04
m 0.057 0.26 0.46 0.82
%f 15.06 15.06 15.06 15.06

Sync
° 10.67 10.58 10.99 16.89
m 0.066 0.065 0.068 0.21
%f 15.06 15.06 15.06 15.06

Table 6.4: Multiview Offset Experiments for Human3.6M. Camera pose
error for unsychronized sequences. No sync means that the algorithm is
run without running our synchronization step. Sync means we run our
synchronization step. Offset pred means the predicted offset from our
synchronization method.

offset (gt) 0 25 50
offset (pred) 4 29 55

No Sync
° 2.73 6.32 13.07
m 0.073 0.097 0.15
%f 9.45 9.45 9.45

Sync
° 2.14 2.15 2.18
m 0.070 0.069 0.069
%f 9.45 9.45 9.45

Table 6.5: Multiview Offset Experiments for Terrace. Showing that the
synchronization significantly improves camera position and angle. Focal
length can be estimated from a single view and is not further refined in
this experiment.

and Laboratory which contain up to 4, 4, and 7 people respectively, and 4, 3, and 4

cameras respectively. We proceed with our experiments in a similar manner to the

experiments using pairwise cameras, however, we use timesteps 0, 25, and 50. We

report our results in Table 6.5, Table 6.6, and Table 6.7. Like in the single-person

case, we show that our synchronization method results in better performance than

running the multiview calibration algorithm without temporal synchronization.
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offset (gt) 0 25 50
offset (pred) 1.67 29 55.33

No Sync
° 0.81 10.02 44.10
m 1.15 1.16 1.15
%f 15.63 15.63 15.63

Sync
° 0.51 0.61 0.81
m 1.15 1.15 1.15
%f 15.63 15.63 15.63

Table 6.6: Multiview Offset Experiments for the Laboratory sequence.
Improvements on this indoor sequence are consistent with the outdoor
terrace sequence in Tab. 6.5.

offset (gt) 0 25 50
offset (pred) 8.89 26.89 41.33

No Sync
° 10.34 12.69 13.39
m 0.095 0.12 0.13
%f 14.55 14.55 14.55

Sync
° 9.17 9.50 10.31
m 0.088 0.090 0.096
%f 14.55 14.55 14.55

Table 6.7: Multiview Offset Experiments for the Campus sequence. Im-
provements on this indoor sequence are consistent with the outdoor ter-
race sequence in Tab. 6.5 and indoor sequence in Tab. 6.6
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Chapter 7

Limitations and Discussion

Although we show that our method works well on most scenes, in certain extreme

configurations, some of the steps fail and subsequent steps cannot recover due to

the assumption that the initialization from the previous step is within error bounds.

In future work, we plan to detect such errors and deploy learning-based solutions

to overcome them.

7.1 Bundle Adjustment
For these experiments, we perform similar experiments as in section 6.6, however,

we perform bundle adjustment after our initialization, and in addition to using pairs

of cameras, we also use 3 or more cameras. For the case with 3 or more cameras,

we fix one camera to be the reference camera, and then for the remaining sync

cameras, we offset one of them, and keep the others synchronized. We report our

results in Tables 7.1, 7.3, 7.2, and 7.4. Like in the pairwise case, our algorithm

improves when we utilize time synchronization. With the exception of the Terrace

sequence with 0 offset with 3 cameras, all the results are worse than before we run

bundle adjustment, especially with the camera angle error.

For sparse views, such as our pairwise camera experiments, our bundle adjust-

ment does not have enough constraints under noisy keypoint estimates. Triggs et

al. [50] recommends taking a large range of views that are 30 to 40 degrees apart

for bundle adjustment with self-calibration. However, this recommendation is used
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for flat compact objects, whereas humans are more complex objects. Thus, more

care is needed for optimizing the pose such as utilizing bone length constraints

and symmetry constraints. In addition to these limitations, we also have errors that

accumulate from the 2D pose detection, as well as in our single view calibration

step, since our focal length error can be as high as 18 percent. We show simu-

lation results to investigate the results of detection error in the calibration step in

the supplemental. Another major limitation is the fact that we assume a constant

height among the persons in the scene. This could cause problems with the bundle

adjustment since we enforce a constant height constraint in the objective function.

7.2 Failure Case: Periodic Motion
In Human36m walking sequences, the people are walking in a circle. This causes

the distance curves for 2 views to have a periodic shape which means that for every

n frame, the curve repeats itself. This can be problematic for the time synchroniza-

tion since this would mean multiple offsets can give a similar result.

Our algorithm’s time synchronization module fails on Subject 11 when we

set the offset to 200 because in Figure 7.1, we note that the distance curves have

a period of about 200 frames, which results in our error curve having two very

similar local minimums at around 0 and 200. However, such a large misalignment

paired with harmonic repetition is unusual in practice. In future work, the local

motion, such as the articulation of arms could be used to further disambiguate

frames. However, this is non-trivial as occlusions and different viewing angles

have to be considered.
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offset (gt) 0 100 150 200
offset (pred) 5.36 105.21 156.21 191.96

2 cameras
(°)
(m)
(%f)

Pre Bundle
(No Sync)

5.78
0.057
15.06

36.24
0.26
15.06

42.71
0.46
15.06

73.04
0.82
15.06

Bundle
(No Sync)

9.00
0.15
14.92

39.38
0.42
14.90

43.25
0.50
15.08

64.72
0.80
15.17

Pre Bundle
(Sync)

10.67
0.066
15.06

10.58
0.065
15.06

10.99
0.068
15.06

16.89
0.21
15.06

Bundle
(Sync)

13.09
0.17
14.93

12.95
0.18
14.93

14.77
0.16
14.90

19.45
0.18
14.97

4 cameras
(°)
(m)
(%f)

Pre Bundle
(No Sync)

3.02
0.90
15.41

15.25
3.13
15.41

17.28
4.05
15.41

27.37
5.11
15.41

Bundle
(No Sync)

19.97
1.75
15.40

19.17
3.38
15.43

27.30
4.13
15.45

34.56
5.38
15.44

Pre Bundle
(Sync)

4.70
0.97
15.47

4.68
0.97
15.42

4.84
0.99
15.37

6.92
1.31
15.36

Bundle
(Sync)

14.66
1.56
15.47

15.47
1.62
15.42

17.81
1.61
15.37

20.37
1.98
15.36

Table 7.1: Multiview Offset Bundle Adjustment Experiments for Hu-
man3.6M. Camera pose error for unsychronized sequences. No sync
means that the algorithm is run without running our synchronization step.
Sync means we run our synchronization step. Offset pred means the pre-
dicted offset from our synchronization method. We report the
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offset (gt) 0 25 50
offset (pred) 4 29 55

2 cameras
(°)
(m)
(%f)

Pre Bundle
(No Sync)

2.73
0.073
9.45

6.32
0.097
9.45

13.07
0.15
9.45

Bundle
(No Sync)

5.90
0.12
10.27

7.53
0.14
11.52

9.08
0.11
11.08

Pre Bundle
(Sync)

2.14
0.070
9.45

2.15
0.069
9.45

2.18
0.069
9.45

Bundle
(Sync)

2.49
0.12
11.02

8.53
0.097
11.12

5.89
0.13
10.85

4 cameras
(°)
(m)
(%f)

Pre Bundle
(No Sync)

2.87
1.11
9.13

4.67
1.25
9.13

8.11
1.55
9.13

Bundle
(No Sync)

1.82
1.38
9.97

4.84
1.13
9.44

16.90
2.94
10.26

Pre Bundle
(Sync)

2.57
1.097
9.13

2.58
1.09
9.13

2.67
1.096
9.13

Bundle
(Sync)

3.37
1.62
9.77

3.61
1.52
9.98

2.91
1.55
11.10

Table 7.2: Multiview Offset Bundle Adjustment Experiments for Terrace
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offset (gt) 0 25 50
offset (pred) 1.67 29 55.33

2 cameras
(°)
(m)
(%f)

Pre Bundle
(No Sync)

0.81
1.15
15.63

10.02
1.16
15.63

44.10,
1.15
15.63

Bundle
(No Sync)

10.96
1.14
16.92

5.58
1.17
16.50

32.41
1.20
16.97

Pre Bundle
(Sync)

0.51
1.15
15.63

0.61
1.15
15.63

0.81
1.15
15.63

Bundle
(Sync)

9.88
1.14
16.88

18.65
1.12
18.27

16.99
1.09
17.30

3 cameras
(°)
(m)
(%f)

Pre Bundle
(No Sync)

0.79
0.36
18.21

4.52
0.40
18.21

15.75
0.68
18.21

Bundle
(No Sync)

1.53
0.45
19.57

5.08
1.46
20.39

10.18
1.39
20.61

Pre Bundle
(Sync)

0.71
0.36
18.21

1.39
0.37
18.21

1.42
0.37
18.21

Bundle
(Sync)

1.40
0.45
19.63

3.25
1.91
19.88

3.22
1.36
20.06

Table 7.3: Multiview Offset Bundle Adjustment Experiments for the
Laboratory sequence.
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(a) Sequences

(b) Error curve

Figure 7.1: Periodic motion. Due to the period of 200 frames, there are 2
very similar local minimums, one at 0, and one at 200.
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offset (gt) 0 25 50
offset (pred) 8.888889 26.88889 41.33333

2 cameras
(°)
(m)
(%f)

Pre Bundle
(No Sync)

10.34
0.095
14.55

12.69
0.12
14.55

13.39
0.13
14.55

Bundle
(No Sync)

12.45
0.091
14.26

16.73
0.16
14.66

15.73
0.15
14.51

Pre Bundle
(Sync)

9.17
0.088
14.55

9.50
0.090
14.55

10.31
0.096
14.55

Bundle
(Sync)

12.45
0.10
14.20

12.51
0.11
14.30

12.79
0.12
14.23

4 cameras
(°)
(m)
(%f)

Pre Bundle
(No Sync)

26.89
1.94
1.90

25.63
1.54
1.90

24.16
1.37
1.90

Bundle
(No Sync)

29.48
1.86
1.95

29.87
1.33
1.95

27.69
1.27
1.97

Pre Bundle
(Sync)

27.37
2.23
1.90

27.64
2.20
1.90

28.32
2.11
1.90

Bundle
(Sync)

32.46
2.21
1.71

30.82
2.19
1.89

29.03
2.08
1.89

Table 7.4: Multiview Offset Bundle Adjustment Experiments for the
Campus sequence.
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Chapter 8

Conclusion

We designed, implemented, and open-sourced a method to calibrate multiple cam-

eras, even when videos are out of sync. It enables new application domains for 3D

vision, where reconstructions require the precision of multi-view but the ease of

recording with consumer-grade cameras without hardware synchronization capa-

bilities. Our future works will focus on improving the bundle adjustment step for

sparse views in addition to substituting some of our optimization-based steps with

learning-based solutions.

8.1 Future Work
In order to address the limitations of our pipeline, future works could focus on

improving the bundle adjustment step for sparse views, substituting some of our

optimization-based steps with other learning-based solutions, and improving our

single view method with theoretical and practical models.

8.1.1 Improving the bundle adjustment step

As discussed in the limitations, the bundle adjustment step needs further work.

From the related works, Liu et al. [30] perform bundle adjustment on human poses

from multiple viewpoints, thus in principle, it should be possible to optimize the
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camera pose with bundle adjustment. As stated in the limitations, further aspects

that could be improved include additional constraints on the objective function,

such as adding bone length constraints, and the usage of person tracking and per-

son re-identification to ease the finding of correspondences with multi-person se-

quences. We could also make use of second-order optimizers if the solution is ill-

conditioned [12]. Additionally, we could try optimizing the extrinsic parameters

using projected gradient descent [53] to constrain the optimization so the results

are always valid rotation matrices.

8.1.2 Learning Based Solutions

Multiview Reconstruction

One method that makes use of deep learning is demonstrated in Ajisafe et al. [1],

which uses a single view but with a mirror in the scene to act as a rudimentary 2nd

view. Then, Using the 2 views, they reconstruct the 3D pose using optimization

methods. Finally, they pass the bone orientation information obtained in the op-

timization to a Neural Radiance Fields (NeRF) model [35] along with the image

mask of the person to reconstruct a volumetric body model. They train the method

in a weakly-supervised fashion using the 2D image data so they do not need any

3D ground truth. We could potentially replace the mirror with a 2nd camera view,

and use our CasCalib pipeline as an initialization for the NeRF reconstruction. In

fact, they already use our single-view calibration method to obtain the camera pa-

rameters in the first step..

Synchronization

Although we have shown that our temporal synchronization method can roughly

align two or more video sequences, we have yet to achieve precise fine alignment.

As stated in the related works, Ling et al. [33] achieves finer precision using a two-

stage weakly-supervised deep learning pipeline, it requires synchronized training

data, and is trained on a narrow range of datasets. It also does not take into ac-

count 3D information. Thus, one extension could be to combine our single view

calibration method to obtain 3D information, and then incorporate that into Ling

55



et al. This could improve the trajectory estimation since estimating 2D trajectory

doesn’t take into account the depth of tracks which could cause dissimilar tracks to

appear similar in image coordinates.

Intrinsics

As stated in the related works, Grabner et al. [18] use a focal length predictor

within a Faster/Mask R-CNN framework. Although we stated that the fact they

train on a specific dataset with common objects like chairs and sofas with consistent

dimensions, one research direction could be training a method like this on a dataset

containing persons. In addition, we could impose geometric constraints on human

poses to further constrain the optimization.

One major limitation of our method is that we assume that there is no lens dis-

tortion. In practice, there is often lens distortion, such as radial distortion in the

camera. Li et al. [27], estimate various types of lens distortion using neural net-

works, however, they train the network in a supervised fashion, which results in

them having to have a large labeled dataset. We would seek to estimate lens dis-

tortion through self-supervised means, since specific datasets may not generalize

to real-world scenes.

8.1.3 Improving Single View Calibration

In this section, we discuss how the single-view calibration step can be further im-

proved.

Optimal Height Assignment

One key insight that this work has shown is that even small variations in height

can lead to huge variations in the focal length. In Table 4.1, the input height data

for method 1 had a standard deviation of 0.1 meters, but running this method leads

to a standard deviation of up to 479.773 pixels for a focal length of 2345.164 pix-

els. This shows that assuming that all people in the scene are the same height

may not be realistic. One direction that could be explored is to assign different

heights to different people in the scene and see if an optimal height assignment

improves the predicted focal length. We can also use clues in the scene to aid us
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in assigning optimal heights; for example, when people are close to each other or

standing on the same image line, we can see their relative heights to each other.

If we included people tracking, and people walking around the scene, there may

be sufficient information to infer each person’s relative height. This application

would additionally need re-identification and tracking in order to assign heights

consistently to people in the scene.

Modeling other sources of uncertainty

In this work, we only analyzed the focal length. However, the depth and the normal

vector also play an important role. One assumption that is often violated is the as-

sumption that everyone is standing straight up. If we were to relax this assumption,

then we would have to model each person as an independent vector in the scene.

This would be an interesting problem since the random variable in this case would

be in terms of angles and rotations. We could model each rotation as an element of

the group of 3D rotations SO(3), and define a Haar measure to compute the prob-

abilities. Gwak et al. [19] have shown that the geometric properties of groups that

describe rigid body motion can be directly applied to camera calibration.

Additionally, another direction that could be explored is to model the 2D detec-

tions stochastically. In practice, there is usually noise in the detection of 2D points.

This would increase the complexity of interpreting this problem probabilistically,

but this model would be closer to in-the-wild settings.

Deriving a closed form expectation

As shown in the methods section, we were able to derive a PDF for the focal length

squared. However, what is yet to be determined is an analytic method to compute

the expectation and variance. If a closed-form expression for the expectation ex-

ists, then it would allow for accurate computation without the need for error-prone

numerical methods.

8.2 Societal Impact
Methods that automatically calibrate cameras based on human poses have a wide

range of applications such as human body reconstruction. This could benefit peo-
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ple in other fields such as neuroscientists studying body motions of patients with

neurological disorders, since they may not be experienced in calibrating cameras

using traditional methods. However, one possible misuse of this technology is re-

constructing humans in new undesirable poses. Furthermore, this technology can

be used on cameras that are filming without their consent. We acknowledge that

unethical applications should be discouraged. We also used datasets that contain

people who gave explicit permission to be filmed [17, 22, 40].

Another usage of camera calibration is in distance and velocity estimation. This

can have some usage with social distancing enforcement during pandemic times.

This could also be used for fall and accident detection since, sudden changes in ve-

locities could be an indication of a fall, which could be useful in care homes for the

elderly. Another application is estimating the dimensions of areas that could have

applications in architecture and construction. However, such technology could be

employed on security cameras, which could encourage the proliferation of security

cameras which could in many cases be a violation of personal privacy. Although

methods such as blurring people’s faces or simply not saving recorded data can be

safeguards against privacy violations, in practice there is no way to guarantee that

the filming party will have privacy as one of their imperatives.

Distance estimation is also used in range-finding, which is a set of techniques to

estimate the distance from the observer to a target. This is often done in construc-

tion to determine the dimensions of areas. However, range finders that use lasers

and cameras have many applications for precision weapons. In Liu et al. [31], they

discuss combining a self-calibrating camera with a laser range finder with applica-

tion to sniper rifles. An article by Horus Vision, LCC [41], gives guidelines on the

estimation of range using human height for police and military use. Although we

state our preference for peaceful usages, we acknowledge these uses, which often

remain out of our control and at the whim of the ever-changing political landscape,

to be possible. We only hope that our leaders and communities around the globe

use their better judgment and choose to build a kinder and more peaceful world.
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Appendix A

Supporting Materials

A.1 Temporal Synchronization Experiments
In this section, we show our results for temporal synchronization experiments on

Human3.6M for each subject. We report our results in Table A.1.

A.2 Statistical Analysis Equations
We will put long equations in this section, which we derived using the SymPy

symbolic algebra package in Python.

A.2.1 Closed form solution to the DLT equation

f n1 = λ z3
n̄num1

n̄den1

(A.1)
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Subject Shift (gt)
Shift
(gt focal)

Shift
(pred focal)

S1 0 11.24 11.82
S1 50 54.10 54.25
S1 100 104.10 104.25
S1 150 153.72 154.28
S1 200 204.18 204.28
S5 0 12.84 14.997
S5 50 55.49 55.68
S5 100 105.38 105.48
S5 150 155.38 155.28
S5 200 205.25 204.97
S6 0 13.94 21.75
S6 50 56.08 60.03
S6 100 106.14 110.18
S6 150 156.41 166.31
S6 200 206.51 215.91
S7 0 14.14 13.22
S7 50 56.77 54.34
S7 100 106.90 104.28
S7 150 157.24 154.8
S7 200 206.93 204.90
S8 0 15.71 14.46
S8 50 58.82 58.42
S8 100 108.58 106.79
S8 150 158.82 158.67
S8 200 208.92 208.67
S9 0 3.37 10.73
S9 50 52.63 52.15
S9 100 101.06 102.31
S9 150 150.39 152.98
S9 200 201.20 204.02
S11 0 9.22 12.71
S11 50 57.17 54.16
S11 100 107.58 104.02
S11 150 159.12 154.18
S11 200 209.28 70.31

Table A.1: Temporal Synchronization Experiments. We report our results
for each subject for Human3.6M. GT shift represents the ground truth
offset, while GT focal represents running our method with ground truth
focal length, and Pred focal represents running our method with the focal
length predicted by our method.
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