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Abstract 

Despite the prevalence of fire in continental Southeast Asia (SEA) and its important 

ecological role, little is known about the drivers of geographical variation of fire activity in the 

region. My research investigated 1) how the geographic variation in fire activity is associated 

with climate, landcover, and human influence, and 2) what and where are distinct fire regimes 

located in continental SEA. I quantified the response of fire activity to climate, landcover, and 

anthropogenic metrics and defined spatially constrained clusters with similar fire patterns. We 

used satellite remote-sensing data from 2001 to 2021 at 0.25° spatial resolutions. Climatic 

variables that decrease vegetation moisture and the presence of human establishments were 

important predictors of fire activity. We identified fire regimes that were associated with 

deforestation in Cambodia and Laos, agricultural activity in Vietnam, and ecological fires in the 

forest-savanna mosaics in Cambodia. Exploring the spatial distribution of fire patterns and its’ 

anthropogenic or climatological drivers of fire is key to understanding Southeast Asian 

ecosystems. Implications of these results could further encourage ecologically appropriate fire 

management strategies. 
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Lay Summary 

Fire is a common occurrence in continental Southeast Asia that has widespread effects on 

the ecosystem. The long-term impact of fire depends on the frequency, intensity, and extent of 

the fires, while also considering the type of vegetation and climate the ecosystem experiences. 

Using satellite observations from 2001 to 2021, I researched 1) how fire patterns are influenced 

by climate, humans, and vegetation types, and 2) where similar fire patterns occur and how they 

compare. Climatic conditions, such as hot temperatures and severe dry seasons, were linked to 

greater fire activity. The presence of human establishments was also important in distinguishing 

the prominence of fire activity. We identified fire patterns associated with deforestation in 

Cambodia and Laos, agricultural activity in Vietnam, and naturally occurring fires in the forest-

savanna mosaics in Cambodia. Investigating how, where, and why these fires occur will promote 

our understanding of Southeast Asian ecosystems and encourages appropriate fire management 

strategies. 
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Chapter 1: Introduction 

Fire is a significant source of ecosystem disturbance, helping to modify or maintain 

several global biomes (Bond and Keeley 2005). Within each biome, fire activity outside the 

historical range of variability can have negative ecological impacts. Investigating fire patterns in 

recent history (past 20 years) is necessary to benchmark any changes in regional fire regimes.  

Fire regimes in continental Southeast Asia (SEA) contain different fire patterns that have 

varying influence on the ecosystem. Different fire patterns include agricultural fires (Jones 

1998), forest-savanna mosaic fires (Pletcher, Staver, and Schwartz 2022), and deforestation fires 

(Min-Sung et al. 2023). However, few studies have distinguished the geographical distribution 

and drivers of the fire patterns observed in Southeast Asian ecosystems. This research 

investigates the relationship between fire and the climatic, anthropogenic, and landcover drivers 

in continental Southeast Asia, followed by a description of the spatial pattern of observed fire 

regimes. 

 

1.1 Ecological Role of Fire 

Fire can alter ecosystem structure, species composition, and function by acting as an 

environmental constraint (Bond and Keeley 2005; Abreu et al. 2017). In regions with a history of 

natural fire disturbance, local plant species have adaptations that allow the plant to persist within 

the fire regime. Ecosystems with fire-adapted vegetation are more resilient and recover quickly 

after burning (Bond and Keeley 2005). For example, many grasses have deep underground roots 

that allow grass to survive through fires that occur above ground. Grasses can quickly regenerate 

after being burned using the nutrients stored in the root system (Bond and Keeley 2005). On the 

other hand, fire can be disastrous to plants that are not fire-adapted. Ecosystems that rarely 
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experience burning may struggle to regrow after a fire event (Cochrane 2003). Fire has critical 

and sweeping impacts on various ecosystems, substantiating the need to understand the drivers of 

fire activity.  

 

1.2 Fire regimes 

Fire regimes describe the temporal and spatial fire patterns in a given location (Bond and 

Keeley 2005; McLauchlan et al. 2020). How, where, and why fires occur varies across 

landscapes and environmental conditions. Thus, studying regional fire regimes is necessary to 

improve our understanding of how fires impact local ecosystems. Metrics that describe the fire 

regime include fire frequency, intensity, size, burned area, and seasonality. Together, these 

metrics provide insight into the unique characteristics of observed fire patterns.  

1.2.1 Fire Frequency 

Fire frequency describes the time interval between successive burns and is measured as 

the number of fires that occur per year (Cwynar 1978; Forman and Boerner 1981). Frequency is 

determined by how often conditions for fire exist, the availability of ignitions, paired with the 

amount and condition of vegetative fuel (Steel, Safford, and Viers 2015). The frequency of fire 

events influences the plant species that are able to establish and modify how ecosystems respond 

after burning (Bond and Keeley 2005). Therefore, recurring fire impacts the composition of 

vegetative communities and helps determine the spatial distribution of certain ecosystems. 

1.2.2 Fire Intensity 

Fire intensity describes the total amount of energy released during the active combustion 

of a fire. During a fire event, energy is released through convection, radiation, and conduction 

(Johnston et al. 2014). Within remote sensing, fire intensity is often represented as fire radiative 
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power (FRP), which is a term that specifically describes the amount of energy released through 

radiation (in megawatts) during the fire (Johnston et al. 2014). FRP is linked to the amount of 

burned biomass (Wooster, Zhukov, and Oertel 2003).  Thus, identifying the FRP grants us 

insight into the type and quantity of vegetation burned (Steel, Safford, and Viers 2015).  

1.2.3 Fire Size 

Fire size describes the spatial extent of the burned region and is calculated by measuring 

the area covered by each individual fire event in square kilometers. The size of each fire can be 

determined by climatic, topographic, and vegetative conditions that promote or constrain the 

spread of fire (Graham, McCaffrey, and Jain 2004). Larger fire sizes can decrease the diversity in 

landscape patches (Chuvieco 1999), which changes the structure and complexity of the 

ecosystem. 

1.2.4 Burned Area 

Burned area is the total area burned by a collective of fires within a region, measured in 

square kilometers. The same burned area may represent a few large fires or many smaller fires, 

thereby summarizing total area burned (Hantson, Pueyo, and Chuvieco 2015). Large burned 

areas would indicate that fires affected a large area in the ecosystem, thus impacting a greater 

amount of the vegetative community (Hantson, Pueyo, and Chuvieco 2015). 

1.2.5 Fire Seasonality 

Fire seasonality represents the time of year that fires occur throughout the year 

(Mackenzie et al. 2021). Fires could occur seasonally or year-round; thus, fire seasonality 

highlights whether fire activity follows seasonal trends. Fire seasonality considers the length and 

timing of the fire season, which is determined by landcover type coupled with climatic and 

anthropogenic activity (Mackenzie et al. 2021; Magi et al. 2012). Altered fire seasons influence 
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post-fire plant recovery (Mackenzie et al. 2021). Thus, variations in fire seasonality will impact 

plant populations and community compositions (Miller et al. 2019).  

 

1.3 Drivers of fire 

Anthropogenic activity and climatic patterns vary geographically and exert different 

degrees of influence on regional fire regimes. Humans change or control fire regimes through 

igniting, encouraging, or suppressing fires over long periods of time (T. V. Nguyen et al. 2023; 

Jones 1998). Humans can also alter land cover, which affects the availability and spatial 

arrangement of fuels. Climate can influence fire by creating atmospheric or vegetative conditions 

that change the likelihood of fires to ignite and persist (Corona-Núñez and Campo 2022; Fuller 

and Murphy 2006; Hantson, Pueyo, and Chuvieco 2015). In the following section, I elaborate on 

each of these drivers in greater detail. 

 

1.3.1 Climatic Drivers of Fire 

Climate describes prevailing weather conditions over time, which influence long-term 

patterns of fire activity (i.e.: fire regime). Climatic factors that impact fire include precipitation, 

vapor pressure deficit, temperature, and seasonality (Alvarado et al. 2017; Aldersley, Murray, 

and Cornell 2011; Grünig, Seidl, and Senf 2022). Each climactic factor affects atmospheric or 

vegetative fuel conditions, thus influencing the probability and behavior of fire (McLauchlan et 

al. 2020; Archibald et al. 2010; Zubkova et al. 2019). The geographic variation of these climatic 

effects facilitates differences in fire activity across global landscapes. 
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1.3.1.1 Precipitation 

Precipitation patterns have important impacts on fire activity (Alvarado et al. 2017; 

Aldersley, Murray, and Cornell 2011). Investigating where, how, and when precipitation occurs 

is critically important to understanding how each aspect of the rainfall pattern interacts with the 

fire regime. Metrics such as mean annual precipitation (MAP; measured in millimeters), rainfall 

seasonality, and dry season severity are used to assess precipitation (Schwartz et al. 2020). For 

example, rainfall seasonality describes how rainfall is distributed throughout the year, which 

dictates the seasons that climatically suppress fire and stimulate vegetation growth. Likewise, 

severe dry seasons result in dry vegetative and atmospheric conditions, increasing the likelihood 

for more extreme fires (Russell-Smith and Edwards 2006). Evaluating the variability in 

precipitation is critical to understanding fire-rainfall interactions. 

1.3.1.2 Vapor Pressure Deficit 

VPD describes the difference between the amount of water vapor contained in the air and 

the potential vapor storage capacity, measured in kilopascals (kPa) or pounds per square inch 

(psi). Vegetation moisture conditions are linked to VPD (Wollaeger and Runkle 2015), which 

have important implications for vegetation fires. High VPD indicates dry and flammable 

vegetative fuel loads that contribute to large burned areas (Sedano and Randerson 2014). 

Quantifying VPD will enhance our understanding of the climatic and vegetative influences on 

the fire regime. 

1.3.1.3 Temperature 

Globally, high temperatures create environmental conditions that promote increased fire 

activity (Aldersley, Murray, and Cornell 2011; Jain et al. 2022; Thirumalai et al. 2017). Warm 

temperatures can dry out vegetation, thus increasing the susceptibility of fuel to ignite. 
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Specifically, temperatures greater than 28°C is associated with larger burned areas (Aldersley, 

Murray, and Cornell 2011). Researching the contributions of temperature to fire occurrence is a 

necessary component to understanding how climate influences the fire regime.  

 

1.3.2 Human Influence on Fire Activity 

Humans have major and long-lasting influence on patterns of fire activity (Bowman et al. 

2011). Humans have exerted diverging controls on fire activity through promoting or 

suppressing fires. Anthropogenic activities that promote fires include using fire as a tool to clear 

land (Dhandapani and Evers 2020). Fire activity has also been suppressed or controlled to protect 

human populations and infrastructure (Bowman et al. 2011; Pechony and Shindell 2009). Human 

interventions that modify fire regimes create changes in the vegetation structure and 

communities of existing environments (Ratnam et al. 2011; McLauchlan et al. 2020; Hoffmann 

et al. 2012; T. V. Nguyen et al. 2023). Thus, assessing how humans affect the fire regime will 

further inform our understanding of the anthropogenic influence on ecological changes. 

To quantify human influence, previous studies have used metrics such as population 

density, socioeconomic factors, road density, livestock density, and land management (Corona-

Núñez and Campo 2022; Alvarado et al. 2017; Zubkova et al. 2019). Investigating these 

anthropogenic factors could help identify how and why fire patterns are modified. For example, 

humans sometimes promote fire activity in agricultural cropland (Bowman et al. 2011). Fire is an 

inexpensive and effective practice used to clear agricultural waste before sowing new crops and 

is often associated with increased burned area and burn frequency (Andela et al. 2017). Humans 

substantially influence existing fire regimes, thus investigating human factors will enhance our 

understanding of anthropogenic drivers of fire.  
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1.4 Geographic bias against continental SEA  

Challenges with investigating the ecology in continental SEA could be associated with 

constraints in resources and data availability (Reid et al. 2013), coupled with a political 

framework that priorities economic growth over ecological sustainability (Sasmi and Shi 2023). 

Major geographic bias in ecological research exists, where most studies are focused on Europe 

and North America (Wilson et al. 2007; Pyšek et al. 2008; Trimble and van Aarde 2012). 

Research priorities are often determined by market forces that direct funding to specific 

economic agendas, such as research for agricultural production (Wilson et al. 2007). 

Furthermore, economic status also dictates whether individuals have educational access to 

become scientists, which creates bias in the language, cultural background, and geographic 

interests of the scientists themselves (Wilson et al. 2007; Trimble and van Aarde 2012). Thus, 

economically disadvantaged regions, such as continental SEA, are understudied and often 

overlooked in ecological research. 

Furthermore, the fires that are investigated in SEA are primarily focused on insular SEA. 

For example, research attention is drawn towards the peatland fires in Malaysia and Indonesia 

due to the severe human health impacts from air pollution (Page et al. 2009; Gaveau et al. 2014; 

Hein et al. 2022). However, differentiating between the fire patterns of continental and insular 

SEA is necessary because of the climatic and terrain differences between each landscape 

(Miettinen, Stibig, and Achard 2014).  Recent evidence also shows increases in fire activity in 

continental SEA (Vadrevu et al. 2019), but there is a critical gap in the research for where and 

why these fires are occurring on a landscape-wide scale. Taking a comprehensive view of the 

large-scale fire patterns helps to benchmark the current fire regimes, which will benefit efforts to 

monitor future changes in fire activity. 
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1.5 Fire Relationships in Continental SEA 

Different types of fire occur in continental SEA, but the relationships between the drivers 

of fire and the subsequent ecological impacts are particularly understudied (Dupuis et al. 2020; 

Sunderland et al. 2015). Southeast Asian ecosystems were previously highlighted as biodiversity 

hotspots (Myers et al. 2000), thus research about ecological disturbances in this region are 

important to conservation and management efforts. Despite the minimal research in this region, 

investigating the geographic distribution of fire and its’ drivers is critical to understanding the 

ecosystems in continental SEA. Here, I discuss the different roles and drivers of fire in 

continental SEA. 

In continental SEA, humans impact fire patterns by affecting fire ignition, frequency, 

occurrence, and spread (Jones 1998; Stolle et al. 2003; Dennis et al. 2005; T. V. Nguyen et al. 

2023). Fires from human activity involve agricultural clearing, urban development, and land 

conversion (Koh and Sodhi 2010; Sodhi et al. 2004; Biswas et al. 2015). For example, fires are 

ignited to burn natural landscapes for conversion to rubber and oil plantations (Dhandapani and 

Evers 2020). Likewise, fire clears cultivated land between crop generations in swidden (i.e.: 

slash-and-burn) agricultural practices (Biswas et al. 2015; Inoue 2018; Nelson and Noweg 2021). 

How humans use fire influences the fire regime and imparts different ecological impacts.  

Fire plays essential ecological roles in continental SEA (Pletcher, Staver, and Schwartz 

2022). SEA is home to deciduous dipterocarp formations that are unique forest-savanna mosaics 

(Ratnam et al. 2011). There, fire acts as an environmental filter to limit woody encroachment 

into savannas by reducing seedling and sapling growth (T. T. Nguyen, Murphy, and Baker 

2019). The low-intensity and high-frequency surface fires help maintain the open, savanna-like 
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structure (Ratnam et al. 2011). These fire patterns play an essential ecological role in the forest-

savanna ecosystems, yet much is unknown about the geographic distribution and drivers of these 

types of fires in continental SEA.  

1.6 Remote Sensing 

Efforts to quantify large-scale fire regime patterns have increasingly incorporated remote 

sensing techniques, which have emerged as a prominent method to evaluate landscape change 

and disturbance. Current methods often incorporate publicly accessible satellite-based datasets 

with products that have been available for several decades. With the progressing advancement in 

imaging technology, the potential for remote sensing products to capture and monitor ecosystem 

disturbance has increased (Curnick et al. 2021; Frazier and Hemingway 2021). The widespread 

application of remote sensing methods is useful for large-scale assessments that would otherwise 

be difficult to achieve without these technologies.  

 Specifically, satellite remote sensing provides a comprehensive view of fire and climate 

patterns at varying temporal and spatial resolutions. Within the realm of fire detection and 

monitoring, several studies have established the benefits of incorporating satellite imagery to 

analyze landscape disturbance and change (Hawbaker et al. 2020; Jones 1998; Balch et al. 2020). 

Satellite remote sensing products such as Moderate Resolution Imaging Spectroradiometer 

(MODIS) are commonly used for fire research. MODIS instruments are located on NASA’s 

Earth Observation Aqua and Terra satellites and have detected active fires and thermal anomalies 

globally since 2000. The MODIS fire algorithm primarily captures large fires and struggles to 

capture small, low-intensity fires (Giglio, Schroeder, and Justice 2016). Therefore, research 

using MODIS products is most appropriate when investigating large fires at landscape-wide 

scales.  
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1.7 Research Questions 

My research presents an ecologically focused perspective on drivers of spatial fire 

patterns in continental SEA. Understanding the spatial distribution of fire patterns and their 

anthropogenic or climatological drivers is critical to understanding Southeast Asian ecosystems. 

My study is the first to describe where and how fire regimes differ across continental SEA and 

pinpoint the relationship between fire and its’ important drivers in this region. With this, my 

specific research questions include the following: 

1) How is the geographic variation in fire activity associated with climate, landcover, and 

human influence in continental SEA?  

2) What and where are the distinct fire regimes in continental SEA?  

I analyzed fire regime characteristics in continental SEA to establish connections between 

climatic, landcover, and anthropogenic influences. I further distinguished where fires in forested 

landcover are associated with forest loss. We expect the important climactic variables to affect 

atmospheric conditions and vegetation moisture. We also expect variation in fire regime based 

on landcover and land use. My research will be the first to explore a greater dimensionality of 

fire regime characteristics and drivers of fire within continental SEA.  
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Chapter 2: Materials and Methods 

2.1 Study Site 

Continental SEA is defined as Thailand, Laos, Myanmar (Burma), Cambodia, and 

Vietnam (4.85-29.55° Latitude and 90.95-110° Longitude). Continental SEA typically has a dry 

season between November and April (Corlett 2014), with the peak fire season from February 

until April (Vadrevu, Ohara, and Justice 2021; Corlett 2014). The summer monsoon season is 

typically from May to September, often bringing tropical typhoons with heavy rainfall (Gupta 

2005). The annual average rainfall is 1940mm with an average annual temperature of 23°C. 

Mean annual precipitation (MAP) is highest along the western coast of continental SEA, at 

around 4000mm per year. Precipitation gradually decreases inland with MAP near 1000mm in 

the driest portions of central Myanmar, then increases with moderately heavy precipitation on the 

southeastern coastline ranging around 2000-3000mm of rainfall. According to the Köppen-

Geiger climate classification, continental SEA has a mix of temperate and tropical climatic 

conditions (Beck et al. 2018). Temperate conditions with dry winters and hot summers are 

prevalent in latitudes north of 20°. Tropical rainforest occurs along the coast of continental SEA, 

while tropical savanna climates dominate the remainder of the mainland. The biomes within 

continental SEA consist primarily of tropical and subtropical moist and dry broadleaf forests 

(Olson et al. 2001). 
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Figure 1. Study Area. 

Top row depicts the geographic location of continental Southeast Asia (left) and the Köppen climate classification 

(right) provided by Beck et al. 2018. Middle row depicts the World Wildlife Fund Terrestrial Ecoregions of the 
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World Biome classification map, provided by Olson et al. 2001. Bottom row displays landcover classifications 

based on SERVIR landcover mapping dataset.  

2.2 Data Processing  

My study used satellite remote-sensing data products from June 2001- May 2021. All 

raster datasets were aggregated to 20-year averages at 0.25° spatial resolutions. Since I wanted to 

test for fires in different types of landcover, I chose a spatial resolution of 0.25° to ensure that we 

captured variability within the vegetated landcover. I tested 0.1°, 0.25°, and 0.5° grid cells, and 

found that 0.25° resolution showed a reasonable range of grid cells with high and low natural 

vegetation, indicating that we captured variability in naturally vegetated landcover. Coarser 

resolutions resulted in grid cells with similar average values for the naturally vegetated landcover 

and would thus be unsuitable for distinguishing the differences between fires in varying 

landcover types. I calculated five variables describing fire activity and seven variables describing 

the climatic, anthropogenic, and landcover drivers (Table 1). 

Trends in fire activity occur seasonally, where rainfall in the previous months contributes 

to vegetation growth which fuels the following fire season. Then, the dry severity of the dry 

season influences whether the vegetation is dry enough to burn. To capture the natural cycle of 

fire seasonality, I characterized a 12-month period where peak fire activity occurs in consecutive 

months. Similar to water years in hydrologic studies, fire also occurs in patterns where 

partitioning by a standard calendar year may result in error or misinterpretations (Boschetti and 

Roy 2008). In my research, I define the fire year from starting from June and ending in May. The 

fire year aligns with each calendar month such that the months during the high fire periods 

highlight the fire season in continental SEA. I calculated the optimal fire year to start in June, 

because June was the first month with below median and average fire activity, which indicated 
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the end of the fire season and the beginning of the following fire year. Starting the fire year in 

June also captures a few months of precipitation prior to the fire season.  

 

2.2.1 Quantifying Fire Regime  

In this section, I describe how I quantified each fire regime variable: frequency, intensity, 

burned area, number of fires, and fire size. All fire variables were derived from different MODIS 

products.  

2.2.1.1 Quantifying Fire Frequency  

Fire frequency (FF) describes the total number of years a fire occurred in each grid cell 

for the study period (Figure 2; map A). Grid cells were reclassified as 1 if a burned pixel was 

present, and 0 if no pixels were burned. Here, I refer to ‘pixel’ as the original resolution of the 

gridded product, and ‘grid cell’ for the resampled data at 0.25° spatial resolutions. I derived FF 

from MODIS Burned Area Monthly Global 500m (MCD64A1) by summing the total number of 

years that each grid cell burned to display the how many years a fire burned within the grid cell. 

FF calculations were performed in Google Earth Engine. 

2.2.1.2 Quantifying Fire Radiative Power (Fire Intensity) 

Fire Radiative Power (FRP) represents fire intensity, defined as the mean annual total 

FRP for each pixel in the 20-year study period (Figure 2; map B). FRP was derived from MODIS 

Terra Thermal Anomalies & Fire Daily Global 1km (MOD14A1.061). MODIS Terra Thermal 

Anomalies and Fire Daily Global dataset are produced every eight days, with a daily temporal 

resolution and 1km spatial resolution. I compiled the daily images by summing FRP values to 

produce annual images based on the previously described fire year. Then, I calculated the mean 

FRP per pixel over the study period to output the mean annual FRP across the study region. The 
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mean annual FRP explains the yearly average fire intensity per grid cell, which represents how 

much radiative energy was released from biomass burning each year. Calculations for the 

average radiative energy released from biomass burned were also calculated but omitted from 

this study due to the high correlation between total and average FRP values. FRP calculations 

were performed in Google Earth Engine. 

 

2.2.1.3 Quantifying Burned Area, Number of Fires, Fire Size 

Burned area, number of fires, and fire size were calculated using fire perimeter data from 

the University of Colorado’s Earth Labs FiredPy initiative (Balch et al. 2020). The FiredPy 

collection includes global fire event shapefiles delineated from MODIS Burned Area Product 

Collection 6 with the purpose of increasing public access to fire history data (Balch et al. 2020). 

The delineation process involves aggregating burned pixels based on a spatial and temporal input 

to identify pixels that belong to each unique fire event. In the dataset, each fire event is 

represented by a single polygon that contains information such as the start and end date of the 

fire event, fire spread, and total burned area. I downloaded fire perimeters for each country in my 

study area from the pre-generated Earth Lab data collection repository 

(https://github.com/earthlab/firedpy). Downloaded fire perimeters contained polygons of 

delineated fires from November 2000 to July 2021. Fire polygons were reduced to points 

representing the cell center, then calculations were performed for the polygons using the 

overlapping grid cell. These calculations were processed in ArcGIS Pro Version 2.8.1.  

The number of fires (NF) describes the average number of fires that occurred within each 

grid cell over the 20-year study period (Figure 2.2; map D). To calculate this, I found the total 
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number of fires per grid cell, then divided that by the 20-year study period to receive the average 

number of fires per year (fires/year).  

Using the total number of fires from the previous calculation, I disaggregated the fires 

into each landcover type to further calculate the percentage of fires within different landcover 

classes. The percent of fires in each landcover type was calculated using the SERVIR-Mekong 

Landcover dataset at 30m resolutions (SERVIR; http://servir-

rlcms.appspot.com/static/html/map.html). SERVIR landcover types were classified into four 

classes: saturated vegetation, forests, agriculture, and low-lying vegetation. Saturated vegetation 

contained flooded forests, wetlands, and mangroves. The forest class consisted of forests, 

evergreen broadleaf, and mixed forests. Agriculture landcover included cropland, rice, and 

orchard or plantation forest. Finally, low-lying vegetation included grassland and shrublands. 

Calculations were conducted in ArcGIS Pro Version 2.8.1. 

Burned area (BA) describes the average area burned for each grid cell aggregated over 

the study period (Figure 2.2; map C). I calculated the total burned area in square kilometers for 

all fire events per year for each grid cell. Then, I averaged the total burned area across the past 

20 fire years. With this calculation, “burned area” represents the average of the annual total 

burned area (km2/year) within a grid cell.  

Fire size (FS) is a measure of the area covered by each individual fire event and is related 

to how fragmented burned areas are within a given grid cell (Figure 2.2; map E). I calculated the 

average burned area per grid cell for each fire year; then, I calculated the average across the 

years to determine “fire size.” With this calculation, “fire size” represents the average burned 

area for each individual fire in kilometers squared per fire (km2/fire). Thus, areas that experience 

http://servir-rlcms.appspot.com/static/html/map.html
http://servir-rlcms.appspot.com/static/html/map.html


17 

 

smaller, more fragmented fires would have a small fire size, and areas with large continuous fires 

would have a large fire size. 

 

Figure 2. Geographic Variation of Fire Activity.  

Maps for the geographic distribution for each fire activity metric is shown. Each map is accompanied by the 

abbreviation and units (i.e., Fire frequency (FF, years)). Five fire activity metrics were calculated: fire frequency, 

fire radiative power (aka fire intensity), burned area, number of fires, and fire size. 
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2.2.2 Quantifying Climate variables 

To characterize climate, I used rainfall, temperature, and VPD data. I used rainfall data 

from Climate Hazards Group InfraRed Precipitation with Station Pentad Version 2.0 data 

(CHIRPS), which is a gridded precipitation dataset that was developed for drought monitoring. 

CHIRPS is a 0.05° spatial resolution, quasi-global (50° S - 50° N) dataset with product 

availability since 1981. The CHIRPS dataset combines precipitation measurements from thermal 

infrared satellite products and station gauge data (Funk et al. 2015). CHIRPS precipitation 

estimates are reliable in the Lower Mekong River Basin (Dandridge et al. 2019).  

I selected rainfall metrics to capture seasonal precipitation patterns. The rainfall variables 

derived from CHRIPS included mean annual precipitation (MAP), seasonality index (SI), and 

Maximum Climatological Water Deficit (MCWD). MAP is a simple metric that describes the 

overall quantity of yearly rainfall in millimeters. I calculated MAP as the annual average over the 

20-year study period (Figure 3; map A).  

MCWD describes the severity of accumulated water stress experienced in the dry season 

from low precipitation levels (Figure 3; map B). MCWD was calculated as described by Aragao 

et al. 2007, where the most negative values indicate the most severe dry seasons, and is 

calculated as such: 

𝐼𝑓 𝑊𝐷𝑛−1(𝑖, 𝑗) − 𝐸(𝑖, 𝑗) + 𝑃𝑛(𝑖, 𝑗) < 0; 

𝑡ℎ𝑒𝑛 𝑊𝐷𝑛(𝑖, 𝑗) =  𝑊𝐷𝑛−1(𝑖, 𝑗) − 𝐸(𝑖, 𝑗) + 𝑃𝑛(𝑖, 𝑗); 

𝑒𝑙𝑠𝑒 𝑊𝐷𝑛(𝑖, 𝑗) =  0 

MCWD is the most negative value of the monthly water deficits (WD) among the months 

in each hydrological year. In the equation, each month is represented by n, monthly potential 

evapotranspiration is represented by E, monthly precipitation is represented by P, and the 
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coordinates for each pixel are represented by (i, j). The WD was calculated cumulatively for each 

month. Monthly precipitation was set to 100mm per month, where monthly rainfall less than 

100mm would indicate that WD was present; this threshold was applied based on prior forest 

micrometeorology research (Shuttleworth et al. 1989).  

SI describes the relative seasonality of precipitation patterns, highlighting how 

precipitation is distributed throughout the year (Figure 3; map C). I derived SI according to 

calculations described by Feng et al. (2013).  

 

𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦 =  (∑ 𝑝
𝑚

12

𝑚=1
𝑙𝑜𝑔2 (

𝑝
𝑚

𝑞𝑚
)) × 𝑅/𝑅𝑚𝑎𝑥 

First, we compute the long term mean monthly precipitation ( 𝑝
𝑚

) that is normalized by 

the mean annual precipitation (𝑅) per month (𝑚). This is measured against a uniform rainfall 

distribution for all months (𝑞𝑚 =
1

12
 ) and the observed maximum annual rainfall (𝑅𝑚𝑎𝑥).  

High seasonality is indicated by larger index values representing regions that experience more 

precipitation concentrated in distinct seasons (i.e., rainy season vs. dry seasons), whereas smaller 

index values experience uniform precipitation throughout the year without defined rainfall 

seasons.  

Mean Annual Temperature (MAT) was derived from MODIS Terra Land Surface 

Temperature and Emissivity Daily Global 1km (MOD11A1.061) and aggregated over the 20-

year study period (Figure 3; map D). This dataset provides daily temperature values in Celsius 

since February 2000 at 1km resolutions. MAT below 12°C was masked to focus on regions that 

experience regular fire activity. 
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Vapor Pressure Deficit (VPD) describes the difference between the amount of water 

vapor in the air and the potential vapor pressure at saturation, which has an effect on vegetation 

moisture (Wollaeger and Runkle 2015). Here, VPD is calculated in kilopascals (kPa) and 

represents the mean VPD per grid cell calculated over the 20-year study period. VPD was 

derived from the University of Idaho’s TerraClimate Monthly Climate and Climatic Water 

Balance for Global Terrestrial Surfaces dataset (Figure 3; map E). This dataset integrates 

climatological normals from WorldClim (https://www.worldclim.org/data/index.html) , Climate 

Research Unit Ts4.0, and the Japanese 55-year Reanalysis. TerraClimate has provided monthly 

climatic water balance data since 1958, covering 1/24th degree spatial resolutions.  

Climate datasets were accessed in Google Earth Engine and imported into R version 4.1.1 

for further processing.  

https://www.worldclim.org/data/index.html
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Figure 3. Geographic Variation of Climate Variables.  

Maps for the geographic distribution for climate variables are shown. Each map is accompanied by the abbreviation 

and units, if relevant (i.e., mean annual precipitation (MAP, mm)). Five climate metrics were calculated: mean 

annual precipitation, dry season severity (aka maximum climatological water deficit), seasonality index (aka rainfall 

seasonality), mean annual temperature, and vapor pressure deficit.  
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2.2.3 Anthropogenic influence 

The percentage of natural vegetation and the human influence index were calculated to 

account for anthropogenic effects (Figure 4). The percentage of natural vegetation raster was 

important for disaggregating the fires that occurred primarily in natural landcover, as compared 

to fires that occurred in agricultural vegetation (i.e.: cropland and plantations). The human 

influence index raster helped distinguish how human presence and infrastructure influenced fire.  

The percentage of natural vegetation (pctnatveg) raster was derived by reclassifying the 

SERVIR dataset (Figure 4; map A). Here, SERVIR land cover types were divided into 

anthropogenic or natural vegetation. The anthropogenic class included urban and built-up, 

cropland, aquaculture, barren, rice, orchard or plantation forest, and mining. The natural 

vegetation class included wetlands, forest, flooded forest, mixed forest, shrubland, mangroves, 

grassland, and evergreen broadleaf. Percent urban and natural landcover calculated at 0.25° 

resolutions to distinguish the amount of natural or urban landcover present. Regions with greater 

than 15% urban landcover were masked out to focus on the ecological impacts of fire in 

vegetated landscapes.  

I also measured anthropogenic effects using the Human Influence Index (HII) from the 

Wildlife Conservation Society (Wildlife Conservation Society - WCS and Center for 

International Earth Science Information Network - CIESIN - Columbia University 2005). This 

dataset accounts for infrastructure, land use, population density, night-time lights, roads, and 

railways at 1km spatial resolutions and was resampled into 0.25° grid cells (Figure 4; map B). 

Here, human influence refers to human presence, infrastructure, and establishments, where HII 

values increase with greater impacts to the land through human occupation and development.  
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Figure 4. Geographic Variation of Human Influence Variables.  

Maps for the geographic distribution of the percent natural vegetation and the human influence index are shown. 

Percent natural vegetation accounts for wetlands, forest, flooded forest, mixed forest, shrubland, mangroves, 

grassland, and evergreen broadleaf landcover classes based on SERVIR Landcover dataset. Human Influence Index 

dataset accounts for infrastructure, land use, population density, night-time lights, roads, and railways from the 

Wildlife Conservation Society.
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Table 1. Variable Summary.  

The climatic, anthropogenic, and landcover explanatory and fire regime response variables are described with the associated data products that were used to 

derive the variables. Variables were calculated as 20-year means per grid cell, for fire years 2001-2021 (June 2001- May 2021). Superscript numbers under Data 

Product refer to the datasets listed in the “Datasets Used” section below.  
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2.2.4 Random Forest Regression Modelling 

I used Random Forest (RF) regression models to determine how each driver related to fire 

activity. RF is an ensemble learning algorithm for regression and classification analysis in 

ecological contexts (Oliveira et al. 2012; Cutler et al. 2007). Previous studies have used RF 

regression to determine important variables influencing fire activity (Jiang, Zhou, and 

Raghavendra 2020; Archibald et al. 2010). RF performs accurately with highly correlated 

variables and does not make assumptions about the variable distribution (Cutler et al. 2007). The 

RF consists of many decision trees created by bootstrapped samples of the original data. This 

bootstrapping technique makes the results less sensitive to the original dataset. A random subset 

of the predictor variables determines splits in each decision tree. The outcome for the 

combination of decision trees is then averaged to determine the regression output. RF requires 

two user-defined model parameters: the number of trees (ntree) and the number of variables at 

each split (mtry).  

Individual RF regression models were run for each of my response variables: fire radiative 

power, burned area, fire frequency, fire size, and the number of fires. My predictor variables 

included precipitation (MAP, MCWD, SI), climate (MAT, VPD), and anthropogenic influence 

(pctnatveg, HII). The ntree was set to 500 to obtain stable outcomes, and mtry was equal to 2, 

which is the default value calculated by the number of predictor variables divided by 3. 

Important predictor variables were identified using the percent increase in mean squared error 

(%IncMSE), which describes the percent decrease in model accuracy if that variable was left out 

of the model (Genuer, Poggi, and Tuleau-Malot 2010). The percent variance explained (pseudo-

R2) was calculated via the internal RF package. The RF regression was run in R using the 

randomForest version 4.7-1.1 package (Liaw and Wiener 2002). 
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2.2.5 Spatially Constrained Clustering 

To identify clusters of homogenous fire regime, I implemented a spatially constrained 

clustering algorithm. Incorporating spatial constraints in the clustering algorithm was critical to 

maintaining regional climatic and landcover similarity within clusters when identifying the fire 

regimes. This clustering algorithm follows the Spatial “K”luster Analysis Tree Edge Removal 

(SKATER) method, which uses a divisive hierarchical approach to prune the minimum spanning 

tree based on dissimilarity between clusters while maintaining spatial contiguity (AssunÇão et al. 

2006). Variables in the clustering analysis included the fire variables (i.e., fire radiative power, 

burned area, fire frequency, fire size, and the number of fires) normalized with a z-score 

transformation and the number of fires in forest and agriculture. Clusters were generated using 

the “spatially constrained multivariate clustering” tool in ArcGIS Pro Version 2.8.1.  

I ran Kruskal-Wallis rank sum tests and Pairwise comparisons using Wilcoxon rank sum 

test with continuity correction test for each fire and driver variable to evaluate statistical 

differences between clusters. These tests were performed as opposed to an ANOVA because 

assumptions of normality were not met. Each region was subsequently numbered and then 

named after its qualitative features. The spatial clustering of similar fire activity regions led to 

the delineation of eight unique fire regime clusters and was qualitatively compared using 

boxplots to distinguish whether fires were associated with human or climatic drivers. 

 

2.2.6 Disaggregating Forest Fires Associated with Forest Loss 

To distinguish between forest fires, I disaggregated the forest fires to consider the 

proportion of fires that are associated with forest loss according to the Hansen Global Forest 

Change dataset (Hansen et al. 2013). Here, I identified regions where fire is associated with 
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forest loss between the years 2001 and 2022 using, 1) fire activity data from MODIS Terra 

Thermal Anomalies Daily (MOD14A1 V6.1), 2) forested landcover data identified using the 

SERVIR Landcover dataset, and 3) forest loss using Hansen Global Forest Change v1.10 dataset. 

Burned grid cells were reclassified as 1 if forest loss occurred in at least one pixel during the 

study period and 0 if none of the pixels experienced forest loss. The proportion of pixels 

associated with forest loss was calculated when reducing the resolution to 0.25° grid cells. All 

calculations were conducted in Google Earth Engine.  
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Chapter 3: Results  

3.1 Drivers in geographic variation of fire activity 

3.1.1 Fire activity associations with landcover  

The majority of fires in continental SEA occurred in forested and agricultural landcover, 

with a greater proportion of fires occurring in agriculture. I compared the proportion of fires by 

landcover within each country because fire policy, management, and practices vary across 

country borders. Forest fires were the most common in Myanmar and Thailand, while 

agricultural fires were the most common in Vietnam. Proportions of agricultural and forest fires 

were similar in Cambodia and Laos. The percentage of fires that occur in grass, shrubland, and 

saturated vegetation is collectively less than 5% of fires for the entire region. In comparison to 

the other countries, grassland and shrubland fires were most prominent in Thailand and 

Myanmar, while Laos had the highest percentage of fires in saturated vegetation (Figure 5).  

3.1.2 Country-level variations in fire activity  

Each country displayed different geographical variations of fire activity. Cambodia 

experienced the highest fire frequency, intensity, number of fires, and total burned area, where 

high values of these fire activity metrics occurred along the northern and western borders (Figure 

2). Central Myanmar also experienced substantial fire activity with the greatest average fire size. 

The least fire activity was observed in Vietnam, where fire frequency, number of fires, and total 

burned area were lowest along the eastern Vietnamese coast.  
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Figure 5. Percent of Fires by Landcover Type.  

Proportions of fire occurrence are shown by landcover type for each country (i.e., Cambodia, Laos, Myanmar, 

Thailand, and Vietnam) and for all countries (i.e., All). Most fires occur in forest and agricultural (ag) landcover, 

with few fires occurring in grasslands and shrublands (grass/shrub), saturated vegetation (SatVeg), and other. 

 

Table 2. Percent of Landcover Type by Country.  

This table shows the percentage of landcover type in each country. The percentage of landcover type was calculated 

using the area of each landcover type divided by the total area of the country.  
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Table 3. Variable Summary Statistics.  

Minimum, 1st Quartile, Median, Mean, 3rd Quartile, and Maximum values are shown for each variable. Variables are 

as follows: Fire Radiative Power (FRP), Burned Area (BA), Fire Size (FS), Number of Fires (NF), Fire Frequency 

(FF), Mean Annual Precipitation (MAP), Seasonality Index (SI), Mean Annual Temperature (MAT), percent natural 

vegetation (pctnatveg), Vapor Pressure Deficit (VPD), and Human Influence Index (HII).  

 

3.1.3 Fire activity associations with climate and human influence 

The random forest models explained 34-56% of the variance across the fire activity 

variables (Table 4). Climatic drivers were found to be consistently important for fire activity 

along with the presence of human influence. We found that fire intensity was most influenced by 

dry season severity, temperature, human influence, and seasonality (Figure 6). Similarly, for 

burned area, fire frequency, and the number of fires, we found that dry season severity, 

temperature, human influence, and vapor pressure deficit were the most influential predictors 

(Figures 7-9). Finally, the most important predictors for fire size were dry season severity, 

temperature, human influence index, and percent natural vegetation (Figure 10). These important 

drivers capture the climatic and anthropogenic factors that impact long-term fire activity.  

Partial dependence plots derived from RF models indicated the general shape of the 

relationship between each fire activity metric and driver (Figures 6-10; plots A-D). My findings 

show that mean annual temperatures above 25°C coupled with severe dry seasons and low 
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human influence led to a substantial increase in fire activity (Figures 6-10; plots A-D). Here, the 

plots indicate that hotter temperatures were associated with higher fire activity. High fire activity 

was associated with more severe dry seasons (more negative MCWD). Finally, low-to-moderate 

human influence index values were associated with higher fire activity, where fire activity drops 

substantially with high human presence and establishments (Figures 6-10; plots A-D). Next, 

VPD was a significant predictor for burned area, number of fires, and fire frequency (Figure 7-9, 

respectively). This relationship indicated that fire activity increased with VPD, where high VPD 

values correspond with drier vegetation. Furthermore, seasonality was an important predictor for 

fire intensity, where more seasonal regions experienced higher fire intensities (Figure 6; plot D). 

Finally, the percentage of natural vegetation is an important driver for fire size. As the 

percentage of natural vegetation increases, the fire size also increases (Figure 10; plot C).  

 

Table 4. Random Forest Parameters.  

Random forest regression models for each fire activity metric were run with the given parameters. Percent variation 

explained (pseudo-R2; % Var explained) describes the goodness of fit for each model.  
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Figure 6. Random Forest Results for Fire Radiative Power.  

Random forest identified the most important drivers for fire intensity (FRP) that occur in continental SEA. The 

variable importance plot (left) ranked the importance of each driver using the mean decrease in accuracy. The top 

four most important drivers are in orange, where the corresponding partial dependence plots are shown to the right 

(plots A-D).  
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Figure 7. Random Forest Results for Burned Area.  

Random forest identified the most important drivers for burned area that occur in continental SEA. The variable 

importance plot (left) ranked the importance of each driver using the mean decrease in accuracy. The top four most 

important drivers are in orange, where the corresponding partial dependence plots are shown to the right (plots A-

D).  
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Figure 8. Random Forest Results for Number of Fires.  

Random forest identified the most important drivers for the number of fires that occur in continental SEA. The 

variable importance plot (left) ranked the importance of each driver using the mean decrease in accuracy. The top 

four most important drivers are in orange, where the corresponding partial dependence plots are shown to the right 

(plots A-D).  
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Figure 9. Random Forest Results for Fire Frequency.  

Random forest identified the most important drivers for fire frequency that occur in continental SEA. The variable 

importance plot (left) ranked the importance of each driver using the mean decrease in accuracy. The top four most 

important drivers are in orange, where the corresponding partial dependence plots are shown to the right (plots A-

D).  
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Figure 10. Random Forest Results for Fire Size.  

Random forest identified the most important drivers for fire size that occur in continental SEA. The variable 

importance plot (left) ranked the importance of each driver using the mean decrease in accuracy. The top four most 

important drivers are in orange, where the corresponding partial dependence plots are shown to the right (plots A-

D).  

 

3.2 Identifying distinct fire regimes in continental SEA 

3.2.1 Cluster Descriptions 

I delineated and described eight unique and spatially contiguous fire regime clusters in 

continental SEA (Figure 11). Cluster 0 is comprised of grid cells with minimal fire activity 

without any distinct fire regime patterns and is therefore omitted from further analysis.  

Cluster 1 presented frequent, large, and intense fires in the forests and agricultural lands 

of Cambodia. In regard to the associated drivers of fire, cluster 1 reported seasonal rainfall 
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patterns with high annual precipitation and severe dry seasons. These climactic factors are also 

coupled with high temperatures and high VPD. Furthermore, cluster 1 shows low human 

influence index values and a high percentage of natural vegetation in comparison to the other 

clusters. 

The fire activity in cluster 2 showed frequent, large, moderate intensity fires in 

Cambodia’s agricultural and forested regions. The climatic drivers associated with cluster 2 

include high temperatures, moderate precipitation, and moderate VPD. This cluster has low 

seasonality, therefore experiencing evenly distributed annual rainfall. Consequently, the dry 

seasons are comparably mild. Moderate human influence index values are shown in this cluster 

with low percentages of natural vegetation.  

Clusters 3 and 5 contain similar fire patterns and are geographically adjacent, where 

cluster 3 is located in Myanmar and cluster 5 is predominately in Thailand. Clusters 3 and 5 

clusters have fires patterns that are infrequent, small, fragmented, and low intensity. Fires 

primarily occur in forests and agricultural land. Climatic associations include moderate-low 

temperatures, moderate-low precipitation, moderate VPD, and severe dry seasons. Cluster 3 and 

5 differ in regard to rainfall seasonality; cluster 3 has moderately low seasonality and cluster 5 

experiences a variable range of seasonal rainfall. Both clusters contain moderate human 

influence index values and moderate-to-high percent natural vegetation. 

Cluster 4 is displays frequent, large, and low intensity fires in Southern Vietnam’s 

agricultural land. Compared to the other clusters, cluster 4 has the lowest median annual 

precipitation, the least severe dry seasons, and least seasonal rainfall patterns, coupled with high 

temperatures and moderate VPD. Furthermore, this cluster is also distinguished by the highest 

median human influence index values and the lowest percentages of natural vegetation.  
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 Cluster 6 was composed of occasional, moderately sized, high intensity fires in the 

forests and agricultural regions of south-central Myanmar. Climatically, this cluster experiences 

moderately high temperatures, high precipitation, severe dry seasons, relatively high rainfall 

seasonality, and moderate VPD. Human influence index values in cluster 6 are moderate, paired 

with moderate percent natural vegetation.  

Cluster 7 contains occasional, fragmented, and moderate intensity fires in the agricultural 

regions of Thailand. The cluster is associated with the highest temperature and VPD, paired with 

moderate precipitation, moderately severe dry seasons, and moderate seasonality. This cluster  

has high human influence index values and low proportions of natural vegetation.  

Finally, cluster 8 depicts infrequent, small, fragmented, and high intensity fires in the 

forests of northern Laos and along the border of Myanmar. In comparison to the other clusters, 

cluster 8 demonstrates the lowest temperatures and lowest VPD, coupled with moderate dry 

seasons, relatively high precipitation, and high rainfall seasonality. The median human influence 

index is the lowest in this cluster, with the highest percentage of natural vegetation.  
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Figure 11. Fire Regime Clusters.  

Spatial distribution of fire regime clusters is displayed and labeled with a description of the distinct features 

identified by: 1) fire radiative power (intensity: high, moderate, low), 2) burned area (large, medium, small), 3) 

number of fires and frequency (frequent, occasional, infrequent), 4) fire size (extent: widespread, moderately sized, 

fragmented), and the 5) landcover type (forest or agriculture). Grey lines distinguish country boundaries.  
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Figure 12. Distribution of Fire Activity per Cluster.  

Boxplots display the distribution of each z-score transformed fire activity metric and number of fires in agriculture 

or forested landcover (y-axis) between each distinct cluster (x-axis) distinguished by color. Boxplots show the mean 

(red diamonds) and the 25th, 50th, and 75th percentile for fire activity metric. The range of the data is shown with 

outliers removed.  
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Figure 13. Distribution of Drivers per Cluster.  

Boxplots display the distribution of each z-score transformed driver of fire (y-axis) by each distinct cluster (x-axis) 

distinguished by color. Boxplots show the mean (red diamonds) and the 25th, 50th, and 75th percentile for fire activity 

metric. The range of the data is shown with outliers removed.  
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Table 5. Cluster Summary Statistics.  

Mean, median, number of grid cells (n), and standard deviation (sd) are shown for each cluster between each fire variable. Fire variables are as follows: Fire 

Radiative Power (FRP), Burned Area (BA), Fire Size (FS), Number of Fires (NF), Fire Frequency (FF).  
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Table 6. Kruskal-Wallis Rank Sum Test.  

Medians between clusters were tested using a Kruskal-Wallis test to determine if clusters were statistically different 

for each fire and driver variable. Fire variables are as follows: Fire Radiative Power (FRP), Burned Area (BA), Fire 

Size (FS), Number of Fires (NF), Fire Frequency (FF). Driver variables are as follows: Mean Annual Precipitation 

(MAP), Maximum Climatological Water Deficit (MCWD), Seasonality Index (SI), Mean Annual Temperature 

(MAT), Vapor Pressure Deficit (VPD), Percent Natural Vegetation (pctnatveg), Human Impact Index (HII).  
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Table 7. Differences in Fire Activity Per Cluster.  

Fire clusters were compared with pairwise comparisons using Wilcoxon rank sum test to determine which of the 

clusters were statistically different from the others per fire variable. Asterisk (*) denotes significant differences at p-

value = 0.05 and (X) denotes not statistically different. 
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Table 8. Differences in Drivers of Fire Per Cluster.  

Fire clusters were compared with pairwise comparisons using Wilcoxon rank sum test to determine which of the 

clusters were statistically different from the others per driver. Asterisk (*) denotes significant differences at p-value 

= 0.05 and (X) denotes not statistically different. 
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3.2.1.1 Fire activity associations with forest loss 

Within forested landcover, I quantified the proportion of fire activity co-occurring in the 

same grid cells as forest loss. In the entire region, 28.8% of the forested grid cells that burned 

were associated with forest loss. Regions where forest loss intersected with fire activity were 

heavily prevalent in Cambodia, south-central Vietnam, and along the northwestern portion of 

Laos (Figure 14). The greatest percentages of forest fires that are associated with forest loss 

occur in Cambodia, followed by Laos and Vietnam (Table 9). Quantifying where burned grid 

cells are associated with forest loss allows us to determine where the fires could be contributing 

to deforestation or helping maintain forest-savanna mosaics.  

 

 

Figure 14. Percent of Burned Grid Cells associated with Forest Loss.  

Proportions of burned forested grid cells that overlap with forest loss for the Hansen Global Forest Change dataset 

are shown for continental Southeast Asia.  
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Figure 15. Boxplots for Forest Loss per Country.  

The distribution of the percentage of burned forested grid cells that overlap with forest loss are shown for each 

country in continental Southeast Asia. 

 

 

Table 9. Forest Fires associated with Forest Loss.  

The percentage of forest fires associated with forest loss are shown for each country in continental Southeast Asia. 
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Chapter 4: Discussion 

My research assessed the anthropogenic, climatic, and landcover drivers that influence 

fire activity and defined the geographic variation of existing fire regimes. Specifically, I found 

that the important climatic predictors of fire activity are strongly associated with decreased 

vegetation moisture. Furthermore, I found that human presence and establishments also help 

define the fire regimes that occur in continental SEA. Finally, I found variations in fire activity 

depending on land use and landcover. Put together, my research broadly describes how the key 

drivers of fire relate to observed fire patterns in continental SEA.  

4.1 Forested ecosystems have greatest fire activity 

I found fire activity to be greatest in forested landcover, with 56% of the fires occurring 

in mixed forest types. My conclusions are consistent with earlier research that suggested the 

greatest fire activity in Cambodia is within forested landcover (Jones 1998). Laos and Myanmar 

are predominately covered in forested landcover (Table 2), and the majority of fires are within 

forested regions (Figure 5). Cambodia and Thailand have more agricultural land than forests 

(Table 2) yet displayed similar proportions of fires in agriculture and forest (Figure 5). Forested 

and agricultural landcover are similarly proportioned in Vietnam (Table 2), but the fires 

primarily occur in agricultural land (Figure 5). Examining the landcover where fires occur can 

provide valuable insights into the variation of fire patterns influenced by vegetation types. 

Within the fire activity in forested landscapes, the most substantial connections between 

fire activity and forest loss occurred in Cambodia and Laos. Here, 65% of the burned forested 

grid cells in Cambodia and 57% in Laos overlapped with forest loss, indicating that fire might 

contribute to changes in the forested landscapes within these regions (Table 7). Previous research 

has found that Cambodia has the highest rates of deforestation within continental SEA in recent 
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decades, while Laos displays high proportions of forests that experience disturbance (Potapov et 

al. 2019). With this, few papers have tied the changing forested landscapes directly to fire 

activity in this region.  

My results suggest that fire may contribute to the deforestation in Cambodia and Laos. 

For Cambodian fires specifically, my finding is corroborated with results from Min-Sung et al., 

who found that deforestation in Cambodia was linked to high fire activity (Min-Sung et al. 

2023). However, Tyukavina et al. 2022 found contrasting outcomes demonstrating that forest 

loss in Cambodia and Laos resulted from non-fire deforestation practices. Possible explanations 

for this discrepancy could be due to the type of deforestation practiced in SEA, where common 

deforestation practices in Indonesia begin by felling trees prior to burning (Gaveau et al. 2014). 

Further research could disaggregate the causes of forest loss in SEA and determine whether fire 

is a driving force for deforestation.  

I acknowledge that my forested land classification combines multiple forest types (e.g., 

seasonally dry evergreen forests and deciduous dipterocarp formations), where forests have 

varying flammability and fire adaptations (Jones 1998; Bond and Keeley 2005). With the 

resolution of my study, I am limited in differentiating the variations in forest types. Therefore, 

my results are generalizations about forest fires, as I cannot distinguish fire activity between 

different types of woody vegetation.  

 

4.2 Climactic influence on vegetation moisture impacts fire activity 

Climatic conditions affecting vegetation moisture, such as temperature and vapor 

pressure deficit, are key components to fire activity in continental SEA. My results are consistent 

with existing literature demonstrating the influence of climate on dry vegetation and fire activity 
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(van der Werf et al. 2008; Jiang, Zhou, and Raghavendra 2020; Archibald et al. 2010; Alvarado 

et al. 2017). Future climate projection models have demonstrated that SEA is expected to 

experience overall drier conditions (Supari et al. 2020; Tangang et al. 2019; Supharatid, Aribarg, 

and Nafung 2022), coupled with steadily increasing surface temperatures (Suzuki, Takeda, and 

Thein 2009; Li et al. 2019). Thus, the projected climatic shifts will likely impact future fire 

activity. 

4.2.1 Evidence for ecological fires 

Cluster 1 is a distinct fire regime that is located among the deciduous dipterocarp 

formations in northeastern Cambodia. Here, frequent fire disturbance contributes to maintaining 

the distribution between forest and savanna (Pletcher, Staver, and Schwartz 2022). The fire 

regime identified in cluster 1 shows large, frequent, and intense fires. Large and frequent fires 

are consistent with fire patterns observed in tropical mesic savannas (Ratnam et al. 2011), 

however the intensity and overlap with forest loss suggests that fires also contribute to 

deforestation in this region. Disaggregating the role that fire plays in this ecosystem will require 

further research into how the landscape is changing and how to define the present ecosystem. 

Currently, the classification of these forest-savanna mosaics is under debate, where emerging 

evidence shows that the mosaic structure is misclassified as a forest and should instead be 

classified as a savanna (Ratnam et al. 2016; 2011). The ecological relationship with fire differs 

between forests and savannas. Thus, defining the correct ecosystem type affects how fire 

management policies could change existing ecosystems. My results show the potential for 

naturally occurring frequent fires to exist in this region in conjunction with deforestation fires, 

which encourages further research to define and enforce ecosystem-appropriate fire management 

adaptations. 
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4.3 Human relationships with fire activity 

4.3.1 Human establishments generally result in decreased fire activity 

Human presence and infrastructure were inversely related to fire activity, where fires 

were more frequent in regions with minimal human establishments. Previous studies have shown 

that urban or developed areas correspond with reduced fire activity due to land management or 

fire suppression practices aimed at protecting human establishments (Alvarado et al. 2017; 

Andela et al. 2017; Boulanger et al. 2013). Further, road density and other anthropogenic 

infrastructure may act as fire breaks or help facilitate fire monitoring and suppression, which 

results in decreased or minimized fire activity (Oliveira et al. 2012). With the destructive 

potential of fire near human populations and infrastructure, decreased fire activity with greater 

human establishments is expected. 

4.3.2 Evidence for human-driven fires  

4.3.2.1 Human-driven agricultural fires  

The fire patterns observed within cluster 4 suggest a fire regime that has been influenced 

by agricultural activity. Cluster 4 presents large, frequent, and low intensity fires that align with 

the characteristics of fires commonly used for shifting cultivation in agricultural areas 

(Devineau, Fournier, and Nignan 2010; T. V. Nguyen et al. 2023; Andela et al. 2017). In the 

context of the Central Highlands of Vietnam, an shift in the fire regime was associated with 

widespread agricultural fire practices that increased ignition potential and allowed fires to occur 

annually (T. V. Nguyen et al. 2023). The high fire activity observed in the Central Highlands of 

Vietnam resembles the fire regime described for cluster 4, where both regions show increased 

fire frequency linked to agricultural activity. The fire patterns identified in cluster 4 present 

strong indications of a fire regime shaped by humans through agricultural land management.  
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4.3.2.2 Human-driven fires in forests 

The fire regime identified in cluster 8 is associated with deforestation fires. Previous 

research has found that fire patterns tied to deforestation tend to exhibit higher intensity because 

the fires are used to remove natural vegetation from the area (Cano-Crespo et al. 2022). 

Accordingly, cluster 8 displayed small, high intensity fires with high associations of burned and 

lost forest. Further research has demonstrated that frequent forest disturbance occurred in this 

region due to the high presence of young forests (Potapov et al. 2019). Our results suggest that 

the fire activity might contribute to the observed forest disturbances within this portion of 

northern Laos.  

 

4.4 Limitations 

My research used remotely sensed satellite data to broadly describe fire-driver 

relationships. In particular, I used MODIS fire products to quantify fire activity in this study. 

MODIS products primarily capture large thermal anomalies, and does not capture small, low-

intensity fires (Boschetti and Roy 2008; Maier et al. 2013). Therefore, my research is biased 

towards emphasizing fire regimes with larger and more intense fire events, such as deforestation 

fires. As a result, my research struggles to capture the surface fires that occur in forest-savanna 

landscapes, where fires are low-intensity and obscured by intact canopy cover. Future work 

could supplement my research with ground-verified fire data or higher-resolution imagery to 

incorporate finer-scale fire activity.  

Furthermore, my variables were selected by conducting a broad literature review 

identifying primary drivers of fire activity globally, and considered when remotely sensed 
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datasets were available for SEA. I did not include all the variables that impact fire activity, such 

as soil moisture, wind, and topography (Bond and Keeley 2005; Boulanger et al. 2013). Local 

weather stations and field data were also absent from this study. Additional research could 

include supplementary information or data sources to enhance and validate how the variables 

drive fire activity.  

Previous studies have investigated drivers of fire activity with finer temporal resolutions, 

resulting in a greater understanding of annual and interannual effects on fire (Corona-Núñez and 

Campo 2022; Zubkova et al. 2019). Interannual analysis allows for investigation into the effects 

of climatic anomalies, which has helped identify drivers of extreme events (Jain et al. 2022; 

Vadrevu et al. 2019). My study aimed to describe an overview of the long-term fire regime 

trends. Therefore, investigating fire-driver relationships at shorter time scales still remains 

necessary for future consideration.  

 

4.5 Key Takeaways and Significance 

Continental SEA encompasses different fire regimes driven by variations in human 

activity, climatic factors, and landcover types. Climatic factors that affected vegetation moisture 

(i.e.: temperature, dry season severity, and vapor pressure deficit) and human establishments 

were important predictors of fire activity. We identified fire regimes that were associated with 

human drivers, such as deforestation in Cambodia and Laos and agricultural activity in Vietnam. 

We also distinguished ecological fires in the forest-savanna mosaics in Cambodia. Identifying 

the geographic distribution of fire patterns and their underlying drivers is essential for 

understanding Southeast Asian ecosystems, which could further inform ecologically appropriate 

fire management solutions.  
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