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Abstract

The optimization of legacy industrial processes is critical for the economic viability

of many rural communities in Canada. Automation and advanced process control

is of paramount importance for many large-scale industrial processes to maintain

viability in a constricting regulatory environment that is increasingly competitive

economically. However, with legacy industrial processes comes a rich history of

automation, including large quantities of underappreciated process data. This dis-

sertation is about leveraging existing historical data with machine learning and

process analytics to generate novel data-driven solutions to outstanding process

faults. An application-driven approach provides insights into the full stack of con-

siderations including identifying and framing data-driven opportunities for con-

trol of complex industrial processes, acquiring the necessary resources, preparing

the data, developing and evaluating methods, and deploying sustainable solutions.

Contributions are made to help address highly troublesome faults in two distinct

industrial processes.

The first industrial case study involves mitigating the impact of unexpected loss of

plasma arc in an electric arc furnace that is key to a 60,000 tonne/year pyrometal-

lurgy operation. A convolutional neural network classifier is trained to learn a rep-

resentation from the operating data that enables prediction of the arc loss events.

The operating data and problem formulation are published as a novel benchmark

challenge to address observed shortcomings with existing fault detection bench-

mark literature.

The second industrial case study involves advanced monitoring of a rotary lime kiln
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in a 152,000 tonne/year kraft pulp mill to mitigate faults such as ring formation and

refractory wear. A novel shell temperature visualization strategy is published that

enables improved monitoring and empowers researchers and industry profession-

als to obtain value from thermal camera data. Various approaches are studied for

monitoring ring formation. Aberrations in shell temperatures led to the discovery

of a novel phenomenon known as rotational aliasing that has important implica-

tions for measurement and analysis of shell temperature data. Finally, inferential

sensing of residual calcium carbonate content is studied to help optimize specific

energy and reduce emissions.
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Lay Summary

In recent decades, a powerful secular trend towards digital transformation has

emerged in advanced manufacturing, and society at large. Industrial chemical

and biological processes are deploying advanced measurement and instrumentation

technologies that produce an increasingly overwhelming amount of data. This has

triggered a torrent of research and investment in data-driven process optimization

and advanced process control. However, these capital intensive and safety sensitive

operating environments are also inherently risk averse. This research aims to help

bridge the divide between the ambitions of artificial intelligence and the assurances

required by existing industrial operations. Raw data from large scale industrial pro-

cesses is used to derive operating insights and engineer tools for advanced process

control. Specifically, operating data from a 60,000 tonne/year pyrometallurgical

plant and a 152,000 tonne/year kraft pulp mill is combined with process knowl-

edge and machine learning to develop algorithms that can improve safety, reduce

environmental impacts, and increase profitability.
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Preface

During the years of research that went into preparing this dissertation there were

two distinct collaborations with industry partners along with various collaborations

with peers in academia. All of the work presented was conducted in the Data Ana-

lytics and Intelligent Systems Laboratory at the University of British Columbia.

The first two chapters discuss assorted machine learning and process analytics

applications for advanced process control in collaboration with, Prof. Bhushan

Gopaluni, Prof. Philip Loewen, Dr. Michael Forbes, Johan Backstrom, Prof. Qi-

ugang Lu, Dr. Yiting Tsai, Dr. Kai Wang, Siang Lim, and Shams Elnawawi with

the following research output:

• Q. Lu, L. D. Rippon, R. B. Gopaluni, M. G. Forbes, P. D. Loewen, J. Back-

ström, and G. A. Dumont. Noncausal modeling and closed-loop optimal in-

put design for cross-directional processes of paper machines. In 2017 Amer-

ican Control Conference (ACC), pages 2837–2842. IEEE, 2017

• Y. Tsai, Q. Lu, L. Rippon, S. Lim, A. Tulsyan, and B. Gopaluni. Pattern

and knowledge extraction using process data analytics: A tutorial. IFAC-

PapersOnLine, 51(18):13–18, 2018

• L. D. Rippon, Q. Lu, M. G. Forbes, R. B. Gopaluni, P. D. Loewen, and

J. U. Backström. Machine direction adaptive control on a paper machine.

Industrial & Engineering Chemistry Research, 58(26):11452–11473, 2019

• K. Wang, L. Rippon, J. Chen, Z. Song, and R. B. Gopaluni. Data-driven dy-
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namic modeling and online monitoring for multiphase and multimode batch

processes with uneven batch durations. Industrial & Engineering Chemistry

Research, 58(30):13628–13641, 2019

• S. C. Lim, S. Elnawawi, L. D. Rippon, D. L. O’Connor, and R. B. Gopaluni.

Data quality over quantity: Pitfalls and guidelines for process analytics. IFAC

World Congress 2023, pages 1–8, 2023

I was the lead investigator for the 2019 publication on machine direction adaptive

control. I was responsible for concept formation, data analysis, and manuscript

composition whereas the co-authors supported concept formation and manuscript

review. For the remaining publications the first author was the lead investigator

while myself and the remaining authors had supporting responsibilities on data

analysis, concept improvement, and manuscript composition.

Chapter 3 presents research on fault detection in a pyrometallurgy process in col-

laboration with BBA Engineering Consultants. Contributions were made by Prof.

Bhushan Gopaluni, Prof. Sirish Shah, Dr. Carole Prévost, Michel Ruel, and

Ibrahim Yousef with the following research output:

• Foundations of Process Analytics and Machine Learning (FOPAM) 2019,

Raleigh NC. Poster presentation on “Representation Learning for Inferential

Sensor Development in an Electric Arc Furnace.”

• L. D. Rippon, I. Yousef, R. B. Gopaluni, B. Hosseini, J. F. Beaulieu, C. Prévost,

and S. L. Shah. Process analytics and machine learning to predict arc loss in

an electric arc furnace. In 59th Conference of Metallurgists 2020 hosting the

4th International Uranium Conference, 2020.

• The 3rd BC Universities Systems and Control Meeting, Victoria BC, Aug.

2020. Presentation on “Process Analytics and Machine Learning to Predict

Arc Loss in an Electric Arc Furnace.” Awarded Best Presentation Award.

• Emerging Technologies: BC’s AI Showcase Conference by UBC’s Centre

for Artificial Intelligence Decision-making and Action (CAIDA), Vancouver

BC, Nov. 2020. Poster presentation on “Process Analytics and Machine
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Learning to Predict Arc Loss in an Electric Arc Furnace.”

• I. Yousef, R. B. Gopaluni, L. D. Rippon, S. L. Shah, J. F. Beaulieu, and C.

Prévost. Poster presentation on “Process Data Analytics and Representation

Learning to Predict Arc Loss in an Electric Furnace” at 2020 Virtual AIChE

Annual Meeting .

• L. D. Rippon, I. Yousef, B. Hosseini, A. Bouchoucha, J. F. Beaulieu, C. Prévost,

M. Ruel, S. Shah, and R. B. Gopaluni. Representation learning and predic-

tive classification: Application with an electric arc furnace. Computers &

Chemical Engineering, 150:107304, 2021

• I. Yousef, L. D. Rippon, C. Prévost, S. L. Shah, and R. B. Gopaluni. The

arc loss challenge: A novel industrial benchmark for process analytics and

machine learning. Journal of Process Control, 128:103023, 2023

For this industrial case study I was initially lead investigator, then I. Yousef and my-

self were co-lead investigators, and towards the end of this work I. Yousef led and

I supported. For all of these publications I. Yousef and myself closely shared in the

majority of responsibilities (e.g., data analysis and concept formation), with first

authorship indicating who led manuscript composition. The presentations listed

here were delivered by me. The remaining co-authors provided support with data

acquisition, conceptual guidance, and manuscript review.

Chapter 4 presents research on fault detection and soft sensor development for

rotary lime sludge kilns in collaboration with Canfor Pulp and Spartan Controls.

Contributions were made by Prof. Bhushan Gopaluni, Prof. Philip Loewen, Dr.

Peter Gorog, Devin Marshman, Carl Sheehan, Dr. Paul Bicho, Barry Hirtz, Travis

Reinheimer, and Cilius van der Merwe with the following research output:

• PACWEST 2021 Technical Conference. Presentation on “Detection and Di-

agnosis of Ring Formation in Rotary Lime Kilns - Part I Developing a Ring

Formation Indicator.” Awarded Best Student Paper Award [104].

• L. Rippon, B. Hirtz, C. Sheehan, T. Reinheimer, P. Loewen, and B. Gopaluni.

Visualization of multiscale ring formation in a rotary kiln. Nordic Pulp &
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Paper Research Journal, 36(4):549–558, 2021

• L. D. Rippon, B. Hirtz, C. Sheehan, T. Reinheimer, C. van der Merwe,

P. Loewen, and B. Gopaluni. Detection and diagnosis of ring formation in

rotary lime kilns. Canadian Chemical Engineering Conference Proceedings,

pages 23–29, 2021

• L. D. Rippon, B. Hirtz, C. Sheehan, T. Reinheimer, C. van der Merwe,

P. Loewen, and B. Gopaluni. Rotary kiln monitoring with shell tempera-

ture visualization and process analytics. In 2022 TAPPI PEERS and IBBC

Conference Proceedings. TAPPI Press, 2022

I was lead investigator for this industrial case study and I was responsible for lead-

ing the data analysis, concept formation, and manuscript composition for all of the

items listed above. The co-authors provided support with important feedback on

the concepts and methods of analysis, help with data acquisition, and assistance

with manuscript review.
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Chapter 1

Introduction

More evidence-based decision-making in the operation, control, and optimization

of large-scale industrial processes is critical for minimizing environmental impacts

and maintaining economic viability. The adoption of statistics, computation, and

machine learning (ML) in a world that is increasingly represented digitally, has

led to more evidence-based decision-making across many walks of life [55]. Pro-

cess analytics refers to the application of advanced analytics and ML techniques to

manufacturing data [122]. This dissertation is about process analytics and ML with

operating data from industrial processes (e.g., pyrometallurgy and kraft pulping)

for advanced process control (APC) applications such as process monitoring, fault

detection and diagnosis (FDD), and inferential sensing.

1.1 Machine Learning and Process Analytics
Throughout the last decade an immense amount of attention has been drawn to the

field of artificial intelligence (AI). In addition to algorithmic and computational ad-

vances, a significant portion of that attention stems from a series of breakthroughs

in a domain of AI known as ML. In fact, it is a sub-domain of ML, referred to as

deep learning, that is responsible for a great deal of the recent interest around AI.

Deep learning is an emerging paradigm in ML that broadly involves using large
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amounts of data to train artificial neural networks (ANNs) with multiple hidden lay-

ers, i.e., deep neural networks (DNNs). The diversity of parameter-expression ar-

chitectures recently developed with deep ANNs is a modern technological achieve-

ment. Deep learning techniques have demonstrated state of the art results on pattern

recognition problems [71]. While deep learning is commonly associated with ped-

agogical examples such as classifying handwritten digits (c.f., MNIST) or images

of cats and dogs, it is in fact consequential to all three pillars of ML. As Figure

1.1 illustrates, the field of ML has three major pillars (i.e., paradigms), including

supervised learning, unsupervised learning, and reinforcement learning [75, 124].

Machine learning

Supervised

 learning

Unsupervised

 learning

Reinforcement

 learning

Figure 1.1: The field of machine learning includes three pillars, i.e., super-
vised learning, unsupervised learning, and reinforcement learning.

Reinforcement learning involves learning how an agent should interact with an

environment to maximize a cumulative reward signal. This paradigm of ML has

strong connections to optimal control as both involve optimizing a control policy

by analyzing the feedback of interactions with a process or environment. Unsuper-

vised learning involves learning unknown patterns and discovering hidden struc-

tures with unlabeled data. Common examples of unsupervised learning include

data exploration activities such as clustering and certain forms of dimensionality
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reduction, e.g., principal component analysis (PCA). Finally, supervised learning

involves learning a mapping from input data to labeled output data.

Although unsupervised learning methods are studied for data exploration and di-

mensionality reduction, this work primarily involves using advanced techniques

from supervised learning to increase the production efficiency and reduce the envi-

ronmental impact of large-scale industrial processes. In supervised learning, ma-

trices of feature vectors (or inputs) are presumed to provide contextual information

for vectors of outputs (or targets). The term is inspired by viewing the labeled out-

puts as providing supervision to the ML algorithm [38]. For instance, given tuples

of inputs X and outputs Y , supervised learning algorithms aim to learn a mapping

from X → Y with large quantities of labeled training data that accurately predicts

Y given new observations of X . Outputs are continuous for regression problems

and discrete (or categorical) for classification problems.

In the context of kraft pulping, an example of regression is using historical process

data to predict the specific energy of a lime kiln (i.e., the amount of energy that is

expended per unit of lime produced). Alternatively, a relevant example of super-

vised learning for classification is learning a mapping from the historical process

data to labeled process faults in order to predict future faults. In this classification

example the output is discrete because it either indicates that there will be a fault

(e.g., Y = 1) or that there will not be a fault (e.g., Y = 0). In fact, this predictive

classification problem is the focus of the pyrometallurgical application presented

in Chapter 3.

1.2 Motivation
Inference is the process of reaching conclusions based on evidence and reason-

ing. The ubiquity of advanced digital technology in society (e.g., smartphones) has

highlighted the importance of inferential methods that can leverage large quanti-

ties of data. Whether it be through ML, optimization, or statistics, it has become

more important than ever for engineers and scientists to enhance their inferen-

tial prowess. In fact, concepts such as AI, autonomous systems, and big data

analytics have drawn increased interest for applications with chemical processes
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[33, 99, 132]. While algorithmic progress on benchmark case studies has devel-

oped rapidly, successful industrial implementation has proven much more chal-

lenging. This research explores this discrepancy while addressing novel industrial

case studies with historical operating data from pyrometallurgical and kraft pulping

processes.

The focus of this work is primarily on supervised learning techniques for prelimi-

nary development of novel process monitoring solutions. This scope is largely in-

herited by the constraints of developing novel data-driven solutions to help mitigate

outstanding process faults in safety-critical real-world industrial environments. To

capture the full benefits of advanced automation, closed loop APC solutions are ulti-

mately desirable. However, prematurely giving an innovative algorithm the ability

to directly manipulate variables in an industrial process is typically neither appro-

priate nor responsible. The high-stakes nature of these environments often enforces

a conservative solution development life-cycle. Implementing changes that impact

production requires buy-in from multiple parties including management, engineers,

operators, and subject matter experts (SMEs).

There are alternative, more theoretical, approaches to developing data-driven APC

solutions. For example, if a high fidelity simulator (i.e., a digital twin) is available

then innovative closed loop control algorithms can be implemented and evaluated

in a low-risk environment. Process monitoring benchmark challenges can be used

to compare many different algorithms on the same dataset. This flavor of research

is often characterized by complicated ML workflows that seek incremental perfor-

mance improvements on well-understood problems (e.g., benchmarks) for which

many alternative solutions exist. Unfortunately, this style of research is of mini-

mal practical utility and is over-represented in literature. The divide between the

simplicity of simulations and the complexity of real-world processes is insuffi-

ciently addressed to yield practical utility. No coherent value proposition exists for

implementing costly changes to a reliable, proven solution based on incremental

performance in a low-fidelity experiment.

In a world captivated by the achievements of AlphaGo [117], the prospect of a

deep reinforcement learning (DRL) controller with minimal dependence on process
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knowledge has become highly enticing. As Chapter 2 describes, this prospect led

to a torrent of research in advanced deep learning methods for FDD. However, thus

far, the real-world impact of the deep learning revolution in the field of industrial

process control has been relatively insignificant. Perhaps the prospect of giving

a black-box DNN algorithm, with limited (if any) interpretability, the ability to

control an oil refinery is more well-received at conferences than in control rooms.

There is value and a need for both practical, application-oriented research as well

as theoretical, visionary research. Unfortunately, with the excitement around AI

and Industry 4.0, a sensible balance of research styles has been neglected. There

are citation incentive structures inherent in academia that reward broad intellec-

tual trend-setting and early adoption of state-of-the-art (SOTA) algorithms. There

are also challenges that disincentivize research with tangible aspirations such as

intellectual property concerns with industrial collaborations, acquiring and learn-

ing from industrial process data, accounting for safety-critical process conditions,

and obtaining buy-in from operators and SMEs. This dissertation aims to help re-

searchers and practitioners overcome these challenges to deliver outcomes with

strong prospects for industrial implementation and real-world impact.

Although this situation is untenable, it is not beyond repair. Embracing the need for

ML researchers and practitioners to immerse themselves in the relevant application-

specific process knowledge is essential. Instead of conveniently bypassing operator

and SME concerns to develop SOTA solutions with minimal intention for industrial

implementation, there is a need for prioritizing a commitment to do the hard work

to improve industry outcomes. This involves rigorous consideration of process

conditions, equipment limitations, and first principles process knowledge. It re-

quires extensive collaboration with industry professionals to develop solutions that

empower operators and SMEs to increase production efficiency.

1.3 Objectives
This dissertation contributes to the balance of theoretical and practical research in

data-driven approaches to monitor, control, and optimize industrial processes. At

a fundamental level, this research addresses two specific case studies and develops
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process monitoring tools that use operating data to help mitigate outstanding faults

in an electric arc furnace and a rotary lime sludge kiln. At a more abstract level, this

work identifies underlying, process agnostic challenges encountered while learn-

ing from industrial process data. Guidelines for these challenges are provided by

reflecting on experience from case studies and industry.

1.3.1 Improving operating outcomes with industrial data

The overarching objective of this dissertation is to help researchers and practition-

ers leverage historical operating data to improve operating outcomes. This objec-

tive is accomplished by studying best practices, proposing an overall methodology,

demonstrating and refining it on case studies, and reflecting on underlying chal-

lenges to help others avoid common pitfalls. The proposed approach involves em-

bracing domain-specific process knowledge and progressing from offline insights,

to process monitoring, and ultimately closed loop control.

The proposed research methodology amounts to an APC solution development

framework that prioritizes using historical process data to improve industrial out-

comes. It involves learning from historical process data with ML, process knowl-

edge, and SME guidance to develop and validate process monitoring tools that

mitigate highly detrimental process faults. This framework provides a low-stakes

proof-of-concept within the real operating environment to help novel process mon-

itoring tools evolve into closed loop APC solutions.

Finally, given the popularity and success of benchmark challenges for research in

ML and FDD, a novel FDD benchmark challenge is developed based on the pyromet-

allurgy case study. Large quantities of raw industrial operating data are published

along with a novel supervised learning FDD challenge to improve the practical util-

ity of process analytics benchmark research.

1.3.2 Predicting arc loss in an electric arc furnace

The objective of the first industrial case study is to predict the unexpected loss

of plasma arc in an 80 MW twin electrode direct current (DC) electric arc fur-

nace (EAF). This furnace serves as a smelter and is the most energy-intensive unit
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operation in a 60,000 tonne/year integrated mining and pyrometallurgy process

[63]. Specifically, the objective is to develop an algorithm that can use routine op-

erating data to provide operators with a reliable early warning of an impending arc

loss event (e.g., five minutes prior) such that preventative measures can be taken

to avoid a significant process upset. As Chapter 3 demonstrates, the economic and

environmental losses incurred by unexpected loss of plasma arc are immense. The

novel FDD benchmark mentioned before is referred to as The Arc Loss Challenge

[149]. The goal of publishing this benchmark is not just to enable more industri-

ally relevant FDD research generally, but also to crowd-source enhanced solutions

to the arc loss problem specifically.

1.3.3 Lime kiln monitoring with infrared thermal cameras

The problem formulation for the second industrial case study is not nearly as

straightforward and there is no known means by which the data can be accurately

labeled. Therefore, a significantly more immersive and rigorous consideration of

process knowledge is undertaken. The objective of this research is to study how

thermal cameras can be used with routine operating data and ML to improve the

production efficiency of a rotary lime sludge kiln.

As the largest energy consumer in a 152,000 tonne/year kraft pulp mill it is of

paramount importance, both from economic and environmental perspectives, to op-

erate the kiln efficiently. Ring formation is known as the most troublesome problem

for lime kiln operation [126]. As such, detecting and diagnosing ring formation is

a primary focus of this research, and as Chapter 4 describes, the feasibility of this

endeavor is highly dependent on data quality. In addition to kiln monitoring with

thermal cameras, another focus of this research is the development of an inferential

sensor to predict residual calcium carbonate and optimize lime kiln control.

1.4 Thesis Outline and Contributions
The remainder of this dissertation is divided into five chapters. Chapter 2 intro-

duces advanced applications of ML for FDD, presents limitations in literature, high-

lights opportunities for leveraging industrial data, and identifies common underly-
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ing challenges while learning from process data. Chapter 3 and Chapter 4 present

the pyrometallurgy and kraft pulping case studies, respectively. Relevant literature

is reviewed throughout these three chapters. Chapter 5 reflects on case study and

industry experience to provide guidelines and best practices for overcoming the

challenges encountered while applying analytics and ML to industrial process data.

Finally, concluding remarks are provided in Chapter 6.

Chapter 2 provides background into industrial applications of process analytics

and ML. Both academic literature and practical experience are leveraged to present

advances in FDD, describe how value can be generated from historical process data,

and propose an APC research methodology that focuses on improving operating

outcomes with industrial data. This methodology is presented in Chapter 2 along

with insights such as challenges and practical considerations informed by both

literature and practice. Introducing the ML workflow terminology and procedures

in Chapter 2 allows subsequent chapters to focus on the process knowledge and

engineering required for each case study.

Chapter 3 presents the pyrometallurgical case study on loss of furnace plasma arc.

First, important background information is provided to introduce the industrial pro-

cess and the process fault. An end-to-end study is then presented that takes raw

historical operating data, formulates an ML problem, develops various inferential

sensor models using both traditional and advanced supervised learning methods,

and then compares them. Practical lessons (e.g., the importance of process knowl-

edge) are learned during this case study to inform better research practices.

The lime kiln case study is presented in Chapter 4 and it begins with a comprehen-

sive introduction to the important role of rotary lime sludge kilns in the kraft pulp-

ing industry. The use of infrared thermal cameras on lime kilns is described and

a novel data visualization strategy is presented. By analyzing aberrations in shell

temperatures a previously unknown phenomenon known as rotational aliasing is

discovered. Various methods for monitoring ring formation are studied. Inferential

sensing of residual calcium carbonate is studied with various supervised learning

methods to help optimize kiln energy efficiency.

Chapter 5 presents research findings and best practices for learning from industrial
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process data. Challenges raised in Chapter 2 are addressed by guidelines discussed

in Chapter 5. Reflecting on experience from the pyrometallurgy and kraft pulping

case studies provides pitfalls and guidelines to help future researchers and prac-

titioners. To conclude this chapter, existing benchmarks for FDD are reviewed,

shortcomings are identified, and a novel industrial FDD benchmark is introduced.

Finally, Chapter 6 presents conclusions and future work specific to each of the

industrial case studies. This is followed by providing high-level conclusions on

improving the practical utility of research on applications of process analytics and

ML for monitoring, optimization, and control of chemical and biological processes.
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Chapter 2

Industrial Applications of Process
Analytics and Machine Learning

“Applications of machine learning and artificial intelligence in advanced man-
ufacturing and control of chemical and biological processes.” Text to generate im-
ages with DALL·E 2 [1].1

1Note that these are computer generated images used only for abstract conceptual visualization.
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This chapter provides background into industrial applications of process analytics

and ML. A comprehensive literature review of all the APC use-cases for ML is well

beyond the intended scope. Instead, Section 2.1 focuses on reviewing literature for

FDD methods and recent advances with DNN architectures. Section 2.2 provides

more pragmatic considerations. High impact use-cases are presented chronologi-

cally with respect to their role in the proposed APC solution development methodol-

ogy. This methodology is further described by discussing the important challenges

encountered during the various stages of learning from industrial process data.

2.1 Fault Detection and Diagnosis in Chemical and
Biological Processes

The literature on ML and statistical methods for FDD is in some ways rich and

in other ways limited. There are often only a limited number of studies on FDD

methods for specific industrial applications (e.g., rotary kiln monitoring) and their

relevance is often complicated by differences in the underlying process, lack of

transparency, and technical limitations (i.e., missing context and incomplete data

analysis). More generally, the FDD literature is quite advanced, particularly with

respect to the breadth of advanced solution methods that have been proposed on

popular benchmarks like the Tennessee Eastman process (TEP) [22].

As a well-developed field that has drawn industrial interest for over fifty years the

terminology related to work in FDD can be overwhelming. For instance, FDD is

sometimes considered a sub-discipline of process monitoring, or more specifically,

statistical process monitoring (SPM). In other cases, FDD activities are considered

a central component of abnormal event management (AEM), which is itself a key

component of supervisory control. Knowledge of the different hypernyms for FDD

is valuable for conducting a literature search, but otherwise it is of little importance

relative to understanding the procedures and methods. Detection and diagnosis

of process faults is not the complete picture as additional activities such as fault

identification, fault isolation, fault estimation, fault reconstruction, and process

recovery have been included in the general FDD procedure [22, 53].

This section introduces data-driven methods for fault detection and it includes ma-
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terial from the following journal publication:

• L. D. Rippon, I. Yousef, B. Hosseini, A. Bouchoucha, J. F. Beaulieu, C. Prévost,

M. Ruel, S. Shah, and R. B. Gopaluni. Representation learning and predic-

tive classification: Application with an electric arc furnace. Computers &

Chemical Engineering, 150:107304, 2021.

2.1.1 Process history based methods

Traditional methods for FDD have been comprehensively reviewed and broadly

separated into three categories, i.e., i) quantitative model-based methods, ii) qual-

itative model-based methods, and iii) process history based methods [133–135].

The objective of learning from historical operating data implies a focus on pro-

cess history based methods which are divided into quantitative and qualitative sub-

categories. Classical examples of quantitative process history based methods in-

clude popular ML methods such as PCA, partial least squares (PLS), the Bayes

classifier, and early implementations of neural networks [134]. The PCA and PLS

methods were fundamental to the development of FDD as a field so they are de-

scribed briefly in what follows.

Principal component analysis

The PCA statistical procedure was introduced in the early 20th century to decom-

pose a multivariate dataset into a basis set of linearly uncorrelated orthogonal vari-

ables called principal components [96]. It was subsequently used in multivariable

quality control and has since been further extended and applied in process systems

engineering (PSE) where it is categorized as a quantitative process history based

method for FDD [46, 89, 125]. The convention for FDD is to calculate the Hotelling

T 2 statistic with the largest singular values and the Q statistic with the smallest sin-

gular values. The T 2 statistic defines normal process behavior and any observation

vectors that fall outside of the T 2 region indicate that a fault has occurred. Alterna-

tively, the Q statistic is used to define a threshold that indicates whether or not the

characteristics of the measurement noise have changed significantly [111, 116].

Consider a pre-processed set of historian data that has been centered (i.e., col-
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umn means subtracted), X ∈ Rn×d where X includes the output label data as addi-

tional columns. The covariance matrix of X is denoted S ∈ Rd×d and is given by

S = X⊤X/(n− 1). The typical eigendecomposition of S is given by S = V ΛV−1

where the i-th column of V ∈ Rd×d is the eigenvector vi of S or alternatively, the

loading vectors or principal directions of the data X . The diagonal matrix Λ∈Rd×d

contains eigenvalues λi that are sorted in order of decreasing magnitude. Given a

symmetric matrix S with distinct eigenvalues λi, the eigenvector columns of V are

orthogonal (i.e., V−1 =V⊤) and the eigendecomposition becomes S =V ΛV⊤. The

principal components or principal component scores can be calculated by project-

ing the data onto the principal directions, i.e., C = XV , where the i-th column of

C is the i-th principal component of X [118]. Alternatively, PCA can be conducted

with singular value decomposition of the centered data matrix X where singular

values (σi) are related to eigenvalues by λi = σ2
i /(n−1) [116].

Partial least squares

As with PCA, PLS (also known as projection to latent structures) is a linear rep-

resentation learning method with a rich history of use in PSE. The PLS approach

was first introduced by Herman Wold in the 1970s and has since been used exten-

sively in chemical process industries as a chemometrics method for applications

such as FDD [72, 141]. One drawback of PCA is that although some principal com-

ponents may describe significant variance in X , those same principal components

might not be relevant for predicting the output labels, Y . As a supervised learning

method, PLS regression maximizes the covariance between the input data, X , and

output data (or labels), Y ∈ Rn×dy , in the latent space via the non-linear iterative

PLS algorithm [113].

The centered input matrix X and output matrix Y are each decomposed as, X =

LP⊤+E and Y = MQ⊤+F , where L ∈ Rn×a and M ∈ Rn×a are latent score ma-

trices, P ∈ Rdx×a and Q ∈ Rdy×a are loading matrices, E ∈ Rn×dx and F ∈ Rn×dy

are residual matrices and a is the PLS component or reduction order [112]. The

iterative PLS regression algorithm initializes X1 := X and Y1 :=Y and then proceeds

to maximizing l⊤i mi (for each iteration i) by initializing m1 as one column of Y and
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solving the following set of equations until convergence is achieved:

w1 =
X⊤

1 m1

∥X⊤
1 m1∥

, l1 = X1w1, q1 =
Y⊤

1 l1
∥Y⊤

1 l1∥
, and m1 = Y1q1, (2.1)

where ∥· · ·∥ represents the Euclidean norm or ℓ2 norm. The X-weights (w1) are

updated with the Y-scores (m1) until the change in l1 is negligible or below some

specified error [112, 141]. The same procedure is repeated for the next iteration

by replacing X and Y with the residual matrices, i.e., Xi+1 = Ei = Xi − li p⊤i and

Yi+1 = Fi = Yi −miq⊤i where pi = X⊤
i li/∥l⊤i li∥.

Qualitative process history based methods

Contrary to quantitative process history based methods are qualitative process his-

tory based methods such as expert systems. An expert system is a computer pro-

gram that emulates the reasoning ability of an SME with a knowledge base and

if-then rules-based logic [7]. Combining expert systems with ML enables the inte-

gration of first principles process knowledge with prediction models. As an inter-

esting aside, expert systems are an example of symbolic AI which was a dominant

paradigm in AI research before the contemporary preeminence of deep learning

[38] and other connectionist approaches to AI.

2.1.2 Performance benchmarking - limitations and opportunities

Restricting scope to process history based methods is helpful, but more insight can

be gained by applying these methods on standard benchmark datasets and com-

paring their performance. The TEP benchmark dataset is particularly relevant as

it has a well established history in process control and FDD research. As helpful

as benchmark challenges can be (e.g., for literature review, hands-on practice, and

model evaluation) they also have limitations and can be prone to misuse.

Chapter 1 included some critical remarks on the abundance of research that uses

benchmark datasets to circumvent the more tedious and less academically exalted

aspects of applying ML solutions to industrial problems. The procedure for ad-

dressing an industrial problem with an ML or data-driven solution broadly follows
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the stages outlined in Figure 2.12. Research with simulated (or highly procured)

Figure 2.1: Stages involved with delivering a novel data-driven solution.

benchmarks can focus almost solely on the second stage (i.e., experimentation)

which involves developing a novel algorithm, fitting training data, evaluating, and

updating parameters iteratively until desired performance is achieved. Conversely,

efforts towards industrial solutions require significant emphasis on the first stage

of onerous, but necessary preparation, and the difficult third stage of interpreting

results and delivering outcomes.

One drawback of a focus on benchmark oriented research is a misalignment be-

tween the objectives of the benchmark and the requirements for industrial impact.

Practical operation requires solutions that provide long-term robustness and safety

while benchmark studies often prioritize performance in a relatively limited envi-

ronment. Implementing robust solutions requires domain knowledge and an un-

derstanding of the circumstances that lead to degradation of model performance

such as equipment fouling, measurement disturbances, and confounding variables.

To complement the existing literature, this research emphasizes the first and third

stages of Figure 2.1 while developing novel solutions for case study applications.

Another pitfall of benchmark datasets is the production of research with minimal

scope beyond the benchmark challenge. This can result in literature that gives the

false impression of innovation and technological progress. Research with clean

simulated data is dominant in literature. One explanation is that there exists a

strong bias towards the experimentation stage in Figure 2.1 with respect to pub-

lishing standards [138]. In the context of complex industrial processes, pragmatic

reasons such as the difficulty to obtain and procure historical operating data may of-

fer further explanations. However, real-world impact and industry adoption should

2This low resolution procedure will be expanded in Section 2.2.
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be a primary focus rather than benchmarking for the sake of benchmarking, i.e.,

publishing incremental performance improvements on simulated data with mini-

mal intent or consideration for utilization.

When used correctly, benchmark datasets can play a valuable role in providing a

consistent evaluation environment that enables systematic comparison of different

modeling methods. There is a significant opportunity in FDD research for a modern

benchmark challenge with raw operating data from a large-scale industrial process

and accurate labels of a process fault. In fact, the introduction of such a bench-

mark, specifically The Arc Loss Challenge, is one of the contributions associated

with the case study presented in Chapter 3 [149]. However, the consistency of

benchmark evaluations is leveraged here by focusing on literature associated with

FDD methods that are applied to the TEP benchmark.

The popular TEP is often described in literature as an industrial FDD benchmark,

but more accurately it is a simulated benchmark that is modeled after a real indus-

trial process. Although there are different versions, the TEP commonly involves

five simulated unit operations including a reactor, a stripper, a condenser, a com-

pressor, and a separator [9, 29]. The benchmark problem consists of detecting

and diagnosing 21 different faults caused by events such as step changes, random

disturbances, slow drift, actuator stiction, and unknown factors. Researchers can

evaluate their FDD techniques on a dataset containing 52 variables, including 41

process variables (PVs) and 11 manipulated variables (MVs). Standard training and

testing sets have been made available that include data from each fault along with

normal operating data to enable systematic evaluation of binary (i.e., detection)

and multiclass (i.e., diagnosis) classification algorithms. The TEP is also used as a

benchmark for control, system identification, and alarm management.

2.1.3 Deep learning for fault detection

In the past two decades research into quantitative process history based methods

for FDD has developed rapidly and an exhaustive account of this progress is be-

yond this scope. Roughly one decade ago a highly cited study was published that

compares traditional FDD methods such as PCA, PLS, independent component anal-
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ysis (ICA), modifications of these, and a subspace identification method (SIM) on

the TEP benchmark. This study highlights the higher fault detection rates (FDRs),

lower computation cost, and minimal assumptions regarding the process data as

positive features of the SIM [147]. However, throughout the last decade an im-

mense amount of attention has been drawn to AI from a series of breakthroughs in

a sub-discipline of ML known as deep learning.

Deep learning is an emerging paradigm in ML that involves using large amounts

of data to train ANNs with multiple hidden layers and diverse architectures in or-

der to obtain more expressive function approximations. Recently, deep learning

techniques have dominated research in many scientific disciplines including the

development of quantitative process history based methods for FDD. One of the

first investigations into deep learning for FDD resulted in a dramatic improvement

on the average FDR for the TEP benchmark relative to the SIM [81]. Before intro-

ducing more advanced deep learning architectures, some background into ANNs is

provided in what follows.

Artificial neural networks

Conceptually, ANNs were inspired by the structure and function of neurons in the

human brain [50]. Neural networks have undergone at least three historical waves

of popularity beginning with cybernetics in the mid 20th century, connectionism

in the late 1900s and the current manifestation of deep learning that began in 2006

[38]. The deep learning wave of popularity resulted from a breakthrough in the

efficiency of training deep networks by Geoff Hinton’s research group, referred

to as greedy layerwise unsupervised training [10]. The versatility and non-linear

representation capacity of ANNs has drawn immense interest from the scientific

community as a classifier for modeling complex relationships [130].

The perceptron, introduced by the psychologist Frank Rosenblatt, is the first and

most simple example of a modern neural network that was explicitly used for bi-

nary classification of linearly separable functions [110][57]. The perceptron is a

building block for complex multi-layered ANNs that involve input layers, hidden

layers, and output layers consisting of neurons connected with learned weights
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[24]. Linear combinations of inputs and weights are fed to nonlinear activation

functions at multiple layers to provide a versatile, nonlinear model [93].

Activation function selection can have a significant influence on ANN performance

[28]. Types of activation functions include sigmoid, rectified linear unit (RELU),

softmax, and many more. The non-linear output from the activation function is

represented by:

Z = (
n

∑
i=1

xiwi +b) y = f (Z), (2.2)

where x1, x2, . . ., xn represent the n inputs of the perceptron, w1, w2, . . ., wn are the

weights given to the respective input, b is a bias term, and f represents the chosen

activation function for this layer. Back propagation is used to calculate the gradient

of the output error with respect to the neuron weights and gradient descent is used

to train the network to minimize the output error [69].

Deep learning architectures

Deep learning tackles the problem of representation learning by using complex

neural architectures to generate nested representations that are functions of sim-

pler representations [38]. Predominant deep learning architectures such as gener-

ative adversarial networks (GANs), autoencoders (AEs), convolutional neural net-

works (CNNs), and recurrent neural networks (RNNs) have all been adopted to de-

velop advanced strategies for FDD. Figure 2.2 illustrates some unique features of

these neural architectures while providing a summary of literature involving their

application to the TEP benchmark. Citations in Figure 2.2 demonstrate the abun-

dance and variety of proposed deep learning FDD solutions on the TEP.

The GAN architecture, inspired by game theory, consists of a generator network

(G) that is trying to deceive a discriminator network (D). The AE architecture, often

used for dimensionality reduction, consists of an encoder network (E) that learns

a latent representation of the inputs and a decoder network (D) that attempts to

reconstruct the inputs by sampling the latent representation. The CNN architecture

learns a set of convolutional filters that extract features from the input data in a

hierarchical fashion. Finally, the RNN architectures, including variants such as

gated recurrent unit (GRU) and long short-term memory (LSTM) networks, have one
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Figure 2.2: A summary of deep learning techniques for FDD on TEP bench-
mark dataset including feedforward ANNs [43], GANs [34, 52, 74, 120,
145], AEs [21, 51, 81, 82, 144, 150, 154], CNNs [18, 20, 35, 101, 142],
and RNNs [19, 123, 152, 153, 155].

or more internal states that function as a memory to encode temporal information.

Many of the deep learning FDD methods that are cited in Figure 2.2 use advanced

variants (e.g., bidirectional RNNs [19]) and combined architectures (e.g., recurrent

AEs [21]). Moreover, some of these methods combine deep learning with other

ML methods such as k-nearest neighborss (kNNs) and random forests. Standard

feedforward ANNs are also represented in Figure 2.2 and they have been shown to

provide impressive FDD results on the TEP benchmark [43].

Multiple deep learning architectures are applied in the case studies presented in

Chapter 3 and Chapter 4. The focus of this work is not a theoretical review of deep

learning, but given the relevance of the CNN architecture for both case studies, a

brief digression is provided in what follows.

Convolutional neural networks

State of the art performance has been achieved using CNNs on object recognition

and natural language processing tasks [10]. In the late 1980s CNNs were introduced

to address visual pattern recognition problems such as handwritten digit recogni-

tion [66]. Instead of exclusively using fully-connected layers, CNNs use local con-

nections (i.e., local receptive fields) to extract elementary features which are then

combined by subsequent layers in a hierarchical feature extraction procedure [67].

Convolution with a kernel whose weights are learned through back-propagation

creates the local receptive field for each feature map [70]. The receptive field and

the dimensions of the resulting feature map are governed by the size of the kernel
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and the stride that the kernel takes over the input image (or input feature map). For

a single input image, the number of output feature maps after the first convolution

layer is equivalent to the number of learnable kernels specified for that layer.

For convolutional layer l, the output of the jth feature map is given by [16]:

xl
j = f

(
∑

i∈M j

xl−1
i ∗kl

i, j +bl
j

)
(2.3)

where M j is the set of input feature maps, ∗ is the discrete convolution operation,

ki, j is the learnable kernel from input map i to output map j, and b j is the additive

bias for output map j.

It is common to follow convolution layers with a sub-sampling procedure known

as a pooling layer. The output feature map is sub-sampled to create a lower dimen-

sional feature map by applying a receptive field that converts the output at a certain

location to a summary statistic of nearby outputs [38]. Two common types of sub-

sampling operations are max pooling and average pooling. Pooling layers can help

to improve computation and prevent overfitting [142]. As Figure 2.3 illustrates, the

output of the last pooling layer is flattened before being passed to a fully-connected

network.

. . . .

Fl
at

te
ne

d

n

d

Input Segment 1st Convolutional Layer   1st Pooling Layer lth Convolutional Layer   lth Pooling Layer

n × d × 1 nc1 × dc1 × k n1p × d1p × k ncl × dcl × k nlp × dlp × k

Fully-connected 
neural network

Convolution Pooling Pooling Flattening

Figure 2.3: Illustration of the CNN predictive classifier architecture [108].

Deep learning is a rapidly evolving field so it is expected that many FDD algorithms

will continue to be proposed based on the SOTA of deep learning and tested on the

TEP benchmark. Unfortunately, there are also shortcomings in the TEP literature

that prevent a concise empirical takeaway. Notable shortcomings include the use of
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different datasets, evaluating subsets of faults, using different evaluation metrics,

and most importantly a lack of commitment to transparency and reproducibility

(with some exceptions [155]). Nevertheless, the literature that contributes varia-

tions of deep learning methods applied to the TEP benchmark is plentiful.

This dissertation aims to contribute by studying and developing novel applications

for specific operating problems to drive better industry outcomes. Although the

selection of powerful classification and regression models is important, the use of

domain knowledge to identify ML opportunities and develop novel (and practical)

solutions is significantly more substantive. The remainder of this chapter discusses

more pragmatic aspects of learning from industrial process data to improve oper-

ating outcomes.

2.2 Learning from Industrial Process Data
The surface of ways to generate value from industrial process data has hardly been

scratched. With the onset of a societal transformation driven by AI and ML, this

subject is ripe for creative minds to find innovative ways to improve manufacturing

outcomes by learning from this highly underutilized historical data. This section

provides practical considerations for learning from industrial process data. Section

2.2.1 presents different types of use-cases and ties them together into a recom-

mended strategy for APC solution development. Section 2.2.2 discusses challenges

encountered by practitioners while also introducing the overall ML workflow for

industrial process analytics.

2.2.1 Improving operating outcomes with process analytics

There are many different ways that operating outcomes can be improved by learn-

ing from industrial process data. Specifying the data use-case can help determine

the data preparation and process analytic methodologies. This subsection describes

three broad use-cases for learning from process data including offline investiga-

tions, process monitoring, and closed loop control. A creative mind can conceive

of many more use-cases for this data, but these stages are sufficient to introduce

the proposed APC solution development strategy. Developing data-driven APC so-
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lutions with a high potential for impact involves deriving valuable insights by in-

vestigating offline data, improving operator capabilities with process monitoring,

and ultimately directly controlling the process with closed loop algorithms.

Offline investigations

Offline investigations of historical process data provide many opportunities to gen-

erate valuable operating insights. Research activities such as feasibility studies

and data-driven opportunity estimation can improve evidence-based reasoning for

resource allocation. Productive allocation of capital to upgrade equipment, in-

strumentation, control strategies, and/or operator training is critical for long term

production efficiency and sustainability.

Offline analysis of historical process data can enable accurate environmental as-

sessments to ensure regulatory compliance. Historical process data can be studied

to provide insights such as key performance indicator (KPI) benchmarking with

industry peers. Troubleshooting investigations into process upsets rely on histori-

cal data for root cause analysis. Operating insights such as production losses and

reliability issues can be identified through offline investigations of process data.

A simple demonstration is provided here to show how industrial process data can

be used to characterize production losses. Consider a continuous process running

at full production (i.e., highest sustainable capacity). Economically it is typically

ideal to operate this capital intensive process at full production all of the time (i.e.,

24 hours per day, 365 days per year). In reality, this is not possible, as extended

plant shutdowns are necessary for maintenance. Moreover, unplanned downtime

and short-term upsets are responsible for considerable production losses. Insights

about the proportion of lost production attributable to each type of upset can help

identify opportunities. This demonstration analyzes production-dependent vari-

ables to quantify losses based on upset duration. Specifically, for the pyrometal-

lurgy process the furnace feed, furnace power, and calciner feed are considered

whereas for the kraft pulping process the mud filter feed rates, kiln feed, and kiln

fuel flow are analyzed.

An algorithm is developed that uses self-referencing definitions of a process up-
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set and full production in order to quantify the production losses attributed to the

following three categories of upsets: i) long duration upsets (i.e., greater than five

days), ii) medium duration upsets (i.e., less than five days and greater than one

hour), and iii) short duration upsets (i.e., less than one hour). These simple dura-

tion thresholds provide valuable diagnostics for overall process health because they

are indicative of different underlying symptoms. Long duration upsets capture lost

productivity from scheduled shutdowns whereas medium duration and short dura-

tion upsets capture different types of process faults. Short duration upsets can also

include spurious production losses from instrumentation issues (e.g., aliasing).

The percentage of lost production across the different upset duration categories is

presented for the pyrometallurgy variables in Figure 2.4 and for the kraft pulp-

ing variables in Figure 2.5. Five minute time-averaged samples are used for both

datasets. The kraft pulping data includes over five years worth of data whereas the

pyrometallurgy variables include only one year of operating data.3

Figure 2.4: Lost production due to upsets of varying duration for the furnace
feed, furnace power, and calciner feed in a pyrometallurgical process.

Insights can be obtained by using domain knowledge to compare differences in

the distribution of losses both across unit operations within a process, and across

3This is important to consider while interpreting results because one year may be insufficient for
an accurate representation of long duration process upsets.
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Figure 2.5: Lost production due to upsets of varying duration for the mud
filter feeds, kiln feed, and kiln fuel usage in the recausticizing area of a
kraft pulp mill.

multiple processes. For example, the proportion of short duration losses is lower

for the kiln fuel relative to the feed rates because the mud precoat filters must be

cleaned periodically with sheet drops that temporarily upset the feed rates. Contin-

uous precoat renewal (CPR) systems have been developed specifically to minimize

these sheet drop upsets and their associated production losses. Another example of

a symptom is the relatively high proportion of short duration furnace power losses

in Figure 2.4. This is indicative of the arc loss fault occurring in the furnace as

described in Chapter 3.

This type of data-driven analysis can be made more rigorous, expanded in scope,

and augmented by further investigations (e.g., data visualization). More impor-

tantly, the improvement iteration cycle can be shortened by increasing the rate of

feedback at which these insights can influence operation. Online (i.e., real-time)

implementations can provide more direct operating benefits by enhancing operator

capabilities with process monitoring and fault detection tools.

24



Process monitoring and fault detection

Process monitoring and fault detection algorithms are differentiated from offline

investigations by analyzing online data to provide time-sensitive insights that im-

prove operation. Many of the data analytics and visualization strategies that are

useful for offline investigation can be adapted for online implementation. En-

hancing data visualization with domain-specific analytics is a valuable and under-

appreciated technique for developing process monitoring tools. More generally,

equipping SMEs with the ability to interpret large quantities of process data in a

user-friendly and intuitive manner, is an often overlooked means of generating

value from process data. For example, during the investigation of the lime kiln

case study (presented in Chapter 4) a novel shell temperature visualization strategy

is developed for offline investigation of ring formation [103]. This visualization

technique has now been successfully adapted into a commercial product for moni-

toring ring formation in lime kilns with real-time shell temperature data [14].

In addition to helping operators visualize process conditions, process monitoring

and fault detection applications can include sophisticated ML algorithms for use-

cases such as soft sensor development, model-plant mismatch (MPM) detection,

and fault prediction. For example, a fault prediction algorithm is developed (as de-

scribed in Chapter 3) to mitigate the recurring arc loss fault. By providing operators

with a warning of an impending arc loss event the operators can take corrective ac-

tions and minimize production losses.

Process monitoring and fault detection applications are an ideal subject for aca-

demic research. They can be developed, investigated, and validated with offline

process data and they can be implemented in live operating environments with

minimal risk of upsetting operations. Although these applications generate insights

from online data, they require operators to close the feedback loop and take actions

that improve the process. Closed loop process control methods are differentiated

from process monitoring methods by using measurement feedback to directly con-

trol the process. Inferential sensor applications (e.g., residual carbonate predic-

tion) can be deployed initially as process monitoring methods before graduating to

closed loop control strategies once their predictions are proven to be reliable.
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Closed loop process control

Closed loop process control applications involve direct interaction by sensing and

manipulating the state of the process to meet control objectives with minimal op-

erator interference. Closed loop control applications can have varying levels of

complexity such as simple regulatory control loops, supervisory control, and APC

applications.

The ability to directly manipulate the state of the process gives closed loop con-

trol algorithms an immense potential to create value from industrial process data.

Conversely, faulty applications of closed loop control can cause lost production,

environmental damage, and safety incidents. This risk-reward distribution is why

closed loop APC solutions are both highly coveted and difficult to innovate.

The pace of innovation in practice is far more modest than the pace observed in

academic research which is often limited to (and developed for) simulated environ-

ments. Although many sophisticated algorithms (e.g., DRL) have been proposed,

over 90% of industrial control systems still use proportional-integral-derivative

(PID) control algorithms that were introduced in the early 1920s [11, 91].

Data processing requirements for closed loop control applications focus on safety,

security, and reliability within the constraints of the distributed control system

(DCS). Reliability in this context implies both reliable connectivity with real-

time data as well as reliable predictions (e.g., setpoint changes) from robust mod-

els. Legacy operating technology (OT) systems are common among Canada’s ag-

ing manufacturing facilities which can create data connectivity challenges for ad-

vanced closed loop control solutions.

The research presented in this thesis primarily contributes to the first two use-cases,

i.e., offline investigation and process monitoring. However, the inferential sensing

applications introduced in the following chapters can develop into closed loop APC

solutions with further validation in production. Increased synergy between industry

and academia is essential for better innovation in closed loop control research with

practical significance. The remainder of this chapter explores considerations and

challenges associated with learning from industrial process data.
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2.2.2 Challenges while learning from industrial process data

Many permutations of options are available for constructing the data workflow of

tasks such as data acquisition, preparation, modeling, and evaluation. Practical

utility, sustainability, maintenance, and cost are important considerations to weigh

against workflow complexity. Rather than attempt to prescribe a generalized op-

timal data workflow, this section presents practical considerations and challenges

for process industry applications. In part because these tasks are critical and un-

derappreciated, but also to provide background to enable subsequent chapters to

focus on applications. The challenges introduced here are revisited in Chapter 5

after presenting the two industrial case studies.

Identifying and framing a data-driven opportunity

Identifying and framing a data-driven opportunity is fundamental to the conception

and success of process analytics and ML applications with industrial process data.

The following steps and associated challenges are important to consider during the

initial conception of industrial process analytics applications:

• Impact and benefit estimation: is important to motivate stakeholders and

justify expenditure of time and resources. Is there a reasonable expectation

for the proposed research application to provide significant benefits? What

types of benefits are valued by stakeholders?

• Alignment on objectives and resource requirements: with research part-

ners and industrial collaborators. Research with industrial data can be lim-

ited by insufficient stakeholder alignment on the objectives of the study and

a realistic view of the resources required to achieve them.

• Availability and integrity of a source of ground truth: to provide reli-

able validation and supervisory feedback for ML. The success of supervised

learning algorithms is highly dependent on the integrity of the output labels.

These are just a subset of the many important factors to consider in order to avoid

undertaking an ill-posed data-driven APC research project.
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Data acquisition and contextualization

Data acquisition involves logistical challenges that have been historically difficult

to overcome due to insufficient digital plumbing. This situation is rapidly improv-

ing. Comprehensive data contextualization is an often neglected task that is critical

for analysis and opportunity identification.

• Establishing connections with data sources: to ensure efficient collabora-

tions and to satisfy the evolving requirements of developing a novel solution.

• Selecting the industrial data: includes determining which variables to ac-

quire and how to retrieve them, e.g., periods of operation, sampling frequen-

cies, interpolation, and data compression.

• Exploratory analysis and data visualization: involves challenges such as

handling overwhelming amounts of data, understanding the complexities of

the underlying process, and using (or developing) tools for data visualization.

• Data contextualization: is critical for preparing data, developing models,

and interpreting experimental results. Acquiring supplemental information

to contextualize data involves consulting industry collaborators and SMEs.

• Shortcomings of industrial data: are an unfortunate reality that must be

acknowledged and addressed while learning from industrial process data.

Thoughtful acquisition and contextualization of industrial process data provides an

important foundation for downstream data-driven research activities.

Data preparation

Preparing the data for statistical learning is one of the most difficult and time con-

suming aspects of learning from industrial process data.

• Data validation and reconciliation: is necessary to ensure the quality of

the data is sufficient for the desired objectives.

• Data structuring: involves challenges associated with aligning data with

different measurement configurations. These challenges include labeling (or
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selecting) target variables and sampling corresponding features.

• Data cleaning: of raw industrial operating data poses many challenges such

as filtering irrelevant periods of operation and efficiently addressing invalid

data.

• Feature engineering and representation learning: can impact the per-

formance and computational feasibility of proposed solutions. Challenges

include addressing redundant variables, standardizing features, engineering

features with domain knowledge, and learning data-driven representations.

Process knowledge is important for many data preparation tasks such as data val-

idation, segmenting data, output labeling, cleaning the data, engineering features,

and designing visualization strategies.

Method selection, development, and evaluation

The selection, development, and evaluation of modeling methods receives signifi-

cant attention in literature. However, practical challenges and limitations that are

critical for industrial adoption, are often dismissed.

• Storing and loading industrial process data: efficiently is important for

model development and it can be challenging due to the size and sensitive

nature of the raw data.

• Selecting suitable methods: can involve challenges such as considering the

available data and the intended application, as well as balancing competing

interests such as academic novelty and industrial constraints.

• Metrics that align with outcomes: chasing irrelevant model metrics at the

expense of business and environmental outcomes is a common pitfall en-

countered during model development.

• Conducting comprehensive experiments: involves challenges with orga-

nization, documentation, and consistent implementation to ensure the exper-

imental results are reproducible.
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Unfortunately, method selection in process analytics research has diverged sig-

nificantly from method selection in industrial environments. A unified focus on

improving operating outcomes can help reconcile this gap.

Deploying sustainable solutions

Soft sensors and other novel APC applications can struggle to provide sustained

value in industrial production environments after initial commissioning. The fol-

lowing list includes important considerations for deploying sustainable solutions:

• Understanding trends in utilization: and identifying factors that lead to

poor utilization is a challenging task that is necessary for obtaining sustained

benefits.

• Robustness, durability, and model maintenance: are key considerations

for implementing sustainable data-driven solutions in industrial environments.

• Neglecting end-user experience: is a common pitfall that can inhibit user

adoption and prevent solution deployment.

In the following chapters two distinct industrial case studies are presented. The

challenges listed here are encountered during these case studies. The lessons

learned from these case studies are reflected upon to inform the discussion of guide-

lines and best practices presented in Chapter 5.
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Chapter 3

Predicting Arc Loss in an Electric
Arc Furnace

“A plasma arc provides heat for smelting in an industrial electric arc furnace
at a pyrometallurgical plant.” Text to generate images with DALL·E 2 [1].1

1Note that these are computer generated images used only for abstract conceptual visualization.
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This case study addresses a novel industrial fault detection problem from both tra-

ditional and contemporary approaches to process analytics. Traditional approaches

such as PLS are compared with techniques inspired by deep representation learning

such as CNNs. Contributions include the formulation and introduction of a novel in-

dustrial predictive classification problem, the design and implementation of a com-

prehensive ML workflow that converts raw industrial data into critical operational

insights, and the presentation of a robust comparative analysis between traditional

and contemporary approaches to representation learning and binary classification.

Specifically, this work addresses the unexpected loss of plasma arc in the EAF

that serves as a smelter in a large-scale metallurgical process refine ores into base

metals. The objective is to learn an efficient and informative representation from

the raw industrial data that enables the prediction of an arc loss event such that

operators can take corrective actions. A comprehensive representation learning and

predictive classification framework is presented for development of the inferential

sensor from large quantities of historical industrial process data.

The majority of this chapter covers the formulation of the arc loss process fault as a

supervised learning problem, preparing the industrial process data, and developing

the soft sensor. This material is based on the following publications:

• L. D. Rippon, I. Yousef, R. B. Gopaluni, B. Hosseini, J. F. Beaulieu, C. Prévost,

and S. L. Shah. Process analytics and machine learning to predict arc loss in

an electric arc furnace. In 59th Conference of Metallurgists 2020 hosting the

4th International Uranium Conference, 2020.

• L. D. Rippon, I. Yousef, B. Hosseini, A. Bouchoucha, J. F. Beaulieu, C. Prévost,

M. Ruel, S. Shah, and R. B. Gopaluni. Representation learning and predic-

tive classification: Application with an electric arc furnace. Computers &

Chemical Engineering, 150:107304, 2021

The final section introduces recent work to publish the data and problem formu-

lation as a modern benchmark challenge for fault detection with ML on industrial

data. This work has been accepted for publication as follows:

• I. Yousef, L. D. Rippon, C. Prévost, S. L. Shah, and R. B. Gopaluni. The
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arc loss challenge: A novel industrial benchmark for process analytics and

machine learning. Journal of Process Control, 128:103023, 2023

3.1 Introduction to Arc Loss in an Electric Furnace
Consider an industrial mining and metallurgy operation that continues production

until a fixed deposit of saprolite ore has been extracted and processed. In this con-

text, assuming a carbon intensive energy source, it is imperative to minimize the

expended energy per unit of on-spec product in order to minimize the environmen-

tal footprint over the lifetime of the operation. This work helps to support this

objective by investigating the use of techniques from both traditional process an-

alytics and advances in ML to predict the onset of arc loss such that operators can

take remedial actions and maintain efficient operation.

Stable smelter operation is critical for successful production of base metals from

particulate ore. This work studies the operation of an industrial DC EAF that op-

erates as a smelter in a large-scale pyrometallurgical process. Specifically, unex-

pected loss of the plasma arc is an important unresolved problem with a significant

impact on the production efficiency of the process. Moreover, given that EAFs are

highly energy intensive units, even minimal improvements to the overall produc-

tion efficiency represent meaningful reductions in the environmental footprint of

the process over the lifetime of operation. To reduce the overall environmental

footprint a predictive inferential sensor is proposed to identify high risk operating

regimes. Once a high-risk situation is identified the alarm instructs operators to

take corrective actions to avoid the loss of arc.

A simplified depiction of the broader mining and metallurgical operation is illus-

trated in Figure 3.1. Drilling is performed to characterize the deposit and ore is

extracted from an open pit mine using trucks and hydraulic shovels. Dump trucks

transport the ore to the ore preparation plant where it is screened to remove waste

rock and crushed to prepare it for further processing. The crushed ore is then con-

veyed to the metallurgical plant (green) which is the process of interest for this

work. Initial operations in the metallurgical plant are milling and drying which

are conducted using hammer mill flash dryers. Dried ore is fed to a series of cal-
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cining cyclones where it is dehydrated before being sent to fluidized bed reducers

to remove oxides and improve the electrical efficiency of the subsequent smelting

operation in the DC EAF [54, 60, 85]. The DC EAF is the operation that exhibits the

unexplained loss of plasma arc fault.

Figure 3.1: Simplified illustration of the relevant mining and metallurgical
processes [106].

Through the upstream processing stages the raw ore is converted to a fine partic-

ulate feed that is fed to the DC EAF for smelting. As depicted in Figure 3.2, an

open plasma arc spans from the cathode to the anode providing energy required

to maintain temperatures of the slag and alloy above 1400◦C, depending on the

composition of the slag [65]. The cathode consists of two hollow graphite elec-

trodes while the anode is the molten slag. The roof and side walls of the furnace

are water cooled whereas the bottom anode is air cooled to maintain safe structural

temperatures [47, 48]. Multiple ports along the roof feed the furnace while the slag

and alloy are tapped from the launders intermittently [62]. Hot off-gas released

from the furnace is recycled to provide upstream preheating. This work is directly

relevant to a variety of EAF operations including nine in the Canadian steel-making

industry [92].

As an energy intensive unit, it is critical to operate the EAF in a stable manner to

maximize production efficiency. Unexpected loss of the plasma arc is a recurring

and unresolved fault that significantly impacts the production rate and the electri-

cal efficiency of the furnace. There are three primary categories of suspected arc

loss mechanisms, i.e., electrical disturbances from the DC power supply, feed dis-

turbances from the upstream metallurgical processes, and the operation of the EAF.

Therefore, a broad process aspect ratio is considered in the representation learning
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Figure 3.2: An illustration of a direct current electric arc furnace [106].

analysis that includes dozens of MVs from the power supply, numerous upstream

unit operations, and the EAF. Moreover, an entire year of high frequency operating

data is collected and analyzed to develop the arc loss predictor.

The goal of the fault predictor is to provide operators with a warning five to ten

minutes in advance of an event with a 75% or higher probability of inducing arc

loss such that operators can take preventative measures. Operators require at least

two minutes prior to the arc loss event in order to take the neccesary corrective

actions. Figure 3.3 illustrates the entire ML workflow including the data prepro-

cessing tasks resulting in segmented datasets ready for representation learning and

predictive classification. Note, some classification methods bypass explicit repre-

sentation learning and instead learn from the raw features. There are also hidden

feedback connections between the modules as the workflow progresses in a largely

iterative fashion. Initially this alarm will serve as a tool for engineers and operators
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but ultimately the goal is to implement an advanced controller that can automati-

cally take corrective action.

Data Cleaning Data
Segmentation

Raw Data Data Structuring Output Labeling

Representation
Learning

Data
Visualization

Predictive
Classification

Figure 3.3: Flowchart illustrating the overall data analytics workflow.

The novel contributions presented in this work include the introduction of the DC

EAF arc loss FDD challenge and the formulation of this fault as a supervised ML

problem. Successful problem formulation is a significant contribution that includes

transforming a year of raw industrial operating data into cleaned, structured, la-

beled, and segmented datasets that are amenable to further statistical ML analysis.

Labeling the data requires the introduction of rigorous quantitative conditions to

detect the arc loss. Given a precise problem formulation and procured training

data, the remaining contribution is the development of the arc loss prediction in-

ferential sensor. This contribution also includes a comprehensive validation and

comparison of traditional and advanced approaches to representation learning and

predictive classification on industrial operating data.

3.2 Data Preparation and Visualization
This section presents a comprehensive account of the data preparation tasks be-

tween obtaining raw industrial process data, formulating a supervised learning

problem, preprocessing the data for ML, and data visualization. Problem formula-

tion and data preparation present endless opportunities for improvement. This case

study serves as an important end-to-end experience that demonstrates the full stack

of activities involved with developing a soft sensor from industrial data to address
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an important process fault. The subsequent case study on the kraft pulping process

provides less detail on the fundamental data preparation tasks and more emphasis

on process domain knowledge.2

Data preprocessing produces the datasets that are used to train, validate, and test

the predictive models. Data preparation procedures have significant consequences

on the generalization performance of a supervised ML algorithm [61]. The goal of

preprocessing is to transform the raw historian data into a form that is amenable for

statistical ML algorithms. In this case study, the objectives of data preparation in-

clude maximally retainining information from the raw data, minimizing extraneous

information injected during preprocessing, and removing redundant data. This sec-

tion includes a description of the raw data followed by an overview of the methods

used to structure, visualize, clean, and segment the data.

3.2.1 The arc loss dataset

The raw data used in this work involves one year of daily exports from an industrial

process historian. The scope encompasses relevant operating data collected in 2017

from a large-scale integrated open-pit mining and metallurgical process. Each day

of operation is captured and stored as a comma separated value (CSV) file with

approximately 228 columns and thirty thousand rows. Half of the 228 columns

are measured variables and the other half are corresponding timestamps. There

are 92 PVs with high frequency measurements (e.g., feed rate, temperature, etc.),

14 variables with label encoded discrete values (e.g., valve open or closed), and

five laboratory measurements with sample periods greater than one hour. Overall,

the total daily exports have an uncompressed size of 17.4 gigabytes which can

make the data unwieldy for practitioners to load, analyze, and process. Detailed

descriptions of the data are provided in Table A.1 of Appendix A.

3.2.2 Data structuring and output labeling

The columns of each daily export have a varying number of rows with more densely

sampled PVs having up to thirty thousand rows and others having as few as ten

2This is in part due to necessity, but also due to data access limitations with the pyrometallurgy
study.
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samples. The raw data contains asynchronous data with both numerical PVs such

as furnace temperature and categorical variables such as valve positions. The raw

data contains errors such as missing values, bad inputs and not a number (NAN)

values. Systematically structuring the raw data and removing the corrupted data is

one of the first stages of data preparation.

Each of the 365 daily CSV file exports is processed to replace non-numeric in-

puts (e.g., ‘tag not found’) with NAN values and remove rows and columns with

overwhelming NAN values (e.g., rows with less than three non NAN values). The

illustration in Figure 3.4 shows the structuring of three consecutive days and repre-

sents time horizontally. Each operating variable is represented by a green row and

the accompanying timestamp is represented by a blue row with the dashes repre-

senting the differing frequency of measurements. The top of Figure 3.4 shows the

structured dataset that has one unified timestamp and no NAN values. To preserve

information the time index corresponding to the most densely sampled variable is

used as a unified timestamp (blue bars at the top of Figure 3.4). To minimize inser-

tion of synthetic data the less frequently sampled variables are re-sampled using a

simple forward fill or zero order hold operation.

00:00:00 - 23:59:59

day = i
day = i+1day = i-1

Time 
stamps

Measured 
variables

Figure 3.4: Structuring consecutive days of historical data.
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Once the data is cleaned and structured it is now suitable for generating the arc loss

labels. The open plasma arc is developed when the electric current between the

graphite electrodes (i.e., cathode) and the surface of the molten slag (i.e., anode) is

charged. During routine operation, the power sent to the furnace is relatively stable

and the electrodes are held in a stationary position. However, due to process dis-

turbances (e.g., varying slag composition, upstream disturbances in furnace feed,

and electrical noise from the power supply) the power applied to each graphite

electrode can vary and arc loss can occur.

The power measured at each electrode can be monitored to detect arc losses. To

ensure the labels are robust, the arc loss problem is defined when all three of the

conditions illustrated in Figure 3.5 are satisfied. The conditions are as follows:

1. The power is otherwise stable (i.e., the standard deviation of the power ap-

plied to an electrode is less than 2 MW over a period of approximately 11.5

minutes).

2. A precipitous power drop (i.e., at least 10 MW within thirty six seconds).

3. The power recovers (i.e., to within 5 MW of the original stable value within

approximately 10 minutes).

These three conditions are rigorously applied to each sample for both electrodes

to generate output labels that are binary indicators of arc loss in the respective

electrode. Accurately labeling the dataset is critical for supervised learning.
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Figure 3.5: Illustration and quantitative definition of conditions constituting
arc loss.
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3.2.3 Data visualization

Data visualization provides key insights into the frequency of the faults and the

severity of the arc loss on operating efficiency. Visualization also assists in trou-

bleshooting, validation of data pre-processing, and output labeling. An integrity

check is performed on the binary arc loss labels to confirm that they correspond to

a representative power drop. Figure 3.6 shows three discrete arc loss labels in the

top plot and the corresponding arc ‘A’ power upsets3 in the bottom plot.
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Figure 3.6: Visual validation of the arc loss labels.

The frequency of arc loss events is clear from Figure 3.7 which shows the number

of arc loss events per day for each plasma arc throughout a year of operation. Arc

loss is a significant problem that can occur as often as twenty five times per day

(indicating a chain of arc losses) or not at all for multiple consecutive days. This

distinction provides motivation to apply data-driven pattern recognition techniques

to determine the difference in operation between arc loss cascades and stable op-

eration. Although the average duration of an arc loss label is less than one minute,

the disruption to the EAF of a single loss event can cause up to twenty minutes of

lost production. This visualization not only provides motivation but it also helps to

recognize the class imbalance in our output labels due to the short average duration

3The EAF has two graphite electrodes (‘A’ and ‘B’) that generate plasma arcs.
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of each arc loss indication.4

Figure 3.7: Daily arc loss events in each electrode over one year of operation.

Finally, the severity of the arc loss fault on EAF operation is visualized in Fig-

ure 3.8 by comparing a period of relatively stable operation (top) to a period of

faulty operation (bottom) using the power applied to each electrode and the fur-

nace feed rate. The arc loss fault has a significant impact on the furnace feed rates

and subsequently on the production rate of the EAF which can bottle-neck the en-

tire metallurgical operation. Thus, it is imperative to prevent loss of the plasma arc

in order to sustain economic viability of the process.

3.2.4 Data cleaning

The quality of any ML model depends on the quality of the input it receives. Here,

data cleaning involves setting PV limits using process knowledge to filter out non-

sensical values (e.g., negative feed rates), removing problematic PVs, and removing

4Class imbalance is an important consideration addressed at the end of this section.
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Figure 3.8: Visually comparing relatively stable operation (top) to faulty op-
eration (bottom) to observe the impact of arc loss upsets [108].

data from plant shut-downs. Erroneous process data and outliers can induce spu-

rious correlations and increase the rate of misclassification for ML classifiers [3].

Removal of this data is accomplished through domain expertise and consultations

with industrial collaborators. A set of minimum and maximum limits are agreed

upon for each PV and measurements outside of these limits are set to either the

nearest limit or three standard deviations from the mean.

The left side of Figure 3.9 shows the power values for arc ‘A’ as a histogram with

a normally distributed probability density function (PDF) and PV limits shown by

the vertical red lines. There are some negative power values that are subsequently

adjusted to zero during data cleaning. Using process knowledge to set PV limits

is not an infallible strategy. Visual verification is often necessary to ensure the PV

limits are correct as demonstrated by the right side of Figure 3.9 which shows the

crucible heat loss as a PDF with the original PV limits as vertical red lines. All of

the crucible heat loss data is outside the original PV limits, but instead of cleaning

this data the PV limits are re-evaluated and it is deemed acceptable. This PV limit

verification procedure is conducted for all of the PVs.

Outliers are often considered to be values that are greater than three standard de-

viations from the mean. Box plots are commonly used to show the distribution of

a variable and indicate the number of outliers. Treatment of outliers is application
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Figure 3.9: Setting PV limits with process knowledge to remove invalid data.

specific and modeling abnormal behavior requires retention of data that may be

statistically defined as outliers. Simple first-principles are used to remove invalid

outliers (e.g., negative furnace feed rates).

Two final tasks remain for data cleaning, i.e., removing unhelpful PVs and remov-

ing irrelevant shutdown data. Five laboratory measurements are deemed to have too

low of a sampling frequency for use as a fault predictor and were therefore removed

entirely from the dataset. Seven PVs were removed based on prior knowledge of

having unreliable, faulty or inaccurate measurements. Two plant shutdowns are

clearly visible in Figure 3.7 in May and early October. The data for these periods

is carefully removed for all PVs during data cleaning to preserve useful informa-

tion during startup and shutdown phases. By carefully structuring and cleaning

the data a significantly smaller set of data is created that preserves useful process

information and is more amenable to subsequent modeling.

Data segmentation

For binary classification problems with a large degree of class imbalance, the vast

majority of instances fall into the majority class while significantly fewer instances

fall into the minority class (i.e., the class of interest for fault detection). Most bi-

nary classification methods perform poorly on imbalanced datasets due to assum-

ing the data are drawn from the same distribution and assigning equal weight to

both classes. Classifiers aim to achieve the highest accuracy along the whole range

of data and therefore tend to largely ignore the minority class which has relatively
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negligible impact [136].

Previous studies suggest techniques to address class imbalance can be divided

mainly into three categories: re-sampling, feature engineering, and classifier ma-

nipulation [64]. Artificially re-sampling the instances to balance class distributions

can be performed by either under-sampling the majority class or over-sampling the

minority class [78]. Under-sampling is at risk of discarding information from the

majority class while over-sampling increases the likelihood of over-fitting by du-

plicating instances from the minority class [41]. More advanced methods include

explicitly combining separate features from the minority and majority classes as

well as manipulating the classifier weights internally [156].

The arc loss dataset is highly imbalanced with 99.67% of the samples labeled as the

majority class (i.e., no arc loss) and only 0.33% of the instances labeled with arc

loss. An under-sampling approach is taken to address class imbalance by extracting

a segment that contains 55 minutes worth of data in the 5-60 minute period before

every arc loss. All 1526 arc loss events (taken from both arc A and arc B) are

extracted to represent the minority class. The majority class is randomly under-

sampled and only 1526 segments that correspond to 55 consecutive minutes taken

5 minutes prior to periods of extended stable operation are extracted.

The data segmentation process is illustrated in Figure 3.10. The entire dataset, con-

taining 3052 segments, is further divided with 85% (or 2594 balanced segments)

for cross-validated training and 15% (or 458 balanced segments) for testing. With

the data finally procured to a suitable format it can be used to train the representa-

tion learning and predictive classification algorithms.

3.3 Learned Representations and Predictive Classifiers
Representation learning is described as a subset of ML and a superset of deep learn-

ing. Classical ML is distinguished from representation learning through the selec-

tion of features. In classical ML features are hand-designed whereas in representa-

tion learning features are learned from the data. Moreover, in deep representation

learning there are numerous layers of abstraction between simple learned features

and more complicated features that may further improve representation [38].
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Figure 3.10: Illustration of data segmentation to create a balanced dataset.

Representation learning is defined as the means by which an efficient and infor-

mative representation can be learned that extracts useful information to improve

the performance of classification, regression or prediction models [10]. The labor

intensive procedure of engineering features is excellent at leveraging application

specific domain knowledge but it lacks efficiency and ease of applicability across

various domains [137]. Representation learning can learn the important discrimi-

natory features from the data in a systematic fashion allowing for faster deployment

of AI in a variety of domains [10].

The use of deep representation learning algorithms for PSE applications (e.g., con-

trol, process monitoring, and fault detection) is a relatively new, but highly ac-

tive research area [43]. The TEP has been used as an FDD benchmark to validate

many advanced neural architectures including stacked sparse AEs [81], deep belief

networks [143], and deep CNNs [142]. These studies are limited in their demon-

strations with industrial case studies and their focus on fault detection, as opposed

to fault prediction. This work validates and compares traditional and advanced

process monitoring methods on historical data taken from a large-scale industrial

process with the challenging goal of predicting arc loss five minutes before it oc-

curs.

This work focuses on studying and validating the benefits of using representation

learning (e.g., dimensionality reduction) and deep learning for predictive classifica-
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tion with industrial operating data. Selected methods are illustrated in Figure 3.11

with explicit representation learning algorithms on the left and the predictive clas-

sifiers on the right. Explicit representations are learned using PLS and PCA; while

logistic regression (LR), linear support vector classifiers (L-SVCs), kernel support

vector classifiers (K-SVCs), ANNs, and CNNs are all compared as predictive clas-

sification models. Note, the not applicable (N/A) indicates the use of raw features

instead of an explicit representation. Also, the K-SVC, ANN, and CNN methods

have internal representations with kernels, hidden layers and convolutions, respec-

tively. Altogether, Figure 3.11 shows fifteen experimental combinations with seven

algorithms that are introduced in what follows.

N/A

PCA

PLS

LR

L-SVC

K-SVC

ANN

CNN

Figure 3.11: Experimental configurations with representations (left) and pre-
dictive classifiers (right).

3.3.1 Explicit representations with reduced dimensionality

Two traditional process analytics methods (i.e., PCA and PLS) are applied to learn

explicit dimensionally reduced representations from raw features. Both are popu-

lar FDD methods, but they differ notably in that PCA is an unsupervised learning

algorithm, and PLS is a supervised learning algorithm. These methods were both

introduced in Chapter 2 as quantitative process history based methods for FDD.
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3.3.2 Predictive classification and implicit representations

The right side of Figure 3.11 lists the five predictive classification methods that are

trained and tested with either the raw data or the explicit representations learned

through PCA and PLS. These predictive classifiers are introduced and discussed

briefly in what follows to provide experimental background information.

Logistic regression

Choosing LR for binary classification is natural as the standard logistic function

(i.e., the sigmoid function) given by

P(Z) =
exp(Z)

1+ exp(Z)
=

1
1+ exp(−Z)

(3.1)

provides a bounded output between zero and one that can be interpreted as the

probability of a binary outcome and mapped to discrete classes (e.g., arc loss or no

arc loss). The input, Z = α +βX , to the logistic function illustrates the connection

with linear regression where X is the pre-processed data (or a learned representa-

tion thereof), α is a scalar bias, and β is a weight vector. Historically, LR dates

back to the early 19th century when the logistic function was invented to describe

population growth and autocatalytic chemical reactions [26]. Recent applications

of LR in PSE include methods that combine LR with dominant trend extraction and

dependent binary relevance classifiers to perform nonstationary fault diagnosis and

multi-label fault classification, respectively [100, 114].

Support vector classifiers

The basis for the L-SVC predictive classification technique used in this work is the

soft margin support vector machine (SVM) introduced in 1995 which is itself an

extension of the hard margin SVM, conceptually solved in 1965 [25, 131]. The

difference between hard margin and soft margin SVM is that hard margin SVM as-

sumes the classes are linearly separable and thus tries to find a hyperplane such

that no point is misclassified, whereas soft margin SVM allows for some misclas-

sification that is proportionally penalized in the objective function. Binary support

vector classifier (SVC) aims to construct a separating hyperplane between the two
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classes of data such that the margin (i.e., distance) between the hyper-plane and the

nearest data points of each class is maximized [140].

Nonlinear formulations of SVMs utilize the kernel trick, i.e., K-SVC, such as the

parametric polynomial kernel or the non-parametric radial basis function (RBF)

kernel with important properties that allow for enhanced representation capacity

and efficient optimization [17, 113]. Recent applications of SVMs in PSE include

applying one-class SVM on finite impulse response (FIR) data to detect MPM in a

paper machine control system [79, 105] and using nonlinear SVM-based feature

selection for FDD [95]. This work studies linear and kernel based SVCs with a

variety of configurations (e.g., kernel and regularizer choices) described in Section

3.4.

Artificial neural networks

A brief introduction to ANNs was provided in Chapter 2 while discussing deep

learning for fault detection. In the context of binary classification, the output layer

of the ANN consists of a single output neuron that indicates the class of the seg-

ment by computing the weighted sum of hidden values from the last hidden layer,

followed by a sigmoid function, i.e.,

Z = (
n

∑
i=1

xL
i wL

i +b) y = f (Z) =
exp(Z)

1+ exp(Z)
, (3.2)

where x, w, and b are as described in equation 2.2. The superscript L refers to

values and weights from the neurons in the final hidden layer. If the output of the

sigmoid neuron is greater than or equal to 0.5, it outputs 1 (i.e., arc loss). However,

if the output is less than 0.5, it outputs 0 (i.e., stable operation). In this work, flat-

tened input segments are fed to a multi-layered fully connected perceptron model

to predict arc loss.

Convolutional neural networks

The CNN architecture is introduced in Chapter 2 along with key concepts such as

convolutional layers, learnable kernals, and feature maps that are not re-introduced

here. Applications of CNNs in PSE include FDD on the TEP [142], a three phase
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flow facility at Cranfield University [151], and in a semiconductor manufacturing

process [73]. To my knowledge, this work represents the first time CNNs have been

studied for fault prediction in an industrial manufacturing process with historical

operating data [108].

3.4 Experimental Setup
The experiments primarily consist of training, validating, and testing the fifteen

experimental configurations shown in Figure 3.11. The experimental setup has the

following two key factors that distinguish this work from previous FDD studies in

PSE: i) simulating a production trial by preserving the temporal integrity of our

training data with respect to our testing data, and ii) performing rigorous cross-

validation and hyperparameter optimization to compare models.

The preprocessed data segments are split into two groups; the training and vali-

dation group consists of 2594 segments and the testing group consists of 458 seg-

ments. Prior experimental designs performed random selection of segments for

training and testing sets throughout the entire year of operation. Random sampling

is common in literature as well, but because the objective is to develop an infer-

ential sensor for an industrial process our experimental design mimics that of a

production trial. As shown in Figure 3.12, the simulated production trial trains and

validates models on the first ten months of operation while the last two months of

operation are strictly used for testing the final models.

3.4.1 Stratified k-fold cross-validation

A stratified k-fold cross-validation strategy is used to compare different hyperpa-

rameter configurations in the predictive classifiers. As shown in Figure 3.13, ten

non-overlapping folds are created where each fold contains a balanced number of

arc loss segments and stable operating segments. For each hyperparameter opti-

mization trial (i.e., corresponding to a specific configuration) the model is trained

on 90% of the training data and validated on the remaining 10%. This is repeated

ten times, once for each fold, where the validation data changes as shown by the

yellow highlight in 3.13. The result of the trial is the average accuracy of all ten
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Figure 3.12: Splitting the data into training and testing sets based on date.

validations which serves as a score to rank the hyperparameter configuration.

Class Distributions Fold 1 Fold 2 Fold 3 Fold 10

Class 0
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Training 
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. . . . .

Figure 3.13: Each experimental configuration is trained and validated with
stratified k-fold cross-validation [108].
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3.4.2 Hyperparameter optimization

A robust and transparent hyperparameter optimization strategy is critical for an im-

partial comparison of ML algorithms and the reliable development of a predictive

inferential sensor. The efforts taken here aim to contribute a high level of rigor

to hyperparameter optimization in the context of PSE. A broad space of possible

hyperparameters is defined for each predictive classifier and then a Bayesian se-

quential model-based optimization (SMBO) algorithm searches this space using a

tree-structured Parzen estimator (TPE) to suggest the best configurations by maxi-

mizing expected improvement [13][12]. Multiple trials are conducted for each hy-

perparameter configuration where the TPE specifies the configuration for the next

trial based on the expected improvement.

Optimizing hyperparameters for learned representations

Recall from Figure 3.11, the predictive classifiers are provided segments in the

raw feature space or a latent space of reduced dimensionality using either PCA or

PLS. The only hyperparameter that is considered while generating the PCA and PLS

representations is the number of components for each method, i.e., the dimension-

ality of the latent space. Exhaustive search is performed by performing ten-fold

cross-validation with LR classification while iteratively increasing the number of

components for PCA and PLS. Figure 3.14 shows the resulting validation accuracy

as the number of components increases. The peak validation accuracy occurs at

16 components for PLS (i.e., PLS-16) and 41 components for PCA (i.e., PCA-41).

Each of the five predictive classifiers is optimized and tested with data from three

representations, i.e., raw features, PCA-41, and PLS-16.

Optimizing hyperparameters for predictive classifiers

The Bayesian SMBO is performed on the predictive classifiers. The number of

trials for each method is manually selected based on the size of the hyperparameter

search space along with consideration for computational limitations. Optimizing

the hyperparameters for these models, particularly for the deep learning models, is

by far the most computationally demanding aspect of this work.
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Figure 3.14: Selecting the number of components for PCA and PLS represen-
tations with cross-validation. Note that a higher accuracy is obtained
with the supervised PLS algorithm.

The classifiers are divided into traditional ML algorithms (i.e., LR, L-SVC, and

K-SVC) and deep learning algorithms (i.e., ANNs and CNNs) for the purpose of de-

scribing the hyperparameter optimizations. The hyperparameter search space for

the traditional ML algorithms and the deep learning algorithms is provided in Table

A.2 and Table A.3 of Appendix A, respectively. Search options for the tolerance

and the regularizer strength (λ ) are the same for all traditional methods but some

of the remaining hyperparameters only apply to one method (e.g., kernel type only

applies to K-SVC). Notably, the penalty denoted elast. refers to elastic net, the

squared-hinge (SH) loss is abbreviated, and the three kernels are abbreviated as

poly. for polynomial basis, sig. for sigmoid basis, and the RBF. A thorough expla-

nation of each hyperparameter is beyond the scope of this work. Inquisitive readers

are referred to literature and documentation for further information [97].

For each traditional ML classifier there are three explicit representations of the data

that are separately optimized for hyperparameters. The result is nine experimental

configurations of traditional ML algorithms with optimized hyperparameters spec-

52



ified in Table 3.1. Notably, an RBF kernel was selected for all K-SVCs, an SH

loss was selected for all L-SVCs, and the optimized regularization strength varies

significantly depending on the representation.

Table 3.1: Hyperparameter selection for traditional ML algorithms.

λ tolerance penalty loss kernel

NA
LR 10 0.001 elast.

L-SVC 1000 0.001 ℓ1 SH
K-SVC 0.1 0.0001 RBF

PCA-41
LR 10 0.001 elast.

L-SVC 100 0.00001 ℓ1 SH
K-SVC 0.01 0.0001 RBF

PLS-16
LR 0.001 1e−5 ℓ2

L-SVC 100 0.001 ℓ1 SH
K-SVC 0.1 1e−5 RBF

Although more hyperparameter optimization trials are conducted for the deep learn-

ing methods, the percentage of the search space covered by these trials is signifi-

cantly smaller. This is due to the fact that the search space for the deep learning

methods is orders of magnitude larger than the traditional ML methods. It is in-

feasible to conduct enough trials to search over an equivalent percentage of such a

large space. Even with the use of cloud computation platforms to mitigate compu-

tational limitations, there are practical limitations on the number of convolutional

layers, batch size, and the number of learned filters in the studied architectures.

After a series of challenging cross-validation trials the final choice of ANN and CNN

hyperparameters are shown in Table 3.2 for each of the representations. The choice

of optimizers, regularization strengths (λ ), and fully connected layer (FCL) activa-

tion functions are the same for both ANN and CNN models. Some hyperparameters

that are unique to the CNN include the number of convolutional layers (CLs) and

the number of learnable filters.

Ultimately, the fifteen experimental configurations in Figure 3.11 are outfitted with

the parameters in Table 3.1 and Table 3.2. These models are tested on segments
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Table 3.2: Hyperparameter selection for deep learning algorithms.

representation NA PCA-41 PLS-16

classifier ANN CNN ANN CNN ANN CNN

optimizer Adagrad SGD Adam SGD Adagrad RMSprop
λ 0.1 0.05 0.01 0.001 0.1 0.0001

FCL activation relu elu elu tanh elu elu
no. of FCLs 5 2 9 1 10 1

FCL size 128 32 32 24 128 64
batch size 128 32 128 16 32 32

no. of CLs 1 1 1
CL activation tanh elu tanh

filters 6 24 16
filter size (5,5) (20,20) (3,3)
pool size (1,1) (2,2) (2,2)

from two months of subsequent operation as described in what follows.

3.5 Results and Discussion of Arc Loss Prediction
This section presents the experimental results of testing the arc loss inferential

sensor. Discussion is also provided that summarizes the contributions, analyzes

findings, and suggests improvements.

3.5.1 Experimental results

Classification results from supervised learning studies can be represented as a con-

tingency table, known as a confusion matrix, with a dimension for true class values

(i.e., y = 1 or y = 0) and a dimension for predicted class values (i.e., ŷ = 1 or

ŷ = 0). An arc loss is considered a positive event (y = 1), and no arc loss (i.e., sta-

ble operation) is considered a negative event (y= 0). The confusion matrix consists

of four values; two of which correspond to correct predictions, and two of which

correspond to false predictions. False predictions can be either false positive (FP)

or false negative (FN), referring to either type I error (false alarm) or type II error

(missed alarm), respectively. True predictions can be either true positive (TP) or
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true negative (TN), i.e., correctly predicting arc loss or correctly predicting no arc

loss, respectively.

For a particular experimental configuration (e.g., LR with PCA), the model produces

an output estimate for each segment in the testing set. Each output estimate is

compared to the true output label allowing the categorization of that prediction as

either FP, FN, TP, or TN. Therefore, the sum of these four values is equivalent

to the total number of segments in the testing dataset and the resulting confusion

matrix summarizes the prediction fidelity of the model with respect to both the

positive and the negative class. Various performance metrics (e.g., accuracy) can

be derived for each model from the confusion matrix of that model.

The confusion matrix resulting from testing each of the fifteen experimental con-

figurations in Figure 3.11, with parameters shown in Table 3.1 and Table 3.2, is

provided in Table 3.3. In addition to the confusion matrix, two key performance

Table 3.3: Summary of the experimental results.

TP FP TN FN ACC TPR

NA

LR 182 49 151 76 0.727 0.705
L-SVC 185 46 141 86 0.712 0.683
K-SVC 167 64 156 71 0.705 0.702
ANN 176 55 152 75 0.716 0.701
CNN 181 50 141 86 0.703 0.678

PCA

LR 186 45 148 79 0.729 0.702
L-SVC 176 55 151 76 0.714 0.698
K-SVC 144 87 158 69 0.659 0.676

d = 41 ANN 176 55 142 85 0.694 0.674
CNN 181 50 149 78 0.721 0.699

PLS

LR 184 47 130 97 0.686 0.655
L-SVC 169 62 146 81 0.688 0.676
K-SVC 166 65 149 78 0.688 0.680

d = 16 ANN 166 65 147 80 0.683 0.675
CNN 147 84 161 66 0.672 0.690

metrics are tabulated in Table 3.3 for each configuration, i.e., the accuracy (ACC)
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and the recall, otherwise known as the true positive rate (TPR), with maximum

values emphasized in bold font. Accuracy is simply defined as the sum of true

predictions (i.e., TP and TN) divided by the sum of all predictions (i.e., the total

number of segments). The most accurate experimental configuration is with an LR

classifier on a 41 principal component representation followed very closely by an

LR classifier on the raw data itself.

The second critical performance metric provided in Table 3.3 is the recall which

focuses on the cases which precede an arc loss event. Specifically, recall is defined

as the number of times arc loss is correctly predicted divided by the number of

times arc loss occurs, i.e., TPR = TP/(TP+FN). The experimental configuration

with the best recall in this study is a logistic regression classifier on the raw data.

Interestingly, the runner-up for recall is a tie between a logistic regression classifier

on a 41 principal component representation and a kernel support vector classifer

on the raw data.

Aside from accuracy and recall, performance metrics for precision, also known as

positive predictive value (PPV), F1 score, and Fβ score are tabulated in Table A.3

in Appendix A. The F1 score represents the harmonic mean of precision and recall,

whereas the Fβ score allows user specification of β which controls the weighting

of recall and precision (i.e., recall is β times more important than precision). For

this application, recall is prioritized because the operating cost associated with

false alarms is much less than the operating cost associated with missed alarms

(i.e., FN). Therefore, a choice of β = 0.25 is selected for tabulating the Fβ scores.

The best configuration with respect to precision and F1 score is an LR classifier

with a PCA representation, whereas the configuration with the highest Fβ score is,

unsurprisingly, the same as that with the highest recall, i.e., an LR classifier on the

raw data.

Comparing representations in terms of accuracy, the raw data and the PCA repre-

sentation consistently outperform the PLS representation with the only exception

being for the K-SVC classifier. Comparing classifiers in terms of accuracy, the

LR classifier has the two highest accuracy scores with 72.9% and 72.7% on PCA

components and raw data, respectively.
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With respect to the comparison of recall scores across the different representations,

i.e., PLS is once again outperformed by PCA and raw data. Simply using the raw

data provides the best recall score on average (across classifiers) as well as the

highest recall of 70.5% with an LR classifier. Overall, logistic regression demon-

strates better generalization performance relative to the deep learning methods.

Ultimately, given the importance of recall in this application, a logistic regression

classifier on the raw data is the most promising configuration for development of

an inferential sensor to predict arc loss.

Deep learning methods contain a very large number of parameters which allows

them to model complex nonlinear functions if they have enough data to train on.

Although the logistic regression method performed slightly better in these exper-

iments, it is possible that the deep learning methods would perform better in an

experiment with multiple years of historical operating data. This is demonstrated

by Figure 3.15 which shows the superior performance increases with deep learning

methods relative to traditional methods when additional data is provided. Another
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Figure 3.15: Comparing the classification accuracy of logistic regression
with convolutional neural networks while varying the amount of train-
ing data.
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common issue with deep learning methods is over-fitting. Special care is taken

to prevent over-fitting by introducing regularization and early stopping. However,

over-fitting is still a significant challenge for deep learning applications with soft

sensors. Finally, sensitivity to hyper-parameters and network initialization is an-

other potential concern for deep learning methods.

3.5.2 Discussion of contributions and findings

This case study has introduced a novel industrial predictive classification prob-

lem, i.e., to predict arc loss in a DC EAF five minutes prior to the arc loss event.

Moreover, an end-to-end ML workflow is presented that demonstrates how raw in-

dustrial data can be used to deliver operating value in the form of an inferential

sensor model. Arc loss events are predicted five minutes prior to occurrence with

an accuracy of 72.7% and a TPR of 70.5% on unseen data from two subsequent

months of operation. The unexpected loss of plasma arc in the DC EAF is an on-

going problem resulting in millions of dollars of lost production annually. This

work has the potential to contribute improved economic savings and better envi-

ronmental outcomes as energy and material are consumed more efficiently. Finally,

a comprehensive empirical comparison between traditional and contemporary ML

methods is presented for both representation learning and predictive classification.

Given the recent success of deep learning methods it is interesting to note that ap-

plying the logistic regression classifier to the raw data is the best performing exper-

imental configuration. Especially considering a significantly greater computational

effort is taken to optimize and train the deep learning methods relative to the tra-

ditional ML classifiers. It is important to consider whether or not this optimization

effort contributed to over-fitting and reduced model generalization.

Concerns for over-fitting are also present in the study of explicit representations

where the raw data provides superior test results. The poor performance of PLS

relative to PCA is consistent with over-fitting given that PLS is a supervised learn-

ing method with an iterative optimization procedure. Note that Figure 3.14 demon-

strates a consistently higher validation accuracy for PLS relative to PCA.

Increasing the fidelity of the experimental setup with respect to the constraints of
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the production environment is a non-trivial challenge that is critical for improving

the value of data-driven insights. For example, Figure 3.15 suggests that increasing

the amount of data used to train the deep learning models may help overcome over-

fitting and deliver enhanced generalization. The experiments can also be enhanced

by evaluating the algorithms with continuous raw process data instead of procured

class-balanced segments. A change that would likely improve performance while

maintaining operational integrity is to decrease the period over which the model

is evaluated without being updated. The predictive model could be updated more

frequently than every two months (e.g., weekly) to improve performance. Finally,

ongoing work includes the development of a benchmark challenge with the arc loss

dataset that can supplement existing simulated benchmarks (e.g., TEP).

3.6 The Arc Loss Challenge
As the kraft pulping case study demonstrates, the ability to conveniently and ac-

curately label arc loss is a key differentiating characteristic of the pyrometallurgy

study. As Chapter 2 describes, open-source benchmark datasets have great po-

tential to assist researchers in developing and comparing ML methods for FDD.

Literature review on the TEP benchmark helped direct the method selection in the

representation learning study. This review also helped reveal limitations of existing

FDD benchmarks and identify an important opportunity to address these limitations

by publishing a modern benchmark challenge with raw operating data from a large-

scale industrial process, i.e., The Arc Loss Challenge.

Framing the unexpected loss of plasma arc in an electric arc furnace as a supervised

learning problem is a novel contribution to process monitoring literature. Devel-

opment of a soft sensor with readily available operating data is demonstrated with

72.9% accuracy on a testing data set. Further improvements are recommended be-

fore this solution is adopted in practice. Arc loss forecasting is an open problem

that can help operators take preventative measures to minimize the negative impact

of arc loss on production. The Arc Loss Challenge provides the industrial operating

data with arc loss labels as a structured FDD benchmark.

The long-term utility of ML benchmarks in many disciplines is sensitive to the con-

59



cept of metric fixation which is succinctly described by Goodhart’s law, i.e., “when

a measure becomes a target, it ceases to be a good measure” [121]. Concentrating

the measure of progress for an entire discipline on the results of a single bench-

mark is a form of high order over-fitting. This scenario is even more myopic when

the discipline is over-fitting to a benchmark with highly procured simulated data

that does not represent many of the non-trivial challenges encountered in practice

(e.g., data preparation). For instance, the most prominent FDD benchmark is the

TEP dataset which is used in literature with increasingly exceptional results (i.e.,

accuracy in the range of 96% to 100%) using advanced ML algorithms [145].

One way to reduce the illusion of progress caused by this high-order over-fitting is

to maximize the alignment of the challenges posed by the benchmark with those

faced in practice. Another remedy is to encourage benchmarking that simultane-

ously helps mitigate unresolved process faults that continue to burden real-world

industrial operations. Finally, the utility of benchmarking strategies can be im-

proved by posing non-trivial challenges for modern ML methods, ensuring consis-

tent usage of the benchmark, and encouraging transparency so proposed methods

can be replicated and examined.

The Arc Loss Challenge is introduced to help remedy the limitations of existing

ML benchmarks for FDD. By providing an open-source dataset from a large-scale

industrial process with accurate labels of an ongoing process fault, The Arc Loss

Challenge helps researchers measure progress that aligns with real operating en-

vironments. A clear and concise problem formulation is published with the data

along with consistent and transparent procedures for submission and evaluation.

As mentioned before, The Arc Loss Challenge has been accepted for publication in

the The Journal of Process Control. By providing a supervised learning challenge

based on large quantities of raw industrial process data with transparent and con-

sistent evaluation procedures, The Arc Loss Challenge is a unique contribution to

fault detection benchmarking. To participate in The Arc Loss Challenge, interested

readers are directed to the competition website [148].

In this chapter, minimal process knowledge is used to introduce the arc loss fault

and develop an ML solution. Chapter 4 presents a fault that does not benefit from
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such a distinct definition, and a dataset that is not as easy to accurately label. A

higher degree of immersion in domain-specific process knowledge is required for

the challenging up-stream activities of formulating a coherent ML solution.
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Chapter 4

Lime Kiln Monitoring with
Infrared Thermal Cameras

“An infrared thermal camera monitors a unit operation in an industrial pro-
cess.” Text to generate images with DALL·E 2 [1].1

1Note that these are computer generated images used only for abstract conceptual visualization.
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This case study explores data-driven monitoring of rotary lime sludge kilns in kraft

pulping processes. The lime kiln is the single largest source of fuel consumption

in pulp manufacturing [94]. One of the key motivations for this work is to address

ring formation which is notorious in literature and industry for being the most

troublesome problem facing lime kiln operation [126]. Visualization and data-

driven analysis of shell temperature data from thermal cameras is a key focus of

this research.

In the context of learning from industrial process data, the pyrometallurgy case

study provides an emphasis on robust empirical comparison of traditional and con-

temporary process analytics techniques for predicting arc loss. The kraft pulping

case study, presented in this chapter, provides a complementary perspective that

emphasizes the value of process knowledge to improve the depth of interpretation

while learning from industrial process data. Together, these case studies provide

insights that are discussed in Chapter 5.

The material presented in this chapter is largely based on the following publications

and conference presentations:

• PACWEST 2021 Technical Conference. Presentation on “Detection and Di-

agnosis of Ring Formation in Rotary Lime Kilns - Part I Developing a Ring

Formation Indicator.” Awarded Best Student Paper Award [104].

• L. Rippon, B. Hirtz, C. Sheehan, T. Reinheimer, P. Loewen, and B. Gopaluni.

Visualization of multiscale ring formation in a rotary kiln. Nordic Pulp &

Paper Research Journal, 36(4):549–558, 2021

• L. D. Rippon, B. Hirtz, C. Sheehan, T. Reinheimer, C. van der Merwe,

P. Loewen, and B. Gopaluni. Detection and diagnosis of ring formation in

rotary lime kilns. Canadian Chemical Engineering Conference Proceedings,

pages 23–29, 2021

• L. D. Rippon, B. Hirtz, C. Sheehan, T. Reinheimer, C. van der Merwe,

P. Loewen, and B. Gopaluni. Rotary kiln monitoring with shell tempera-

ture visualization and process analytics. In 2022 TAPPI PEERS and IBBC

Conference Proceedings. TAPPI Press, 2022
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4.1 Introduction to Rotary Lime Sludge Kilns
Rotary kilns are enormous cylindrical vessels that serve as key unit operations in

cement production, pyrometallurgy and kraft pulping. Industrial rotary kilns con-

sist of a steel shell, lined with refractory bricks, rotated by a drive gear, and sup-

ported on tyres and rollers. Since these are very expensive vessels that operate at

high temperatures (often exceeding 1000◦C), preventative maintenance is impor-

tant for rotary kiln management and safety. Moreover, the high energy intensity

of rotary kilns and their fundamental role in many industrial processes provides a

strong motivation to keep them operating as efficiently as possible [42].

The process monitoring techniques presented in this work are relevant to rotary

kilns that collect kiln shell temperature (KST) measurements along the length of

the kiln. However, investigating faults such as ring formation requires specific

domain knowledge so this work focuses on a particular application, i.e., rotary lime

sludge kilns in the recovery circuit of kraft pulp mills. As Figure 4.1 illustrates,

rotary lime kilns (outlined in red) are part of the larger integrated forest products

industry. Pulp mills are a key component of the integrated forest products industry

as the profitability of sawmills depends on revenue generated through selling chips

to pulp mills [15].

Figure 4.1: Contextualizing the lime kiln (outlined in red) within the inte-
grated forest products industry

The kraft pulping process relies upon a strong alkaline solution known as white

liquor to liberate cellulose fiber from lignin and hemicellulose during impregnation
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and cooking of wood chips. An important feature of the kraft pulping process is the

recovery circuit as it recovers expensive chemicals for pulp cooking and it prevents

the escape of these chemicals to the environment [86]. Central to chemical recov-

ery is the recausticizing area which produces white liquor by reacting green liquor

with slaked lime. Lime mud (mainly CaCO3) is a by-product of the causticizing

reaction. The lime kiln is essential for regenerating burnt lime (approximately 90

wt% CaO) from this lime mud [8, 119].

Lime kilns are used in kraft pulping to regenerate calcium oxide (i.e., lime) from

calcium carbonate (i.e., lime mud) according to the following endothermic calci-

nation reaction [126]:

CaCO3(s)−−→ CaO(s)+CO2(g). (4.1)

As Figure 4.2 illustrates, wet lime mud (CaCO3) is fed to the top of the inclined

rotary kiln where it begins to dry into a powder before agglomerating into nodules

in the preheating zone. The preheating zone facilitates an increase in temperature

of the kiln solids from approximately 80◦C to about 870◦C at which point the

calcination reaction begins [39]. Approximately 3 MJ of energy is required to

produce 1 kg of pure CaO at 900◦C. Rotary lime kilns can be over 4 m in inner

diameter while exceeding 100 m in length [27]. The lime moves through the kiln

in about 1.5 to 4 hours depending on the speed of rotation (typically between 0.5

and 2 rpm) and the slope of the kiln (between 1.5◦ and 3◦) [4].

Figure 4.2: A simplified illustration of a rotary lime kiln with three thermal
cameras. Lime mud is fed to the kiln where it is dried into a powder and
then agglomerated into nodules which are calcined into lime product.
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Another detail illustrated in Figure 4.2 is the use of thermal cameras to provide

real-time KST measurements along the kiln. This work studies thermal camera

data to develop kiln monitoring solutions that improve operating outcomes. This

chapter discusses thermal camera applications on lime kilns and it presents two

important contributions of this research, i.e., i) a novel shell temperature visual-

ization method that provides enhanced operating insights [103], and ii) discovery

of a novel phenomena, known as rotational aliasing that is a key consideration for

using KST data [109]. This work empowers operators and engineers to improve the

production efficiency of rotary kilns by enhancing process monitoring with ther-

mal cameras. Although this work focuses on a lime kiln in a kraft pulping process,

many of the tools and insights developed while investigating ring formation are

expected to extend to other applications of rotary kilns as well.

4.2 Thermal Cameras and Data Visualization
Recently, thermal imaging tools have become significantly more affordable while

offering better performance and functionality. Consequently, kilns have become in-

creasingly equipped with infrared (IR) thermal cameras to address maintenance and

operations challenges [45]. This has led to increased interest in these cameras for

modeling and monitoring of rotary kilns [68, 146]. As thermal camera technology

is increasingly deployed to kilns, an abundance of historical KST data is generated

and the potential for data-driven optimization of kiln operating policies becomes

increasingly realizable. Extracting robust insights from this deluge of historical

data requires active efforts towards data storage, processing, and visualization.

A variety of devices can be used to collect KST measurements including handheld

pyrometers, one-dimensional line scanners, and two-dimensional thermal cameras.

The one-dimensional line scanner has a rotating head calibrated to the rotation

speed of the kiln. This research studies data from a stationary two-dimensional

thermal camera. These cameras can be configured to measure shell temperatures

in various ways including measurement areas and profile lines, such as those shown

in Figure 4.3.

Although many operations measure shell temperatures in real-time, there is often
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Figure 4.3: A stationary two-dimensional IR thermal camera measures shell
temperatures along a rotary lime kiln [103]. The thermal camera can
collect shell temperatures along the diagonal profile line or average the
temperatures within the rectangular measurement areas.

significant value in the KST data that goes unappreciated and in unfortunate cir-

cumstances, becomes permanently discarded. As more kilns are equipped with

thermal cameras and more industries are improving their digital capabilities, there

is a valuable opportunity to develop novel data-driven solutions that tap into his-

torically siloed sources of operating data.

4.2.1 Applications of thermal cameras on lime kilns

A variety of approaches have been introduced for deriving value from thermal cam-

era data. Broad applications of real-time KST measurements include process mon-

itoring, FDD, AEM, kiln modeling, and APC. These applications are studied in this

work and specific details are provided in what follows. One specific application

of thermal cameras is to detect refractory wear and brick loss by monitoring shell

temperatures for hot-spots.

The cylindrical steel shell of the kiln is protected by a refractory which is composed

of magnesia and alumina bricks with thermal and chemical resistance properties.

Kiln refractories experience wear and brick loss during operation from thermo-

mechanical influences, overheating, and salt infiltration. Refractory wear can be

identified as hot-spots by monitoring KST data. If these hot-spots are undetected,

they can cause damage to the shell which can result in catastrophic failure. Thermal

cameras enable early onset detection of hot-spots so the mill can minimize damage
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to the shell and avoid costly unplanned outages. Using thermal cameras to monitor

refractory wear can potentially save millions of dollars in equipment damage and

lost production.

In addition to identifying hot-spots and preventing damage to the kiln refractory,

thermal camera data can be used to calculate shell heat loss. Radiative heat losses

along the kiln are proportional to the fourth power of the shell temperatures. Shell

heat losses are an important component of the kiln energy balance with a significant

influence on operating efficiency and refractory design [40].

Thermal cameras can also be used to provide insight into aspects of the kiln opera-

tion such as fouling or ring formation [107]. One type of fouling, illustrated on the

left side of Figure 4.4, is the formation of soda balls in the chain section of the kiln.

Lime mud is washed to minimize carryover of chemicals such as NaOH which can

Figure 4.4: Thermal cameras can be used to monitor for kiln fouling and ring
formation. Left: fouling in the chain section of the kiln from soda balls.
Right: two distinct cases of ring formation [107].

volatilize in the firing end of the kiln, get carried upstream with the flue gas, con-

dense in the chain section, and plug the kiln with soda balls. A more troublesome
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type of fouling is the formation of rings on the kiln refractory, as the right side of

Figure 4.4 shows. Ring formation is discussed further in Section 4.3.

Thermal cameras can also be used to evaluate shell temperature profiles which can

provide important insights into the extent of the calcination reaction. High qual-

ity KST data can be used to improve the accuracy of residual calcium carbonate

predictions from soft sensor models [45]. Accurately predicting the extent of the

calcination reaction can enable supervisory residual carbonate control (RCC) that

can minimize specific energy while producing high quality lime for slaking. Resid-

ual carbonate prediction is discussed further in Section 4.4.

In addition to measuring shell temperatures, thermal cameras can be mounted on

the firing end of the kiln to monitor the shape of the burner flame, observe the size

of the lime product nodules, and infer the amount of dust circulating in the kiln.

However, the focus of this work is on leveraging thermal cameras that continuously

measure the shell temperature profile along the length of the rotary kiln. Although

process analytics (e.g., residual carbonate prediction) can help add value with ther-

mal cameras, effective visualization is fundamental as it enables domain experts to

gain operating insights from large quantities of KST data.

4.2.2 Kiln shell temperature visualization

To facilitate extraction and communication of process insights, engineers and oper-

ators must be able to interact with large quantities of thermal camera data in a user-

friendly and visually intuitive manner. Bootstrapping the abilities of SMEs with

enhanced data visualization is often overlooked in favor of sophisticated ML meth-

ods that attempt to conveniently bypass domain expertise. In practice, data-driven

methods that neglect domain expertise fail to deliver sustained value, whereas en-

hancing the insights and capabilities of SMEs is significantly more effective at pos-

itively influencing operating outcomes.

One contribution of this dissertation is the introduction of a novel, user-friendly

approach to visualizing large quantities of KST profiles at varying timescales. Al-

though this visualization strategy was initially developed to support the study of

ring formation, the positive reception from industry professionals demonstrated
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the broader importance of this contribution as a novel tool for SMEs to troubleshoot

and monitor kiln operation. The proposed visualization method has drawn interest

from various mills and has been integrated into a commercial industrial software

product [14].

Existing data visualization techniques

Various techniques have been used in industry and literature for visualizing shell

temperatures to track ring formation. The synthetic data in Figure 4.5 illustrates a

simple example of a common KST visualization technique whereby a handheld py-

rometer is used to manually collect KST measurements at different locations along

the kiln. Infrequent manual measurements are combined and used to construct a

Figure 4.5: Synthetic data illustrating a low-resolution map of KST profiles.

low-resolution map of KST profiles over time with a qualitative color map [59].

The proposed approach improves this situation by enhancing the resolution, intu-

itiveness, and interactivity of the visualization while also collecting and processing

the data using existing thermal cameras instead of manual pyrometer readings.

The continuous two-dimensional thermal camera data can be averaged over a day

and stitched together to generate a KST profile as shown in Figure 4.6. The com-

parison of KST profiles in Figure 4.6 demonstrates a straightforward approach to

visualizing ring formation. The 2019-01-01 data is from a clean kiln after a mainte-

nance shutdown and it is compared to measurements after twenty days of operation

to visualize potential ring growth between 30-45 m from the firing end of the kiln.

Alternatively, a line scanner can be calibrated with the rotation speed of the kiln to

visualize the entire outer shell of the kiln over a single rotation period, as illustrated
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Figure 4.6: Thermal camera measurements are averaged over a day and
stitched together to generate a KST profile. Measurements from a clean
kiln on 2019-01-01 are compared with measurements from 2019-01-20
to emphasize potential ring formation.

by Figure 4.7. The visualization technique illustrated by the synthetic data in Fig-

ure 4.7 provides insights along the tangential dimension (or outer circumference)

of the shell on the y-axis in addition to the axial KST variations along the x-axis.

One drawback of this technique is the lack of a temporal dimension to provide in-

Figure 4.7: Synthetic illustration of a shell scan measured over a single rota-
tion period. These visualizations are produced by one-dimensional line
scanners that use a rotating sensor calibrated to the kiln rotation speed.

sights into the evolution of the KST profile over time (e.g., during ring formation).

Also, it may become infeasible (or at least undesirable) to process and store high

dimensional images for each rotation. Although shell scans from different periods

can be compared to investigate changes, in practice this amounts to a cumbersome

side-by-side comparison of separate images that can be overwhelming when large

quantities of data need to be analyzed.

The proposed visualization strategy overcomes limitations of these existing meth-
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ods by providing an intuitive visualization of large quantities of data that clearly

illustrates the evolution of KSTs across any user-specified timescale. Moreover,

the proposed technique is complementary to visualizations with two spatial dimen-

sions (e.g., Figure 4.7 or raw camera images). The proposed technique can be used

to identify periods of interest from which to investigate further with raw images.

Spatiotemporal heatmap for scalable shell temperature visualization

The method presented here includes the conversion of raw KST data from a thermal

camera to a visually intuitive spatiotemporal heatmap. This is followed by the

development of a user-friendly interactive approach to controlling the timescale at

which kiln temperature dynamics are observable.

Consider a matrix of KST measurements, T (x,t), where the rows of T are indexed

by x= [x1,x2, . . . ,xn] and the columns of T are indexed by t= [t1, t2, . . . , tτ ]. Each

xi represents the distance from the firing end of the kiln that the thermal camera

measurement is taken whereas each ti represents a periodic sequence of discrete

sampling times with a total of τ samples. Each row, i, of T is a univariate time

series, T (xi,t), composed of τ total KST measurements at position xi from the

firing end of the kiln. Each column, j, of T is a snapshot of the entire KST profile

at time t j, denoted T (x, t j).

The KST measurement positions, x, are determined by the placement and config-

uration of the thermal camera(s) which may result in positions that are not equis-

paced. If these non-equispaced positions are not addressed they can create visual

obscurities which can cause misleading conclusions about the spatial dynamics in

the kiln. A snapshot of a non-equispaced KST profile is presented in Figure 4.8.

Each temperature in Figure 4.8 is assigned a color, as shown in the color bar on

the left. Measurements are colored accordingly, effectively embedding the y-axis

as uniform, sequential colors, as a precursor to further refinements below.

To address the non-equispaced samples an upsampled KST profile is created, T̃ (x,t),

by performing piecewise linear interpolation on positions between those provided

in the original row index, i.e., xi < x < xi+1. Since the interpolation is only along

the spatial dimension, t is dropped for notational simplicity. The simplest piece-
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Figure 4.8: A KST profile with non-equispaced measurement positions. Dis-
crete measurement areas summarize thermal camera pixels into an av-
erage temperature at fixed positions and intervals.

wise linear interpolation function defined on [x1,xn] that reproduces the measured

temperatures is

T̃ (x) = T (xi)+
x− xi

xi+1 − xi
[T (xi+1)−T (xi)] for xi < x < xi+1. (4.2)

Repeating this interpolation for all positions defined on [x1,xn] yields the upsam-

pled KST profile which is presented for the same sample time in Figure 4.9. Once

Figure 4.9: Piecewise linear interpolation of the KST profile. The bottom
color bar embeds the y-axis temperatures with a uniform, sequential
colormap enabling a clear and intuitive single-axis visualization.

again, the y-axis values map directly to the vertical color bar legend on the left-

hand side. The horizontal image at the bottom of Figure 4.9 represents the same

KST profile but with the y-axis embedded in the colors according to the legend. Ro-

tating this image clockwise by 90◦ provides one column from the upsampled KST
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matrix T̃ (x,t). Repeating this process for all samples yields an image of T̃ (x,t)

that enables a visually intuitive representation of large quantities of KST data.

For consistency, it is recommended to select a colormap that resembles the raw

thermal camera images. Once measurements with invalid magnitudes are addressed,

the maximum and minimum values of T̃ are used as limits for the colormap. In-

termediate values are mapped in a uniform fashion with equal increases in temper-

ature yielding equal increases along the colormap. The resulting visualization is a

spatiotemporal heatmap of the kiln over τ sampling periods. Figure 4.10 shows a

spatiotemporal heatmap with over 5 years of hourly averaged KST profiles.

Figure 4.10: Spatiotemporal heatmap of KST profiles spanning over 5 years
of operation. This is the first published visualization that offers a clear
and intuitive view of shell temperature evolution over years of rotary
kiln operation.

If the time scale, τ , is too large then high frequency variations are compressed

into a small number of pixels rendering them incomprehensible. To visualize the

KST profile at varying time scales an interactive heatmap is developed with user-

specified parameters for the start date (s) and the window size (w). Ultimately, an

upsampled slice of the raw KST matrix, i.e., T̃ (x, ts:s+w), is used to analyze the KST

profile of the kiln. The following material demonstrates the utility of the proposed

visualization strategy with an industrial case study.

Industrial case study

Consider an industrial rotary lime kiln in a kraft pulping process that is approxi-

mately 85 m long and 3 m in diameter. Like many kilns, this kiln is challenged by
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the formation of rings. For improved control and management of abnormal situa-

tions (such as rings) this kiln has been equipped with three thermal cameras that

measure the shell temperature profile at non-equispaced locations along the kiln.

The imaging resolution for each thermal camera is 480 × 360 (width × height)

temperature measurements taken 30 times per second. To satisfy historian storage

constraints the axial width of each measurement area is set to approximately 3 me-

ters (although this can be adjusted to be larger or smaller) and the data is reported

to the historian every minute. The thermal cameras are capable of measuring tem-

peratures between −40◦C to 1500◦C with an accuracy of ± 2◦C.

Each camera logs ten measurements in the historian, but two measurements from

each camera are omitted from the heatmap because they are related to the external

bracing around the kiln. A total of 24 KST measurements are sampled along the

length of the kiln creating a shell temperature profile with measurements spanning

between 4 to 79 meters from the firing end of the kiln. To analyze the formation of

rings at varying time scales a dataset of KST measurements and other relevant PVs

is acquired using hourly averages from over 5 years of historical operation. The

matrix of raw KST profiles (T ) are upsampled and the resulting matrix (T̃ ) is used

to generate the spatiotemporal heatmap in Figure 4.10.

The y-axis of the heatmap shows the distance from the firing end of the kiln in me-

ters while the x-axis provides the date from the sample timestamp. A legend on the

right side of Figure 4.10 shows the relationship between colors and shell tempera-

tures. An intuitive correlation of temperature with brightness provides immediate

operating insights, e.g., the vertical black slices are from prolonged maintenance

shutdowns. The period to the right of 2018-01-10 in Figure 4.10 shows a shutdown

followed by a period of presumed fouling at approximately 20-40 m from the firing

end of the kiln. The fouling is suspected because the shell becomes cooler (i.e., the

heatmap becomes darker) in that section while remaining relatively stable at both

the firing end and feed end of the kiln. To better investigate ring formation, the

start date and window size can be specified to zoom in on this event as shown by

the heatmap in Figure 4.11.

Reducing the window size reveals insights into this period of ring growth. Fig-
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Figure 4.11: Focusing on a period of suspected fouling. Potential ring forma-
tion is observed after 2018-04-29 at approximately the 18 m and 45 m
positions. Between 2018-05-18 and 2018-06-05 the fouling appears to
bridge these separate formations and extend into the 23-40 m range.

ure 4.11 shows that a ring appears to form after 2018-04-29 at approximately 18

m from the firing end of the kiln. Also, a much longer ring appears to form be-

tween approximately 23-40 m from the firing end of the kiln. The presumed for-

mation of this longer mid-kiln ring happens between 2018-05-18 and 2018-06-05.

Given these specific periods of interest, further investigation can be undertaken,

e.g., zooming in further with the heatmap or directly inspecting the raw thermal

camera images. In this case the latter choice is selected to demonstrate how the

proposed visualization strategy complements the raw thermal camera images.

Figure 4.12 compares two images taken from the thermal camera on the firing end

of the kiln. The image on the left side of Figure 4.12 is taken from 2018-04-29

while the image on the right side of Figure 4.12 is taken from 2018-05-06. Note

that the right-side image exhibits significantly darker shell colors in measurement

areas E, F, and G, which corresponds to the shell temperature decrease observed in

Figure 4.11.

Figure 4.13 investigates the longer, mid-kiln temperature drop by comparing raw

images taken from the thermal camera that monitors the middle section of the kiln.

The image on the left side of Figure 4.13 is taken from 2018-05-23 whereas the

image on the right side is taken from 2018-05-30. During this week of operation,

measurement areas C, D, E, and H become significantly darker which corresponds

to the drop in temperature observed in Figure 4.11 both in terms of location and

76



Figure 4.12: Investigating thermal camera images to confirm suspected ring
formation approximately 18 m from the firing end of the kiln just af-
ter 2018-04-29. Left: an image from the firing end camera taken on
2018-04-29. Right: an image taken on 2018-05-06 with cooler shell
temperatures in measurement areas E, F, and G.

Figure 4.13: Observing mid-kiln camera images to confirm ring formation in
the 23-40 m range between 2018-05-18 and 2018-06-05. Left: image
taken on 2018-05-23. Right: image from 2018-05-30 that exhibits
cooling across all measurement areas except area A.

time period. The consistent temperature drop shown on the right side of Figure

4.13 is not necessarily indicative of ring formation. Further investigation can be

conducted to determine potential explanations for the shell temperature changes

from operating data.

To supplement the heatmap, another feature is included that allows users to select

from a list of PVs to plot. Axes, units, and descriptions are updated automatically.

This feature is demonstrated in Figure 4.14 to investigate the cause of the long

and consistent decrease in shell temperatures found in Figure 4.13. The solids

percentage of the calcium carbonate lime mud fed to the kiln is shown in the bottom

plot of Figure 4.14. A sustained drop in mud solids between 2018-05-28 and 2018-
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Figure 4.14: Further reducing the heatmap window and plotting relevant PVs
for operating context. Top: the spatiotemporal heatmap of KST pro-
files. Bottom: the solids percentage of the lime mud fed to the kiln.

05-31 suggests the observations from the right side of Figure 4.13 are due to poor

performance of the mud filters resulting in lime mud that is too wet. Mill records

confirm mud filter problems during this period. Moreover, mill personnel have

observed a seasonal pattern where spring runoff results in an increase in mill water

turbidity and perhaps a reduction in mud filter performance.

In this case study, a ring formation event is investigated using the spatiotemporal

heatmap method for visualizing shell temperatures. A ring is identified at roughly

18 m from the firing end of the kiln on 2018-04-29. Mid-kiln cooling is observed

between 23 m and 40 m from the firing end of the kiln after an extended decrease of

mud solids on 2018-05-29. Mud filter performance is well-known as a critical fac-

tor for ensuring proper functionality and efficiency of lime kilns [90]. Although the

feed end temperatures recover from this moisture upset, the mid-kiln temperatures

at approximately 38 m from the firing end of the kiln do not recover. Ultimately, a

ring forms in this area, and it needs to be manually removed during a shutdown.

The convenient and intuitive nature of this visual tool enables navigation and com-

prehension of large quantities of high dimensional historical data. In addition to
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identifying periods of fouling the heatmap can help evaluate data quality and the

effect of data pre-processing activities. Individual shutdowns can be identified, and

start-up procedures can be compared. The state of the process can be succinctly

compared across years of operation. Plotting suspected variables alongside the

heatmap helps to identify poor pre-coat filter performance as a cause of ring for-

mation. It is conceivable that dust in the flue gas contacts the excess moisture and

forms deposits along the kiln refractory. The following section provides additional

information on ring formation. The heatmap visualization code is freely available

along with a brief instructive tutorial using synthetic data [102].

4.3 Monitoring Ring Formation
The previous section introduced a novel shell temperature visualization method

and demonstrated its effectiveness for monitoring and investigating ring formation

events. In this section process analytics and ML are studied for monitoring ring

formation with thermal cameras and traditional instrumentation. First, background

information on ring formation is provided.

4.3.1 Ring formation in lime sludge kilns

Reaction materials flow through the kiln because of the slope and rotation speed

of the kiln. Apart from a thin coating that is applied to the refractory during start-

ups, there should be no accumulation of material in the kiln. The formation of

rings, such as those shown in Figure 4.15, is a significant outstanding problem in

the operation of rotary kilns. An inquiry on Swedish kraft pulp mills showed that

approximately 70% of mills suffered from ring formation and many did not know

why [77]. Rings occur when there is adhesion and accumulation of lime mud or

product lime particles to the refractory wall on the inside of the kiln. This results

in the formation of rings and annular cylinders that can restrict the flow of gas and

solids in the kiln. Formation of rings is the most troublesome problem for lime kiln

operation [126].

Rings can form at significantly different rates, with noticeable deposits accumulat-

ing quickly over a matter of days, or gradually over a matter of months. This creates
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Figure 4.15: Ring formation in rotary lime sludge kilns. Top: severe ringing
restricting the orifice of the kiln in the mid-zone and firing end. Bot-
tom left: a mill worker studies ring formation inside a kiln. Bottom
right: stress fracturing of ring into debris with thermal cycling.

challenges for detecting and visualizing ring growth. The ring orifice can reduce

lime production costing over $50,000 per day in purchased lime rock. Moreover,

if the ring goes unnoticed it can result in overheating and damage to the refractory

lining which may require repairs and lost production in excess of $3 million per

event. Although the exact mechanisms of ring formation are not completely un-

derstood, distinct types of rings have been observed and causal mechanisms have

been proposed [39].

Rings can form at different locations along the length of the rotary lime kiln and

for various reasons. For example, rings near the firing end are often attributed to
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sulphation reactions, i.e.,

CaO(s)+SO2(g)+
1
2

O2(g)−−→ CaSO4(s) (4.3)

where the CaSO4(s) product hardens the ring, making it more resistant to abrasion.

The presence of SO2(g) is due to impurities in either the fuel or the lime mud [128].

Mid-kiln rings are often the most troublesome and they form as a result of carbona-

tion which is the reverse of calcination in reaction (4.1) [127]. Carbonation, which

can significantly harden ring deposits, has been attributed to unstable operation and

fluctuating temperatures [31]. Moreover, an unfortunate positive feedback loop has

been studied whereby the growth of rings contributes to temperature fluctuations

by affecting the shape and stability of the flame [87].

Softer mud rings that develop near the feed end of the kiln are believed to be

caused by high mud moisture and low temperatures. High sodium content (e.g.,

Na2CO3(aq)) in the lime mud as a result of poor washing and low solids content

can result in rapid deposition of sticky lime to the kiln refractory lining [98, 126].

Mills attempt to mitigate ring formation by using industrial 8-gauge shotguns, ther-

mal cycling to cause stress fractures, adding water to the kiln (i.e., slaking) to

dissolve and soften the ring, and blasting with high pressure carbon dioxide (i.e.,

cardox) [39]. For complete removal it is often necessary to shut down the kiln

and wait for it to cool enough for someone to enter the kiln and use a pneumatic

jack hammer to physically remove the ring. Early detection of rings through effec-

tive kiln monitoring is paramount for minimizing their impact on operations and

identifying process conditions that lead to ring formation.

First principles mathematical modeling coupled with laboratory experiments pro-

vides valuable insights into the complicated mass and energy balance dynamics

in rotary lime kilns [5, 32, 36, 37, 83]. Heat transfer modeling has been com-

bined with kiln shell scanning to estimate the thickness of the refractory coating

[88]. However, given the complexity of factors surrounding ring growth as well as

complications such as refractory wear, implementation of these models on exist-

ing operations can be challenging. Instead, this work aims to use ML methods and

81



statistical analysis to monitor ring formation and diagnose potential causes.

4.3.2 Developing a ring formation indicator

In literature, fault detection is often reduced to binary classification, i.e., whether

or not a fault has occurred. Like-wise, diagnosis is often reduced to multi-class

classification, i.e., which fault occurred. These experiments are dependent on ide-

alistic labelled datasets where there is no ambiguity regarding the ground-truth of

the class labels [81]. In practice, when dealing with outstanding industrial faults

and real historical process data, the situation is often far less ideal. In this case,

there is no labelled dataset that says where and when faults occurred and what the

exact cause was. Instead, as is discussed in what follows, most of the work involves

developing techniques to reliably label the historical data.

The use of data-driven FDD strategies to mitigate the negative impacts of ring for-

mation has received little attention in literature. The primary objective of ring

detection is to provide early indications of ring formation so corrective actions can

be taken by operators. A secondary objective of ring detection is to label five years

of historical data such that supervised learning methods can be used for identifying

high-risk operating conditions and diagnosing ring formation. To accomplish both

objectives a ring formation indicator is developed and validated with KST data and

raw thermal camera images.

The proposed ring detection algorithm is based on monitoring residuals (e) between

estimated temperatures (T̂ ) and observed temperatures (T ). Consider a sample time

t as an element of a sequence of sample times t = (t1, . . . , t, . . . , tτ) and a specific

position x along the KST profile x=(x1, . . . ,x, . . . ,xn) measured in terms of distance

from the firing end of the kiln. The residual is computed as follows:

e(x, t) = T̂ (x, t)−T (x, t) (4.4)

where high positive values of the residual indicate a lower-than-expected measured

temperature (i.e., potential ring growth), and high negative values indicate a higher-

than-expected measured temperature (i.e., potential ring decay).
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Attributing shell temperature residuals to ring formation assumes the mismatch

between estimated and actual temperatures is due to rings causing changes in the

thermal resistance of the kiln shell wall. As Section 4.2 demonstrates, the presence

of disturbances (e.g., moisture upsets) and confounding variables (e.g., refractory

wear) make this a precarious assumption. Therefore, special consideration must be

given to predicting temperatures and validating residuals.

Shell temperature forecasting and residual monitoring

A straightforward method to create shell temperature residuals is to use a refer-

ence KST profile after the kiln is cleaned during a shut-down. However, as Figure

4.10 demonstrates, the relevance of a post-startup reference KST profile is brief.2

Moreover, ongoing refractory wear, changing firing rates, and process upsets can

confound ring growth indications and further trivialize dated reference profiles. To

address these challenges, a statistical forecasting technique is designed with pro-

cess knowledge to control for slow KST changes (e.g., due to refractory wear) and

expected shell temperature changes (e.g., due to firing rate changes).

Initially, a simple linear time-series model is proposed. Consider a first order auto-

regressive (AR) model, denoted AR(1), where at a specific position x along the kiln

the shell temperature at time t is modeled as

T (x, t) = φ0 +φ1T (x, t −1)+ ε(t), (4.5)

and the predicted temperature at time t +1 is given by

T̂ (x, t +1) = φ0 +φ1T (x, t), (4.6)

where φ0 and φ1 are unknown parameters that are estimated during training. The

AR model can be seen as a starting point for linear time-series modeling which can

be easily extended into more advanced linear models.

Consider a model where the endogenous response variable, T (t), is a vector of

the entire KST profile at time t, i.e., T (t) = (T (x1, t),T (x2, t), . . . ,T (xn, t))⊤. To

2Many useful insights for developing a ring formation indicator are available in Figure 4.10.
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model shell temperatures, a vector auto-regressive moving-average exogenous in-

put (VARMAX) model is used with a variable AR order p, and a variable moving-

average (MA) order q. This is known as the VARMAX(p,q) and it models the KST

profile at time t as

T (t) = ϕ0 +
p

∑
i=1

ΦiT (t − i)+
q

∑
i=1

Θiε(t − i)+
b−1

∑
i=0

BiX(t − i)+ε(t), (4.7)

where ϕ0 is a vector of unknown constants, Φi is a matrix of AR coefficients, Θi

is a matrix of MA coefficients, Bi is a matrix of exogenous coefficients, and ε(t) is

a multivariate extension of ε(t) from equation 4.5. There is a small discrepancy in

notation to be aware of, capital X(t) is a vector of exogenous variable observations

whereas lowercase x denotes the position along the kiln. A total of b observations

for each exogenous variable are considered including those at the current time.

Exogenous regressors can be variables like the flow of fuel to the burner or the flow

of lime mud to the feed-end of the kiln. A common pitfall in process monitoring

applications of ML (as discussed in Chapter 5) is that domain knowledge is disre-

garded and selection of exogenous regressors is reduced to a data-driven endeavour

to optimize a performance metric, e.g., root mean square error (RMSE). However,

in practice it is often beneficial to select exogenous regressors with careful regard

for the operating behaviour they help represent. Models that represent the expected

behaviour of the process can be particularly useful for fault detection.

Models of this nature are trained on the historical KST data to generate temperature

forecasts with a rolling origin as demonstrated by Figure 4.16. Taking the differ-

ence of the forecasted and measured temperatures results in a series of residuals.

The large drops in measured temperature in Figure 4.16 demonstrate a problem

with the raw camera data, i.e., intermittent obstructions of the camera as shown in

Figure 4.17. Figure 4.17 is an important reminder that it is critical to understand

the quality of process data for ML applications (e.g., APC, FDD, etc.). Maintenance

of instrumentation to produce high quality data in large-scale industrial processes

is a significant challenge. Practical constraints and human error can result in sub-

optimal installation, configuration, and maintenance of process instrumentation.
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Figure 4.16: Statistical forecasting of shell temperatures from a thermal cam-
era at a specific axial position along the kiln [107].

Figure 4.17: Obstruction of measurement areas G, H, and I in the bottom
image can corrupt the thermal camera data.

To obtain more robust indications of ring formation, a simple thresholding proce-

dure is used to isolate shell temperature residuals that are considered significant.

Each series of residuals is analyzed as a distribution and the thresholds are based

on the first quartile, third quartile, and the inter-quartile range (IQR) of the distri-
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bution. Growth residuals are greater than one IQR above the third quartile, and less

than three IQRs above the third quartile. Similarly, residuals are considered indi-

cations of ring decay if they are greater than three IQR below the first quartile and

less than one IQR below the first quartile.

Once the significant growth and decay residuals are sampled, daily counts for each

growth and decay residual are generated as shown in Figure 4.18. A final threshold

is applied to the daily counts to identify days where ring formation is suspected.

Days that are flagged for ring formation are validated with raw data.

Figure 4.18: Daily counts for growth and decay indicators based on shell
temperature residuals.

As mentioned before, an important prerequisite for using supervised learning to

predict or diagnose ring formation is an accurately labelled dataset. The primary

quantitative result of this study involves validating and improving the reliability

of ring detection. The heatmap visualization and raw thermal camera images are

studied to determine the accuracy and utility of the proposed ring detection method.

Troubleshooting and validating the ring detection algorithm leads to the discovery

of a novel phenomena known as rotational aliasing.
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Validating the ring formation indicator

The analysis begins with five years worth of hourly averaged KST measurements

from three thermal cameras. A snapshot of the image from the firing end camera

is shown in Figure 4.17. This data contains unwanted periods from shutdowns and

sensor failures which appear in Figure 4.10 as vertical streaks and periods with

zero variability, respectively. Extracting periods where the entire KST profile is

valid for at least 30 days results in twelve distinct periods of operation, referred to

as experimental trials.

Although there are 24 measurement positions along the KST profile, for now con-

sider just a single position, i.e., 18 m from the firing end of the kiln. A univariate

formulation of equation 4.8 is used to forecast shell temperatures at the 18 m po-

sition. The IQR filtering is conducted to sample significant residuals from which

daily counts are generated. Figure 4.16 and Figure 4.18 demonstrate the forecast

and the daily counts at 18 m for the longest experimental trial. This procedure is

repeated for each of the twelve experimental trials and a threshold is applied to

all 751 days. Days with growth/decay counts greater than 4 are flagged for ring

growth/decay, respectively. Ultimately, 24 days are flagged for ring growth and 51

days are flagged for ring decay. Manual validation is conducted for both growth

and decay using the raw thermal camera images and other available resources.

Consider the period around 17-11-03 from Figure 4.18 which shows two high

growth days followed by one decay day. To validate these events we observe the

raw thermal camera images (focusing on measurement area G) and compare the

forecast to the measured temperature as shown in Figure 4.19. The growth indica-

tion on 17-11-01 is considered a TP given the clear growth from the day prior. For

similar reasons the decay indication on 17-11-03 is also considered a TP. How-

ever, the growth indication on 17-11-02 is not as certain. The temperature trends

indicate potential growth in the first half of the day, but this is not clear from the

thermal camera images which are only available every four hours. Given the lim-

itations on the available data, efforts towards validating ring detection suffer from

inherent ambiguity and subjectivity. As discussed in Chapter 5, this is not a recipe

for successfully applying ML to industrial data.
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Figure 4.19: Validating ring formation indications with raw thermal camera
images (top) and forecast results (bottom).

A similar manual validation procedure is performed for each of the 75 flagged days.

In binary classification terms, two separate binary classifications are performed,

i.e., one for ring growth and one for ring decay. The flagged days represent posi-

tive events, and the validation of these days is performed to determine the precision

of each indicator, i.e., the ratio of TP to all positive events. Table 4.1 shows the re-

sults of the manual ring indicator validation. To address events with insufficient

Table 4.1: Validating growth and decay indications for precision.

Indication Precision Certainty

Growth 68.2% 31.8%
Decay 87.5% 42.5%

evidence a second binary label is applied to each event, i.e., whether the valida-

tion assignment is certain. The assignment of certainty is itself subjective, but it

provides valuable insight into the ambiguity involved with assigning ground truth
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labels to the available data.

As Table 4.1 shows, the precision for the growth indicator is 68.2% but only 31.8%

of validation labels are considered certain. The results for ring decay are slightly

better with a precision of 87.5% and a certainty of 42.5%. The major sources of

uncertainty are insufficient raw data (e.g., thermal images are too infrequent) and

rotational aliasing. Given this untenable degree of uncertainty, improvements are

required to proceed with ring detection. In what follows, the discovery of rotational

aliasing is described and a straightforward solution is implemented to improve the

quality of KST measurements.

4.3.3 Rotational aliasing

Attempting to manually validate the ring formation indicator with historical data

led to the discovery of a novel phenomena referred to here as rotational aliasing.

The underlying principles causing rotational aliasing are similar to the aliasing of

machine direction and cross direction variations in paper machine control [105].

This research represents the first time that rotational aliasing of shell temperature

data on rotary kilns has been formally introduced [109].

Using statistical forecasting to analyze shell temperatures led to the discovery of

large magnitude oscillatory residuals. Further analysis showed these residuals to

be a result of the underlying KST data. The high frequency shell temperature varia-

tions observed in Figure 4.20 were initially puzzling especially given the somewhat

regular periodicity and the magnitude of the shell temperature variations (exceed-

ing ±50◦C per hour). Given that the variations appear near the firing end of the

kiln, one proposed mechanism was the impingement of the burner flame on the re-

fractory wall. Further investigation proved that these shell temperature variations

are due to aliasing as a result of the measurement configuration.

Prior to discovering this high frequency variability, it was falsely assumed that

each datapoint was roughly representative of the average temperature along the

entire circumference of the shell at the given axial position. On the surface this

appeared to be a reasonable assumption given the rotation speed of the kiln is just

over one minute and the KST data is averaged hourly. The heatmap in Figure 4.20

89



Figure 4.20: High frequency variations in shell temperatures measured 24.4
m from the firing end of the kiln. Spurious oscillations corrupt the KST

profile and hinder efforts towards ring detection.

gives the false impression of a ring rapidly growing and decaying approximately

23.2 m from the firing end of the kiln. Observing the 50◦C hourly oscillation in

the plot below the heatmap led to uncertainty regarding the assumption that each

hourly averaged datapoint accurately represented the average temperature over the

entire shell circumference.

Further investigation into the data collection and processing revealed that the hourly

averaged data is drawn from the process historian which averages from an internal

database that stores KST data once per minute. However, the one-minute frequency

data is not a result of averaging even higher frequency measurements taken from

the camera. Instead, the one-minute data in the process historian is collected as an

instantaneous snapshot of the kiln shell that is within the measurement area.

If the kiln is rotating at around 1.25 rpm (as this kiln is) then the frequency of a

disturbance (e.g., fouling) at one spot along the inner circumference of the kiln

is roughly 0.021 Hz. From the Nyquist-Shannon sampling theorem the minimum

sampling rate required to perfectly reconstruct a signal with a frequency of 0.021

Hz is 0.042 Hz, i.e., one sample every twenty-four seconds [115]. In other words,
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the KST data stored in the historian did not meet the Nyquist rate of 0.042 Hz and

therefore this data is insufficient for reconstructing temperature variations associ-

ated with the rotation of the kiln, e.g., fouling that is not uniformly distributed

along the inner circumference of the kiln.

A new KST sampling strategy is proposed such that a profile line (e.g., the diagonal

line in Figure 4.3) is used to measure the shell temperatures and record them every

five seconds. To manage the increased spatial and temporal resolutions the five-

second samples are subsequently averaged into five-minute samples. The new KST

profile line strategy is implemented for one of the three thermal IR cameras, and

it consists of 380 measurements located roughly 2 m to 25 m from the firing end

of the kiln. This high resolution KST data is demonstrated as a heatmap in Figure

4.21. Given that the process historian continues to collect KST data as one-minute

Figure 4.21: Spatiotemporal heatmap from the thermal camera on the firing
end of the kiln providing improved spatial and temporal resolution.

snapshots over the rectangular measurement areas, it is sensible to compare the two

sets of data to see if the high frequency noise is attenuated.

Since there are only eight KST measurement areas from the firing end camera the

comparison relies on determining which of the 380 profile line measurements best

correspond to the rectangular measurement areas. Fortunately, the thermal camera

software provides some assistance. The profile line data is distinguished by the x-

coordinate of each pixel in the camera’s field of vision. Each measurement area has

a center x-coordinate that is given by the thermal camera software. For example,
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the center x-coordinate of the 18.3 m measurement area is 328. Therefore, profile

line trends with x-coordinates between 328±30 are collected and correlated with

the KST data from the 18.3 m measurement area.

Figure 4.22 shows the resulting correlation coefficient for each of the profile line

positions. A maximum correlation coefficient of 0.972 is obtained at x-coordinate

325. Figure 4.23 shows the comparison of the measurement area data (red) with

Figure 4.22: The correlation coefficient between KST data from a rectangular
measurement area 18.3 m from the firing end of the kiln and KST data
from various profile line positions denoted by their x-coordinate along
the profile line.

the profile line data (blue) which demonstrates the profile line strategy success-

fully reduced high frequency variability, especially after 2021-08-21. Implement-

ing the high-frequency averaging provides a better representation of the entire kiln

circumference, which helps reduce the effects of rotational aliasing caused by non-

uniform circumferential shell temperature variations (e.g., ring formation and par-

tial refractory failure).

Rotational aliasing can lead to biased measurements which can result in the spu-

rious high frequency shell temperature variations observed in Figure 4.20. This

can in turn lead to false positives and high uncertainty of ring indications. In this
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Figure 4.23: The profile line data with the highest correlation (blue) is plot-
ted with the measurement area data (red) to demonstrate the improved
noise reduction.

work a simple solution was proposed to improve the KST sampling procedure. This

solution was implemented for one of the three thermal cameras and higher quality

data was analyzed to confirm the rotational aliasing phenomena and validate the

proposed solution.

Given the significant effort involved with manual validation it is recommended to

improve the quality of available KST data in order to proceed with ring detection

and diagnosis. Fortunately, the practical utility of the heatmap visualization method

has yielded increased interest for kiln monitoring with thermal cameras. Moreover,

the discovery of rotational aliasing provides industry guidelines such that future

ring detection efforts can be undertaken with higher quality data. The final section

of this case study addresses a separate data-driven kiln monitoring application, i.e.,

predicting residual calcium carbonate for kiln optimization.

4.4 Inferential Sensing for Residual Carbonate
Prediction

Residual carbonate prediction refers to inferring the amount of calcium carbonate

remaining in the calcium oxide nodules produced by the lime kiln. Predicting the
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extent of endothermic calcination (described in reaction 4.1) based on the available

operating variables enables kiln operators and/or model predictive control (MPC)

algorithms to reduce specific energy and optimize kiln performance. Residual car-

bonate is one of the key target variables for controlling the quality of the lime

product. This section provides background on RCC and previous residual carbon-

ate literature before introducing the proposed methodology for hyper-inferential

sensing. Experiments are conducted to develop an inferential sensor for residual

carbonate prediction and demonstrate the utility of the experimental apparatus. Fi-

nally, this chapter concludes with a discussion of the results and recommendations

for further development.

4.4.1 Residual carbonate control for kiln optimization

Traditional control strategies for rotary lime sludge kilns consist of independent

PID control loops. The firing end temperature is controlled with the burner fuel

flow subject to excess oxygen constraints. Excess oxygen and feed end temperature

are controlled by manipulating the induced draft (ID) fan speed, subject to hood

pressure constraints and ID fan limitations. Given the energy-intensity of lime

kilns and their importance for white liquor production these units have been the

subject of APC innovations. The inherent carbon-intensity of lime kilns is a further

incentive that is becoming increasingly relevant.

The concept of using residual carbonate soft sensing to enhance lime kiln MPC

has been around for at least two decades [23]. Lime kiln MPC has proven to be

a successful approach for kiln control that can help minimize temperature fluctu-

ations resulting in lower specific energy consumption, increased production, and

higher quality lime product. Residual carbonate prediction is particularly impor-

tant for reducing specific energy while maintaining sufficient product quality for

downstream recausticizing processes.

Residual carbonate prediction

Residual calcium carbonate is a key product quality indicator and as such is an im-

portant target variable for kiln control. Product lime samples are collected by mill

personnel once or twice per shift and subject to laboratory testing to determine the
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residual carbonate content. The results from these lab tests are used by operators

to provide key adjustments to kiln temperature setpoints. Developing an inferential

sensor to predict residual carbonate can improve the resolution of these measure-

ments to provide operators with better insights and/or to directly provide kiln tem-

perature setpoints for closed-loop control. Shell temperature measurements from

IR cameras have drawn interest to improve residual carbonate prediction.

The industrial collaborators involved in this research have successfully demon-

strated improved residual carbonate prediction with thermal camera data [45]. Their

work involved experiments with a first order state space model and three different

sets of inputs, i.e., first principles energy balance models, traditional temperature

measurements, and thermal IR camera measurements. A non-conventional regres-

sion metric referred to as ’fit quality’ was used which is similar to the coefficient

of determination (R2), but it uses the ratio of the mean absolute error (MAE) to the

mean absolute deviation (MAD), i.e.,

Fit quality =
(

1− 1
n

n

∑
i=1

|yi − ŷi|
|yi − ȳ|

)
. (4.8)

The method with the highest fit quality (26.4%) involved the thermal IR camera

measurements, followed by the traditional temperature measurements (fit quality =

15.7%), and lastly the energy balance model (fit quality = 9.6%) [45].

Based on this work a closed-loop RCC strategy was implemented on an industrial

lime kiln and shown to provide better product quality with reduced fuel consump-

tion, leading to approximately $200,000 per year in fuel savings and emissions

reductions of 3000 tonnes of CO2 per year [44]. The contributions presented in

this case study include building on previous literature to develop a robust residual

carbonate prediction model while also introducing a hyperparameter optimization

framework for automating soft sensor development. This framework is referred to

as hyper-inferential sensing and it is discussed in what follows.
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4.4.2 Hyper-inferential sensing

The steps involved in inferential sensor development are introduced in Chapter 2

and demonstrated in Chapter 3. Conducting a quantitative comparison of meth-

ods for inferential sensor development involves challenges such as data cleaning,

feature engineering, and regression (or classification). Comparative experiments

require consistent implementation with an emphasis on organization, documenta-

tion, and repeatability. Running experiments and tabulating results can become

time-consuming and onerous for practitioners. Poorly constructed experimental

frameworks lead to large amounts of technical debt which increases overhead,

slows progress, increases human error, and produces less reliable results.

This work builds on experience from Chapter 3 to overcome these challenges by

integrating the comparative experiments into a hyperparameter optimization frame-

work. Hyperparameter optimization typically refers to optimizing the selection of

user-specified model parameters. This work expands that scope to include broader

design decisions involved with inferential sensor development. The result is a com-

prehensive experimental framework that applies an optimal sampling strategy to

search a space of design decisions for feature engineering, regression method selec-

tion, and model hyperparameter selection. The proposed hyper-inferential sensing

framework is demonstrated by providing a comprehensive comparison of methods

for residual carbonate prediction.

The experiments conducted in this work are designed to build upon previous lit-

erature by providing a robust comparison of models with and without the thermal

IR camera data. This experiment provides important insights to help industrial fa-

cilities understand the value of installing IR cameras for RCC. Note that the IR

camera data studied in these experiments is not necessarily representative of KST

measurement technologies generally. However, additional industrial case studies

can be subject to this structured quantitative analysis to better understand the value

of KST measurements for residual carbonate prediction.

The hyper-inferential sensing framework is extensible, allowing for convenient ad-

dition of new inferential sensing methods. It is designed to minimize the overhead

associated with data preparation. Moreover, this framework is designed for a com-
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mon industrial application, i.e., soft sensing of key operating parameters that are

measured at an irregular frequency with analyzers or laboratory tests. By follow-

ing simple input formatting instructions it can be applied to develop soft sensors

for other key laboratory measurements in various industrial processes. Key ele-

ments of the hyper-inferential sensing framework are introduced before presenting

the experimental results.

Problem formulation and data structuring

Previous literature on residual carbonate prediction involved experiments with a

first order state-space model. This formulates the prediction problem as a time-

series forecasting method, which is common for applications related to dynamic

control. However, the hyper-inferential sensing presented in this work formulates

the prediction problem as a traditional supervised learning method. This reformu-

lation is motivated by the nature of the data for this type of application.

The target variable is a laboratory measurement with an irregular frequency that

is measured relatively sparsely. The features are generally PVs that are measured

with regular, high frequency sampling intervals. Therefore, implementing predic-

tions with a first order state-space model requires resampling such that the target

and the features have the same sampling frequency. This resampling can signifi-

cantly distort the training data and the resulting predictions. Advanced imputation

methods can provide better results than naive imputation. Continuous time series

methods such as neural ordinary differential equations are a promising research

direction for this application. However, in this work a straightforward approach is

used to leverage the time-series nature of the data while maintaining the practical

benefits of the traditional supervised learning paradigm.

Data structuring involves identifying samples when the target variable changes,

capturing windows of PVs, flattening the PVs into lagged feature columns, and

adding features for lagged target values and the periods between subsequent sam-

ples. Invalid data are simply replaced with NAN values which are imputed with

a zero order hold interpolation. Therefore, the resulting data may contain invalid

samples (e.g., sensor faults) represented as flattened features with zero variabil-
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ity. This simple data cleaning strategy does not leverage domain knowledge, but it

does enable the hyper-inferential sensing framework to scale to many features and

transfer to other applications. To address the presence of potential invalid samples

an outlier removal method is used.

Outlier removal

The fidelity of industrial process data should not be taken for granted. Manual in-

vestigation of data with applied domain knowledge is the safest approach to iden-

tify invalid samples. However, this method is onerous and does not scale efficiently.

The purpose of the proposed experimental framework is to provide an efficient and

reliable tool for automating inferential sensor design decisions with quantitative

analysis of industrial process data. This can supplement the performance improve-

ments that can be obtained through more rigorous data preparation.

The primary role of outlier removal in this work is to compensate for the mini-

malist approach to data preparation. Minimal data preparation enables the hyper-

inferential sensing framework to be more generally applicable to many soft sensor

applications. However, upset process conditions, shutdowns, sensor faults, and

programming errors can corrupt industrial process data and produce invalid sam-

ples. Therefore, a small number of outlier samples are removed to improve the

quality of the data for modeling.

Uniform manifold approximation and projection (UMAP) is used for outlier re-

moval in this work. Theoretically, UMAP is a contemporary approach for dimen-

sionality reduction that is based in Riemannian geometry and algebraic topology,

details of which are beyond the scope of this work [84]. Practically, UMAP is a di-

mensionality reduction technique that excels at preserving both the local and global

structure of complex datasets. The process analytics community has studied UMAP

for visualization, dimensionality reduction, and outlier removal [56].

The use of UMAP in this work is primarily for clustering to remove samples that

are suspected to be invalid. Clustering is applied by specifying the number of local

neighbors and the size (or number of components) of the lower dimensional encod-

ing. A threshold is also specified that controls the amount of outlier samples that
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are removed. A conservative approach is taken to remove only 6% of the training

data. The UMAP clustering for outlier removal of the training data is demonstrated

in Figure 4.24. In addition to removing outliers, UMAP is valued for visualiz-

Figure 4.24: Clustering with UMAP to visualize the samples of high dimen-
sional industrial process data that are used to train the inferential sen-
sor models (blue). Outlier samples (red) are discarded for modeling
but they can be investigated to yield operating insights.

ing clusters of process data and investigating the clusters while applying domain

knowledge. Outlier removal is a source for further improvement of the experimen-

tal setup. Additional methods should be studied and the selection and specification

of these methods should be included within the scope of the experimental trials.

Experimental trials

The experimental trials begin after outlier removal and they involve sequentially

learning better inferential sensor designs with respect to the choices for feature

learning, model selection, and model hyperparameter selection. Figure 4.25 illus-

trates the experimental setup for the hyper-inferential sensing strategy. The feed-
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Figure 4.25: Experimental setup for hyper-inferential sensing. A variety of
traditional and contemporary methods for process analytics and ML

are selected to provide a highly structured framework for efficient and
reliable quantitative comparisons.

back of the validation score to the input of the feature learning stage represents the

scope of the experimental trials. In this work the validation score is the average

mean squared error from time series cross-validation experiments with the current

trial model. The trial model with the best cross-validation performance is then

selected and evaluated with previously unseen test data.

Bayesian optimization with a TPE is used to guide the experimental trials by se-

lecting and preparing the candidate soft sensor [6]. The TPE algorithm learns from

past experimental configurations to select actions that maximize the expected im-

provement of the current trial model. The available choices for feature learning and

model selection are presented in Figure 4.25. Implementation and hyperparameter
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specification of these methods is described in what follows.

Features, models, and hyperparameters

The majority of methods for feature learning and regression in the proposed exper-

imental framework have already been introduced. The space of available methods

in Figure 4.25 provides a variety of traditional methods (e.g., PCA and PLS) and

advanced deep learning architectures (e.g., AE, ANN, CNN, and LSTM). Study-

ing both proven and innovative modeling methods with distinct structures provides

both flexibility and insight into beneficial methods for specific applications. This

can accelerate soft sensor development by helping researchers identify promising

avenues for further investigation and fine-tuning. A brief discussion of the new

methods, namely ordinary least squares (OLS) linear regression, ridge regression,

kNN, and extreme gradient boosting (XGBoost) is provided here along with details

on model implementation and hyperparameter selection.

Many industrial soft sensors use OLS linear regression models for convenience

and interpretability. Coefficients are fit to linear features such that the sum of the

squared errors between the training targets and predictions is minimized. The ridge

regression model extends OLS to include ℓ2-norm regularization of the coefficients.

The OLS model does not have hyperparameters, but ridge regression has a weight

for the ℓ2 regularization that can vary between 0.0001 and 1 in this study.

The kNN regressor is a non-parametric method that generates predictions by find-

ing the k most similar training samples and averaging their targets. Similarity in

this work is measured by the Euclidean distance between the high-dimensional fea-

ture space of samples. Alternatively, XGBoost is an ensemble ML algorithm that

uses a concept known as boosting which involves using the ensemble of models

sequentially to predict the residuals of prior models. The outputs of the models

are combined to generate predictions. Gradient boosting uses gradient descent to

optimize the loss function while training the ensemble [97].

The space of available hyperparameters depends on the selected model. Deep

learning models share common hyperparameters such as number of epochs, learn-

ing rate, batch size, number of hidden layers, and hidden layer size, among oth-
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ers. Generally, the deep learning soft sensor configurations have a significantly

larger space of potential hyperparameters and require a significantly larger amount

of computation effort per experimental trial. The specific hyperparameter search

space for each model is described in Appendix A, with traditional ML hyperparam-

eters listed in Table A.6 and deep learning hyperparameters listed in Table A.7.

4.4.3 Experimental results

Over sixty different kiln operating variables are used to demonstrate the hyper-

inferential sensing framework and develop a residual carbonate soft sensor. The

introduction of each of these variables is beyond the scope of this work but a brief

description is provided in Table A.5.

The hyper-inferential sensing framework is used to develop two residual carbon-

ate soft sensors, i.e., one with IR camera data, and one without IR camera data.

Each of the studies involves 1000 experimental trials, where each trial represents

the configuration, training, and validation of the proposed inferential sensor. The

trial results from both studies are saved and combined to analyze the validation

results of various experimental setups. Across all 2000 trials, the average valida-

tion scores of the feature learning methods are presented in Figure 4.26 and the

average validation scores of the regression methods are presented in Figure 4.27.

The pie charts in Figure 4.26 and Figure 4.27 represent the proportion of the 2000

trials that are dedicated to the associated method. To reduce the influence of out-

liers, the validation errors are clipped at a mean squared error (MSE) of 100. Recall

that the MSE of each trial is the average MSE of three time-series based validation

experiments.

On average, the auto-encoder feature learning method provides the lowest valida-

tion error. The kNN, LSTM, and XGBoost regression methods provide the low-

est average validation error. However, Figure 4.26 and Figure 4.27 do not tell

the whole story. Even with clipping, the average validation score across all 2000

trials is dominated by the unusually bad trials, that are not particularly relevant.

Instead, the best performing methods are of interest. The XGBoost regression

method with the raw features is the best performing residual carbonate inferential
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Figure 4.26: Average validation error of the feature learning methods across
2000 experimental trials. The proportion of trials dedicated to each
method is depicted in the pie chart

sensing method for both studies (i.e., with and without IR camera data). Slightly

different hyperparameter specifications are learned for each study.

The best experimental trial from each study is used to configure candidate residual

carbonate soft sensors with and without IR camera data. These soft sensors are re-

trained on the entire training dataset and used to predict previously unseen testing

data. Given that model robustness is valued in this investigation, the soft sensors

are tested on roughly 3.5 months of operation without any feedback, updating, or

intervention. The test-set predictions of the soft sensors are compared with the

true laboratory measurements in Figure 4.28. The evaluation shown in Figure 4.28

demonstrates the enhanced ability of the soft sensor with IR camera data to capture

the variability in the measured residual carbonate content.

As Table 4.2 demonstrates, the IR camera data significantly improves the perfor-

mance metrics of the residual carbonate predictions. The coefficient of determi-

nation (R2), fit quality, and RMSE are all improved by the use of IR camera data.
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Figure 4.27: Average validation error of the regression methods across 2000
experimental trials. The proportion of trials for each method is dis-
played in the pie chart

Table 4.2: Summary of results from testing residual carbonate predictions de-
veloped with the proposed hyper-inferential sensing framework.

Inferential sensor R2 Fit quality RMSE

With IR camera data 0.383 0.267 1.36
Without IR camera data 0.225 0.174 1.52

This result is consistent with the principles of lime production and the results of

previous literature.

4.4.4 Discussion and recommendations

This study enhances the evidence that KST data enhances residual carbonate pre-

diction with robust experimentation and an alternative problem formulation that

involves minimal imputation. There are various reasons that explain the mediocre

quality of the predictions. The target variable has significant uncertainty due to
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Figure 4.28: Testing the candidate residual carbonate soft sensors developed
with IR camera data (red) and without IR camera data (green).

the nature of the laboratory measurement. The quality of the IR data has already

been demonstrated to have shortcomings. These issues may not have been suf-

ficiently addressed by outlier removal, but the IR camera data still provides sig-

nificant value. Finally, residual carbonate prediction is an inherently challenging

problem with both fast and slow dynamics. This is evidenced by the eerily similar

fit quality of previous literature (26.4%) to the value obtained here (26.7%) despite

the fundamental differences in problem formulation.

The high proportion of trials spent on the XGBoost model is driven by their low

average validation error. The TPE algorithm searches promising regions based on

past results. These regions were often XGBoost models with the raw features.

The results presented here are obtained by simply evaluating the best experimental

setup on roughly 3.5 months of new operating data. Additional refinements such

as re-training and/or adding a model bias can lead to further improvements.

The hyper-inferential sensing framework is already comprehensive, but it can be

improved in many ways. Additional methods for outlier removal should be stud-

ied and more rigorous manual investigation should be applied to compare classes.

The breadth of the experimental trials should be increased to include selection and
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specification of the outlier removal method. Increasing the exploration and revising

the available search space is recommended to provide more insightful experiments.

More extensive testing should be conducted to provide insights into model gener-

alizability. The hyper-inferential sensing framework should be applied to differ-

ent regression problems in different industrial facilities, and the regression method

should be extended to address classification and time-series forecasting problems.
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Chapter 5

Pitfalls and Guidelines for
Industrial Process Analytics

In Chapter 2 a high-level procedure for learning from industrial process data is pre-

sented along with challenges that are commonly encountered by researchers and

practitioners developing data-driven APC solutions. This chapter reflects on expe-

rience obtained through literature, case studies, and industrial practice to provide

guidelines that help practitioners overcome these challenges. Some of the material

from this section has been published as follows:

• S. C. Lim, S. Elnawawi, L. D. Rippon, D. L. O’Connor, and R. B. Gopaluni.

Data quality over quantity: Pitfalls and guidelines for process analytics. IFAC

World Congress 2023, pages 1–8, 2023.

5.1 Identifying and Framing a Data-driven Opportunity
Discovering novel applications that can realistically achieve significant operating

impact represents a significant contribution to advancing the efficiency and sus-

tainability of resource-intensive manufacturing. With limited resources, prioritiz-

ing which opportunities to pursue is important. Ultimately, the primary challenges

associated with identifying and framing a data-driven opportunity involve ensuring
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sufficient impact and confirming feasibility of the proposed solution.

Impact and benefit estimation

Estimating benefits, such as reduced fuel consumption, can provide important mo-

tivation and justify expenditure of resources on innovative solutions. Benefits can

be quantified in terms of safety incidents, environmental impact, and/or economic

objectives (e.g., quality and productivity). Site personnel can provide guidance to

identify data-driven opportunities with significant impact. Neglecting the impor-

tance of justifying the research motivation is a common pitfall that can lead to loss

of focus, lack of cooperation, and loss of funding.

Obtaining accurate quantitative estimates is challenging prior to data acquisition.

Simple estimates based on key process data can provide meaningful insights. It is

important to consult the facility personnel as they may have domain knowledge to

guide and simplify benefit estimation. In the absence of historical process data, po-

tential benefits can be roughly quantified with minimal a priori process knowledge

(e.g., the scale and efficiency of the unit operation, and the frequency of the fault).

Large-scale industrial processes with recurring faults that disrupt key energy in-

tensive unit operations are often implicitly understood to justify research efforts.

Especially for smaller projects that do not require justification of significant expen-

diture. In some cases, the impact is known to be significant enough for industrial

collaborators to actively seek innovative solutions (e.g., the arc loss fault). In other

cases, literature and SMEs can be consulted because the fault is already notorious

(e.g., ring formation in lime kilns).

Alignment on objectives and resource requirements

Stakeholders should align on well-defined research objectives to avoid compet-

ing interests that distract from the core objectives. These objectives should be

realistically achievable given the available resources and stakeholder participation.

Vetting the quality and reliability of the available resources is critical for ensuring

project feasibility. Potential resources include instrumentation, literature, docu-

mentation (e.g., P&IDs, control narratives, etc.), remote access, and the availabil-
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ity of site experts. Determining the measurement quality and failure modes of key

instrumentation can reveal insights related to project feasibility.

Availability and integrity of a source of ground truth

Given raw industrial data, it is important to consider whether there is a practical

means of generating reliable labeled outputs from this data. Can the data be labeled

automatically, e.g., with an algorithmic definition of the fault? If not, can the data

be labeled manually or is the raw data too ambiguous? Are stakeholders willing to

undertake the potentially cumbersome task of manual data labeling? Solutions that

are based on supervised ML methods need to carefully consider the availability and

integrity of a source of ground truth.

Some applications (e.g., soft sensors) may have ground truth data available in

sparse, irregular frequency lab samples. If a source of ground truth is not available

then a reliable manner for identifying the ground truth labels should be defined. If

labels cannot be identified in a reliable manner then stakeholders need to realign

on the objectives, proposed solutions, and resource requirements, because accurate

labels are a pre-requisite for supervised learning.

In the pyrometallurgy case study, labeled data is not provided. Therefore one of

the initial tasks is to generate accurate labels. This task is enabled by consulting

industrial collaborators and developing an algorithmic definition of arc loss that

can be reliably applied to the historical data. The label-friendly nature of the py-

rometallurgy case study makes it an ideal case study to use for an FDD benchmark

challenge.

During the ring formation case study, a succinct algorithmic definition is not avail-

able. Given the limitations on the available data, efforts towards validating ring

detection suffer from inherent ambiguity and subjectivity. Therefore, the objective

is realigned to investigate and address the unexplained source of the validation un-

certainty (i.e., rotational aliasing). For residual carbonate prediction, lab samples

are used as a source of ground truth, which is common for inferential sensors.
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5.2 Data Acquisition and Contextualization
Acquisition and contextualization of industrial operating data is best performed

with an emphasis on process knowledge and in collaboration with process experts.

The following guidelines are provided to help practitioners avoid common pitfalls

specific to applications with industrial process data.

Establishing connections with data sources

A key challenge that limits the progress of collaborations between academia and

industry is obtaining sufficient access and connectivity to explore the available data

sources, assess their integrity, determine the data requirements, and review impor-

tant contextual information. Establishing a secure and reliable connection to the

required data sources is essential for productive collaborations and efficient solu-

tion development. Developing a novel data-driven solution often requires iterative

scope refinement and experimenting with alternative data sources.

Relying on email interactions with site personnel to transfer data is a fragile and

inefficient strategy that can create significant delays and inhibit research progress.

Site personnel are often preoccupied with higher priorities such as ensuring safe

and reliable production. Data requests can take weeks to fulfill, and in some cases

may be forgotten altogether. Employee turnover and insufficient oversight can re-

sult in periods without access to critical data sources.

Acquiring useful industrial data often requires an iterative exercise with collabo-

rative efforts between researchers and plant personnel. Therefore, it is much more

productive to provide direct historian access (e.g., remote access) instead of manu-

ally sharing data. However, convenient access to data sources is not always practi-

cal due to company policies and/or insufficient digital plumbing. Many processes

are just beginning their digitalization journey which has been a large impediment

to learning from industrial data. As modern OT is adopted, data connectivity will

significantly improve, enabling much more convenient and immersive research into

advanced manufacturing facilities.
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Selecting the industrial data

Given the historical difficulty of acquiring industrial data, there is an understand-

able tendency to initially maximize the volume and variety of data acquired. How-

ever, if a reliable connection is readily available then it is often better to start with a

smaller (more manageable) number of PVs that are core to the investigation. Large,

complicated datasets can slow progress by creating a high barrier of domain knowl-

edge and by incurring technical debt for data loading, processing, and exploration.

Studying core PVs that are highly relevant to the scope and then adding complexity

in small, coherent batches is an effective strategy for exploring data while develop-

ing and applying process knowledge.

Domain expertise is critical for understanding the available data and selecting rel-

evant variables from suitable periods of operation. For example, control modes

may be label encoded which can be corrupted by time averaging. The research

objectives should guide the resolution and other extraction settings (e.g., interpola-

tion) of the acquired data. Consider the effect of time averaging on upsets and high

frequency process dynamics then reconcile these effects with the desired research

objectives. Linear interpolation may not be appropriate for sparsely measured vari-

ables such as lab measurements. First principles process knowledge can help iden-

tify key parameters and eliminate irrelevant variables. Ultimately, data exploration

and additional contextualization is necessary to select relevant variables and sam-

ple suitable periods of operation.

Exploratory analysis and data visualization

In process analytics, exploratory data analysis (EDA) is essential. Domain knowl-

edge is essential for inspecting and understanding the data during EDA. Many

practitioners under-appreciate the role of domain-specific data visualization for ef-

fective collaborations. Developing novel visualization methods empowers opera-

tors and SMEs to conveniently apply their domain expertise to the data. This is a

proven approach to improving operating outcomes. The visualization strategy pre-

sented in Chapter 4 has already been applied to multiple mills to troubleshoot ring

formation and improve operation [30, 103].
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Simple charts such as line plots, histograms, and box-plots can be used to manually

investigate PVs. Clustering algorithms (e.g., UMAP) can help guide data explo-

ration and yield novel insights. Control narratives and additional documentation

can be used to help interpret the data and provide further direction for exploration.

Data contextualization

As Figure 5.1 demonstrates, process data is just one of many different sources of

valuable information in an industrial process. Plant topology data from process

& instrumentation diagrams (P&IDs) provides structural context, informing the

practitioner on causality information. Maintenance records can provide important

context such as fouling, equipment degradation, and instrumentation reliability to

determine the integrity of the measurements. Control narratives are critical for in-

terpreting and evaluating the behavior of complex control systems. Lab quality

data provides key operating parameters that are often useful for soft sensor devel-

opment. Insights into abnormal events can be obtained from alarm data such as

bad actors, alarm floods, and various metrics from the International Society of Au-

tomation (ISA) 18.2 standard [49]. Each of these different types of data can provide

valuable context for learning from historical process data.

Figure 5.1: Supplementary sources of information are necessary to contextu-
alize process data and obtain meaningful insights [76].

Convenient read-only remote access to the process historian, DCS graphics, and

the other data sources described in Figure 5.1 can help reduce the burden on mill

resources. However, there is no substitute for the years of industrial experience

possessed by mill personnel. Therefore, access to experienced site contacts is an-
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other requirement for properly contextualizing industrial process data. During the

ring formation case study mill personnel are consulted to provide valuable context

to periods of suspected fouling with the shell temperature heatmap and relevant

process data.

Shortcomings of industrial data

It is important for data practitioners to question the integrity of not only the mea-

sured values, but also the metadata, e.g., units of measurement, variable descrip-

tions, and tag names. How do practitioners ensure that the measurements accu-

rately represent reality or that the tag descriptions and/or units of measurement

are correct? These are practical challenges that can have a significant influence

on research outcomes if they are not considered during data acquisition. Aware-

ness of the shortcomings of both measured and calculated variables is critical for

developing robust solutions.

The IR camera obstruction in Figure 4.17 and the discovery of rotational aliasing

demonstrate the importance of interrogating the quality of the industrial process

data. Maintenance of instrumentation to produce high quality data in large-scale

industrial processes is a significant challenge. Practical constraints and human er-

ror can result in sub-optimal installation, configuration, and maintenance. One

action that can be taken is for researchers and/or industrial collaborators to care-

fully review the data that is used for process analytics. This can involve researching

best measurement practices, consulting with instrumentation specialists, and con-

ducting field inspections. Early flagging of data shortcomings can prevent costly

downstream troubleshooting efforts.

5.3 Data Preparation
Although data pre-processing is often unfairly maligned as trivial and technically

uninteresting, in practice it has an out-sized influence on the success of real-world

AI applications. Industrial data must be prepared in a manner appropriate for both

the process opportunity and the proposed solution. Despite the importance of data

preparation, there is relatively sparse guidance in the literature on how to handle
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process data for analytics and ML.

Data validation and reconciliation

Problematic data is not always avoided during data acquisition. Therefore, addi-

tional efforts must be taken to validate and reconcile the integrity of the raw data.

Invalid process data can occur from poor instrument installation, lack of sensor

calibration, fouling, and many other reasons. Data reconciliation can be performed

by using redundant measurements, mass and energy balances, data visualization,

domain knowledge, and operator insights. Consulting with SMEs and site person-

nel to obtain historical accounts of the measurement quality can provide valuable

insights. Understanding the source of the measurement (i.e., instrument type, lab-

oratory procedure, or calculation) allows practitioners to understand the inherent

limitations of the data.

For key variables, simple linear regression models can be designed with process

knowledge, trained on suitable data, and applied to produce predictions. Prediction

residuals can be analyzed to identify periods with suspicious measurements. A net-

work of such models can be applied to monitor key measurements across the plant

(e.g., major chemical, energy, and material inputs and products). The residuals can

be monitored to systematically identify process upsets and potentially invalid data.

Data structuring

Ultimately, the desired problem formulation dictates the data structuring procedure.

If the data is sampled at regular intervals with a common date-time index then the

problem can be conveniently formatted as a multivariable time series forecasting

problem. For densely sampled variables, small amounts of missing data can be

imputed with simple interpolation methods. Sparsely sampled laboratory data that

is obtained at irregular intervals cannot be imputed as easily. Although these details

are essential for experimental reproducibility, they are often not presented in a

thorough and comprehensive manner in literature.

Data structuring is demonstrated during the development of the arc loss and resid-

ual carbonate inferential sensors. The residual carbonate target samples are identi-
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fied by selecting value changes because the data is acquired at five minute intervals

as zero-order hold interpolations from the lab entry. Features are constructed as

lagged values of the available operating variables from windows that are specified

to capture the relevant process dynamics. A similar sampling procedure is con-

ducted for the pyrometallurgy case study to construct a balanced dataset of arc loss

faults. Lagged target variables can be included as an additional feature to emulate

auto-regression. The time difference between subsequent samples can be encoded

as a Unix epoch to provide an indication of duration.

Data cleaning

Data cleaning involves analyzing the structured dataset and applying changes that

minimally distort the data while making it amenable for modeling. This includes

addressing artefacts and inconsistencies from the DCS. Different PVs in the same

dataset can be configured differently with respect to the values produced during

shutdowns. For example, NAN values might occur for one variable, whereas an-

other PV might have all zeros during a shutdown. Some variables might have

strings encoded during a shutdown such as ‘Bad Input’ or ‘Bad Status’, while oth-

ers may have a linear (or zero-order hold) interpolation.

Data cleaning at scale, with many samples and a large set of variables can be a sig-

nificant challenge. Studying the modes of operation can provide valuable insights.

Figure 5.2 demonstrates an archetypal example of a PV partitioned into four com-

mon operating modes. Figure 5.2 shows a histogram of combustion air flow rates

and Figure 5.3 shows sampled periods of time series data corresponding to each

mode of operation. Many PVs share a highly similar distribution which can help

simplify data cleaning. However, this insight cannot be applied blindly as some

PVs can have significantly different distributions (e.g., excess oxygen). Normal

operating ranges for key operating variables can be obtained by consulting plant

personnel.

The mode of key control loops should be considered when preparing process data.

Check that the regulatory control system is functioning well and the control loops

are well-tuned. If the control loops are oscillating, the data can be detrimental
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Figure 5.2: Histogram of process data with different modes of operation.

Figure 5.3: Visualizing data from different modes of operation.

for model performance. Tags that are indicative of different operating conditions

should be identified. For instance, in pulp mills, valve positions can indicate the

use of different process fluids (e.g., filtrate, mill water, condensate, or white wa-

ter). Samples collected when the process is not at steady-state may reflect transient

process conditions that may not be suitable for the desired modeling objectives.
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Feature engineering and representation learning

Feature engineering and representation learning are often considered optional as-

pects of ML workflows. Some models perform representation learning implicitly

(e.g., CNNs). Feature engineering involves manually transforming the feature space

by applying domain knowledge. For example, calculating an important operating

parameter (e.g., specific energy) and adding it to the set of features can potentially

improve model performance. Representation learning (or feature learning) is dis-

tinguished for automatically generating new features with dimensionality reduction

methods.

In this work the feature learning methods that are studied do not provide significant

performance benefits for predicting either arc loss or residual calcium carbonate.

For residual carbonate prediction the AE method is shown to provide the lowest

average validation error, but ultimately the best model performance was with the

raw features. Nevertheless, refining the feature space of the input data can help

improve model robustness and reduce the computational burden, which can in turn

enable a more rigorous search of model hyperparameters.

5.4 Method Selection, Development, and Evaluation
Development and evaluation of modeling methods receives significant attention in

literature, but practical considerations and best practices for working with indus-

trial process data are rarely addressed.

Storing and loading industrial process data

Industrial operating data is often confidential which can preclude the use of conve-

nient third-party cloud-hosted environments (e.g. Google Colab) to store and load

large quantities of process data for subsequent analysis. without these services,

analysis of large amounts of data can strain the available computational resources

and slow progress. Storing large quantities of data in Excel files is a common

source of inefficiency as these Excel files can take orders of magnitude longer

to load into the programming environment than alternative methods. To save time

and overcome memory limitations, practitioners can store their data as .parquet
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files instead of spreadsheets. Another approach to saving memory is to set the data

types of each variable (e.g., float-32 instead of float-64).

Selecting suitable methods

Method selection can be informed in many ways including with quantitative exper-

iments and by investigating the theoretical properties of the available algorithms

[123]. A 2010 survey revealed that over 90% of industrial soft sensors in Japan

use linear modeling techniques like OLS and PLS [58]. Fundamental problems re-

garding the misalignment between methods proposed in literature and those used

in practice need to be addressed.

Despite the increasing sophistication of ML tools in recent years, the implemen-

tation of such algorithms is limited by the hardware capabilities in the plant. De-

pending on the digital sophistication of the facility, complex models like DNNs may

not be the most appropriate or even feasible solution. Feasible models should be

considered first if they help drive business value.

Selecting suitable methods needs to be reconciled with the objectives of the par-

ticular application. In some cases (e.g., residual carbonate prediction), the quality

of the predictions is paramount, and black-box models that drive residuals to zero

can be appropriate. In other cases (e.g., ring indication), the residuals are used as

indicators so it is more appropriate to select models with results that are easier to

interpret. The selection of suitable methods can also be determined by the problem

formulation, which can be dictated by the state of the available data.

Metrics that align with outcomes

For industrial applications, striving endlessly towards better performance metrics

such as MAE, RMSE, or coefficient of determination (R2), can be time-consuming

and counter-productive. It is important to consider the business impact and in-

tended usage of the models. For example, exogenous regressors can be variables

like the flow of fuel to the burner or the flow of lime mud to the feed-end of the

kiln. A common pitfall in process monitoring applications of ML is that domain

knowledge is disregarded and selection of exogenous regressors is reduced to a
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data-driven endeavour to optimize a performance metric. In practice, it is often

beneficial to select exogenous regressors with careful regard for the operating be-

haviour they help represent.

The presence of sensor noise, measurement errors, uncertainties in lab results, and

other practical considerations may significantly outweigh minor performance im-

provements in inferential model metrics. The production losses incurred by an

inferential model being unreliable or unavailable may be several orders of magni-

tude greater than the cost of a model with a slightly lower metric. Model metrics

like the prediction error are only a small part of delivering value in practice.

Conducting comprehensive experiments

Although model metrics are not sufficient for developing industrial solutions, they

are nevertheless important for evaluating potential ML models. Conducting com-

prehensive comparative experiments with different modeling configurations is a

challenging endeavour that consumes large amounts of research capacity. As the

hyper-inferential sensing study demonstrates, it is critical to develop structured ex-

perimental frameworks to conduct productive experimental comparisons.

Eliminating technical debt is a key aspect of successfully conducting comparative

experiments. Creating modular, extensible model development frameworks such

as the one demonstrated in Figure 4.25 are necessary to efficiently conduct the

complex quantitative experiments. Relying on manual intervention to configure

experiments and tabulate intermediate results can result in human-error and poor

experimental reproducibility.

5.5 Deploying Sustainable Solutions
Successfully deploying solutions and obtaining sustained utilization is critical for

achieving long-term operating benefits. Key considerations are presented here to

help process analytics researchers deploy sustainable solutions.
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Understanding trends in utilization

When APC solutions are not trusted by operators, they are often disabled or ignored.

Utilization refers to the percentage of relevant operating time that the data-driven

solution is active. Once a solution is deployed it is important to monitor utilization

and investigate factors that lead to reduced utilization. Enhancing the proposed

solution to address these factors can be critical for the long term success of the

proposed solution.

Many different factors can contribute to poor utilization. The process can drift over

time due to changes such as equipment conditions and feed quality. The proposed

solution may not be designed to sufficiently handle inevitable upset conditions.

Instrumentation issues such as probe fouling and plugged pressure taps can result

in invalid measurements. Laboratory measurement quality can vary depending on

the experience of the technician and the reliability of the apparatus.

If possible, initially deploying the solution as a monitoring method can help gather

data on potential shortcomings, guide revisions, and gain trust before a closed-

loop solution is implemented. Awareness of the various process conditions that

can lead to performance degradation of the proposed solution is key for developing

sustainable solutions.

Robustness, durability, and model maintenance

How do we design durable soft sensors that maintain high accuracy for long peri-

ods of time given the dynamic nature of the underlying process? Model durability

is the length of time a model is in production before performance degradation ne-

cessitates tuning or retraining. A high-performing model may not be a durable

model. A durable model, even with a slightly lower performance relative to a frag-

ile model, requires less frequent maintenance and would typically be preferred by

plant personnel.

With respect to model development, experiments should be designed with consider-

ation for the constraints of the industrial environment. The most pressing problem

with industrial inferential sensors is not model accuracy, but rather, model mainte-

nance. During experiments, it is easy enough to re-train a ML model on new data.
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However, frequent model updates are not necessarily straightforward in industrial

environments.

While developing the residual carbonate inferential sensors roughly 3.5 months of

previously unseen test data is used for evaluation. Instead of updating the candidate

model as new samples are processed, the original model is applied to all of the test

data. This may seem unnecessarily difficult, but it is done intentionally as the

long-term robustness of the predictions is of more interest than minimizing the

prediction error.

Appreciating end-user experience

Neglecting the experience of end-users is a common pitfall that limits the impact of

many proposed solutions in process analytics. From an operational perspective, the

practitioner should understand how the solutions they are developing will be used

to drive plant improvements. Unlike other domains, many of the models deployed

in safety-critical industrial processes must be interpretable for plant personnel to

understand, trust and maintain them. Utilization is required for impact and oper-

ator buy-in is key for utilization. Introducing robust solutions that are transparent

and easy to interpret is essential for obtaining operator buy-in to drive sustainable

utilization.

Failure to consider the end-user experience leads to solutions that are not adopted

in practice. Minimizing unnecessary technical complexity in the presented solution

can improve the end-user experience. Training operators to use and understand the

solution can provide valuable feedback that can then be integrated to improve the

operator experience.

Given the diverse nature of potential industrial applications and the variety of in-

dustrial data types it is impossible to prescribe an optimal data workflow for lever-

aging industrial process data. Instead, this chapter presents practical guidelines and

common pitfalls encountered by researchers and practitioners while learning from

industrial process data.
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Chapter 6

Conclusion

This dissertation addresses an increasingly important societal problem, i.e., learn-

ing from large volumes of historical operating data to enhance the safety, reliability,

and performance of large-scale industrial processes. Proprietary operating data can

be shared and AI can be applied to learn best practices and maximize the sustain-

ability of natural resource development in Canada and beyond.

In addition to providing practical guidelines for applying process analytics and ML

to industrial operating data, this dissertation presents two distinct case studies. Spe-

cific contributions are presented for each industrial case study. The unifying theme

of process analytics application with industrial process data provides insights into

key challenges and practical guidelines for researchers and practitioners. A brief

summary of the various contributions discussed in this dissertation is provided as

follows:

• Contributions from the pyrometallurgy case study:

– Introducing a novel FDD problem and preparing industrial data to for-

mulate arc loss as a supervised ML classification problem.

– Developing a novel inferential sensor model to predict arc loss.

– Comparing traditional and contemporary process analytics methods for
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representation learning in the context of arc loss prediction.

– Presenting The Arc Loss Challenge, a novel FDD benchmark for ML

methods with open-source industrial operating data.

• Contributions from the kraft pulping case study:

– Introducing a novel kiln shell temperature visualization strategy that

has demonstrated commercial success.

– Discovering the rotational aliasing phenomenon.

– Improving the KST measurement strategy to address rotational aliasing.

– Introducing a novel hyper-inferential sensing framework.

– Developing a residual carbonate soft sensor.

– Confirming the value of IR cameras for residual calcium carbonate pre-

diction.

• Contributions for learning from industrial process data:

– Introducing use-cases for industrial process data and proposing a data-

driven APC solution development strategy.

– Presenting a comprehensive set of practical challenges encountered in

process analytics applications.

– Leveraging experience from case studies to provide guidelines and best

practices for learning from industrial process data.

Given the breadth of this research, there are many areas for improvement and fu-

ture work. The arc loss challenge has been developed and recently published. Ad-

ditional efforts are required to investigate ring formation with high quality data

that can resolve the ambiguity of validating ring indications. The hyper-inferential

sensing framework can be improved in many ways and applied to different appli-

cations to compare soft sensor designs and provide insights into the value provided

by supplementary instrumentation (e.g., IR cameras).
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Appendix A

Supporting Materials

Supporting material related to the pyrometallurgy and kraft pulping case studies is

provided in the following two sections.

A.1 Pyrometallurgy Case Study
The operating variables in the pyrometallurgy dataset used to introduce the arc loss

fault, develop a predictive inferential sensor, and create the arc loss FDD benchmark

challenge are described in Table A.1.

Table A.1: Overview of operating variables analyzed to predict arc loss for
the pyrometallurgy case study.

Description Range Unit

Smelting parameters

Electrode A power 0-60 MW

Electrode B power 0-60 MW

Total power 0-100 MW

Electrode A power set point 0-60 MW

Electrode B power set point 0-60 MW

To be continued
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Table A.1 (continued)

Description Range Unit

Electrode A current 0-100 kA

Electrode B current 0-100 kA

Electrode A current set point 0-100 kA

Electrode B current set point 0-100 kA

Electrode A voltage <2200 Volts

Electrode B voltage <2200 Volts

Electrode A voltage set point ≤2200 Volts

Electrode B voltage set point ≤2200 Volts

Resistance around electrode A ≥ 0 mΩ

Resistance around electrode B ≥ 0 mΩ

Resistance around electrode A set point ≥ 0 mΩ

Resistance around electrode B set point ≥ 0 mΩ

Specific Energy Ratio 410-440 W/ton

Arc A length mm

Arc B length mm

Crucible (the wall) heat loss 0-5 MW

Roof heat loss ≥ 0 MW

Plain cooler heat loss ≥ 0 MW

Upper chilled water heat loss ≥ 0 MW

Lower chilled water heat loss ≥ 0 MW

Hearth fans heat loss ≥ 0 MW

Heat loss through tap chutes in hearth ≥ 0 MW

Slag level mm

Metal level mm

Off-gas temperature 180-630 ◦C

Slag tap A valve opening 0-100 %

Slag tap B valve opening 0-100 %

CO2 volume 0-25 %

To be continued
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Table A.1 (continued)

Description Range Unit

Slag temperature after being tapped ◦C

Furnace feed parameters

Furnace feed rate 0-200 TPH

Furnace feed inlet diverter 5A position [0,1]

Furnace feed inlet diverter 5B position [0,1]

Furnace feed inlet diverter 5C position [0,1]

Furnace feed inlet diverter 5D position [0,1]

Furnace feed inlet diverter 5E position [0,1]

Furnace feed inlet diverter 5F position [0,1]

Weir 1 valve opening [0,1]

Weir 2 valve opening [0,1]

Weir 3 valve opening [0,1]

Weir 4 valve opening [0,1]

Weir 5 valve opening [0,1]

Weir 6 valve opening [0,1]

Weir 7 valve opening [0,1]

Weir 8 valve opening [0,1]

Weir 1 flow rate 0-200 TPH

Weir 2 flow rate 0-200 TPH

Weir 3 flow rate 0-200 TPH

Weir 6 flow rate 0-200 TPH

Weir 7 flow rate 0-200 TPH

Weir 8 flow rate 0-200 TPH

Weir 1 flow rate ≥ 0 mA

Weir 2 flow rate ≥ 0 mA

Weir 3 flow rate ≥ 0 mA

Weir 4 flow rate ≥ 0 mA

Weir 5 flow rate ≥ 0 mA

To be continued
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Table A.1 (continued)

Description Range Unit

Weir 6 flow rate ≥ 0 mA

Weir 7 flow rate ≥ 0 mA

Weir 8 flow rate ≥ 0 mA

Total microwave flow rate ≥ 0 mA

Feed temperature after leaving weir 1 ◦C

Feed temperature after leaving weir 2 ◦C

Feed temperature after leaving weir 3 ◦C

Feed temperature after leaving weir 4 ◦C

Feed temperature after leaving weir 5 ◦C

Feed temperature after leaving weir 6 ◦C

Feed temperature after leaving weir 7 ◦C

Feed temperature after leaving weir 8 ◦C

Feed temperature in distribution bin 1 ◦C

Feed temperature in distribution bin 2 ◦C

Feed temperature in distribution bin 3 ◦C

Feed temperature in distribution bin 4 ◦C

Feed temperature entering port A ◦C

Feed temperature entering port B1 ◦C

Feed temperature entering port B2 ◦C

Feed temperature entering port B3 ◦C

Feed temperature entering port B4 ◦C

Feed temperature entering port B5 ◦C

Feed temperature entering port B6 ◦C

Feed temperature entering port C1 ◦C

Feed temperature entering port C2 ◦C

Feed temperature entering port C3 ◦C

Feed temperature entering port C4 ◦C

Feed temperature entering port C5 ◦C

Feed temperature entering port C6 ◦C

To be continued
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Table A.1 (continued)

Description Range Unit

Feed temperature entering port C7 ◦C

Feed temperature entering port C8 ◦C

Feed temperature entering port C9 ◦C

Feed temperature entering port C10 ◦C

Weigh bin cone valve position feedback ≥ 0 mA

Weigh bin cone valve opening measured value 0-100 %

Weigh bin cone valve position controller output ≥ 0 mA

Cone valve position controller set point 0-100 %

Furnace feed pipe A, A-port flow ≥ 0 TPH

Reduction parameters

Fluidized bed reducer level set point m

Fluidized bed reducer level m

Fluidized bed reducer level mA

Fluidized bed reducer level controller output ≥ 0 mA

Fluidized bed reducer cone valve control 0-100 %

Fluidized bed reducer temperature 800-1100 ◦C

Calcining parameters

Calciner feed rate ≥ 0 TPH

Coal feed rate ≥ 0 TPH

Laboratory parameters

Al2O3 concentration in the slag ppm

FeO concentration in the slag ppm

MgO concentration in the slag ppm

Ni concentration in the slag ppm

SO2 concentration in the slag ppm

The relatively small search space over which hyper-parameters are optimized for

the traditional ML algorithms is presented in Table A.2.
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Table A.2: Hyperparameter search space for traditional ML algorithms.

LR L-SVC K-SVC

λ (0.001, 0.01, 1, 10, 100)

tolerance (0.001, 0.0001, 0.00001)

penalty (ℓ1, ℓ2, elast.) (ℓ1, ℓ2)
loss (hinge, SH)

kernel (RBF, poly., sig.)
degree (2, 3, 4, 5)

The vast search space over which hyper-parameters are optimized for the deep

learning algorithms is presented in Table A.3.

Table A.3: Hyperparameter search space for deep learning algorithms.

ANN CNN

optimizer (RMSprop, Adagrad, Adam, Adadelta, Adamax, SGD)

λ (0.1, 0.01, 0.001, 0.0001)

FCL activation (relu, tanh, selu, elu)

no. of FCLs (1, 2, . . ., 10) (1, 2, 3, 4)
FCL size (32, 64, 128, 256, 512) (32, 64, 128)
batch size (32, 64, 128) (16, 32, 64, 128)

epochs (25, 35) (20, 30, 40)

no. of CLs (1, 2)
CL activation (relu, tanh, selu, elu)

filters (8, 16, 32, 64)
filter size [(3,3), (5,5)]
pool size [(2,2), (4,4)]

The precision (i.e., PPV), F1 score and Fβ (β = 0.25) score for each experimental

configuration are provided as supplementary result metrics in Table A.4.
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Table A.4: Supplemental experimental result metrics.

TP FP TN FN PPV F1 Fβ

NA

LR 182 49 151 76 0.788 0.744 0.708
L-SVC 185 46 141 86 0.801 0.737 0.687
K-SVC 167 64 156 71 0.723 0.712 0.702
ANN 176 55 152 75 0.762 0.730 0.703
CNN 181 50 141 86 0.784 0.727 0.681

PCA

LR 186 45 148 79 0.805 0.750 0.705
L-SVC 176 55 151 76 0.762 0.729 0.701
K-SVC 144 87 158 69 0.623 0.649 0.674

d = 41 ANN 176 55 142 85 0.762 0.715 0.677
CNN 181 50 149 78 0.784 0.739 0.702

PLS

LR 184 47 130 97 0.797 0.719 0.659
L-SVC 169 62 146 81 0.732 0.703 0.678
K-SVC 166 65 149 78 0.719 0.699 0.682

d = 16 ANN 166 65 147 80 0.719 0.696 0.676
CNN 147 84 161 66 0.636 0.662 0.688
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A.2 Kraft Pulping Case Study
The operating variables in the kraft pulping dataset used to investigate ring forma-

tion and develop a residual calcium carbonate inferential sensor are described in

Table A.5.

Table A.5: Overview of operating variables analyzed to investigate ring for-
mation and predict residual calcium carbonate for the kraft pulping case
study.

Description Unit

Lime mud filtering parameters

Filter 1 mass percent solids %

Filter 1 mud flow rate TPD

Filter 1 vacuum pressure in. WC

Filter 2 mass percent solids %

Filter 2 mud flow rate TPD

Filter 2 vacuum pressure in. WC

Kiln mud feed target TPD

Kiln mud feed rate TPD

Scrubber mud slurry recycle flow 1 L/s

Scrubber mud slurry recycle flow 2 L/s

Mud slurry recycle density kg/L

Mud slurry recycle mass percent solids %

Kiln operating parameters

Kiln feed end temperature 1 ◦C

Kiln feed end temperature 2 ◦C

Kiln feed end pressure in. WC

ID fan inlet temperature ◦C

ID fan speed RPM

Lime kiln speed RPM

Kiln drive amps Amps

Kiln feed end oxygen 1 %

To be continued
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Table A.5 (continued)

Description Unit

Kiln feed end oxygen 2 %

Mid-zone temperature 1 ◦C

Mid-zone temperature 2 ◦C

Natural gas flow to burner m3/h

Primary air to kiln m3/h

Kiln firing end temperature 1 ◦C

Kiln firing end temperature 2 ◦C

Kiln firing end pressure in. WC

Residual calcium carbonate %

Thermal IR camera data

Kiln bearing shield ◦C

Kiln beam ◦C

Kiln gearbox ◦C

Kiln dump gate ◦C

Shell hot spot 0-90ft ◦C

Shell hot spot 0-180ft ◦C

Kiln shell temperature 15 ft ◦C

Kiln shell temperature 20 ft ◦C

Kiln shell temperature 30 ft ◦C

Kiln shell temperature 37 ft ◦C

Kiln shell temperature 43 ft ◦C

Kiln shell temperature 50 ft ◦C

Kiln shell temperature 60 ft ◦C

Kiln shell temperature 80 ft ◦C

Kiln shell temperature 100 ft ◦C

Kiln shell temperature 113 ft ◦C

Kiln shell temperature 120 ft ◦C

Kiln shell temperature 133 ft ◦C

To be continued
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Table A.5 (continued)

Description Unit

Kiln shell temperature 150 ft ◦C

Kiln shell temperature 154 ft ◦C

Kiln shell temperature 157 ft ◦C

Kiln shell temperature 160 ft ◦C

Kiln shell temperature 195 ft ◦C

Kiln shell temperature 210 ft ◦C

Kiln shell temperature 220 ft ◦C

Kiln shell temperature 230 ft ◦C

Kiln shell temperature 240 ft ◦C

Kiln shell temperature 249 ft ◦C

Kiln shell temperature 254 ft ◦C

Kiln shell temperature 259 ft ◦C

Recausticizing parameters

White liquor sulphidity 1 %

White liquor sulphidity 2 %

Causticizer 1 settling time #

White liquor causticizing efficiency %

Clarifier 1 causticizing efficiency %

Kiln mud feed target TPD

Kiln mud feed rate TPD

Weak wash total titratable alkali g/L

Ambient conditions

Wind speed ft/min

Ambient temperature ◦C

The majority of the hyperparameter search space for the feature learning and re-

gression models implemented in the hyper-inferential sensing case study are pre-

sented in Table A.6 and Table A.7. Table A.6 provides hyperparameters for tra-

ditional (or non deep learning) algorithms and Table A.7 provides the hyperpa-
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rameters for the deep learning algorithms which share common search spaces for

epochs, learning rate, and batch size.

Table A.6: Hyperparameter search space for traditional ML algorithms.

PCA PLS kNN XGBoost

Components (10,. . .,500) (2,. . .,input size−1)
Neighbors (1,. . .,20)
Estimators (10,. . .,50/200)
Max depth (3,. . .,10/20)

Learning rate (0.0001,. . .,1)

Table A.7: Hyperparameter search space for deep learning algorithms.

AE ANN CNN LSTM

Epochs (10, . . ., 100)

Learning rate (0.0001, . . ., 0.01)

Batch size (16, . . ., 128)

no. hidden layers (1,1) (1,. . .,8) (2) (1,. . .,8)
Hidden size(s) (32,. . .,256) (16,. . .,128) (32,. . .,128)
Encoding size (8, . . ., hidden size)
CNN filters 1 (8, 32)
CNN filters 2 (16, 64)
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