
 

 

Development of a Novel Method to 

Estimate Kinetic Micro-Parameters in 

Dynamic Whole-Body PET Imaging 

Protocols 
 

by 

 

Kyung-Nam Lee 

 

B.Sc. in Physics, Yonsei University, 2007 

 

A THESIS SUBMITTED IN PARTIAL FULLFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

 

MASTER OF SCIENCE 

 

in 

 

The Faculty of Graduate and Postdoctoral Studies 

 

(Medical Physics) 

 

THE UNIVERSITY OF BRITISH COLUMBIA 

(Vancouver) 

August 2023 

 © Kyung-Nam Lee 2023  



ii 

 

The following individuals certify that they have read, and recommend to the Faculty of Graduate 

and Postdoctoral Studies for acceptance, the thesis entitled: 

 

Development of a Novel Method to Estimate Kinetic Micro-Parameters in Dynamic Whole-

Body PET Imaging Protocols 

 

Submitted by Kyung-Nam Lee               in partial fulfillment of the requirements for  

the degree of Master of Science                                                      

in Medical Physics                                                                

 

Examining Committee: 

 Carlos Uribe Munoz, Clinical Assistant Professor, Radiology, UBC 

Co-Supervisor 

 Arman Rahmim, Professor, Physics and Astronomy, UBC 

Co-supervisor 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Abstract 

 

For whole-body (WB) kinetic modeling based on a typical Positron Emission Tomography (PET) 

scanner, a multi-pass multi-bed scanning protocol is necessary because of the limited axial field of 

view. Such a protocol introduces loss of early dynamics in the time-activity curves (TACs) and 

sparsity in TAC measurements; thus inducing uncertainty in parameter estimation when using least 

squares estimation (LSE) (i.e., common standard), especially for kinetic micro-parameters.  

To address the issue above, this thesis proposes a method that can estimate micro-parameters by 

building a reference TAC database, and selecting optimal parameters based on analysis of multiple 

aspects of the TACs, while in our assessment of performance compared to conventional methods 

we focus on general image qualities, overall visibility, and tumor detectability. 

To achieve the research goal above, we developed a novel parameter estimation method called 

parameter combination-driven estimation (PCDE), which has two distinctive characteristics:1) 

improved capability of finding a correct correlation between early and late TACs at the cost of the 

resolution of the estimated parameter, and 2) exploitation of multiple aspects of TAC. To compare 

the general image quality between the two methods, we plotted tradeoff curves for the normalized 

bias (NBias) and the normalized standard deviation (NSD). We also evaluated the impact of 

different iteration numbers of the ordered-subset expectation maximization (OSEM) 

reconstruction algorithm on the tradeoff curves. In addition, for overall visibility, which is a 

measure of the capability of identifying suspicious lesions in WB (i.e., global inspection), the 

overall signal-to-noise ratio (SNR) and spatial noise (NSDspatial) were calculated and compared. 

Furthermore, the contrast-to-noise ratio (CNR) and relative error of the tumor-to-background ratio 

(RETBR) were calculated to compare tumor detectability within a specific organ (i.e., local 

inspection).  

Through the proposed method, the improved general image quality, overall visibility, and tumor 

detectability were verified in micro-parametric images with OSEM reconstructions. We expect our 

work to contribute to opening the door to use of a typical PET scanner to reliably estimate kinetic 
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micro-parameters in WB imaging, which has been so far very challenging owing to significant 

uncertainties in estimates when using LSE methods. 
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Lay Summary 

 

We compared the performance of kinetic parameter estimation between the common standard, 

least squares estimation (LSE), and our proposed parameter combination-driven estimation (PCDE) 

method, focusing on general image quality, overall visibility, and tumor detectability. Significant 

improvements in micro-parameters estimates were demonstrated. PCDE can open the door to 

typical PET scanner-based WB kinetic modeling for kinetic micro-parameters, which has been so 

far very challenging owing to significant uncertainties in estimates when using LSE methods. 
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Preface 

 

Chap. 1 covers the general overview of Nuclear Medicine Imaging.: 1) Nuclear Medicine, 2) 

Radioactive Decay, and 3) Interactions of Photons with Matter. 

Chap. 2 introduces the Fundamentals of Kinetic Modeling so that the reader can be familiar with 

technical terminologies and basic assumptions/principles in kinetic modeling area, which would 

be practically helpful to understand our research performed during my Masters studies at here 

UBC. The sub-categories are as follows: 1) Rationale of Kinetic Modeling, 2) Brief Review of 

Current Kinetic Modeling Methodologies, 3) Necessity of Whole-Body Kinetic Modeling, and 4) 

Current Pitfalls and Challenges.  

Chapter 3 and 4 represent original unpublished material that we are working to publish as journal 

papers. Parts of these works were presented in conferences: 

1) K.N. Lee, C. Uribe, A. Rahmim 

A Matlab-based kinetic modeling tool for fast and robust estimation of Patlak-based parameters 

with uncertainty information 

Proc. Society of Nuclear Medicine & Molecular Imaging (SNMMI), Annual Meeting, 2022 

2) K. N. Lee, A. Rahmim, C. Uribe 

Novel kinetic micro-parameter estimation from dynamic whole-body PET images 

Proc. Society of Nuclear Medicine & Molecular Imaging (SNMMI), Annual Meeting, 2023 

For these works, I was responsible for designing the project, realization of ideas as a form of 

MATLAB code, performing validation and comparison study, and manuscript composition and 

writing. Dr. Carlos Uribe was research advisor and Dr. Arman Rahmim was academic advisor. 

They are the supervisory authors involved throughout the project by introducing kinetic modeling 

area to me.  

Chap. 3 and 4 covers actual research contents performed for my Masters studies. A novel micro 

kinetic parameter estimation method is introduced and proposed by building a reference TAC 
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database and selecting optimal parameters based on analysis of multiple aspects of the TACs. The 

performance of parametric imaging via the proposed method was compared to a current common 

standard (i.e., least squares estimation), focusing on general image qualities, overall visibility, and 

tumor detectability. However, each chapter has a different focus as aspect as follows.: chap. 3: 

comparison study based on virtually simulated dataset, and chap. 4: comparison study based on 

actual patient dataset. 

Chap. 5 briefly summarizes meaningful contributions of our research to a typical PET scanner-

based kinetic modeling and discusses future studies that need to be performed in the near future. 

In brief, this thesis covers introduction to nuclear medicine (i.e., chap. 1) and fundamentals of 

kinetic modeling (i.e., chap. 2), while main focus is to introduce and investigate a novel micro 

kinetic parameter estimation method for a typical PET scanner-based whole-body kinetic modeling 

and to propose the method for micro parametric imaging.  
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Chapter 1. Introduction 

 

1.1. General Overview of Nuclear Medicine Imaging 

 

1.1.1. Nuclear Medicine 

Nuclear medicine (NM) is a medical specialty that exploits radioisotopes for diagnostic and/or 

therapeutic purpose1–5. To achieve this, compounds labeled with radionuclides (e.g., 18F, 68Ga, 

177Lu, et al.), known as radiopharmaceuticals, are introduced into the patient via an injection or 

oral administration.  

Diagnostic imaging takes advantage of the radioactive decay of the radionuclides that emit gamma 

rays either in a direct or indirect way. These gammas must have enough energy to exit the patient’s 

body. By equipping with gamma detectors around the patient, it is possible to quantitatively 

measure the emitted photons and generate images of the distribution of the radiotracer within the 

patient, either in a static (i.e., distribution at a single time point) or dynamic (i.e., distributions as 

a function of time) way1. 

NM has two main modalities for imaging: 

1) Single Photon Imaging6–11 

Some radionuclides emit only one gamma when they decay. If images are generated using those 

individual photons, the modality is known as single photon imaging. If two-dimensional (2D) 

images are generated, the method is called scintigraphy or planar imaging. This is done by placing 

the detector in one position near the patient. If tomographic imaging (i.e. three-dimensional (3D)) 

is used, it is called single photon emission computed tomography (SPECT) in which several planar 

views obtained at different positions (i.e., multiple angles) around the patient are combined to form 

a 3D image. Compared to 2D planar images, SPECT images are advantageous because they 

provide depth information with better contrast, and importantly it does not contain overlapping 

organs, which makes it better suited for diagnosis and dosimetry1.  
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2) Positron Imaging12–16 

The technique uses radiotracers that emit a positron when decaying (i.e., positron emitter). The 

positron annihilates with a nearby electron, which creates two annihilation photons (i.e., 511 keV) 

traveling almost completely opposite directions. These photons are detected at different angles 

around the patient, and tomographic images are generated in 3D. It is called as positron emission 

tomography (PET). 

Compared to other medical imaging modalities that can provide anatomical information such as 

magnetic resonance imaging (MRI)17–21 or computed tomography (CT)22–25 with X-ray, NM 

imaging can provide biological/physiological information of tissues at the molecular level (i.e. 

nano-molar concentrations of the radiopharmaceutical); an advantage of NM imaging1. Table 1-1 

shows some examples of clinical use of nuclear medicine imaging. 

 

Table 1- 1. Selected clinical nuclear medicine procedures (cited from table 1-11 in Cherry SR, 

Sorenson JA, Phelps ME. Physics in Nuclear Medicine. 4th ed. Elsevier/Saunders; 2012). 

Radiopharmaceuticals Imaging Measurement Examples of Clinical Use 

99mTc-MDP Planar Bone metabolism 
Metastatic spread of cancer, 

osteomyelitis vs. cellulitis 

99mTc-sestamibi (Cardiolite) 

99mTc-tetrofosmin (Myoview) 

99mTc-thallous chloride 

SPECT or 

planar 
Myocardial perfusion Coronary artery disease 

99mTc-MAG3 

99mTc-DTPA 
Planar Renal function Kidney disease 

99mTc-HMPAO (Ceretec) SPECT Cerebral blood flow Neurologic disorders 

99mTc-ECD SPECT Cerebral blood flow Neurologic disorders 

123I-sodium iodide 

131I-sodium iodide 
Planar Thyroid function 

Thyroid disorders 

Thyroid cancer 

67Ga-gallium citrate Planar Sequestered in tumors Tumor localization 

99mTc-macroaggregated 

albumin and 138Xe gas 
Planar 

Lung 

perfusion/ventilation 
Pulmonary embolism 

111In-labeled white blood cells Planar Sites of infection Detection of inflammation 
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18F-fluorodeoxyglucose PET Glucose metabolism 
Cancer, neurological disorders, 

and myocardial diseases 

82Rb-rubidium chloride PET Myocardial perfusion Coronary artery disease 

MDP, methylene diphosphonate; MAG3, mercapto-acetyl-triglycine; DTPA, 

diethylenetriaminepenta-acetic acid; HMPAO, hexamethylpropyleneamine oxime; ECD, ethyl-

cysteine-dimer, SPECT, single photon emission computed tomography; PET, positron emission 

tomography. 

 

1.1.2. Radioactive Decay 

A radioactive isotope has an unstable nucleus. The nucleus is comprised of a densely packed 

arrangement of protons and neutrons. By undergoing radioactive decay, the nucleus changes its 

composition and moves to a more stable configuration. 

The decay process follows an exponential law as follows. 

A(t) = 𝐴0 ∙ 𝑒−𝜆∙𝑡 = 𝐴0 ∙ 𝑒
−

𝑙𝑛2
𝑡1

2

∙𝑡

                      (1.1) 

where 𝐴0 , 𝜆 , and 𝑡1/2  denote initial activity, decay constant, and half-life, respectively. The 

activity denotes the number of nuclei that decay per unit of time. The SI is the Becquerel (i.e., 

1Bq = 1 decay/sec ) but the Curie (i.e., 1Ci = 3.7 × 1010 𝑑𝑒𝑐𝑎𝑦𝑠/𝑠𝑒𝑐 ) has also been 

commonly used. The relation between the two is 1mCi = 37MBq1. 

Depending on which particle is emitted by a decay, the decay can be categorized into three modes.: 

1) Alpha decay, 2) Beta decay, or 3) Gamma decay. 

 

1) Alpha (α) decay 

Ernest Rutherford found that some heavy nuclei were emitting particles that did not penetrate deep 

in materials and were positively charged. Later it was identified as a Helium nucleus, which is also 

known as an alpha particle. The alpha decay follows the equation below. 

𝑋𝑁𝑍
𝐴 → 𝑌𝑁−2 + 𝐻𝑒22

4
𝑍−2
𝐴−4  
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where X and Y denote the symbols of the element shown in the periodic table, respectively, and Z, 

A, and N represent atomic number, mass number (i.e. sum of neutrons and protons), and the 

number of neutrons, respectively1–3.  

 

2) Beta decay 

This type of decay is the most common and can be categorized into two sub-types: 𝛽− decay and 

𝛽+ decay, as we discuss next. 

 

2-1) 𝛽− decay 

One of the neutrons in the nucleus is transformed into a proton, and a 𝛽−  particle and an 

antineutrino are ejected as follows. 

n → p + 𝛽− + 𝜈�̅� 

where n, p, and 𝜈�̅� denote a neutron, proton, and antineutrino, respectively. 

It should be noted that 𝛽− energy spectrum from the decay is continuous because the available 

energy is split between the 𝛽− and antineutrino1.  

 

2-2) 𝛽+ decay 

In this case, one proton in the nucleus is transformed into a neutron. A positron 𝛽+ and a neutrino 

are ejected as follows. 

p → n + 𝛽+ + 𝜈𝑒 

where n, p, and 𝜈𝑒 denote a neutron, proton, and neutrino, respectively. 

PET imaging takes advantage of this type of decay1. Once the isotope emits the positron through 

𝛽+decay, the positron interacts with the surrounding media and at the end of its path it annihilates 

with an atomic electron. The average positron range in a material depends on the positron’s energy 
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and medium characteristics (e.g., mass density, electron density, atomic number, et al.), but for 18F 

the ranges are quite short.; the average kinetic energy and its range (i.e., continuously slowing 

down approximation) is 250 keV and 0.62 mm, respectively26. 

In the annihilation, the masses of electron and positron are converted into energy and produce a 

pair of 511 keV photons traveling in opposite directions to each other (i.e., Figure 1-1). The 511 

keV photon energy comes from Einstein’s mass-energy equivalence principle “” (i.e., E = m𝑐2), 

where m is the mass of the electron or positron and c is the speed of light in a vacuum (i.e., c ≈

3 × 108 𝑚/𝑠). Importantly, the two annihilation photons are what are detected and used to form 

images of the radioisotope’s activity/concentration in the human body or phantom. 

 

Figure 1- 1. Schematic representation of annihilation reaction between a positron and electron. A 

pair of 0.511 MeV annihilation photons are emitted “back-to-back” at 180 degrees to each other 

(cited from figure 3-71 in Cherry SR, Sorenson JA, Phelps ME. Physics in Nuclear Medicine. 4th ed. 

Elsevier/Saunders; 2012). 
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2-3) Electron Capture 

Electron capture is a process that competes with 𝛽+decay. In the process, an electron from an 

inner atomic shell is captured by the nucleus, and a proton is transformed into a neutron and a 

neutrino is emitted from the nucleus as follows.  

p + 𝛽− → n + 𝜈𝑒 

where n, p, and 𝜈𝑒 denote a neutron, proton, and neutrino, respectively. 

Although the parent nucleus follows the similar transmutation as in the 𝛽+ decay, this type of 

decay is only allowed if the mass of the parent is greater than the mass of the daughter plus the 

electron ionization energy. Once the electron is captured by a proton, another electron from an 

outer shell fills the gap and thus emits a photon (i.e., characteristic X-ray), or the energy is used to 

emit another orbital electron (i.e., Auger electron). 

3) Gamma (γ) decay 

In this type of decay, a nucleus is in an excited state and releases some of its energy by emitting 

electromagnetic radiation. This decay is not a transmutation (i.e. the atomic element does not 

change) and it follows the equation below. 

𝑋∗
𝑍
𝐴 → 𝑋𝑍

𝐴 + 𝛾 

where 𝑋∗ denotes the excited state of a nucleus. 

A process competing with γ emission is the emission of a conversion electron. In the process, the 

excited nucleus can also interact with an electron of the atom and the energy can be released by 

ejecting an electron rather than emitting a photon, which is called as internal conversion. 

 

1.1.3. Interactions of Photons with Matter 

 

1) Coherent Scattering 
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Coherent or Rayleigh scattering is a type of scattering interaction that occurs between a photon 

and an atom as a whole1–3. By coherent scattering, the photon is deflected with essentially no loss 

of energy. This type of interaction is important only at relatively low energies (e.g., ≪ 50 keV). 

It can be significant in some precise photon transmission measurements such as X-ray 

crystallography. However, since it is not an effective mechanism for transferring photon energy to 

matter, it is of little practical importance in nuclear medicine. 

 

2) Photoelectric Effect 

The photoelectric effect is an atomic absorption process in which an atom absorbs totally the 

energy of an incident photon as follows1–3. 

 

Figure 1- 2. Schematic representation of the photoelectric effect. The incident photon transfers its 

energy to a photoelectron and disappears (cited from figure 6-111 in Cherry SR, Sorenson JA, 

Phelps ME. Physics in Nuclear Medicine. 4th ed. Elsevier/Saunders; 2012.). 

 

The photon disappears and the energy absorbed is used to eject an orbital electron from the atom, 

which is called a photoelectron. Its kinetic energy Epe is equal to the difference between the incident 

photon energy E0 and the binding energy of the electron shell from which it was ejected, as follows. 
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𝐸𝑝𝑒 = 𝐸0 − 𝐸𝐵                          (1.2) 

where 𝐸𝑝𝑒, 𝐸0, and 𝐸𝐵 denote the kinetic energy of the photoelectron, initial incident photon 

energy, and the binding energy of the electron shell. 

Photoelectrons cannot be ejected from an electron shell unless the incident photon energy exceeds 

the binding energy of that shell. If sufficient photon energy is available, the photoelectron is most 

likely to be ejected from the innermost possible shell, rather than outmost shell. The photoelectric 

effect generates a vacancy in an orbital electron shell, which results in the emission of 

characteristic X-ray or Auger electron. 

 

3) Compton Scattering 

Compton scattering is an interaction between a photon and a loosely bound orbital electron of an 

atom (i.e. an electron in the outer shells)1–3. In Compton scattering, since the incident photon 

energy greatly exceeds the binding energy of the electron shell, it can be assumed that the 

interaction between a photon and a free electron, as follows. 

 

Figure 1- 3. Schematic representation of Compton scattering. The incident photon transfers part 

of its energy to a Compton recoil electron and is scattered in another direction of travel (cited 
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from figure 6-121 in Cherry SR, Sorenson JA, Phelps ME. Physics in Nuclear Medicine. 4th ed. 

Elsevier/Saunders; 2012.). 

 

Contrary to photoelectric effect, here, the photon does not disappear and instead it is deflected 

through a scattering angle θ with lower energy compared to the incident energy. Part of energy is 

transferred electron. The relationship between the scattering angle θ and the energy of scattered 

photon is below. 

𝐸𝑠𝑐 =
𝐸0

1 +
𝐸0

𝑚𝑒𝑐2 (1 − 𝑐𝑜𝑠𝜃)
                     (1.3) 

where 𝐸𝑠𝑐  and 𝐸0  denote the energy of scattered photon and initial incident photon energy, 

respectively, and 𝑚𝑒 and 𝑐 represent the mass of electron (i.e., 𝑚𝑒 ≈ 9.11 × 10−31𝑘𝑔) and the 

speed of light (i.e., 𝑐 ≈ 3 × 108𝑚/𝑠) in vacuum, respectively. 

By conservation of energy, the energy of the electron can be derived as follows. 

𝐸𝑟𝑒 = 𝐸0 − 𝐸𝑠𝑐                             (1.4) 

where 𝐸𝑟𝑒 denotes the energy of the recoil electron. 

Because of the energy of the annihilation photon (i.e., 511 keV), the dominant interaction with the 

medium is through Compton scattering. This interaction ejects the electron from its atomic shell 

and the scattered photon now has a lower energy and deflected direction, compared to the original 

511 keV photon. The nature of deflection is one of inherent factors to lower the detection efficiency 

of the annihilation photons originally generated. 

Another important factor that lowers the detection efficiency is attenuation. The different 

interactions of photons in matter lead to an attenuation of the annihilation photons. The number of 

photons that are transmitted through the media decreases exponentially with increasing length of 

the material traversed.  
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The thickness of soft tissue required to reduce the intensity by one half is approximately 7 cm for 

511 keV photons27, and thus after ~14 cm of soft tissue the intensity would be reduced to one 

quarter of its original intensity. Hence, the attenuation is considered one of dominant factors that 

affect PET image quality, and thus should be corrected, especially for thicker patients. 

 

4) Pair Production 

Pair production occurs when a photon having a higher energy than the rest mass energy of a 

positron-electron pair (i.e., ≥ 1.022 MeV) interacts with an atomic nucleus1–3. In pair production, 

the photon disappears and its energy is used to create a positron-electron pair, as follows. 

 

 

Figure 1- 4. Schematic representation of pair production. Energy of incident photon is converted 

into an electron and a positron (total 1.022 MeV mass-energy equivalent) plus their kinetic energy. 

The positron eventually undergoes mutual annihilation with a different electron, producing two 

0.511 MeV annihilation photons (cited from figure 6-141 in Cherry SR, Sorenson JA, Phelps ME. 

Physics in Nuclear Medicine. 4th ed. Elsevier/Saunders; 2012.). 
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Since the positron and electron both have a rest mass equivalent to 0.511 MeV, a minimum photon 

energy of 1.022 MeV must be available for pair production to occur. The difference between the 

incident photon energy 𝐸0 and the 1.022 MeV is transferred as kinetic energy to the positron and 

the electron as follows. 

𝐸𝑒+ + 𝐸𝑒− = 𝐸0 − 1.022 𝑀𝑒𝑉                     (1.5) 

where 𝐸𝑒+ and 𝐸𝑒−  denote the kinetic energy of positron and electron, respectively. 

 

1.2. PET Data Acquisition 

 

1.2.1. Photon Detection and Scintillation Detectors 

The general goal of photon detection is to measure the total energy deposited by the photon when 

it interacts in the detector (e.g., scintillator)1–3. In most PET scanners today, scintillation detectors 

are used. Whenever an interaction with the high energy photons (e.g., 511 keV photons) occurs, 

the scintillation crystal emits optical photons (i.e., ~eV photons), and thus the number of optical 

photons produced in the crystal is proportional to the energy deposited by the high energy photons.  

Scintillation material (i.e., crystal) can be rated based on four characteristics.: 1) stopping power, 

2) decay constant, 3) light output, and 4) energy resolution. 

The stopping power is the energy loss of the high energy photon per unit length in the crystal. It 

depends on mass/electron density and effective atomic number of the material. Typically, the high 

stopping power is desirable because it would yield more intense interactions with high energy 

photons and thus a better efficiency for detecting them in the crystal of fixed size. 

The decay constant represents how long the scintillation flash lasts in the crystal. Typically, higher 

decay constant is favorable because it allows for counting higher photon rates and lower 

background rates. 
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The light output denotes the number of optical photons produced by each incident high energy 

photon. When considering the statistical counting error (i.e., Poisson noise), higher output (i.e. 

higher number of emitted scintillator photons) is desirable for better spatial and energy resolution. 

The energy resolution indicates the capability in differentiating each energy and can be quantified 

by measuring fluctuations in the energy measurement. Usually, the concept of full width at half-

maximum is used to quantify the energy resolution of the device or system. In our application, it 

means the capability in distinguishing the annihilation photon (i.e., 511 keV) from Compton 

scattered photon (i.e., less than 511 keV). The resolution depends on the light output and intrinsic 

energy resolution of the crustal. 

With the scintillator, the photo-multiplier tubes (PMTs) are commonly used as a set of detector 

system to convert the optical signal (i.e., optical photons from crystal) into electrical signal (i.e., 

electric current) and to amplify the signal using a photocathode and dynodes. Certainly, the 

resulting electric current is proportional to the number of initial optical photons and thus to the 

energy deposited in the crystal by the high energy photon. 

By including many small PMTs, the location of the photon detection can be determined. To 

determine the interaction position of the annihilation photon from the spread-out scintillation 

photon signals, the relative signals from the PMTs are compared. Typically, a few millimeters of 

spatial resolution are possible. A full PET scanner consists of a cylindrical assembly of block 

detectors with multiple rings27. 

 

1.2.2. Sinogram 

In the scanner, coincidence events are detected along their lines of response (LORs) between pairs 

of detector elements, and the set of projection profiles is defined as a sinogram1–3. Historically, the 

reason why it is called as sinogram is the fact that the shape of a set of projection profiles for an 

off-center point source is a sinusoid (i.e., Figure 1-5). 
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Figure 1- 5. Two-dimensional (2-D) intensity display of a set of projection profiles, known as a 

sonogram. Each row in the display corresponds to an individual projection profile, sequentially 

displayed from top to bottom. A point source of radioactivity traces out a sinusoidal path in the 

sinogram (cited from figure 16-41 in Cherry SR, Sorenson JA, Phelps ME. Physics in Nuclear 

Medicine. 4th ed. Elsevier/Saunders; 2012). 

 

Since necessary corrections are typically performed at the sinogram-domain, rather than the image-

domain, the formation of sinograms is an important step in PET data acquisition process.  

 

1.2.3. Data Corrections 

All measurements always come with errors caused by the image degrading effects like scatter and 

attenuation that have been discussed above. This means the PET data acquisition is not a perfect 

process. For instance, interactions in the patient will attenuate the number of emitted photons from 

the patient compared to the total number of annihilation photons generated from the source inside 

the body. Each detector element can have different detection efficiency, and random and scattered 

coincidences can be recorded along with the true coincidence events. These kind of effects need 
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to be corrected to extract clinically useful and quantitatively accurate information from PET 

images1–3,27. 

One of the most important corrections is attenuation correction (AC). Photons that travel denser 

materials on their path are more likely to be absorbed or scattered, compared to photons that travel 

less dense materials. If images are reconstructed without AC, the less dense areas (e.g., lung) can 

be shown as higher activity/concentration areas in PET images than surrounding denser tissue (e.g., 

mediastinum)27.  

To apply attenuation correction, it is necessary to determine the attenuation through the patient for 

all LORs. In these days, the acquired computed tomographic (CT) image is used for the attenuation 

correction to provide the attenuation coefficient information through the patient. 

 

1.3. PET Image Reconstruction 

 

The objective of quantitative PET imaging is to obtain the activity/concentration of radiotracers in 

the body. Once sinograms are acquired, the PET images can be generated by reconstruction 

process1 (i.e., Figure 1-6).  
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Figure 1- 6. Rotating the gamma camera around the object provides a set of one-dimensional 

projection profiles for a two-dimensional object, which are used to calculate the two-dimensional 

distribution of radioactivity in the object. ECT: emission computed tomography (cited from figure 

16-21 in Cherry SR, Sorenson JA, Phelps ME. Physics in Nuclear Medicine. 4th ed. Elsevier/Saunders; 

2012).  

 

There are two types of reconstruction algorithms: 1) analytic, and 2) iterative reconstructions1–3.  

Analytic methods reconstruct PET images by applying inverse transform (e.g., inverse radon 

transform) to the projection data (i.e., sinogram). Iterative methods, on the other hand, acquires 

improved image estimates by updating the estimates iteratively. The estimates can be updated 

using a statistical model of the coincidence events acquisition process. Iterative algorithms do not 

necessarily assume the line-integral model, and enable modeling of statistical noise, non-uniform 

resolution, positron range, and other physical effects directly in the image reconstruction process. 

More details of representative methods for each type will be followed. Here, only most widely 
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used algorithms for each type will be discussed.: 1) Filtered Back-Projection as an analytic method, 

and 2) Ordered-Subset Expectation Maximization as an iterative method. 

 

1.3.1. Filtered Back-Projection (FBP) 

The FBP can be easily understood through a simple back-projection example. The figure below 

shows how through simple back-projections of LORs, the original object can be reconstructed. 

 

Figure 1- 7. Illustration of the steps in simple back-projection. A: Projection profiles for a point 

source of radioactivity for different projection angles. B: Back-projection of one intensity profile 

across the image at the angle corresponding to the profile. This is repeated for all projection 

profiles to build up the back-projected image (cited from figure 16-51 in Cherry SR, Sorenson JA, 

Phelps ME. Physics in Nuclear Medicine. 4th ed. Elsevier/Saunders; 2012). 

 

Mathematically, the process can be expressed as follows. 

𝑓′(𝑥, 𝑦) =
1

𝑁
∑ 𝑝(𝑥𝑐𝑜𝑠𝜙𝑖 + 𝑦𝑠𝑖𝑛𝜙𝑖 , 𝜙𝑖)

𝑁

𝑖=1

                (1.6) 
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where 𝜙𝑖 denotes the ith projection angle and 𝑓′(𝑥, 𝑦) represents an approximation to the true 

radioactivity distribution, f(x, y). 

As illustrated in Figure 1-7(b), the image built up by simple back-projection resembles the true 

source distribution. However, there is an obvious artifact in that counts are projected outside of the 

true location of the object and thus there is a blurring of its resulting image. 

Certainly, the quality of image can be improved by increasing the number of projection angles and 

the number of samples along the profile. To be specific, this can suppress the “spoke-like” artifacts 

in the image, but even with an infinite number of views, the final image still is blurred. No matter 

how finely the data are sampled, simple back-projection always causes some apparent activity 

outside the true location of the source. 

Mathematically, the relationship between the true image (i.e., f(𝑥, 𝑦)) and the image reconstructed 

by the simple back-projection (i.e., 𝑓′(𝑥, 𝑦)) can be expressed as follows1. 

𝑓′(𝑥, 𝑦) = 𝑓(𝑥, 𝑦)⨂
1

𝑟
                         (1.7) 

where ⨂ denotes the process of convolution and r represents the distance from the center of the 

point-source location. Because of this behavior, the effect is called as 1/r blurring.  

Thankfully, the 1/r blurring effect can be completely removed using Fourier transform (FT) and 

applying what is typically known as the ramp filter. When considering the fact that the 

“convolution” operator in image-domain can be replaceable with “multiplication” in frequency-

domain, and the fact that FT of 1/r is equal to 1/𝑘𝑟, where 𝑘𝑟 = √𝑘𝑥
2 + 𝑘𝑦

2, 𝑘𝑥 = 𝑘𝑟𝑐𝑜𝑠𝜙, 𝑘𝑦 =

𝑘𝑟𝑠𝑖𝑛𝜙, mathematically, in frequency-domain, the relationship between filtered projection profile 

(i.e., 𝑃𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑘𝑟, 𝜙)) and the measured projection profile (i.e., P(𝑘𝑟 , 𝜙)) can be expressed as 

follows: 

FT[𝑓(𝑥, 𝑦)|𝜙𝑖
] = 𝑘𝑟 ∙ FT[𝑓′(𝑥, 𝑦)|𝜙𝑖

] = 𝑘𝑟 ∙ FT[𝑝(𝑥𝑐𝑜𝑠𝜙𝑖 + 𝑦𝑠𝑖𝑛𝜙𝑖, 𝜙𝑖)] 

         = 𝑘𝑟 ∙ P(𝑘𝑟 , 𝜙𝑖)                                      (1.8) 
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𝑓(𝑥, 𝑦) =
1

𝑁
∑ 𝑝𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥𝑐𝑜𝑠𝜙𝑖 + 𝑦𝑠𝑖𝑛𝜙𝑖 , 𝜙𝑖)

𝑁

𝑖=1

              (1.9) 

where Pfiltered(𝑘𝑟 , 𝜙) = |𝑘𝑟|𝑃(𝑘𝑟 , 𝜙). 

In brief, by applying “ramp filter” in frequency domain to measured projection profile and 

sequentially doing back-projection, the 1/r blurring can be completed omitted. Because the method 

is using the filtered projection profile, it is called as filtered back-projection. 

 

Figure 1- 8. Illustration of the steps in filtered back-projection. The one-dimensional Fourier 

transforms of projection profiles recorded at different projection angles are multiplied by the ramp 

filter. After taking the inverse Fourier transform of the filtered transforms, the filtered profiles are 

back-projected across the image, as in simple back-projection (cited from figure 16-91 in Cherry 

SR, Sorenson JA, Phelps ME. Physics in Nuclear Medicine. 4th ed. Elsevier/Saunders; 2012). 

 

Although using the “ramp filter” can completely remove the 1/r blurring, it can also enhance the 

noise contribution to real image because of the fact that the noise tends to have high frequency in 
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frequency-domain. Thus, there are a lot of variants of the ramp filter (e.g., Shepp-Logan, Hann, et 

al.) to minimize the adverse effect. 

The advantages of FBP includes relative ease of implementation and its high speed1,28. On the 

other hand, it has very limited ability to take into account various physical and statistical aspects 

of imaging system and data acquisition such as limited spatial resolution of the detector, scattered 

radiation, statistical nature of the coincidence events collection, positron range, and non-uniform 

resolution. In addition, due to the incompleteness of the projection data, it tends to produce images 

with high level of noise and streak artifacts28. Therefore, currently it is very rare to routinely use 

the FBP in clinic.  

 

1.3.2. Ordered-Subset Expectation Maximization (OSEM) 

The general concepts of iterative reconstruction are outlined in Figure 1-9. In essence, the 

algorithm approaches the true image by means of successive approximations or estimates1–3,28.  

 

Figure 1- 9. Schematic illustration of the steps in iterative reconstruction. An initial image estimate 

is made and projections that would have been recorded from the initial estimate then are 
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calculated by forward projection. The calculated forward projection profiles for the estimated 

image are compared to the profiles actually recorded from the object and the difference is used 

to modify the estimated image to provide a closer match. The process is repeated until the 

difference between the calculated profiles for successively estimated images and the actually 

observed profiles reaches some acceptably small level (cited from figure 16-171 in Cherry SR, 

Sorenson JA, Phelps ME. Physics in Nuclear Medicine. 4th ed. Elsevier/Saunders; 2012) 

 

Often the initial estimate is assumed as uniform image (i.e. all pixels have the value of one). The 

next step is to do forward projections to compute the projections that would have been measured 

for the estimated image, which is the inverse process of back-projections. It is performed by 

summing up the intensities along the ray paths for all projections through the estimated image. 

Then, the set of projections (i.e., sinogram) is compared to the measured projections. By using the 

difference between estimated and measured sinograms, the estimated image can be updated by 

back-projecting the difference. The update-and-compare process is repeated until the difference 

between the forward-projected profiles for the estimated image and the actually measured profiles 

falls below some specified level, or until the iteration numbers given by user. With proper design 

of the image updating procedure, the estimated image progressively converges toward the true 

image in terms of bias. (i.e., Figure 1-10); instead, noise level tends to increase in general due to 

the bias-variance tradeoff29,30.  
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Figure 1- 10. Brain images generated for different numbers of iterations by an iterative 

reconstruction algorithm. Image resolution progressively improves as the number of iterations 

increases (cited from figure 16-181 in Cherry SR, Sorenson JA, Phelps ME. Physics in Nuclear 

Medicine. 4th ed. Elsevier/Saunders; 2012). 

 

Iterative methods are the most widely used approach in PET image reconstruction and include 

iteratively solving the maximum Poisson likelihood or solving the maximum a posteriori (MAP) 

estimate. Poisson-based methods are a natural choice for PET because the measurements can be 

modeled as Poisson counting statistics. 

The maximum likelihood expectation maximization (MLEM) algorithm31–34 is a well-known 

method and is used to maximize the Poisson log-likelihood as follows. 

L(𝐩|𝐟) = ∑ 𝑝𝑖 ∙ 𝑙𝑛(𝐸[𝑝𝑖]) − 𝐸[𝑝𝑖] − ln (𝑝𝑖!)

𝑀

𝑖=1

              (1.10) 

where f, p, and M is the estimated image, the measured projections, and the number of projection 

elements (i.e., in 2-D reconstruction, the number of pixels for a sinogram per slice: the number of 
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projection angles ×  the number of elements in a profile per projection), and 𝐸[𝑝𝑖] =

∑ 𝐴𝑖𝑗𝑓𝑗 + 𝑟𝑖 + 𝜁𝑖
𝑁
𝑗=1 . N is the number of pixels in image per slice (i.e., in 2-D reconstruction), 𝑟𝑖 

is the estimated random coincidences in the ith projection element, and 𝜁𝑖  is the scattered 

coincidences in the ith projection element. Importantly, A denotes system matrix of imaging 

system and 𝐴𝑖𝑗  represents the probability that the radiation (i.e., annihilation photon) emitted 

from the jth pixel will be detected in the ith projection element. Thus, technically, the system matrix 

A acts as a forward-projecting operator when applying to the matrix for a single image (i.e., matrix 

multiplication with the image matrix).  

In MLEM, the updated image is obtained by a formula as follows. 

𝑓𝑗
𝑘+1 =

𝑓𝑗
𝑘

∑ 𝐴𝑖𝑗
𝑀
𝑖=1

∑ 𝐴𝑖𝑗

𝑝𝑖

∑ 𝐴𝑖𝑙𝑓𝑙
𝑘 + 𝑟𝑖 + 𝜁𝑖

𝑁
𝑙=1

𝑀

𝑖=1

              (1.11) 

In matrix form, this can be expressed as follows. 

𝒇𝑘+1 =
𝒇𝑘

𝑨𝑻𝟏
𝑨𝑻

𝒑

𝑨𝒇𝒌 + 𝒓 + 𝜻
                    (1.12) 

where ∑ 𝐴𝑖𝑗
𝑀
𝑖=1 = 𝑨𝑻𝟏 is the sensitivity image and k is the iteration number. Importantly, 𝑨𝒇𝒌 

corresponds to the forward-projection and 𝑨𝑻𝒗𝒌  is the back-projection (i.e., 𝒗𝒌 ≡
𝒑

𝑨𝒇𝒌+𝒓+𝜻
 ). 

Particularly, the version with the inclusion of 𝑟 and 𝜁 is called ordinary Poisson method. 

One of critical disadvantages of MLEM is its slow convergence (i.e., computational speed, 

compared to FBP method). As a one of variants of MLEM, the ordered-subset expectation 

maximization (OSEM)35–37 is typically used to enhance a convergence speed by dividing the 

projection data into q subsets as follows. 

𝑓𝑗
𝑘+1 =

𝑓𝑗
𝑘

∑ 𝐴𝑖𝑗𝑖∈𝑆𝑞

∑ 𝐴𝑖𝑗

𝑝𝑖

∑ 𝐴𝑖𝑙𝑓𝑙
𝑘 + 𝑟𝑖 + 𝜁𝑖

𝑁
𝑙=1𝑖∈𝑆𝑞

            (1.13) 

where 𝑆𝑞 contains the projection data in the qth subset. Currently, OSEM is the reconstruction 

method of most popular usage in routine practice in clinic. 
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In brief, the advantages of analytic reconstruction include relative easiness of implementation and 

high speed. However, due to the reliance on the line-integral projection model, analytic method 

has a limited capability to take into account various physical and statistical effects such as the 

random nature of the coincidence data collection, positron range, and non-uniform resolution. 

Unlike analytic method, iterative method does not necessarily assume the line-integral model, and 

enable 1) accurate modeling of statistical noise, 2) complex detector geometries, and 3) the ability 

to include corrections for various degradation effects (e.g., detection of scattered events, detection 

of random events, positron range, photon non-collinearity, detection dead time, detector blurring, 

variations in detector sensitivity, patient motion, et al.) These are the main reasons why the iterative 

methods are generally more desirable in routine practice in clinic, compared to analytic methods. 

Especially, OSEM is the most popular choice in clinic because of its fast convergence speed, 

compared to MLEM.  

In the next chapter, we briefly cover the fundamentals of kinetic modeling, from the basics (e.g., 

mathematical expression of kinetic models, benefits of using kinetic modeling, et al.) to the 

rationale of the research for this thesis (e.g., the necessity of whole-body kinetic modeling, current 

pitfalls and challenges, etc.).  
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Chapter 2. Fundamentals of Kinetic Modeling 

 

2.1. Introduction and Rationale for Kinetic Modeling 

 

The spatial distribution of a radiotracer in the body is time-varying and depends on a number of 

factors such as tracer delivery and extraction from the vasculature, binding to cell surface receptors, 

diffusion or transport into cells, metabolism, and wash-out effect38–42. Thus the analysis of 

temporal component often is very important in nuclear medicine studies because of its direct or 

indirect relationship with bio-chemical and physiological status of tissue. The mathematical 

models that describe the time-varying distribution of radiopharmaceuticals in the body are called 

as tracer kinetic models, and the analysis of the kinetics based on the models (e.g., estimation of 

transport rate constants) is known as kinetic modeling1–3,38–44. 

The analysis of bio-distribution and kinetics of radiopharmaceuticals through kinetic modeling can 

add additional benefits of using nuclear medicine images.  Indeed, a number of studies have 

highlighted the potential effectiveness of kinetic modeling for better diagnosis and treatment 

response monitoring45–49 by providing additional parameters that are closely related to the 

underlying biological, physiological, and pathological characteristics of tissues. In brief, there are 

two beneficial aspects of kinetic modeling.  

The first is that the kinetic parameters can provide a new dimension for to obtain better information 

of the disease from PET images. For instance, for 18F-FDG, the tracer remains in the blood at 

notable concentrations for several hours after injection. In conventional static images the 

standardized uptake value (SUV) reflects a mixture of un-metabolized 18F-FDG exchanged with 

the blood and 18F-FDG-6-P trapped by tumor glucose metabolism. The static image cannot 

distinguish between 18F-FDG and 18F-FDG-6-P since both have the same isotope detected by the 

scanner. However, kinetic modeling through dynamic scanning can distinguish the two different 

states (i.e., 18F-FDG v.s. 18F-FDG-6-P) and provide a much more specific estimate of tumor 

glucose metabolism50,51. 
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Another aspect is that the kinetic modeling can help avoid pitfalls in interpreting standard clinical 

static uptake images. For instance, the persistence of 18F-FDG in the blood after injection can lead 

to ongoing 18F-FDG-6-P accumulation over time. For tumors with high glucose metabolic rates, 

SUV can increase over 30 % in as little as 15 min at 1 hour after injection50. Therefore, the 

variability of uptake can considerably confound the assessment of therapeutic response both in the 

clinic and in clinical trials50. The kinetic modeling enables to avoid the pitfall. 

In brief, with additional use of tracer kinetic modeling, there is the potential for a substantial 

improvement in the kind and quality of information that can be extracted from the given PET 

images.  

Mathematical models for kinetic modeling defines the relationship between measureable data (i.e., 

activity and concentration) and the bio-chemical parameters (i.e., kinetic parameters). The 

understanding of the mathematical models is one of critical pre-requisites to correctly exploit the 

benefits of kinetic modeling. Therefore, in this chapter, the basic mathematical models for kinetic 

modeling are briefly introduced. 

 

2.2. Brief Review of Current Kinetic Modeling Methodologies 

 

2.2.1. Basic Assumptions underlying the Kinetic Modeling 

There are two basic assumptions for kinetic modeling: 

1) Assumption #11,43,44,52: a PET radiotracer is administered in such small amounts that it does not 

have any pharmacological effects (i.e., nonexistence of drug-effect). 

2) Assumption #21,43,44,52: biological functions that we are studying exist at a steady state (are not 

altered in the course of study). 

The first assumption is known as “tracer principle” or “nonexistence of drug-effect”, which 

represents the nonexistent or negligible effect of a radiotracer on the bio-chemical process of 

interest Bio-chemical processes tend to be mainly influenced by concentration of a ligand (e.g., 
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substrate) and the number of available receptors (e.g., enzyme) to the binding of interest. Thus, it 

is important to minimize the changes in the level of concentration of a ligand and the number of 

available receptors by injecting a small amount of radiotracers as much as possible. We should 

note that our inherent interest is the bio-chemical process before injecting the radiotracer, rather 

than the process changed after the injection, and that the analogue molecules (i.e., injected 

radiotracers) will be competing with original molecules (i.e., existent naturally) in the human or 

animal body in binding with the same type of receptors. Therefore, the exceptionally high 

sensitivity of PET scanner combined with the high specific activity of radiotracers are desirable to 

minimize the drug-effect by allowing for the usage of a small amount of radiotracers as much as 

possible. 

In addition to that, it should be noted that the assumption #1 (i.e., nonexistence of drug-effect) 

cannot be applicable to radiopharmaceutical therapy (RPT) that typically requires much larger 

amount of injection per cycle53 (e.g., 10 times larger than the activity injected for diagnosis). 

Hence, for the application of kinetic modeling into RPT, the established kinetic model should be 

modified to take the changes in concentration induced by radiopharmaceutical injected and the 

significantly reduced number of available receptors (i.e., the level of saturation of ligand-receptor 

binding) into consideration. The Delforge model43,54–57 would be a good starting point to deal with 

the issue. 

The second assumption is known as a “steady-state assumption”, which means that the biological 

process in the body will not change at least during the time of the PET scan. This is the reason why 

the transport rate constants between compartments can be assumed as time-invariant parameters. 

However, depending on a specific application or situations deviated from the steady-state (e.g., 

unwanted changes in blood flow, a high amount of radiopharmaceuticals injected, et al), the 

research focus could be the study of transient change. For instance, there has been growing interest 

in detecting and quantifying transient changes in neurotransmitter concentrations that may be 

useful for better understanding of the etiology of neuropsychiatric diseases58,59. To deal with the 

violation from the steady-state assumption, the Delforge model43,54–57 could be used. 

In following subsections, we review a number of popular kinetic modeling techniques. 
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2.2.2. One-Tissue Compartment Model (1TCM) 

The 1TCM (i.e., Figure 2-1) is comprised of two compartments.: 1) compartment for blood or 

plasma (i.e., Cp) and 2) a tissue compartment (i.e., CR). Since there is no limitation to the definition 

of a compartment, basically a compartment can represent any physical or bio-chemical status of 

tissue. In other words, it could be any organs (e.g., blood plasma, liver, lung,etc) and any bio-

chemical status (e.g., specific-binding, nonspecific-binding, etc).Depending on the radiotracer 

used and the bio-chemical/physiological process of interest for your research, the definitions of 

each compartment can be varied and should be re-defined by user.  

Under the assumption that a transport rate of a radiotracer between two compartments is following 

the first-order kinetics (i.e., 
𝑑[𝐴]

𝑑𝑡
= k ∙ [𝐴]1, where [A] is the concentration of A, and k an arbitrary 

constant), the 1TCM can be mathematically expressed as follows60. 

𝑑𝐶𝑅(𝑡)

𝑑𝑡
= 𝐾1𝐶𝑝(𝑡) − 𝑘2𝐶𝑅(𝑡)                     (2.1) 

𝐶𝑅 = 𝐾1𝐶𝑝(𝑡)⨂𝑒−𝑘2𝑡                        (2.2) 

K1 and k2 denote the influx and efflux rate constants between the blood plasma and the 

compartment.  

 

Figure 2- 1. Kinetic model for generic one-tissue compartment model (this figure was originally 

published in JNM. Pantel AR, Viswanath V, Muzi M, Doot RK, Mankoff DA. Principles of Tracer 

Kinetic Analysis in Oncology, Part I: Principles and Overview of Methodology. J Nucl Med. 2022; 

63:342-352.). 
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2.2.3. Two-Tissue Compartment Model (2TCM) 

The 2TCM (i.e., Figure 2-2) is comprised of three compartments.: 1) compartment for blood 

plasma (i.e., Cp), 2) a first compartment that can represent the interstitial space in tissue (i.e., CR), 

and 3) a second compartment that can represent the tissue of interest (i.e., CB). Based on the same 

assumption as in the 1TCM (i.e., first-order kinetics), the concentrations of radiotracer for each 

compartment can be expressed as follows60. 

𝑑𝐶𝑅(𝑡)

𝑑𝑡
= 𝐾1𝐶𝑝(𝑡) + 𝑘4𝐶𝐵(𝑡) − (𝑘2 + 𝑘3)𝐶𝑅(𝑡)             (2.3) 

𝑑𝐶𝐵(𝑡)

𝑑𝑡
= 𝑘3𝐶𝑅(𝑡) − 𝑘4𝐶𝐵(𝑡)                      (2.4) 

The Laplace transformation and the relationship shown below can be used to solve the differential 

equations. 

L[f ′(t)] = sL[f(t)] − f(0)                       (2.5) 

L[f ′′(t)] = 𝑠2L[f(t)] − sf(0) − f ′(0)                  (2.6) 

where L[f(t)], f ′(t), f ′′(t), and s denote the Laplace transformation of an arbitrary function f(t), 

the first derivative of f(t), the second derivative of f(t), and s-variable in s-domain that is well 

known as a complex frequency variable with the unit of [1/sec.] if the unit of t is [sec]. All the 

mathematical details for the solution of the differential equations can be found in Appendix A.  

 

Figure 2- 2. Kinetic model for generic two-tissue compartment model (this figure was originally 

published in JNM. Pantel AR, Viswanath V, Muzi M, Doot RK, Mankoff DA. Principles of Tracer 
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Kinetic Analysis in Oncology, Part I: Principles and Overview of Methodology. J Nucl Med. 2022; 

63:342-352.). 

 

From the solution of the differential equations, the measured concentration from PET can be 

expressed as follows. 

𝐶𝑃𝐸𝑇(𝑡) = 𝐶𝑅 + 𝐶𝐵 =
𝐾1

𝛼2 − 𝛼1

[(𝑘3 + 𝑘4 − 𝛼1)𝑒−𝛼1𝑡 + (𝛼2 − 𝑘3 − 𝑘4)𝑒−𝛼2𝑡]⨂𝐶𝑝(𝑡) (2.7) 

𝛼1,2 =
𝑘2 + 𝑘3 + 𝑘4  ∓  √(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

2
              (2.8) 

where 𝐶𝑃𝐸𝑇 and 𝐶𝑝 denote the measured PET concentration/activity and plasma input function, 

respectively, and ⨂  represents convolution. 𝐾1  and 𝑘2  are influx and efflux rate constants 

between plasma and the first tissue compartment, respectively, and 𝑘3 and 𝑘4 represent influx 

and efflux rate constants between the first and the second tissue compartment. 

Each kinetic parameter (i.e.𝐾1, 𝑘2, 𝑘3, 𝑘4) is called as micro-parameter.. 

 

2.2.4. Patlak Graphical Analysis (PGA): Linearized Model 

The solutions of all of the systems of differential equations describing the compartments models 

above require nonlinear regression to estimate the individual parameters (i.e., rate constants: K1, 

k2, k3, and k4). Nonlinear regression is performed by an iterative method that requires considerable 

computational time, making it difficult to perform a voxel-wise calculation52. 

However, by a linearization of the compartment model, more rapid calculation of parameters at 

the voxel level can be performed. In this thesis, among the linearized models (i.e., Figure 2-3), the 

PGA60,61 is presented. 
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Figure 2- 3. Graphical methods of data analysis, including Patlak (A) and Logan (B) plots, where 

CPlasma is blood time-activity curve and CTissue is tissue time-activity curve. t: time. (this figure was 

originally published in JNM. Pantel AR, Viswanath V, Muzi M, Doot RK, Mankoff DA. Principles of 

Tracer Kinetic Analysis in Oncology, Part I: Principles and Overview of Methodology. J Nucl Med. 

2022; 63:342-352.). 

 

Basically, the mathematical formulas for PGA can be derived from the 2TCM. If an irreversible or 

nearly-irreversible uptake process is assumed (i.e., 𝑘4 ≈ 0), the measured concentration via PET 

can be derived as follows from the general formulas for 2TCM. 

𝐶𝑃𝐸𝑇(𝑡)|𝑘4=0 =
𝐾1𝑘2

𝑘2 + 𝑘3
𝑒−(𝑘2+𝑘3)𝑡⨂𝐶𝑝(𝑡) +

𝐾1𝑘3

𝑘2 + 𝑘3
⨂𝐶𝑝(𝑡)         (2.9) 

Also, if the equilibrium between the plasma and first compartment is reached, final formulas for 

PGA can be derived as follows. 

𝐶𝑃𝐸𝑇(𝑡)

𝐶𝑝(𝑡)
= 𝐾𝑖 ∙

∫ 𝐶𝑝(𝜏)𝑑𝜏
𝑡

0

𝐶𝑝(𝑡)
+ 𝑉𝑑,   𝑡 > 𝑡∗             (2.10) 

where𝑡∗denotes the time required for the equilibrium between plasma and the first compartment 

in 2TCM. 
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Further, under the assumption that blood volume fraction is negligible (i.e., 𝑉𝑏 ≈ 0), we can define 

a net influx rate constant Ki and a volume of distribution Vd as follows. 

𝐾𝑖 =
𝐾1𝑘3

𝑘2 + 𝑘3
                            (2.11) 

𝑉𝑑 =
𝐾1𝑘2

(𝑘2 + 𝑘3)2
                          (2.12) 

The Ki and Vd are called a PGA parameter and categorized as macro-parameter because of the fact 

that it is comprised of several micro-parameters. The derivation of the PGA formulas from the 

2TCM (i.e., line-by-line derivations) and conceptual meaning of PGA parameters are shown in 

Appendix A and B .  

 

2.3. The Necessity for Whole-Body Kinetic Modeling 

 

Clinical diagnosis and treatment response monitoring of localized and metastatic cancers have 

benefited remarkably from the advent of whole-body (WB) positron emission tomography (PET) 

integrated with computed tomography (PET/CT) imaging16,62–67. Currently, the standardized 

uptake value (SUV) is widely employed as a surrogate for metabolic activity. The SUV is defined 

as follows.  

SUV(t) =
𝐴(𝑡)

𝐷 ∙ 2

−∆𝑡
𝑇1

2

∙ 𝐵𝑊                       (2.13) 

where A(t), D, and BW denote activity [Bq/ml] at time t, injected dose [Bq], and body weight (g), 

respectively. ∆𝑡 and 𝑇1

2

 represent time delay between the injection time and the scan time [sec.] 

and the half-life of radiotracers [sec.], respectively.  

However, the PET tracer distribution is a dynamic process altered by several factors that vary 

considerably depending on the organ, region of interest (ROI), patient, and time of scan62,68. Hence, 

static SUV images are time-dependent, which is a huge limitation and undesirable for use in 
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quantitative studies. As an example, to make PET images comparable between patients and for the 

same patient scanned at different times, they are usually collected at 60 minutes after the 

administration of 18F-FDG. Comparing images acquired at different times post-injection would not 

result in a fair comparison.  

However, compared to the static image (i.e., SUV), parametric images via kinetic modeling are 

not time-dependent and can provide a variety of types and qualities of information of the bio-

chemical and physiological status of tissues and/or ROIs in whole-body62,63; definitely allowing 

further clinical benefits from PET images through quantitative analysis. A huge number of studies 

have shown that kinetic compartment modeling can improve both tumor characterization and 

treatment response monitoring45–49,63.  

 

2.4. Current Pitfalls and Challenges  

 

With a typical PET scanner, dynamic PET protocols have been confined to a single-bed position, 

limiting the axial field-of-view of parametric images to ~15-25 cm. However, protocols that 

perform fast multi-pass multi-bed acquisitions have been increasing attention16,64–67. 

To achieve four-dimensional (4D) PET acquisition for WB kinetic modeling, the following three 

challenges must be addressed: (1) long acquisition time, (2) few dynamic frames at each bed (i.e., 

sparsity of data), and (3) noninvasive quantification of rapid early kinetics in the plasma.  

Karakatsanis et al. optimized the scanning protocol through extensive Monte Carlo simulation 

studies and proposed a method for input function estimation and dynamic WB dataset 

generation68,69. It comprises two sequential scanning steps: (1) an initial 6 min single-bed dynamic 

scan over the cardiac region to generate an image-derived input function and (2) a sequence of six 

multi-pass WB scans to capture the late dynamics of the tracer in the blood plasma and WB tissues. 

This is the same protocol that we have implemented in this thesis for patient data acquisition (i.e., 

chap. 3 and 4). 
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Although the optimal protocol allows for WB kinetic modeling, we should note the fact that it was 

optimized based on a macro-parameter, specifically the net influx rate from the plasma into the 

second compartment in the two-tissue compartment model (i.e., Ki); thus, it might not be an 

appropriate protocol for micro-parameter estimation if least squares estimation (LSE) is exploited, 

which is the current common standard of parameter estimation for kinetic modeling. 

Unlike macro-parameter estimation, there are two factors that can contribute to uncertainty in 

micro-parameter estimation: (1) the loss of early dynamics of time activity (i.e., the loss of near-

peak data), and (2) sparsity of measured data (i.e., 5-6 min of time interval of measurement). Due 

to these factors, the estimation of micro-parameter for whole-body kinetic modeling has not been 

attempted in cases where a typical PET scanner is the only available option for dynamic scans.  

Given that the detailed explanatory power of micro-parameter in assessing the bio-chemical and 

physiological status of tissues can significantly enhance effectiveness and flexibility in clinical 

applications, surpassing the capabilities of macro-parameters, there is a need to develop a novel 

method that can open the door to a typical PET-based WB kinetic modeling for micro-kinetic 

parameters. 

In the next chapter, we will present a novel parameter estimation method that enables typical PET-

based WB kinetic modeling for micro-kinetic parameters by addressing the issues above. Further, 

we will show the improved performance in image quality, visibility, and tumor detectability, 

compared to the current common standard (i.e., LSE). 
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Chapter 3. Development and Validation of the PCDE 

method 

 

3.1. Introduction 

 

Clinical diagnosis and treatment response monitoring of localized and metastatic cancers have 

benefited remarkably from the advent of whole-body (WB) positron emission tomography (PET) 

integrated with computed tomography (PET/CT) imaging.16,62–67 Currently, the standardized 

uptake value (SUV) is the metric used to measure metabolic activity from quantitative images. 

PET tracer distribution is a dynamic process altered by several factors that vary considerably 

depending on the organ, region of interest (ROI), patient, and time of scan62,68. Hence, static SUV 

images are time-dependent, which is undesirable for use in quantitative studies. With the additional 

use of tracer kinetic modeling techniques that require dynamic PET scanning, there is the potential 

for substantially improving the type and quality of information of the biological and physiological 

processes in tissue 62,63 that is not time-dependent. This can enable further clinical benefits from 

PET images through quantitative analysis. Many studies have shown that kinetic compartment 

modeling can improve both tumor characterization and treatment response monitoring45–49,63.  

Nonetheless, dynamic PET protocols have been confined to a single-bed position, limiting the 

axial field-of-view of parametric images to ~15-25 [cm], and have not been translated to multi-

bed positions (i.e., WB). However, it is more desirable to inspect disseminated diseases and this 

has been gaining increasing attention16,64–67.  

To achieve four-dimensional (4D) WB PET acquisition, the following three challenges present 

themselves: (1) long acquisition times, (2) few dynamic frames at each bed (i.e., sparsity of data), 

and (3) noninvasive quantification of rapid early kinetics in the plasma. Karakatsanis et al. 

optimized the scanning protocol through extensive Monte Carlo simulation studies. 68,69 They 

proposed an optimal protocol for input function estimation and dynamic WB dataset generation, 

which comprises two sequential scanning steps: (1) an initial 6 min single-bed dynamic scan over 
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the cardiac region to generate an image-derived input function (addressing challenge number 3) 

and (2) a sequence of six multi-bed multi-pass WB scans to capture the late dynamics of the tracer 

in the blood plasma and tissue.  

Although the optimal protocol allows for WB kinetic modeling, it was optimized for the 

measurement of macro-parameters, specifically the net influx rate from the plasma into the 2nd 

compartment in the two-tissue compartment model (i.e., Ki).; macro-parameters are lumped 

constants comprised of several micro-parameters. Hence, this method is not the most appropriate 

protocol for micro-parameter estimation if least squares estimation (LSE) is exploited.  

Two factors can contribute to uncertainty in micro-parameter estimation: (1) the loss of early 

dynamics of time activity (i.e., the loss of near-peak data), except for the chest region in the FOV 

of the first 6 minutes of the acquisition, and (2) sparsity of measured data (i.e., 5-6 min between 

scans of the same anatomical region). Due to these factors, the estimation of micro-parameters for 

whole-body kinetic modeling has not been fully implemented in cases where a typical PET scanner 

(i.e. axial FOV between 15-25 cm) is the only available option for dynamic scans. However, the 

detailed explanatory power of micro-parameter estimation in assessing the biochemical status of 

tissues can significantly enhance effectiveness and flexibility in clinical applications, surpassing 

the capabilities of macro-parameters. 

We aimed to develop a novel method to enable accurate kinetic modeling including estimation of 

micro-parameters using multi-pass protocols in typical PET scanner-based WB imaging. We refer 

to this new method as parameter combination-driven estimation (PCDE). We evaluated the method 

in terms of image quality, overall visibility, and tumor detectability compared to LSE (i.e., common 

standard). 

 

3.2. Methods 

 

3.2.1. Generating Simulated Data 

3.2.1.1. Noise-free Images 
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To generate ground-truth PET images, we employed the 4D extended cardiac-torso (XCAT) 

phantom70, which is well-validated and widely used for performance testing of new algorithms or 

approaches in numerous areas of medical imaging. The dynamics of the activity distribution 

assigned to each ROI in the XCAT phantom were based on actual fluorodeoxyglucose (FDG) 

kinetic micro-parameters, as reported in the literature68,71 and are presented in Tables 3-1 and 2. In 

this study, the irreversible uptake process so 𝑘4 is assumed to be zero. 

 

Table 3- 1. Ground truths of kinetic micro-parameters for normal whole-body organs. 

 𝐾1 𝑘2 𝑘3 

Brain 0.13 0.63 0.19 

Thyroid 0.97 1.00 0.07 

Myocardium 0.82 1.00 0.19 

Spleen 0.88 1.00 0.04 

Pancreas 0.36 1.00 0.08 

Kidney 0.70 1.00 0.18 

Liver 0.86 0.98 0.01 

Lung 0.11 0.74 0.02 

 

Table 3- 2. Ground truths of kinetic macro-parameters for tumors. 

 𝐾1 𝑘2 𝑘3 

Lung 0.3 0.86 0.05 

Liver 0.24 0.78 0.1 

*Tumor shape and size: sphere with 1.5 cm diameter. 

 

A plasma input function was created based on Feng’s model72, and the basic formula of the two-

tissue compartment model (2TCM) was used to calculate true activities over time as follows: 

𝐶𝑃𝐸𝑇(𝑡) =
𝐾1

𝛼2 − 𝛼1

[(𝑘3 + 𝑘4 − 𝛼1)𝑒−𝛼1𝑡 + (𝛼2 − 𝑘3 − 𝑘4)𝑒−𝛼2𝑡]⨂𝐶𝑝(𝑡)     (3.1) 
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𝛼1,2 =
𝑘2 + 𝑘3 + 𝑘4  ∓  √(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

2
              (3.2) 

                    

where 𝐶𝑃𝐸𝑇  and 𝐶𝑝  denote the measured PET concentration and plasma concentration input 

function, respectively, and ⨂ is the convolution operator. 𝐾1 and 𝑘2 are the influx and efflux 

rate constants between the plasma and first tissue compartments, and 𝑘3 and 𝑘4 represent the 

influx and efflux rate constants between the first and second tissue compartments, respectively. 

To alleviate the long scan time (i.e., one of the disadvantages of dynamic acquisition), we limited 

the total acquisition duration to 40 min after injection. We also only used the data between 10-40 

min post-injection (PI) to simulate the loss of early dynamics due to first-phase scanning of the 

cardiac region. Based on true kinetic parameters (i.e., Tables 3-1 and 2) and the predefined 

scanning protocol for virtual dynamic set (i.e., Table 3-3), the calculated concentrations with time 

were assigned for each ROI in the XCAT input files to generate noise-free XCAT phantom images.  

 

Table 3- 3. Scanning protocol for virtual dynamic dataset. 

Item Value 

Total acquisition time (cardiac + whole-body) 40 min 

Image acquisition for whole-body *10-40 min 

Time interval 5 min 

# of passes 7 

# of beds 5 

*10 min was assumed to simulate a scenario worse than that of the protocol proposed by 

Karakatsanis. Time: Post-injection time. 

 

3.2.1.2. Noise Realizations 

To add realistic noise, we employed a Dynamic PET Simulator of Tracers via Emission 

Projection73,74 (dPETSTEP), which is a fast and simple tool to simulate dynamic PET as an alternative 

to Monte Carlo simulation. Noise-free XCAT phantom images and attenuation maps were used as 



38 

 

input data to generate a realistic (i.e., noisy) dynamic PET dataset. The validated settings for the 

GE Discovery LS scanner73 were used with the ordered subset expectation maximization (OSEM) 

algorithm. Table 3-4 summarizes the reconstruction settings for dPETSTEP. 

 

Table 3- 4. Summary of reconstruction settings. 

Item Value 

Sensitivity 5.27 cps ∙ 𝑘𝐵𝑞−1 ∙ 𝑚𝑙 

Radial bins 283 

Projection angles 336 

OSEM iterations 1-5 

OSEM subsets 24 

PSF 5.1 mm 

Post-filter XY 6 mm Gaussian 

Post-filter Z [1 2 1]/4 

*Reconstructed matrix per bed 165 x 165 x 35 

Reconstructed voxel size 2 x 2 x 4.25 mm 

Noise realizations 10 

*Reconstructed matrix for the entire body: 165 × 165 × 175. 

 

3.2.2. Proposed Parameter Combination-Driven Estimation Method 

3.2.2.1. Basic Concepts and Assumptions 

PCDE is a novel method for micro-parameter estimation. This method has two distinctive 

characteristics compared to LSE: 1) the allowance of an one-on-one correlation between early (e.g., 

≤ 10 min PI) and late (e.g., > 10 min PI) dynamics of TACs by limiting the resolution of the 

estimated kinetic parameter (e.g., up to 2nd decimal place), and 2) employment of multi-aspect 

time-activity curve (TAC) in selection of best fits. 

The first characteristic is based on two assumptions: 1) each micro-parameter has a finite range68,71, 

and 2) the imaging system has a finite level of precision in the determination of a micro-parameter 

(i.e., step size of a micro-parameter). Under these assumptions, only a finite number of TACs are 

available for a given range and precision, which enables to improve the probability of having a 
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one-on-one relationship between early and late dynamics by filtering out similar TACs. Indeed, 

with the parameter resolution of 2nd decimal place (i.e., step size: 0.01), almost all TACs from 

2TCM are most likely to be unique with the unit of [kBq/ml] and thus have a higher probability of 

having a one-to-one correlation between early and late dynamics for each TAC. Importantly, this 

improved uniqueness enables to predict a full TAC (i.e., early + late) even in the situation where 

the early dynamics is missing. 

The second characteristic is a finer and more consistent comparison between the measured and 

true TACs, compared to LSE. Inherently, the sum of squared error (SSE) cannot account for 

positive and negative errors differently75–79. Therefore, minimizing the SSE of 

concentration/activity (i.e., LSE) might not capture very small TAC trends well; something critical 

for micro-parameter estimation. Instead, other aspects of TAC (e.g., its 1st and 2nd derivatives) can 

be effective criteria for further finely assessing curve trends. Additionally, a comprehensive 

comparison of various aspects of TACs would yield more stable and balanced results. Relying 

solely on a single aspect for comparison could lead to significantly varied and unstable outcomes, 

influenced by factors such as noise level, type, number of passes in whole-body scans, 

measurement time intervals, and voxel positions within the body80–82. Thus, a comprehensive 

consideration of the multiple aspects of TAC would allow for a more consistent comparison. The 

details are presented in the next section. 

 

3.2.2.2. Workflow and Similarity Measure 

The workflow of the proposed method comprises three steps:1) building a true TAC database by 

setting each micro-parameter range and a resolution of estimated parameters, 2) selecting the top-

300 optimal parameter combinations with respect to SSE in ascending order and sequentially, 

selecting the top-10 using the absolute difference of area under the curve (AUC) between the 

measured and ground truths in ascending order, and 3) selecting the best parameter combination 

using a comprehensive comparison based on multiple TAC aspects. Figure 3-1 shows the workflow 

of the proposed method. 



40 

 

 

Figure 3- 1. PCDE workflow. (a): Building a true TAC database. (b): Selecting the top 300 

combinations followed by top 10 by comparing measured and true TAC databases. (c): Selecting 

the optimal combination using comprehensive comparison based on multi-aspect of TAC. 

 

For the comprehensive comparison, a total similarity score (TSS) is defined as follows. 

𝑇𝑆𝑆𝑐𝑜𝑚𝑏.
𝑖 =

1

𝑁 ∙ 𝑆𝑚𝑎𝑥
∙ 𝑊𝑐𝑜𝑚𝑏.

𝑖 ∙ ∑ 𝑆𝑃𝑓 ∙ 𝑆𝑓
𝑖

𝑁

𝑓=1

               (3.3) 

                 

where i, f, and N denote an index for a parameter combination in the top-10 list, an index for an 

aspect of TAC, and the total number of aspects considered, respectively. 𝑊𝑐𝑜𝑚𝑏.
𝑖 , 𝑆𝑃𝑓, 𝑆𝑓

𝑖 , and 

𝑆𝑚𝑎𝑥 represent the relative weight of the ith combination, selection power for aspect f, a scaled 

score of the ith combination for aspect f, and the maximum scaled score, respectively. Table 3-5 

shows the similarity metric and the order for assigning the scaled scores to each parameter 

combination set. Depending on the raw score ranking in the top-10 list, scaled scores for each 

combination were assigned from 10 to 1 in descending order (i.e., maximum score: 10, step size: 

1). 
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Table 3- 5. Similarity measure and order to assign scaled scores to each combination. 

Aspect Similarity Metric Order 

Ct SSE Ascending 

Slope SSE Ascending 

Acc. SSE Ascending 

AUC AD Ascending 

ROA Itself Descending 

Continuity (Ct) SE Ascending 

Continuity (slope) SE Ascending 

MI Itself Descending 

Ct, concentration; Acc., acceleration; ROA, ratio of overlapped area; MI, mutual information; SSE, 

sum of squared error; SE, squared error; AD, absolute difference; Scaled score: 10 to 1 depending 

on the ranking among the top-10 lists (step size: 1).  

 

In the current version, we consider eight physical and statistical aspects of TAC: 1) 

concentration/activity, 2) slope and 3) acceleration of TAC to consider a fine TAC trend, 4) AUC, 

5) ratio of overlapped area (ROA) to compensate for a limitation of simple AUC comparison, 

continuities of 6) concentration and 7) slope at the earliest measurement time between true and 

measured quantities for each to account for the relatively higher importance of data at an early 

time after injection, and 8) mutual information as a statistical similarity measure83,84.  

In addition, to quantitatively account for the different capabilities of each TAC aspect in how well 

an aspect can distinguish parameter combinations in the top-10 list separately, we defined the 

relative selection power (𝑆𝑃𝑓) as follows: 

𝑆𝑃𝑓 ≡
𝐶𝑉𝑓

∑ 𝐶𝑉𝑓
𝑁
𝑓=1

                           (3.4) 

                              

where f and N denote the index for an aspect of the TAC and total number of aspects considered, 

respectively, and 𝐶𝑉𝑓 represents the coefficient of variation for aspect f. Figure 3-2 shows the 

calculation process for the relative selection powers.  
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Figure 3- 2. Calculation of relative selection powers for each aspect of TAC. (1) Calculate normalized 

scores for each aspect by min-max normalization. (2) Calculate coefficients of variation for each 

aspect and the relative values that represent selection powers for each aspect. 

 

Furthermore, we defined a parameter combination weight (i.e., 𝑊𝑐𝑜𝑚𝑏.
𝑖 ) to account for the relative 

occurrence probability of a parameter combination in the top-10 list so that the more probable 

combination can contribute more to the TSS, assuming that each micro-parameter is independent 

of the others. The formulas are as follows: 

𝑊𝑐𝑜𝑚𝑏.
𝑖 ≡

𝑃𝑐𝑜𝑚𝑏.
𝑖

∑ 𝑃𝑐𝑜𝑚𝑏.
𝑖.10

𝑖=1

                       (3.5) 

                          

𝑃𝑐𝑜𝑚𝑏.
𝑖 ≡ 𝑃𝐾1

𝐾1 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑚𝑏.
∙ 𝑃𝑘2

𝑘2 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑚𝑏.
∙ 𝑃𝑘3

𝑘3 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑚𝑏.
          (3.6) 

          

where i denotes an index for a parameter combination, and 𝑃𝐾1
𝐾1 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑚𝑏.

, 𝑃𝑘2
𝑘2 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑚𝑏.

, and 

𝑃𝑘3
𝑘3 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑚𝑏.

represent the probabilities of having K1, k2, k3 for the ith combination, respectively. 

𝑃𝑐𝑜𝑚𝑏.
𝑖 is the probability of occurrence of the ith combination. Figure 3-3 shows the calculation 

process for the parameter combination weights.  
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Figure 3- 3. Calculation of parameter combination weights for each combination in the top-10 list. 

(1) Acquire probability distributions of micro-parameters from the top 10 list. (2) Calculate 

occurrence probabilities for each combination in the top-10 list and relative values that represent 

the weights for each parameter combination. 

 

3.2.3. Kinetic Parameters of Interest for Comparison Study 

On the noisy virtual dynamic dataset, kinetic modeling was performed through each method (i.e., 

LSE and PCDE) and the kinetic parameters of interest for comparison are defined as follows. 

3.2.3.1. Kinetic Micro-parameters.  

For the micro-parameters, we compared the LSE-based 2TCM60 with the proposed PCDE method. 

Because we focused on the irreversible uptake process, only the parametric K1, k2, and k3 images 

were compared. 

3.2.3.2. Kinetic Macro-parameters 

For the macro-parameters, we compared the parametric images of the LSE-based Patlak graphical 

analysis (PGA)60,61 with those of PCDE. Assuming an irreversible or nearly irreversible uptake 

process in 2TCM (i.e., 𝑘4 ≈ 0), the PGA formula can be derived as follows: 
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𝐶𝑃𝐸𝑇(𝑡)

𝐶𝑝(𝑡)
= 𝐾𝑖 ∙

∫ 𝐶𝑝(𝜏)𝑑𝜏
𝑡

0

𝐶𝑝(𝑡)
+ 𝑉𝑑,   𝑡 > 𝑡∗              (3.7) 

where 𝑡∗  denotes the time required to reach equilibrium between the plasma and the first 

compartment in the 2TCM. 

Furthermore, assuming that the blood volume fraction was negligible (i.e., 𝑉𝑏 ≈ 0), we defined 

the net influx rate constant Ki and volume of distribution Vd as follows: 

𝐾𝑖 =
𝐾1𝑘3

𝑘2 + 𝑘3
                             (3.8) 

𝑉𝑑 =
𝐾1𝑘2

(𝑘2 + 𝑘3)2
                           (3.9) 

 

3.2.4. Quantitative Evaluation Criteria 

3.2.4.1. General Image Quality 

Normalized Bias (NBias). As a measure of accuracy, NBias is determined by first calculating 

NBiasi for the ith voxel of an ROI over all R noise realizations and subsequently averaging over all 

voxels of that ROI as follows: 

NBias =
1

𝑛
∑ (

|𝑓�̅� − 𝜇𝑖|

𝜇𝑖
)

𝑛

𝑖=1

=
1

𝑛
∑ 𝑁𝐵𝑖𝑎𝑠𝑖

𝑛

𝑖=1

             (3.10) 

                     

where 𝑓�̅� = (1
𝑅⁄ ) ∑ 𝑓𝑖

𝑟𝑅
𝑟=1 ; 𝑓𝑖

𝑟denotes the ith voxel value from the rth noise realization, and 𝜇𝑖, n, 

and R represent the truth of the ith voxel, the number of voxels in an ROI, and the number of noise 

realizations, respectively. 
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Normalized Standard Deviation (NSD). As a precision measure, the NSDi of the ith voxel was first 

calculated over all R realizations, followed by averaging over all n voxels of an ROI to calculate 

the NSD of the ROI as follows: 

NSD =
1

𝑛
∑

√ 1
𝑅 − 1

∑ (𝑓𝑖
𝑟 − 𝑓�̅�)

2𝑅
𝑟=1

𝑓�̅�

=
1

𝑛
∑ 𝑁𝑆𝐷𝑖

𝑛

𝑖=1

          (3.11)

𝑛

𝑖=1

 

 

Normalized Root Mean Squared Error (NRMSE). As a measure of comprehensive performance 

(i.e., combined measure of accuracy and precision), NRMSEi was first calculated for each ith voxel 

over all realizations, followed by spatial averaging over all voxels of an ROI to calculate the NMSE 

for an ROI as follows: 

NRMSE =
1

𝑛
∑

√1
𝑅

∑ (𝑓𝑖
𝑟 − 𝜇𝑖)2𝑅

𝑟=1

𝜇𝑖
=

1

𝑛
∑ 𝑁𝑅𝑀𝑆𝐸𝑖

𝑛

𝑖=1

         (3.12)

𝑛

𝑖=1

 

              

For each ROI of interest (Table 3-1), the calculations of all three quantities were repeated by 

changing the number of OSEM iterations, as listed in Table 3-4. To compare the general image 

quality between each estimation method (i.e., LSE vs. PCDE), we plotted the NBias-NSD tradeoff 

curves. In addition, NRMSEs were plotted against the number of iterations. 

 

3.2.4.2. Overall Visibility and Tumor Detectability 

Signal to Noise Ratio (SNR). As a measure of the overall visibility relevant to the identification of 

suspicious lesions in WB (i.e., global inspection), the SNR of an ROI was determined by averaging 

the SNRs over all noise realizations as follows: 

SNR =
1

𝑅
∑

𝑓�̅�

√ 1
𝑛 − 1

∑ (𝑓𝑖
𝑟 − 𝑓�̅�)

2𝑛
𝑖=1

𝑅

𝑟=1

=
1

𝑅
∑ 𝑆𝑁𝑅𝑟

𝑅

𝑟=1

           (3.13) 
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where 𝑓�̅� = (1
𝑛⁄ ) ∑ 𝑓𝑖

𝑟𝑛
𝑖=1 . 

 

A Spatial Noise (NSDspatial). As another measure of overall visibility, the NSDspatial of an ROI was 

calculated by averaging the NSDs over all realizations as follows:  

𝑁𝑆𝐷𝑠𝑝𝑎𝑡𝑖𝑎𝑙 =
1

𝑅
∑

√ 1
𝑛 − 1

∑ (𝑓𝑖
𝑟 − 𝑓�̅�)

2𝑛
𝑖=1

𝑓�̅�

𝑅

𝑟=1

=
1

𝑅
∑ 𝑁𝑆𝐷𝑠𝑝𝑎𝑡𝑖𝑎𝑙

𝑟

𝑅

𝑟=1

     (3.14) 

By comparing Equations (11) and (14), it should be noted that NSD quantifies the average level of 

noise across multiple realizations at each voxel for an ROI, whereas NSDspatial known as ROI 

roughness, measures the average of the spatial noise across multiple realizations for an ROI68.  

 

Tumor to Background Ratio (TBR). As a measure of tumor detectability within a particular organ 

(i.e., local inspection), TBR was determined as follows: 

TBR =
1

𝑅
∑

𝑓𝑟
𝑇𝑢𝑚𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑓𝑟
𝐵𝐾𝐺.̅̅ ̅̅ ̅̅ ̅

𝑅

𝑟=1

 =
1

𝑅
∑ 𝑇𝐵𝑅𝑟

𝑅

𝑟=1

                (3.15) 

                

where 𝑓𝑟
𝑇𝑢𝑚𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑓𝑟

𝐵𝐾𝐺.̅̅ ̅̅ ̅̅ ̅ denote 𝑓�̅� of tumor and background ROI, respectively. 

 

Contrast to Noise Ratio (CNR). As a measure of tumor detectability within a specific organ (i.e., 

local inspection), the CNR was calculated as follows: 

CNR =
1

𝑅
∑

|𝑓𝑟
𝑇𝑢𝑚𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑓𝑟

𝐵𝐾𝐺.̅̅ ̅̅ ̅̅ ̅|

𝜎𝑟
𝐵𝐾𝐺.

𝑅

𝑟=1

=
1

𝑅
∑ 𝐶𝑁𝑅𝑟

𝑅

𝑟=1

             (3.16) 
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where 𝜎𝑟
𝐵𝐾𝐺. = √ 1

𝑛−1
∑ (𝑓𝑖

𝑟 − 𝑓𝑟
𝐵𝐾𝐺.̅̅ ̅̅ ̅̅ ̅)

2
𝑛
𝑖=1 . 

 

Relative Error of TBR (RETBR). It is possible to have a misleading (i.e., erroneously higher) TBR 

and/or CNR originating from a high bias (i.e., the wrongly increased/decreased mean ROI) and/or 

zero-like noise (i.e., the noise is approximately zero) owing to the local minimum issue of the LSE. 

Hence, the RETBR was also calculated as an auxiliary measure. 

𝑅𝐸𝑇𝐵𝑅 =
|𝑇𝐵𝑅𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑇𝐵𝑅𝑇𝑟𝑢𝑡ℎ|

𝑇𝐵𝑅𝑇𝑟𝑢𝑡ℎ
                   (3.17) 

                    

where 𝑇𝐵𝑅𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 and 𝑇𝐵𝑅𝑇𝑟𝑢𝑡ℎ denote a measured and true TBR, respectively. 

 

3.2.4.3. Overall Performance Metrics 

To verify the overall performance of each parametric image, the overall NBias, NSD, NRMSE, 

SNR, and NSDspatial metrics were defined as the volume-weighted averages of the individual ROIs 

metrics68. 

 

3.3. Results 

 

3.3.1. NBias-NSD Tradeoff and NRMSE 

3.3.1.1. Kinetic Micro-parameters 

Figures 3-4, 5, and 6 show the ROI-based NBias-NSD tradeoff and NRMSE results for the 

parametric K1, k2, and k3 images, respectively. Overall the proposed PCDE method showed lower 

NBias and NSD compared to the LSE-based 2TCM, which allows much lower NRMSEs for all 

normal WB organs of interest; the common standard shows smaller NSDs in K1 images. However, 

significantly high levels of NBias result in larger NRMSEs for all ROIs.  



48 

 

 

 

Figure 3- 4. ROI-based NBias-NSD tradeoff (i.e., upper two rows) and NRMSE with OSEM iterations 

(i.e., lower two rows) for parametric K1 images. 
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Figure 3- 5. ROI-based NBias-NSD tradeoff (i.e., upper two rows) and NRMSE with OSEM iterations 

(i.e., lower two rows) for parametric k2 images. 
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Figure 3- 6. ROI-based NBias-NSD tradeoff (i.e., upper two rows) and NRMSE with OSEM iterations 

(i.e., lower two rows) for parametric k3 images. 
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Figure 3-7 shows the overall NBias-NSD tradeoff and NRMSE results. At five OSEM iterations, 

using our PCDE method, the overall NRMSEs were considerably reduced by 57.5, 71.1, and 56.1 

[%] in the parametric K1, k2, and k3 images, respectively. 

 

 

 

Figure 3- 7. Overall NBias-NSD tradeoff (i.e., first row) and NRMSE with OSEM iterations (i.e., 

second row) for each parametric image. Micro-parameters: first three columns; Macro-parameters: 

last two columns. 

 

3.3.1.2. Kinetic Macro-parameters 

Figures 3-8 and 9 show the ROI-based NBias-NSD tradeoff and NRMSE results for the parametric 

Ki and Vd images, respectively. No significant differences between the LSE-based PGA and PCDE 

were observed. For Vd, the PGA shows a slightly better performance, but the differences are less 

than 10 [%] in most cases. 
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Figure 3- 8. ROI-based NBias-NSD tradeoff (i.e., upper two rows) and NRMSE with OSEM iterations 

(i.e., lower two rows) for parametric Ki images. 
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Figure 3- 9. ROI-based NBias-NSD tradeoff (i.e., upper two rows) and NRMSE with OSEM iterations 

(i.e., lower two rows) for parametric Vd images. 
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Figure 3-7 shows the overall NBias-NSD tradeoff and NRMSE. At five OSEM iterations, using 

our proposed PCDE method, the overall NRMSE for Ki was reduced by 0.4 [%]. However, the 

overall NRMSE for Vd was increased by 3.3 [%], indicating no significant difference between the 

two methods. 

 

3.3.2. Overall Visibility and Tumor Detectability  

3.3.2.1. Kinetic Micro-parameters 

The first three columns of Figure 3-10 show the overall visibility results for the parametric K1, k2, 

and k3 images. After five OSEM iterations, the overall SNR increased by 0.2, 4.1, and 2.4, and the 

overall NSDspatial decreased by 0.2, 5.4, and 4.1 for the parametric K1, k2, and k3 images, 

respectively, indicating excellent performance of our proposed method in both aspects 

simultaneously.  

 

 

Figure 3- 10. Overall visibility in each parametric image. Micro-parameters: first three columns; 

Macro-parameters: last two columns. (OSEM iterations=5). Matrices: overall SNR and NSDspatial. 

 

The first three columns of Figure 3-11 show the tumor detectability results for each tumor in the 

parametric K1, k2, and k3 images. After five OSEM iterations, although there was no clear 

improvement in CNR in the k2 images from the proposed method, the CNR for a lung tumor 

increased by 1.3 and 1.0, and that for a liver tumor increased by 1.2, and 9.8 in the K1 and k3 

images, respectively. In addition, the RETBR of a lung tumor decreased by 17.5, 82.2, and 68.4, and 

that of the liver tumor decreased by 255.8, 1733.5, and 80.3 [%] in the K1, k2, and k3 images, 

respectively. 
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Figure 3- 11. Tumor detectability in each parametric image. Micro-parameters: first three columns; 

Macro-parameters: last two columns. Matrices: CNR [%] and RETBR [%]. (OSEM iterations=5). 

 

3.3.2.2. Kinetic Macro-parameters 

The last two columns of the figure 3-10 show the overall visibility results for the parametric Ki 

and Vd images. There were no substantial differences between the two methods in either aspect. 

The last two columns of Figure 3-11 show the tumor detectability results for each tumor in the 

parametric Ki and Vd images. For both tumors, the differences in CNR were within 0.5, and the 

differences in RETBR were within 10 [%] in most cases, except for the case with a decrease in 

RETBR by 19.6 [%] for a liver tumor in the Vd images using the proposed method. 

 

3.4. Discussion 

 

This study introduces our proposed method (i.e., PCDE) and compares it to the common standard 

parameter estimation method for kinetic modeling invoking LSE. The comparison study was 

performed on virtual dynamic dataset and focusing on two aspects:1) general image quality for 

major normal organs in WB, and 2) overall visibility and tumor detectability. 

First, we verified that PCDE could improve the quality of micro-parametric images (i.e., NBias, 

NSD, and NRMSE). For the K1 image, the LSE-based 2TCM showed better results in terms of 

NSD. However, the considerably higher level of bias compared to PCDE resulted in a larger 

NRMSE, reducing the overall performance compared to PCDE. Moreover, because multiple local 

minima can cause variability (e.g., NSD or NSDspatial) with high bias, the lower level of NSD from 
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the LSE-based 2TCM could be due to the local minimum issue of LSE85–87 instead of the actual 

benefit of LSE for K1 images. Figure 3-12 shows the example of an erroneously lower level of 

NSDspatial with high bias in the K1 image generated from the LSE-based 2TCM. When considering 

that NBias through the LSE-based 2TCM show an extremely high bias (i.e., 96.6 [%]), we can 

indirectly expect that the lower level of NSDspatial is caused by the local minimum issue rather than 

the improved performance of LSE. 

 

 

Figure 3- 12. Example of an erroneously lower level of NSDspatial with high bias in the LSE-based 

2TCM K1 image mainly due to the local minimum issue. (OSEM iterations=5, Noise realization 

index=1). Note that unlike NSDspatial, each NBias values were calculated from all noise realizations. 

 

For macro-parameters, there was no significant difference between the PCDE and LSE-based PGA. 

This was expected because the relative benefit of PCDE compared to the reference (i.e., LSE-

based PGA) would not be significant because the macro-parameter estimation from the reference 

method already has good accuracy (i.e., NBias) and precision (i.e., NSD) owing to the linearized 

fit-type function for PGA60,61. 

In addition, we verified the improved overall visibility (i.e., overall SNR, overall NSDspatial) and 

tumor detectability (i.e., CNR, RETBR) in the micro-parametric images, except for CNRs in k2 

images. For k2 images, there was a negligible difference between the two methods (i.e., ≤ 0.5). 
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However, a high positive bias of the tumor, high negative bias of the background, and erroneously 

zero-like NSDspatial originating from the local minimum issue of LSE may highly mislead CNR 

value (i.e., erroneously high CNR), which cannot provide any actual benefit for tumor detectability 

on images. Thus, a comparison based solely on CNR may lead to incorrect conclusions regarding 

tumor detection capability.  

Figure 3-13 shows the example of a misleading CNR and the necessity of RETBR for a fair 

comparison in this simulation study. Even though the CNR from the reference shows a slightly 

better CNR than that of PCDE (i.e., CNRref=1.8, CNRPCDE=1.5), there is no actual relative benefit 

from the reference method in terms of tumor detection. Moreover, the relatively better CNR 

originates from high levels of bias in the liver tumor and background (i.e., highly negative bias) as 

shown in the figure.  

 

 

Figure 3- 13. Example of a misleading CNR and necessity of RETBR for a fair comparison. (a): Ground 

Truth. (b): LSE-based 2TCM. (c): PCDE. (OSEM iterations=5, Noise realization index=1, Kinetic 

parameter: k2). 

 

Therefore, in this study, we included RETBR as an auxiliary measure to minimize the possibility of 

incorrect conclusions regarding tumor detection capability. Considering that PCDE showed much 

lower RETBR values even for cases where the CNRs were quite similar (due to the misleading CNR 
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from the reference method), we expect improved tumor detectability through PCDE compared to 

that of the reference.  

With micro-parametric images from PCDE (e.g., Figure 3-14), improving the overall SNR and 

NSDspatial would help identify suspicious regions in WB globally (i.e., global inspection). The 

improved CNR and RETBR performance would directly lead to improved tumor detectability 

locally within a particular organ (i.e., local inspection). For the macro-parameters (e.g., Figure 3-

15), there were no significant differences in the overall visibility and tumor detectability between 

the two methods. This is understandable because the two methods had no significant differences 

in general image quality (i.e., NBias, NSD, and NRMSE).  

 

Figure 3- 14. Parametric k3 images with five OSEM iterations. (a): Ground Truth. (b): LSE-based 

2TCM. (c): PCDE. (OSEM iterations=5, Noise Realization index=1). 

 

Figure 3- 15. Parametric Ki images with five OSEM iterations. (a): Ground Truth. (b): LSE-based 

PGA. (c): PCDE. (OSEM iterations=5, Noise Realization index=1). 
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Overall, our proposed PCDE method provides enhanced micro-parametric images in terms of 

general image quality, overall visibility, and tumor detectability. 

This study contributes to typical PET scanner-based WB kinetic modeling (i.e., multi-pass 

protocols on a limited axial FOV) in three aspects:1) minimization of adverse effects of the 

previously optimized WB scan protocol for macro-parameter, 2) potential applicability for shorter 

scan durations, and 3) avoidance of the local minimum issues discussed above.  

For the first point, the protocol proposed by Karakatsanis et al.68,69 was optimized based on macro-

parametric images (i.e., Ki) and was used 6 min after injection to scan the cardiac region. Because 

the macro-parameters of PGA only require data after the mechanism reaches kinetic 

equilibrium68,88,89, the loss of early dynamics of TAC would not adversely affect parameter 

estimation. However, unlike macro-parameters, early dynamics are critical for micro-parameter 

estimation because they typically include near-peak data considerably influenced by micro-

parameter combinations. Although the accuracy and precision of the micro-parameter estimation 

need to be improved further relative to those of the macro-parameter (i.e., Figure 3-7), it offers 

increased improvements for each micro-parameter compared to the common standard. This 

indicates a substantial reduction in the adverse effects of the protocol favorably optimized for 

macro-parameter estimation.  

In addition, for the second point, the comprehensive comparison based on the multi-aspect of TAC 

can offer more stabilized parameter estimation (i.e., less variation of performance) from various 

image acquisition-related factors (e.g., the number of passes, time interval, voxel position, noise 

level, and type), compared to the case considering only one single factor (e.g., SSE for LSE). 

Therefore, we expect our proposed method to perform better even when using a dynamic PET 

dataset scanned only for 30 min, realistically achieving the shortest scan duration for a typical PET 

scanner-based WB kinetic modeling for micro-parameter estimation. 

All results reported in this study are based on a simulated dynamic dataset scanned only 40 min 

PI, which is 5 min shorter than the optimal acquisition length suggested by Karakatsanis et al. (i.e., 

45 min) and 20 min shorter than the typical time required for dynamic PET acquisition62 for kinetic 
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modeling (i.e., 60 min). Hence, we can expect the promising applicability of the proposed method 

to studies involving shorter scan duration. 

Moreover, the PCDE avoids the local minimum issue by systematically evaluating various aspects 

of TAC and selecting the best parameter combination, rather than relying on an iterative approach 

to find an optimal value. Consequently, unlike the LSE method, the PCDE does not necessitate an 

initial guess for parameter estimation. However, PCDE also uses curve fitting to model a measured 

TAC, but the later dynamics of TAC (e.g., >10 min after injection) can be well-fitted using a single 

exponential function (i.e., fit-type function: c − 𝑎 ∙ 𝑒−𝑏𝑡, fit parameter: a, b, c), which can be an 

automatic process without a manual initial guess because of its negligible dependence on the initial 

values.  

Tackling the local minimum issue is critical for the active use of kinetic modeling in clinics for 

two reasons. First, it is not necessary to set starting points for each voxel (i.e., voxel-wise 

computation) or ROIs (i.e., ROI-based computation). Compared to curve fitting for the later 

dynamics of TAC (i.e., a single exponential shape), curve fitting for the entire dynamics of TAC 

(i.e., a surge-like shape) is most likely to have starting point dependency, especially if near-peak 

data are missing either partially or completely. Thus, for clinical use, starting points must be set 

subtlety through repetition to minimize the adverse effects of the local minimum issue (i.e., finding 

a global minimum), which is time-consuming when performed for each voxel or ROI, preventing 

the routine application of kinetic modeling in the clinic. Second, by minimizing the starting point 

dependency, the interpersonal error of the estimated kinetic parameters can be considerably 

reduced, which is critical for the consistency of kinetic modeling results and large-scale data 

comparison across different institutions worldwide. 

Nevertheless, a couple of limitations in our proposed method indicate the need for further studies. 

First, the computational speed of PCDE is approximately 1.1 × 10−3  s/voxel; therefore, 

approximately 2 h are needed to perform WB kinetic modeling for a typical volume size in the 

clinic (i.e., 256 × 256 × 409 ) with plain hardware specifications (e.g., CPU: AMD Ryzen 9 

5900HX, RAM: 32.0 GB, platform: MATLAB R2021b, resolution of estimated parameter: 0.01). 

For use in routine practice, at least 100 times the current computational speed (i.e., ~10-5 s/voxel) 
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is needed to complete the computation in a few minutes. Parallelized computation using a graphical 

processing unit (GPU) will allow us to achieve this.  

Second, in this study, we limited the maximum allowable value of the micro-parameter to 1 (for 

K1 and k2) and 0.5 (for k3), respectively. Although for 18F-FDG, almost all micro-parameters for 

each ROI in WB were within the desired ranges68,71, we need to broaden the range to increase 

applicability to diverse types of radiotracers.  

Third, depending on a specific radiotracer of interest or research focus, the reversible uptake (i.e., 

𝑘4 ≠ 0) may be of greater interest, than the irreversible process; hence, a performance test under 

the reversible process would be needed.  

Therefore, with the addition of a reversible process and a broader range of parameters, we 

anticipate that the GPU-accelerated PCDE approach will enable the widespread use of typical PET 

scanner-based whole-body kinetic modeling for kinetic micro-parameters. This method ensures 

both reasonable computational time and compatibility with various types of radiotracers. 

Furthermore, despite significant improvements via PCDE, the overall levels of NBias and NSD 

tend to be beyond 10% (i.e., near 20%), and non-negligible variations among ROIs exist (e.g., 

supplemental Figures 1-7), implying that the proposed method may still be insufficient for use in 

routine practice. We expect that the exploitation of de-noising techniques such as the finite 

Legendre transform-based low-pass filter with excellent de-noising performance for the 

exponential type curve (i.e., typical shape of TAC after peak) without the phase shift90 and/or noise 

propagation pattern learning through machine/deep learning algorithms (i.e., noise propagation 

from the sinogram domain into image domain) could reduce the overall levels of NBias and NSD 

within 10%. Moreover, it can reduce variations among ROIs (i.e., consideration of different noise 

propagation patterns at each position). 

Finally, a validation study based on real patient data should be conducted. We are actively 

collecting patient data (e.g., Clinical Trial ID: NCT04017104) categorized by a specific tumor 

detection mechanism such as 18F-FDG by glucose metabolism91, 18F-DCFPyL and 68Ga-HTK by 

targeting a prostate-specific membrane antigen (PSMA)92,93, and 18F-AmBF3 by targeting 
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somatostatin receptor 2 (SSTR2)94. We expect to perform a validation study based on real patient 

data in the near future. 
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Chapter 4. Application of the PCDE Method to Patient 

Datasets 

 

In this chapter, we implemented our proposed method PCDE on patient datasets to further verify 

clinical applicability of the method. While we already verified improved performance in micro-

parametric images compared to reference method (i.e., 2TCM) in previous chapter, the results were 

based on virtual dynamic datasets, which could have noise type, pattern, and level at least 

somewhat different from actual pattern on patient datasets. Hence, performance testing based on 

real patient datasets was further conducted focusing on 1) overall visibility, and 2) lesion 

detectability.  

 

4.1. Information on Patient Datasets 

We test our method on 8 patients for 4 different types of radiotracers (i.e., 2 patients for each tracer) 

as a pilot study. Table 4-1 shows the summary of characteristics of each radiotracer used in this 

study. In addition, dynamic scanning protocols for each tracer are summarized in Tables 4-2, 4-3, 

4-4, and 4-5, respectively. 

 

Table 4- 1. Summary of radiotracers used for our patient data. 

Radiotracer type Half-life Mechanism 
18F-DCFPyL 109 min Targeting PSMA 

68Ga-HTK 68 min Targeting PSMA 
18F-FDG 109 min Glucose metabolism 

18F-AmBF3 109 min Targeting SSTR2 

PSMA: prostate-specific membrane antigen, SSTR2: somatostatin receptor 2. 

 

Table 4- 2. Dynamic scanning protocols for 18F-DCFPyL. 

Item Patient #1 Patient #2 
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Injected activity 9.14 mCi 7.16 mCi 

Scanner GE Discovery MI GE Discovery MI 

Dimensions 256 x 256 x 409 256 x 256 x 409 

Voxel size 2.73 x 2.73 x 2.8 mm3 2.73 x 2.73 x 2.8 mm3 

Total acquisition time 

(cardiac + whole-body) 
87 min 92 min 

Image acquisition for 

whole-body 
7-87 min 9-92 min 

Time interval 5 min 5 min 

# of passes 16 16 

# of beds 6 6 

 

Table 4- 3. Dynamic scanning protocols for 68Ga-HTK. 

Item Patient #1 Patient #2 

Injected activity 3.71 mCi 5.25 mCi 

Scanner GE Discovery MI GE Discovery 690 

Dimensions 192 x 192 x 409 192 x 192 x 335 

Voxel size 2.73 x 2.73 x 2.8 mm3 3.65 x 3.65 x 3.27 mm3 

Total acquisition time 

(cardiac + whole-body) 
55 min 48 min 

Image acquisition for 

whole-body 
7-55 min 7-48 min 

Time interval 7 min 14 min 

# of passes 7 3 

# of beds 6 9 

 

Table 4- 4. Dynamic scanning protocols for 18F-FDG. 

Item Patient #1 Patient #2 

Injected activity 10.16 mCi 6.46 mCi 

Scanner GE Discovery 690 GE Discovery 690 

Dimensions 192 x 192 x 299 192 x 192 x 263 

Voxel size 3.65 x 3.65 x 3.27 mm3 3.65 x 3.65 x 3.27 mm3 

Total acquisition time 

(cardiac + whole-body) 
57 min 61 min 

Image acquisition for 

whole-body 
26-57 min 27-61 min 
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Time interval 6 min 6 min 

# of passes 5 6 

# of beds 8 7 

 

Table 4- 5. Dynamic scanning protocols for 18F-AmBF3. 

Item Patient #1 Patient #2 

Injected activity 9.49 mCi 6.8 mCi 

Scanner GE Discovery 690 GE Discovery 690 

Dimensions 192 x 192 x 263 192 x 192 x 299 

Voxel size 3.65 x 3.65 x 3.27 mm3 3.65 x 3.65 x 3.27 mm3 

Total acquisition time 

(cardiac + whole-body) 
63 min 66 min 

Image acquisition for 

whole-body 
7-63 min 8-66 min 

Time interval 6 min 7 min 

# of passes 10 9 

# of beds 7 8 

 

4.2. Quantitative Evaluation Criteria 

The quantitative evaluation of parametric images based on patient dynamic datasets was performed, 

including analysis of: 1) overall visibility relevant to the identification of suspicious lesions in WB 

(i.e., global inspection), and 2) overall lesion detectability within a particular organ (i.e., local 

inspection). 

Similar to chapter 3 (i.e., performance test based on virtual dynamic datasets), overall SNR was 

used as a measure of the visibility, and overall CNR and TBR were used as a measure of lesion 

detectability. The metrics are defined as follows. 

SNR =
𝑓�̅�𝑂𝐼

𝜎𝑅𝑂𝐼
                             (4.1) 

CNR =
|𝑓�̅�𝑂𝐼 − 𝑓�̅�𝐾𝐺.|

𝜎𝐵𝐾𝐺.
                        (4.2) 
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TBR =
𝑓�̅�𝑒𝑠𝑖𝑜𝑛

𝑓�̅�𝐾𝐺.

                           (4.3) 

where 𝑓�̅�𝑂𝐼 , 𝑓�̅�𝐾𝐺. , and 𝑓�̅�𝑒𝑠𝑖𝑜𝑛  denote the averaged voxel value of the ROI, background and 

lesion, respectively. 𝜎𝑅𝑂𝐼 and 𝜎𝐵𝐾𝐺. represent the standard deviation of all voxels in the ROI and 

background, respectively. 

To evaluate overall performance, the overall SNR, CNR, and TBR were defined as the volume-

weighted averages of the individual ROIs metrics68,69. The summarized ROI volumes of patients 

for each tracer are presented in Table 4-6, 7, 8, and 9, respectively. 

Among 8 patients, 3 patients had tumors. Subsequently, overall CNR and TBR of one patient for 

each radiotracer was analyzed: 1) 18F-DCFPyL: patient #1, 2) 68Ga-HTK: patient #1, and 3) 18F-

FDG: patient #1. The ROIs of all lesions for each patient were defined and confirmed by a nuclear 

medicine physician.  

 

Table 4- 6. Summary of ROI volumes of patients for 18F-DCFPyL. 

 ROI volume [cc] 

 Liver Kidney Salivary gland Lesion 1 Lesion 2 

Patient #1 1208.11 119.07 34.53 0.55 0.31 

Patient #2 1246.76 94.48 23.37 none 

 

Table 4- 7. Summary of ROI volumes of patients for 68Ga-HTK. 

 ROI volume [cc] 

 Liver Kidney Salivary gland Lesion 1 

Patient #1 1109.23 92.01 14.56 1.34 

Patient #2 933.82 144.23 21.00 none 

 

Table 4- 8. Summary of ROI volumes of patients for 18F-FDG. 

 ROI volume [cc] 

 Liver Kidney 
Salivary 

gland 

Lesion 

1 

Lesion 

2 

Lesion 

3 

Lesion 

4 

Lesion 

5 
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Patient 

#1 
1067.55 79.56 13.16 2.92 1.45 0.31 1.26 1.39 

Patient 

#2 
1549.15 49.68 20.69 none 

 

Table 4- 9. Summary of ROI volumes of patients for 18F-AmBF3. 

 ROI volume [cc] 

 Liver Kidney Salivary gland 

Patient #1 1340.36 54.25 12.92 

Patient #2 2125.46 87.43 18.57 

 

4.3. Results 

 

4.3.1. Overall Visibility 

4.3.1.1. Kinetic Micro-parameters 

The first three columns of Figure 4-1 show the overall visibility results of 18F-DCFPyL for the 

parametric K1, k2, and k3 images. The averaged overall SNR (i.e., average of individual patient’s 

metric) increased by 1.19± 0.25, 2.06± 0.42, and 0.80± 0.16 for the parametric K1, k2, and k3 

images, respectively. 

 

 

Figure 4- 1. Overall visibility in each parametric image. Micro-parameters: first three columns; 

Macro-parameters: last two columns. PAT.=patient. Radiotracer: 18F-DCFPyL.  
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In addition, each first row of the Figures 4-2 and 4-3 shows examples of micro-parametric images 

(i.e., K1, k2, and k3) for patient #1 and 2 injected with 18F-DCFPyL, respectively. Overall, 

compared to 2TCM, better definitions with less noise via PCDE in all micro-parametric images 

were verified. 

 

 

Figure 4- 2. Example of parametric images focusing on overall visibility. Micro-parameters (K1, k2, 

and k3): the first row. Macro-parameters (Ki and Vd): the second row. Radiotracer: 18F-DCFPyL 

(Patient #1). We showed results for conventional 2TCM approach vs. our proposed PCDE approach. 
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Figure 4- 3. Example of parametric images focusing on overall visibility. Micro-parameters (K1, k2, 

and k3): the first row. Macro-parameters (Ki and Vd): the second row. Radiotracer: 18F-DCFPyL 

(Patient #2). We showed results for conventional 2TCM approach vs. our proposed PCDE approach. 

The first three columns of Figure 4-4 show the overall visibility results of 68Ga-HTK for the 

parametric K1, k2, and k3 images. The averaged overall SNR increased by 0.95±0.06, 1.41±0.04, 

and 0.55±0.20 for the parametric K1, k2, and k3 images, respectively. 

 

 

Figure 4- 4. Overall visibility in each parametric image. Micro-parameters: first three columns; 

Macro-parameters: last two columns. PAT.=patient. Radiotracer: 68Ga-HTK. 

 

In addition, each first row of the Figures 4-5 and 4-6 shows examples of micro-parametric images 

(i.e., K1, k2, and k3) for patient #1 and 2 injected with 68Ga-HTK, respectively. Overall, compared 

to 2TCM, better definitions with less noise via PCDE in all micro-parametric images were verified. 
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Figure 4- 5. Example of parametric images focusing on overall visibility. Micro-parameters (K1, k2, 

and k3): the first row. Macro-parameters (Ki and Vd): the second row. Radiotracer: 68Ga-HTK (Patient 

#1). We showed results for conventional 2TCM approach vs. our proposed PCDE approach. 

 

 

Figure 4- 6. Example of parametric images focusing on overall visibility. Micro-parameters (K1, k2, 

and k3): the first row. Macro-parameters (Ki and Vd): the second row. Radiotracer: 68Ga-HTK (Patient 

#2). We showed results for conventional 2TCM approach vs. our proposed PCDE approach. 
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The first three columns of Figure 4-7 show the overall visibility results of 18F-FDG for the 

parametric K1, k2, and k3 images. The averaged overall SNR increased by 2.00±0.21, 3.02±0.46, 

and 0.32±0.31 for the parametric K1, k2, and k3 images, respectively. 

 

 

Figure 4- 7. Overall visibility in each parametric image. Micro-parameters: first three columns; 

Macro-parameters: last two columns. PAT.=patient. Radiotracer: 18F-FDG. 

 

In addition, each first row of the Figures 4-8 and 4-9 shows examples of micro-parametric images 

(i.e., K1, k2, and k3) for patient #1 and 2 injected with 18F-FDG, respectively. Overall, compared 

to 2TCM, better definitions with less noise via PCDE in all micro-parametric images were verified. 
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Figure 4- 8. Example of parametric images focusing on overall visibility. Micro-parameters (K1, k2, 

and k3): the first row. Macro-parameters (Ki and Vd): the second row. Radiotracer: 18F-FDG (Patient 

#1). We showed results for conventional 2TCM approach vs. our proposed PCDE approach. 

 

 

Figure 4- 9. Example of parametric images focusing on overall visibility. Micro-parameters (K1, k2, 

and k3): the first row. Macro-parameters (Ki and Vd): the second row. Radiotracer: 18F-FDG (Patient 

#2). We showed results for conventional 2TCM approach vs. our proposed PCDE approach. 
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The first three columns of Figure 4-10 show the overall visibility results of 18F-AmBF3 for the 

parametric K1, k2, and k3 images. The averaged overall SNR increased by 0.40±0.41, 0.61±0.38, 

and 0.47±0.10 for the parametric K1, k2, and k3 images, respectively. 

 

 

Figure 4- 10. Overall visibility in each parametric image. Micro-parameters: first three columns; 

Macro-parameters: last two columns. PAT.=patient. Radiotracer: 18F-AmBF3. 

 

In addition, each first row of the Figures 4-11 and 4-12 shows examples of micro-parametric 

images (i.e., K1, k2, and k3) for patient #1 and 2 injected with 18F-FDG, respectively. Overall, 

compared to 2TCM, better definitions with less noise via PCDE in all micro-parametric images 

were verified. 
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Figure 4- 11. Example of parametric images focusing on overall visibility. Micro-parameters (K1, k2, 

and k3): the first row. Macro-parameters (Ki and Vd): the second row. Radiotracer: 18F-AmBF3 

(Patient #1). We showed results for conventional 2TCM approach vs. our proposed PCDE approach. 

 

 

Figure 4- 12. Example of parametric images focusing on overall visibility. Micro-parameters (K1, k2, 

and k3): the first row. Macro-parameters (Ki and Vd): the second row. Radiotracer: 18F-AmBF3 

(Patient #2). We showed results for conventional 2TCM approach vs. our proposed PCDE approach. 
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4.3.1.2. Kinetic Macro-parameters 

The last two columns of Figure 4-1 show the overall visibility results of 18F-DCFPyL for the 

parametric Ki and Vd images. The averaged overall SNR (i.e., average of individual patient’s 

metric) increased by 0.09±0.03 and 0.37±0.58 for the parametric Ki and Vd images, respectively. 

In addition, each second row of the Figures 4-2 and 4-3 shows examples of macro-parametric 

images (i.e., Ki and Vd) for patient #1 and 2 injected with 18F-DCFPyL, respectively. Overall, there 

were no visually significant differences between two methods (i.e., PGA vs. PCDE). 

In addition, the last two columns of Figure 4-4 show the overall visibility results of 68Ga-HTK for 

the parametric Ki and Vd images. The averaged overall SNR increased by -0.09 ± 0.30 and 

0.42± 0.01 for the parametric Ki and Vd images, respectively. The minus sign represents the 

decrease in metric of interest. In addition, each second row of the Figures 4-5 and 4-6 shows 

examples of macro-parametric images (i.e., Ki and Vd) for patient #1 and 2 injected with 68Ga-

HTK, respectively. Overall, there were no visually significant differences between two methods 

(i.e., PGA vs. PCDE). 

Furthermore, the last two columns of Figure 4-7 show the overall visibility results of 18F-FDG for 

the parametric Ki and Vd images. The averaged overall SNR increased by 3.14 ± 0.33 and 

1.49±0.24 for the parametric Ki and Vd images, respectively. In addition, each second row of the 

Figures 4-8 and 4-9 shows examples of macro-parametric images (i.e., Ki and Vd) for patient #1 

and 2 injected with 18F-FDG, respectively. Overall, there were reletively larger level of differences 

between two methods (i.e., PGA vs. PCDE), compared to the results via 18F-DCFPyL or 68Ga-

HTK, especially in parametric Ki images. 

On top of that, the last two columns of Figure 4-10 show the overall visibility results of 18F-AmBF3 

for the parametric Ki and Vd images. The averaged overall SNR increased by 0.12± 0.12 and 

0.39±0.35 for the parametric Ki and Vd images, respectively. In addition, each second row of the 

Figures 4-11 and 4-12 shows examples of macro-parametric images (i.e., Ki and Vd) for patient #1 

and 2 injected with 18F-AmBF3, respectively. Overall, there were no visually significant 

differences between two methods (i.e., PGA vs. PCDE), except for the parametric Vd images for 

patient #2. 
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Overall, there were no substantial differences between the two methods in either type of parametric 

image. The differences in averaged overall SNR were within 0.50 except for the 18F-FDG cases 

(i.e., increases in averaged SNRoverall: 3.14 and 1.49 for Ki and Vd, respectively). 

 

4.3.2. Overall Lesion Detectability 

4.3.2.1. Kinetic Micro-parameters 

The first three columns of Figure 4-5 show the tumor detectability results of 18F-DCFPyL in the 

parametric K1, k2, and k3 images. The overall CNR increased by 2.54, 1.99, and 1.29, and the 

overall TBR increased by 1.21, 0.39, and 1.84 for the parametric K1, k2, and k3 images, respectively, 

indicating excellent performance of our proposed method in both aspects simultaneously. 

 

 

Figure 4- 13. Tumor detectability in each parametric image. Micro-parameters: first three columns; 

Macro-parameters: last two columns. Matrices: CNRoverall and TBRoverall (the # of lesions: 2). 

Radiotracer: 18F-DCFPyL. 

 

In addition, the Figures 4-14 presents examples of parametric K1 and k3 images via 18F-DCFPyL, 

respectively. Compared to reference method (i.e., 2TCM), the enhanced lesion detectability was 

verified via PCDE. 
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Figure 4- 14. Examples of parametric images focusing on lesion detectability. Micro-parameter: K1 

(lesion #1) and k3 (lesion #2). Radiotracer: 18F-DCFPyL (Patient #1). 

 

In addition, the first three columns of Figure 4-6 show the tumor detectability results of 68Ga-HTK 

in the parametric K1, k2, and k3 images. The overall CNR increased by 0.50, 1.14, and 0.60, and 

the overall TBR increased by 0.36, 1.59, and 2.00 for the parametric K1, k2, and k3 images, 

respectively. 

 

 

Figure 4- 15. Tumor detectability in each parametric image. Micro-parameters: first three columns; 

Macro-parameters: last two columns. Matrices: CNRoverall and TBRoverall (the # of lesions: 1). 

Radiotracer: 68Ga-HTK. 

 

In addition, the last two figures in Figure 4-16 present examples of parametric k2 images via 68Ga-

HTK. Compared to reference method (i.e., 2TCM), the enhanced lesion detectability was verified 

via PCDE. 
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Figure 4- 16. Examples of parametric images focusing on lesion detectability. Micro-parameter: K1 

(lesion #2) and k2 (lesion #1). Radiotracer: 18F-FDG (Patient #1) and 68Ga-HTK (Patient #1) for K1 

and k2, respectively. 

 

Furthermore, the first three columns of Figure 4-7 show the tumor detectability results of 18F-FDG 

in the parametric K1, k2, and k3 images. The overall CNR increased by 1.26, 0.88, and 0.25, and 

the overall TBR increased by 0.05, 0.28, and 0.28 for the parametric K1, k2, and k3 images, 

respectively. 

 

 

Figure 4- 17. Tumor detectability in each parametric image. Micro-parameters: first three columns; 

Macro-parameters: last two columns. Matrices: CNRoverall and TBRoverall (the # of lesions: 5). 

Radiotracer: 18F-FDG. 
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In addition, the first two figures in Figure 4-16 present examples of parametric K1 images via18F-

FDG. Compared to reference method (i.e., 2TCM), the enhanced lesion detectability was verified 

via PCDE. 

 

 

4.3.2.2. Kinetic Macro-parameters 

The last two columns of Figure 4-13 show the tumor detectability results of 18F-DCFPyL in the 

parametric Ki and Vd images. The overall CNR increased by 0.21 and -0.06, and the overall TBR 

increased by -0.49 and 0.16 for the parametric Ki and Vd images, respectively. The minus sign 

represents the decrease in metric of interest. 

In addition, the last two columns of Figure 4-15 show the tumor detectability results of 68Ga-HTK 

in the parametric Ki and Vd images. The overall CNR increased by 0.58 and 0.09, and the overall 

TBR increased by 0.03 and 0.13 for the parametric Ki and Vd images, respectively.  

Furthermore, the last two columns of Figure 4-17 show the tumor detectability results of 18F-FDG 

in the parametric Ki and Vd images. The overall CNR increased by 1.48 and 0.56, and the overall 

TBR increased by -0.73 and 0.28 for the parametric Ki and Vd images, respectively. 

Overall, there were no substantial differences between the two methods in either type of parametric 

image. The differences in overall CNR were within 0.60, and the differences in overall TBR were 

0.50 except for the 18F-FDG cases (i.e., increase in CNRoverall for Ki: 1.48, decrease in TBRoverall 

for Ki: 0.73). 

 

4.4. Discussion 

 

As a pilot study, the comparison study was performed on real patient datasets (i.e., 8 patients in 

total), including analysis of: 1) overall visibility relevant to global inspection in WB, and 2) overall 

lesion detectability relevant to local inspection within a specific organ.  
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First, we verified that PCDE could improve the overall visibility (i.e., overall SNR) of micro-

parametric images (i.e., each first three columns of Figures 4-1, 4-4, 4-7, and 4-10), which is 

relevant to the capability to identify suspicious lesions in WB globally. 

For macro-parameters, there was no significant difference between the PCDE and LSE-based PGA 

(i.e., each last two columns of Figures 4-1, 4-4, 4-7, and 4-10), except for 18F-FDG cases. Although 

the application of PCDE on patient datasets injected with 18F-FDG seemingly shows substantial 

benefits in overall SNR even for macro-parameters (i.e., Ki: 3.14, Vd: 1.49) compared to the PGA 

method, it might be a coincidence and originate from the uncertainty of a point used for the scaling 

to generate a population-based input function. Normally, for accurate scaling, the scaling point 

should be a measured data through invasive blood sampling, which is considered as gold standard 

for the measurement of plasma input function and thus expected to provide more trustworthy data 

point compared to that derived from image. In this pilot study with 18F-FDG, however, due to the 

absence of the data from blood sampling, the measured data used for the scaling was extracted 

from available PET image at earliest measurement time (i.e., ROI: left ventricle, post-injection 

time: ~30 min). Certainly, compared to the case using the invasive blood sampling for the scaling, 

the relatively larger uncertainty of the data measured from the image would lead to larger 

uncertainty of population-based input function, and thus might cause erroneously better results in 

parametric images.  

In addition, with PCDE, we verified the improved lesion detectability (i.e., overall CNR and TBR) 

of micro-parameters, which would directly help to inspect a lesion locally in a particular organ. 

For macro-parameters, there were no significant differences in lesion detectability between the two 

methods (i.e., CNRoverall: within 0.60, TBRoverall: 0.50). This can be expectable by understanding 

the fact that the PGA is already sufficiently accurate for macro-parameter estimation because of 

exploitation of linearized fit-type function and thus it is hard to expect a substantial benefit from 

PCDE.   

Overall, our proposed PCDE method provides enhanced micro-parametric images in terms of 

overall visibility (i.e., Figures 4-1, 4-4, 4-7, and 4-10) and lesion detectability (i.e., Figures 4-13, 

4-15, and 4-17). 
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The proposed method PCDE is worthy to note in that it shows enhanced micro-parametric images 

when applying into not only virtual dynamic datasets (i.e., chap. 3) but also actual patient datasets 

(i.e., chap. 4), which implies a great potential to be implemented into routine practice in clinic. 

Nevertheless, a few limitations of the study indicate the need for further studies: 1) lack of high 

number of patients analyzed in total, 2) differences in scanning protocols, and 3) need for future 

selection of the best compartmental model for each different radiotracer. 

Overall, in this study, eight patients in total were analyzed to quantify overall visibility and among 

them only three patients were analyzed for lesion detectability. For each radiotracer, overall 

visibility and lesion detectability were evaluated by only two and one patient, respectively, except 

for 68Ga-HTK case. Even though in this pilot study the PCDE shows improved overall SNR, CNR, 

and TBR simultaneously in micro-parametric images, it is pretty hasty to make a generalized 

conclusion due to the lack of the number of patients analyzed. Therefore, further validation study 

based on a greater number of patients should be conducted further to clearly judge the actual 

benefit of the proposed method.  

Our institute is actively collecting more patient datasets through a clinical trial (i.e., Clinical Trial 

ID: NCT04017104): these include studies of 18F-FDG (glucose metabolism), 18F-DCFPyL and 

68Ga-HTK (prostate-specific membrane antigen (PSMA) targeted imaging), and 18F-AmBF3 

(somatostatin receptor 2 (SSTR2) targeted imaging). Hence, we expect to perform 

comparison/validation studies based on larger number of patient datasets for each tracer type. 

The scanning protocol is a critical consideration in the level of accuracy and precision of the 

estimated parameters. The scanning protocols of patients analyzed (e.g., total image acquisition 

time, injected activity, et al.) vary for different radiotracer type and are even different among 

patients for thea same tracer (i.e., Table 4-2, 3, 4, and 5). To minimize the effect of scanning 

protocol itself, similar scanning protocols among patients would be desirable and we expect to 

achieve it by continuous and tight-knit discussions with clinical staffs such as nuclear medicine 

physicians, medical physicists and technicians at BC cancer.  

A pre-requisite of kinetic modeling is to find an optimal compartmental model (e.g., the # of 

compartments, whether irreversible or reversible process, definitions of compartments, transport 
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relationship between compartments, et al.) for each tracer that best fits the data collected. In 

addition to the understanding/consideration of bio-chemical aspects of uptake process, the model 

selection can be quantitatively conducted based on a criterion such as the Akaike information 

criterion (AIC) and Bayesian information criterion (BIC). In this study, however, the irreversible 

uptake based on two tissue compartments was assumed for all tracer types without the model 

selection process, which might have a negative impact on parameter estimation (e.g., misleading 

and/or inaccurate outcomes).  

For instance, the levels of overall visibility via both methods (i.e., reference and PCDE) were 

relatively lower for 18F-AmBF3 cases (i.e., Figure 4- 4, 14, and 15), compared to that of other 

tracers regardless of parameter estimation methods used, and also the improvements of overall 

SNR via PCDE in micro-parametric images (i.e., Figure 4-4) were not significant (i.e., averaged 

SNRoverall increase: 0.40, 0.61, and 0.47 for the parametric K1, k2, and k3 images, respectively). In 

addition to that, for patient #2, the severely poor level of visibility in Vd images via PGA (i.e., 

Figure 4-15) was verified, which is very unlikely to exist if the radiotracer was distributed through 

irreversible uptake process. The relatively lower level of benefits of using PCDE in micro-

parametric images and improbably poor visibility in macro-parametric images via PGA might 

originate from the large disparity in actual uptake of 18F-AmBF3 and the assumed uptake process 

(i.e., irreversible uptake). In that sense, the further study based on AIC and/or BIC to find an 

optimal compartmental model for each radiotracer including 18F-AmBF3 should be conducted.  

Our proposed method PCDE is not limited to irreversible uptake processes and can be extendable 

to any type of compartmental model. Hence, performance testing on other types of compartmental 

model and further refinement to the method are possible and needed to ensure improved 

compatibility with various types of radiotracers.  
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Chapter 5. Conclusions and Future Studies 

 

5.1. Summary and Findings 

We compared the performance of kinetic parameter estimation between the common standard 

(LSE) and proposed PCDE method, focusing on general image quality, overall visibility, and tumor 

detectability. Although there were no significant differences in macro-parameter estimation, 

significant improvements in the micro-parameters were verified. PCDE can enable a typical PET 

scanner in dynamic WB imaging mode to reliably estimate kinetic micro-parameters, which has 

been so far very challenging owing to significant uncertainties in estimates when using LSE. 

 

5.2. Contribution to the Field 

Our work contributes to PET scanner-based WB kinetic modeling in three aspects: 1) minimization 

of adverse effects of the WB scan protocol previously optimized for macro-parameter, 2) potential 

applicability for shorter scan durations, and 3) avoidance of local minimum issues. 

First of all, the protocol proposed by Karakatsanis et al. was optimized based on macro-parametric 

images (i.e., Ki) and was spent 6 min after injection to scan the cardiac region. Because the macro-

parameters of PGA only require data after the kinetic process of interest reaches equilibrium state, 

the loss of early dynamics of TAC would not adversely affect parameter estimation. However, 

unlike macro-parameters, early dynamics are critical for micro-parameter estimation because they 

typically include near-peak data considerably influenced by micro-parameter combinations. PCDE 

showed improvements for each micro-parameter compared to the common standard. This indicates 

a substantial reduction in the adverse effects of the protocol favorably optimized for macro-

parameter estimation.  

Moreover, for the second point, the comprehensive comparison based on the multi-aspect of TAC 

can offer more stabilized parameter estimation (i.e., less variation of performance) from various 

image acquisition-related factors compared to the case considering only one single factor (e.g., 
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SSE for LSE). Therefore, we expect our proposed method to perform better even when using a 

dynamic PET dataset scanned only for 30 min, realistically achieving the shortest scan duration 

for a typical PET scanner-based WB kinetic modeling for micro-parameter estimation. 

All results reported in this study are based on a simulated dynamic dataset scanned only 40 min 

PI, which is 5 min shorter than the optimal acquisition length suggested by Karakatsanis et al. (i.e., 

45 min) and 20 min shorter than the time typically required for dynamic PET acquisition for kinetic 

modeling (i.e., 60 min). Hence, we can expect the promising applicability of the proposed method 

to studies involving shorter scan duration. 

Moreover, the PCDE avoids the local minimum issue by systematically evaluating various aspects 

of TAC and selecting the best parameter combination, rather than relying on an iterative approach 

to find an optimal value. Consequently, unlike the LSE method, the PCDE does not necessitate an 

initial guess for parameter estimation. However, PCDE also uses curve fitting to model a measured 

TAC, but the later dynamics of TAC can be well-fitted using a single exponential function which 

can be an automatic process without a manual initial guess because of its negligible dependence 

on the initial values.  

 

5.3. Suggestions for Future Work 

A couple of limitations in our proposed method indicate the need for further studies as follows: 1) 

reduction in computational time using parallel processing, 2) extension of compatibility with 

diverse types of radiopharmaceuticals, 3) further improvements in image quality, and 4) validation 

study based on larger pool of patient dataset. 

First, the computational speed of PCDE is approximately 1.1 × 10−3  s/voxel; therefore, 

approximately 2 h are needed to perform WB kinetic modeling for a typical volume size in the 

clinic (i.e., 256 × 256 × 409 ) with plain hardware specifications (e.g., CPU: AMD Ryzen 9 

5900HX, RAM: 32.0 GB, platform: MATLAB R2021b, resolution of estimated parameter: 0.01). 

For use in routine practice, at least 100 times the current computational speed (i.e., ~10-5 s/voxel) 
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is needed to complete the computation in a few minutes. Parallelized computation using a graphical 

processing unit (GPU) will allow us to achieve this.  

Second, in this study, we limited the maximum allowable value of the micro-parameter to 1 (for 

K1 and k2) and 0.5 (for k3), respectively. Although for 18F-FDG, almost all micro-parameters for 

each ROI in WB were within the desired ranges, we need to broaden the range to increase 

applicability to diverse types of radiotracers. Also, depending on a specific radiotracer of interest 

or research focus, the reversible uptake (i.e., 𝑘4 ≠ 0 ) may be of greater interest, than the 

irreversible process; hence, a performance test under the reversible process would be needed.  

Furthermore, despite significant improvements via PCDE, the overall levels of NBias and NSD 

tend to be beyond 10% (i.e., near 20%), and non-negligible variations among ROIs exist, implying 

that the proposed method may still be insufficient for use in routine practice. We expect that the 

exploitation of de-noising techniques such as the finite Legendre transform-based low-pass filter 

with excellent de-noising performance for the exponential type curve (i.e., typical shape of TAC 

after peak) without the phase shift and/or noise propagation pattern learning through machine/deep 

learning algorithms (i.e., noise propagation from the sinogram domain into image domain) could 

reduce the overall levels of NBias and NSD within 10%. Moreover, it can reduce variations among 

ROIs (i.e., consideration of different noise propagation patterns at each position). 

Finally, a validation study based on larger pool of patient dataset should be conducted. We are 

actively collecting patient data (e.g., Clinical Trial ID: NCT04017104) categorized by a specific 

tumor detection mechanism such as 18F-FDG by glucose metabolism, 18F-DCFPyL and 68Ga-HTK 

by targeting a PSMA, and 18F-AmBF3 by targeting SSTR2. We expect to perform a validation 

study based on larger pool of patient data in the near future. 
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Appendices 

Appendix A: Solving Differential Equations for 2TCM and Derivation of PGA 

formulas. 
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Appendix B: Conceptual Meaning of PGA parameters. 
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