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Abstract 

Log logistics activities, such as transporting, loading/unloading, and processing of logs, are 

essential elements of forest operations and account for a significant portion of the total costs of 

delivered logs. Although previous studies investigated log logistics, they mainly emphasized on 

economic aspects and did not address some practical aspects of the logistics problem. The main 

goal of this dissertation is to optimize log logistics at the operational level incorporating practical 

considerations and complexities. In order to achieve this goal, a decomposition framework is 

employed that divides the log logistics problem into two phases. In the first phase, a bi-objective 

optimization model is developed in which sorting decisions, trucking contractors, and 

compatibility requirements at supply and demand locations are considered. The first objective of 

the bi-objective model is to minimize the total transportation costs, while the second objective 

addresses the social aspects by balancing the workload of contractors. The outputs of the first phase 

are used as the inputs of the second phase, for which an optimization model is developed to 

determine the daily routing and scheduling of heterogeneous trucks using continuous time 

representation. The model enables synchronization of log loaders and trucks and generates a 

detailed schedule of activities. In addition, a solution approach based on the simulated annealing 

algorithm is developed to solve the large-sized daily routing and scheduling problem. The Taguchi 

method is used to enhance the quality of the solutions by calibrating the input parameters of the 

algorithm. The framework, optimization models, and the solution approach are applied to a case 

study of a large Canadian forest company where logs are transported from cut blocks to sort yards 

for further processing. Results show that the framework can generate balanced workloads for all 

contractors with less than 1% increase in transportation costs and can determine the daily schedule 

of log trucks considering practical operational considerations. It is concluded that assigning 

overtime to trucks instead of dispatching a new truck can generate cost savings. The proposed 
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models and the solution approach can be applied to other cases and regions by modifying the input 

data.  



v 

 

Lay Summary 

Log logistics activities have a significant contribution to the total log procurement costs. Despite 

the various complexities, operational details did not get enough attention in previous studies. This 

research aims to improve log logistics at the short-term planning by proposing an optimization 

framework for daily routing and scheduling of trucks considering practical aspects. Also, a solution 

approach is presented to overcome the computational burden of solving large-scaled problems. 

This work incorporates different complexities such as workload balance, log sorting decisions, 

trucking contractors, and synchronization requirements. The results of employing the framework 

to the case study of a Canadian forest company reveal that with a slight increase in total costs, the 

logistics network can be more sustainable by addressing social considerations. Also, detailed 

scheduling of log logistics activities can assist decision makers to utilize their resources efficiently.  

 



vi 

 

Preface 

All the work presented in this thesis was carried out by the author, Seyed Salar Ghotb, during his 

PhD program. The work was conducted under the supervision of Dr. Taraneh Sowlati at the 

Industrial Engineering Research Group of the University of British Columbia, Vancouver, Canada. 

Parts of this dissertation is presented in the following publications. 

• A version of Chapter 3 is published in the following article. 

o Ghotb, S., Sowlati, T., Mortyn, J., Roeser, D., & Griess, V. C. (2022). A goal 

programming model for the optimization of log logistics considering sorting 

decisions and social objective. Canadian Journal of Forest Research, 52(5), 716-

726. 

I was the main author of the article. I developed the mathematical programming models 

and solved them, obtained the required data, conducted analysis, and prepared the 

manuscript. Sowlati, T. was the supervisory author who advised in defining the problem 

and research objectives, reviewed and approved methodologies and models, provided 

support in the communications and meetings with our industrial partner, and guided in 

manuscript preparation and revisions. Mortyn, J. was from our industrial partner who 

provided the data, identified the case study, verified the results, and contributed to the 

manuscript editing. Roeser, D. and Griess, V.C. proofread and edited the manuscript. 

• A version of Chapter 4 is submitted to a peer-reviewed journal for publication and is under 

review. 

o Ghotb, S., Sowlati, T., Mortyn, J. (2023). An optimization model for detailed 

scheduling of heterogeneous fleet of log trucks considering synchronization.  



vii 

 

I was the main author of this article. I developed the mathematical programming models 

and solved them, defined test problems, conducted analysis, and prepared the manuscript. 

Sowlati, T. was the supervisory author who advised in defining the problem, reviewed and 

approved methodologies and models, provided support in the communications and 

meetings with our industrial partner, and guided in manuscript preparation and revisions. 

Mortyn, J. was from our industrial partner who provided the data, identified the case study, 

verified the results and contributed to the manuscript editing. 

• A version of Chapter 5 is submitted to a peer-reviewed journal for publication and is under 

review. 

o Ghotb, S., Sowlati, T., Mortyn, J. (2023). Scheduling of log logistics using a 

metaheuristic approach. 

 I was the main author of this article. I developed the solution approach and coded it, ran 

the algorithm to get the results, conducted analysis, and prepared the manuscript. Sowlati, 

T. was the supervisory author who advised in defining the problem, reviewed and approved 

the algorithm, provided support in the communications and meetings with our industrial 

partner, and guided in manuscript preparation and revisions. Mortyn, J. was from our 

industrial partner who provided the data, identified the case study, verified the results and 

contributed to the manuscript editing. 



viii 

 

Table of Contents 

 

Abstract ......................................................................................................................................... iii 

Lay Summary .................................................................................................................................v 

Preface ........................................................................................................................................... vi 

Table of Contents ....................................................................................................................... viii 

List of Tables ................................................................................................................................ xi 

List of Figures ............................................................................................................................. xiii 

Acknowledgements ......................................................................................................................xv 

Dedication………………………………………………………………………………………xvi 

Chapter 1: Introduction ................................................................................................................1 

1.1 Background ..................................................................................................................... 1 

1.2 Research objectives ......................................................................................................... 6 

1.3 Case study ....................................................................................................................... 7 

1.4 Outline of the thesis ...................................................................................................... 12 

Chapter 2: Literature review ......................................................................................................13 

2.1 Synopsis ........................................................................................................................ 13 

2.2 Log logistics and main features .................................................................................... 13 

2.2.1 Integrated optimization approach ............................................................................. 14 

2.2.2 Decomposition optimization approach ..................................................................... 17 

2.3 Logistics and transportation of other forest products ................................................... 24 

2.4 Logistics of forest products with combined other modes ............................................. 26 

2.5 Conclusions ................................................................................................................... 27 



ix 

 

Chapter 3: Optimization of monthly flows of logs ....................................................................29 

3.1 Synopsis ........................................................................................................................ 29 

3.2 Problem definition ........................................................................................................ 29 

3.3 Bi-objective optimization model................................................................................... 30 

3.3.1 Objective function ..................................................................................................... 32 

3.3.2 Constraints ................................................................................................................ 33 

3.4 Goal programming model ............................................................................................. 36 

3.5 Execution of the model ................................................................................................. 38 

3.6 Results ........................................................................................................................... 39 

3.6.1 Single-objective cost minimization model................................................................ 39 

3.6.2 Goal programming model ......................................................................................... 41 

3.6.3 Sensitivity analysis.................................................................................................... 44 

3.7 Discussion ..................................................................................................................... 46 

3.8 Conclusions ................................................................................................................... 49 

Chapter 4: Daily routing and scheduling optimization model.................................................50 

4.1 Synopsis ........................................................................................................................ 50 

4.2 Problem definition ........................................................................................................ 50 

4.3 Network representation ................................................................................................. 51 

4.4 Mathematical model...................................................................................................... 55 

4.4.1 Objective function ..................................................................................................... 57 

4.4.2 Constraints ................................................................................................................ 57 

4.4.3 Execution of the model ............................................................................................. 62 

4.5 Test problems and results.............................................................................................. 62 



x 

 

4.6 Discussion ..................................................................................................................... 68 

4.7 Conclusions ................................................................................................................... 70 

Chapter 5: Solution approach for the daily routing and scheduling problem .......................72 

5.1 Synopsis ........................................................................................................................ 72 

5.2 Problem definition ........................................................................................................ 72 

5.3 Solution approach ......................................................................................................... 75 

5.3.1 Solution representation ............................................................................................. 76 

5.3.2 Creating initial solution............................................................................................. 77 

5.3.3 Cost evaluation.......................................................................................................... 78 

5.3.4 Creating a new neighbourhood solution ................................................................... 81 

5.3.5 SA procedure ............................................................................................................ 82 

5.3.6 Parameter calibration ................................................................................................ 84 

5.4 Results ........................................................................................................................... 86 

5.4.1 Results for test problems ........................................................................................... 87 

5.4.2 Results for the real case ............................................................................................ 88 

5.5 Discussion ..................................................................................................................... 94 

5.6 Conclusions ................................................................................................................... 97 

Chapter 6: Conclusions, strengths, limitations, and future research......................................98 

6.1 Summary and conclusions ............................................................................................ 98 

6.2 Strengths ..................................................................................................................... 101 

6.3 Limitations .................................................................................................................. 103 

6.4 Future work ................................................................................................................. 104 

References ...................................................................................................................................106 



xi 

 

List of Tables 

 

Table 1-1. The minimum, average, and maximum volume of logs at cut blocks (provided by the 

forest company) .............................................................................................................................. 8 

Table 1-2. The daily processing and storage capacities of sort yards (provided by the forest 

company)......................................................................................................................................... 8 

Table 1-3. Information of trucking contractors (provided by the forest company) ...................... 10 

Table 1-4. Characteristics of highway and off-highway trucks (provided by the forest company)

....................................................................................................................................................... 11 

Table 2-1. The summary of log logistics papers ........................................................................... 21 

Table 3-1. The notations of the monthly flow optimization model .............................................. 30 

Table 3-2. Notations of the goal programming model .................................................................. 37 

Table 3-3. Information regarding number of daily truckloads for each contractor (single objective 

model) ........................................................................................................................................... 39 

Table 3-4. Number of delivered truckloads and the volume of logs sorted in the sort yards (single 

objective model)............................................................................................................................ 39 

Table 3-5. The total number of truckloads carried by each contractor ......................................... 42 

Table 3-6. Number of delivered truckloads and volume of logs sorted in the sort yards (goal 

programming model when w1=w2=0.5) ........................................................................................ 43 

Table 3-7. Sensitivity analysis of the goal programming model based on different weights ....... 44 

Table 3-8. Sensitivity analysis of the goal programming model (w1=w2=0.5) based on variations 

in parameters ................................................................................................................................. 45 

Table 4-1. Notations of the daily routing and scheduling optimization model ............................ 55 



xii 

 

Table 4-2. Summary of test problems and the results ................................................................... 63 

Table 5-1. Factor levels in the SA algorithm ................................................................................ 85 

Table 5-2. Characteristics of instances ......................................................................................... 85 

Table 5-3. The optimal values of SA parameters ......................................................................... 86 

Table 5-4. Comparison of CPLEX solver and the SA algorithm for test problems ..................... 87 

Table 5-5. Schedules of trucks arriving at yard 2 ......................................................................... 90 

 



xiii 

 

List of Figures 

 

Figure 1-1. The logistics processes of delivered logs at sort yards ................................................ 9 

Figure 1-2. Log trucks (a) off-highway (b) highway (photo taken by Seyed Salar Ghotb) ......... 11 

Figure 3-1. The inventory of logs in the water at each yard over the planning horizon ............... 40 

Figure 3-2. Daily total number of truckloads for each contractor over the planning horizon 

(single objective model) ................................................................................................................ 41 

Figure 3-3. Daily workload of contractors (goal programming model when w1=w2=0.5) ........... 42 

Figure 3-4. Percentage of average processed volume when w1=w2=0.5 ...................................... 43 

Figure 4-1. The sub-network for loaders at cut blocks (pickup network) .................................... 52 

Figure 4-2. Set of succeeding and preceding nodes in the directed graph .................................... 52 

Figure 4-3. The sub-network for trucks (pickup and delivery network)....................................... 53 

Figure 4-4. The sub-network for loaders at sort yards (delivery network) ................................... 54 

Figure 4-5. Schedule of an off-highway truck in TP 8 ................................................................. 64 

Figure 4-6. Working time of trucks in TP 8.................................................................................. 65 

Figure 4-7. Schedule of a loader at cut block 1 in TP 8................................................................ 66 

Figure 4-8. Schedule of a loader at sort yard 2 in TP 8 ................................................................ 66 

Figure 4-9. Sensitivity analysis of TP 8 when parameters are changed by 20% .......................... 67 

Figure 5-1. The schematic view of the proposed decomposition approach .................................. 73 

Figure 5-2. The main steps of the proposed algorithm ................................................................. 75 

Figure 5-3. The solution representation for (a) contractor 1, (b) contractor 2, and (c) for both 

contractors 1 and 2 ........................................................................................................................ 77 

Figure 5-4. Neighbourhood operators (a) Swap, (b) Reversion, and (c) Insertion ....................... 82 



xiv 

 

Figure 5-5. The S/N ratio plot for level of parameters ................................................................. 86 

Figure 5-6. The schedule of Truck 55 ........................................................................................... 89 

Figure 5-7. Total waiting times at sort yards ................................................................................ 90 

Figure 5-8. The quartile chart for start times of loaders at the sort yards ..................................... 92 

Figure 5-9. Resource utilization of contractors............................................................................. 93 

Figure 5-10. Distribution of trucks of contractors ........................................................................ 94 

 

 



xv 

 

Acknowledgements 

First, I would like to express my deepest gratitude to my supervisor, Dr. Taraneh Sowlati, for her 

invaluable support and exceptional guidance throughout my PhD journey. She trained me how to 

perform research and think in a critical and independent manner. Her constructive feedback and 

mentorship in every single stage of my PhD improved my work. I will never forget how she 

supported and motivated me during the difficult times of the COVID-19 pandemic. I really feel 

privileged to do my PhD program under her supervision. 

I would also want to extend my appreciation to other supervisory committee members, Dr. 

Dominik Roeser, Dr. Verena Griess, and Joel Mortyn for their valuable comments and suggestions 

to enhance the quality of my research. My special thanks go to Joel Mortyn, the operation manager 

of the forest company, for providing data, identifying the case study and verifying the results.  

Here, I take the opportunity to thank all my office mates, Dr. Shaghayegh Akhtari, Dr. Krishna 

Teja Malladi, Evelyn Gao, Sahar Ahmadvand, Rohit Arora, Maziyar Khadivi, Soroush 

Aghamohammadi, Kimiya Rahmani Mokarrari, and Salma Jahani for their care and help. It was a 

pleasure spending time with them. 

I acknowledge the provided financial support by NSERC, MITACS, the forest company, and UBC 

Faculty of Forestry (Recruitment Fellowships and Internal awards) for conducting this research. 

Finally, I am deeply grateful for the love and support of my lovely parents and brother during 

stressful times. I cannot thank them enough for everything they have done for me. I would like to 

dedicate this dissertation to my family. 

 



xvi 

 

 

 

 

 

 

 

 

 

 

 

 

To my family



1 

 

Chapter 1: Introduction 

1.1 Background  

Log logistics include different activities such as loading/unloading, transporting, scaling, cutting, 

sorting, and storing logs. Overall, these activities comprise a large proportion of the total log 

procurement costs. In 2019, logistics activities including scaling, trucking, and loading accounted 

for 29% of the average delivered log costs in central Interior, BC (Girvan & Taylor, 2020). 

In the forest covered regions, a large volume of logs is sent from forest areas to demand 

locations. In Sweden, for example, trucks carried 36.8 million tons of roundwood in 2012 (Swedish 

Forest Agency, 2014). As the capacity of trucks is limited, a significant number of truckloads is 

delivered from forest areas to satellite yards, mills, and other industrial centers. For example, in 

British Columbia, almost 1.4 million truckloads were transported in 2014 (British Columbia Forest 

Safety Council, 2015). Due to the high number of trips and long distances between forest areas 

and demand locations, log transportation has a higher contribution to the cost among the other 

logistics activities. In 2021, transportation accounted for more than 38% of the unit delivered cost 

of industrial roundwood in Finland (Natural Resources Institute Finland, 2023). Hence, 

improvements in log transportation could potentially generate cost savings (Palmgren et al., 2004) 

and consequently could increase the competitiveness of forest companies. 

The log transportation planning includes decisions at different levels. While long-term and 

medium-term decisions are made at strategic and tactical levels, operational plans are mainly 

related to short-term decisions such as routing and scheduling of log trucks (Malladi & Sowlati, 

2017).  

The log logistics and transportation problem is subject to several challenges. For example, 

each cut block provides various log sorts, and different mills may require different log sorts. Thus, 
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logs of different species and diameter classes need to be sorted and processed at cut blocks or 

demand locations. The fleet of log trucks carrying the logs can be either homogeneous or 

heterogeneous. Homogeneous fleets consist of the same type of truck, while heterogeneous fleets 

consist of more than one type of truck with different characteristics such as capacity and costs. 

Some trucks may not be suitable to carry some types of logs or travel to certain locations. 

Therefore, compatible trucks should be used to deliver logs to yards, mills, or other industrial sites. 

In the routing and scheduling of log trucks, some important practical aspects need to be 

considered in the operational logistics planning. For example, the operational time of a mill/yard 

during which the logs should be delivered and the maximum driving time of a truck driver impact 

logistics planning. In addition, logs need to be transported from cut blocks in a timely manner as 

they may deteriorate over time. Also, log flows should be smoothly distributed over the planning 

horizon (Hirsch, 2011). Besides, processing/storage capacities, and maximum working time of 

trucks limit the delivery of truckloads. Furthermore, there are resources that must operate 

simultaneously to fulfill a logistics activity. Log loaders and trucks, for example, work together 

for loading and unloading of truckloads. By synchronizing the trucks and loaders, waiting times 

can be reduced, resulting in more efficient transportation planning. Hence, the above-mentioned 

aspects should be included in log logistics planning at the operational level. 

Due to the importance of transportation, recent studies proposed different methods to 

improve and optimize log transportation at the operational level. In a group of studies (e.g. Vitale 

et al., 2021; Melchiori et al., 2022), the flows of logs between different supply and demand points 

were considered as decision variables of models. In other words, these flows were outputs of the 

proposed optimization models. This group of studies is referred to log truck scheduling problems 

(LTSP) in the literature (Malladi & Sowlati, 2017). In another group of papers (e.g. Zazgornik et 
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al., 2012; Oberscheider et al., 2013), the flows of logs were either known and used as inputs or 

were driven from an upper-level model. As mentioned in (Malladi & Sowlati, 2017), this group is 

referred to timber transportation vehicle routing problem (TTVRP).  

While some authors (e.g. Rey et al., 2009; Haridass et al., 2014; Melchiori et al., 2022) 

proposed daily logistics and transportation plans the planning horizon in other studies (e.g. Flisberg 

et al., 2009; Rix et al., 2015) was more than one day. In previous studies, both homogeneous and 

heterogeneous fleets of trucks were considered for carrying the logs from supply points to demand 

locations (e.g. Palmgren et al., 2004; Rey et al., 2009; El Hachemi et al., 2013). Different logistics 

aspects were incorporated in the log logistics literature to have a more realistic plan. For instance, 

multiple depots (e.g. Flisberg et al. 2009), road weight requirements (e.g. Gronalt and Hirsch 2007) 

and time windows (e.g. Oberscheider et al. 2013; Haridass et al. 2014) were incorporated in the 

routing and scheduling of log trucks. 

Although the log logistics problem has evolved well in recent years, further practical details 

can be incorporated to have a more applicable and efficient logistics plan. The main objective of 

the existing models (e.g. Rey et al., 2009; Bordón et al., 2018; Vitale et al., 2021) was the economic 

objective, while other aspects including social ones have not been investigated enough. The 

harvested logs have different assortments, and the industrial sites may demand specific 

assortments. Therefore, sorting of logs is one of the important processing activities before log 

consumption. To the best of my knowledge, previous studies did not consider log sorting in their 

problems. Besides, in the forest operations, logs should be transported by compatible fleet of 

trucks. However, compatibility of logs and truck types was not considered in the log logistics 

literature. In addition, forest companies may contract out their logistics activities to logistics 
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companies and contractors. These contractors and their limitations such as balancing the workload 

did not get enough attention in the proposed log logistics planning in the literature. 

There are also other considerations in log truck scheduling that can improve the overall 

logistics plans. According to (Lagzi, 2016), the representation of time significantly affects the 

quality of solutions in the scheduling optimization problems. Time can be represented by finite 

discrete intervals or continuous variables. In finite discrete representation, activities are assigned 

to finite intervals and schedules are generated accordingly, while in continuous time 

representation, the schedule of activities is defined by minutes or hours. Both discrete and 

continuous time representations have strengths and limitations. It is easier to use discrete intervals 

for modelling the scheduling problem for shared resources such as loaders used for 

loading/unloading activities (Lee & Maravelias, 2018). The start time of each activity of the 

resources is assigned to the beginning of discrete intervals. However, it is challenging to define 

the duration of intervals, which in turn affects the accuracy of the schedules. In the continuous 

time representation, the schedules are more accurate because activities can happen at any time in 

the planning horizon. Moreover, variable processing times can be easily addressed by continuous 

variables (Lagzi, 2016). However, modelling the problem for shared resources is more difficult 

using continuous variables. Despite all aforementioned advantages and drawbacks, there is no 

general consensus about time representation in scheduling optimization problems (Stefansson et 

al., 2011). Most papers in the log transportation literature (e.g. El Hachemi et al., 2013; Melchiori 

et al., 2022) used discrete time representation, while less attention was given in the literature to 

employ continuous variables in log transportation scheduling. 

Having detailed and accurate schedules is more important in synchronization of log loaders 

and trucks to calculate the waiting times for loading/unloading because inaccurate waiting times 
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may violate time windows (i.e., operational time of a mill) and impact the efficiency of the entire 

schedule. However, only a few papers addressed synchronization of log loaders and trucks and 

determined detailed schedules. In (El Hachemi et al., 2011, 2013, 2015; Melchiori et al., 2022), 

discrete time slots were used to facilitate synchronization of log loaders and homogeneous trucks. 

However, defining time slots can be more challenging when there is more than one type of truck 

and loading/unloading times depend on the type of the truck. Additionally, to synchronize log 

loaders and trucks efficiently, the discrete intervals need to be granulated enough which results in 

more binary and integer variables and makes the problem more difficult to solve compared with 

the continuous time variables. Soares et al. (2019) used continuous times in synchronization of 

different machines including trucks, lorries, and loaders in the biomass transportation problem. 

However, they had the synchronization only at the delivery points, where loaders with lorries and 

trucks with loaders needed to be synchronized. Moreover, trucks can be assigned overtime by the 

trucking contractors to fulfill the transportation tasks. Working overtime usually has a higher cost 

rate compared to that of the regular working time. Depending on the contract, there is a maximum 

limit for assigning overtime to each truck. Incorporating overtime in log transportation planning 

is useful for decision makers as it gives them an understanding of the trade-off between assigning 

overtime and dispatching a new truck to deliver the truckloads.  

It is noteworthy that the log logistics problem is a variant of pickup and delivery problem 

(Audy et al., 2022). Hence, the problem is NP-Hard, which means that the large-sized problem 

cannot be solved using commercial solvers. Commercial software packages can be used to solve 

log logistics optimization models only for small and medium-sized problems. Therefore, non-exact 

solution approaches are required to solve real-world large-sized problems in a reasonable time. 
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1.2 Research objectives 

The main goal of this research is to optimize the log logistics planning at the operational level (1-

month planning horizon) considering real-world complexities and to apply it to the real case of a 

forest company in British Columbia, Canada. The goal is achieved through the following research 

objectives. 

1) Optimize monthly flows of logs with minimum transportation costs and balanced 

workloads for trucking contractors by developing a bi-objective model. The proposed 

model will determine the daily flows of logs between different supply (cut blocks) and 

demand (sort yards) locations considering various practical aspects and complexities such 

as sorting decisions, social aspects, trucking contractors, a heterogeneous fleet of trucks, 

and truck compatibility requirements. 

2) Optimize daily routing and scheduling of a heterogeneous fleet of trucks by introducing an 

optimization model. The model will synchronize log loaders and trucks at both pickup (cut 

blocks) and delivery (sort yards) locations, generate detailed schedules for trucks, and 

include operational decisions for trucking contractors. 

3) Develop a non-exact solution approach to solve the large-sized daily routing and 

scheduling problem in a reasonable time considering the complexities of the real case. 

4) Apply the models and solution approach to a real case study. 

These objectives are linked to each other through a decomposition approach, in which the 

problem is divided into two phases. Objectives 1 and 2 correspond to the first and the second phase, 

respectively. The first phase determines the daily allocation of logs between supply and demand 

locations with minimum costs and smooth workload for the trucking contractors. In the second 

phase, detailed schedules of trucks are generated considering synchronization of trucks and loaders 
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at both supply and demand locations. It is noteworthy that the number of truckloads obtained from 

the first phase is the input of the second phase of the decomposition approach. Then, the third 

objective overcomes the computational complexities of the model developed in the second phase 

by proposing a solution approach. Finally, the fourth objective is achieved by applying the 

proposed models and solution approach to a real case study.  

1.3 Case study 

In this research, the logistics problem of a large forest company is investigated. The company is 

one of the leading forestry companies in Canada. It is an integrated forest company that generated 

more than $1.3 billion revenue in 2022. It has sawmills and remanufacturing facilities in Canada 

and the US. The company predominantly manages Crown tenures with an annual harvesting of 

roughly 6 million m3 of logs for its mills’ consumption and other external markets. The forest 

company procures different species such as Western Hemlock (Tsuga heterophylla) and Douglas 

Fir (Pseudotsuga menziesii) with different log diameter classes.  

To procure logs from cut blocks and deliver them to the sawmills, the company has 

different harvesting phases such as falling trees for building roads, road construction, falling, 

yarding, and transporting.  The company has operations in different regions. According to the 

company’s request, the focus of this study is on logistics and transportation of logs in one of the 

regions where the company has more than 100 cut blocks, and truckloads are sent to three sort 

yards for processing.  

Each month, roughly 20 to 25 cut blocks are harvested. Then, the harvested logs are stored 

at the roadside. The company aims to maintain the level of stored logs at roadside as low as 

possible. The monthly volume of supply and demand is known in advance from a high level-

planning model, which is developed internally at the company, considering the scheduling of other 
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harvesting phases. The harvested logs are either sorted or unsorted. In total, there are over 40 log 

sorts, which are identified by their species and diameter classes. Table 1-1 presents the minimum, 

average, and maximum volume of each type of logs harvested in the cut blocks. 

Table 1-1. The minimum, average, and maximum volume of logs at cut blocks (provided by the forest company) 

 Sorted logs Unsorted logs 

Minimum (m3) 0 0 

Average (m3) 100 230 

Maximum (m3) 3156 6418 

Both sorted and unsorted logs are transported to 3 sort yards for further processing. The 

sort yards are located next to the water to facilitate the water transportation to mills. In each sort 

yard, there are operators and machines for processing of delivered truckloads. Sort yards have 

different space and processing capacities (Table 1-2). The second and the third columns of Table 

1-2 list the processing capacities for sorted and unsorted logs, respectively. Also, the total volume 

of processed logs (both sorted and unsorted) should be less than the total processing capacity of 

the sort yards (fourth column of Table 1-2). Most of the daily delivered logs need to be kept in the 

water, and only a limited volume of logs can be stored in the sort yards (fifth column of Table 1-2).  

Table 1-2. The daily processing and storage capacities of sort yards (provided by the forest company) 

Sort yards 
Processing capacity (m3/day) 

Space capacity (m3) 
Sorted logs Unsorted logs Total 

Sort yard 1 400 810 810 200 

Sort yard 2 1030 2400 2400 200 

Sort yard 3 1200 820 1400 200 

Depending on the type of logs in a truckload, the processing activities are different.  As 

shown in Figure 1-1, unsorted logs arriving at the sort yards are first unloaded by a loader. The 

unloaded logs, then, are measured, scaled, and sorted by operators. After sorting, log piles are 
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placed into a bunk. Finally, logs are bundled and dumped into the water using a bandit and a loader. 

For the sorted logs, however, operators do not need to measure and sort them as they are already 

sorted. When the sorted truckloads are delivered to the sort yards, the logs are placed into the bunk 

immediately after getting unloaded. Similarly, bundling and dumping the logs into the water are 

done using the bandit and the loader. Finally, all the stored logs in the water are transported using 

tugboats and barges to mills and other manufacturing facilities. The schedule of the tugboats is 

determined by the company, and these tugboats usually tow the logs at least twice a month.  

 

Figure 1-1. The logistics processes of delivered logs at sort yards 

It should be noted that the transportation and processing planning in this work covers the 

activities from the roadsides till the logs are dumped into the water at sort yards. If the 

transportation planning was from the forest roadsides to the mills, then the water transportation 

had to be considered as well. If the truckloads were required to be directly delivered to sawmills, 

the processing activities had to be done at roadside of cut blocks because the sawmills have 

demands for specific log sorts. In addition, more trucks would be needed to deliver the truckloads 

to the mills, leading to more transportation costs. However, the company can take advantage of 

water transportation, resulting in less transportation costs.  Moreover, in the case study, the 

processing activities cannot be done at cut blocks because of space limitations of forest areas. 
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For delivering the truckloads from the cut blocks to the sort yards, the forest company has 

contracted out the transportation activities to trucking contractors, who employ a heterogeneous 

fleet of trucks to fulfill the transportation activities. These contractors can serve only in certain cut 

blocks and have different numbers of trucks (Table 1-3). It should be mentioned that the third 

column of Table 1-3 shows the total number of trucks that each contractor owns, and these trucks 

can be used for other regions where the contractor has operations. Based on the communication 

with the forest company, it is important to generate a balanced and smooth workload for the 

contractors over the planning horizon as an unbalanced workload leads to contractors’ 

dissatisfaction.  

Table 1-3. Information of trucking contractors (provided by the forest company) 

Contractors No. of cut blocks No. of trucks 

Contractor 1 8 1 

Contractor 2 18 12 

Contractor 3 2 12 

Contractor 4 8 8 

Contractor 5 18 10 

Contractor 6 18 4 

Contractor 7 8 7 

Contractor 8 22 22 

On each day, trucks are dispatched from a central depot to cut blocks to get loaded. Then, 

they move the truckload to a sort yard for unloading. A truck works for 8.5 hours and can have 2 

to 3 trips per day. The contractors can also assign up to 150 minutes of overtime to each truck. The 

heterogeneous trucks are either highway or off-highway trucks that have different compatibility 

requirements (Figure 1-2).  
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Figure 1-2. Log trucks (a) off-highway (b) highway (photo taken by Seyed Salar Ghotb) 

Due to transportation regulations, off-highway trucks are not allowed on highways, while 

highway trucks can be used on all road types. Highway trucks can deliver both sorted and unsorted 

logs, while off-highway trucks do not carry sorted logs because the capacity of these trucks is 

greater than the capacity of the lifts at the sawmills to bring them out of the water.  Additionally, 

the larger capacity of off-highway trucks compared to that of highway trucks leads to a longer 

loading time by loaders. However, the unloading time for both types of truck is the same as a 

loader called “Wagner” unloads both types at once (See Table 1-4). 

Table 1-4. Characteristics of highway and off-highway trucks (provided by the forest company) 

Truck type Compatible truckload 
Capacity 

(m3) 

Loading time 

(min.) 

Unloading 

time (min.) 

Highway Sorted and unsorted truckload 43 15 8 

Off-highway Unsorted truckload 95 20 8 

Currently, the company does not use any decision-making tool for logistics planning at the 

operational level. The company aims to have a logistics planning tool for a 1-month planning 
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horizon. The tool should assist the company to generate balanced workload for the contractors and 

to determine: 1) the daily volume and number of both sorted and unsorted truckloads from each 

cut block to each sort yard to meet the demands, 2) the daily volume of logs that is sorted in each 

sort yard, 3) the daily number of trucks of each type that is dispatched by contractors, and 4) 

routing and detailed scheduling of trucks including the arrival time, waiting time and start time. 

This research aims to address the problem by developing optimization models and a suitable 

solution approach to solve large-scale problems. 

1.4 Outline of the thesis 

In addition to the current chapter, the thesis has the following chapters.  

 Chapter 2 reviews the proposed methodologies, models, and solution approaches in the log 

logistics literature as well as studies related to logistics of other forest products.  

 In chapter 3, a bi-objective mixed integer programming (MIP) model is introduced to 

determine the flows of logs, the volume of processed and stored logs, and the workload of trucking 

contractors. The results are analyzed, and a sensitivity analysis is conducted to identify the most 

sensitive parameters.  

 Chapter 4 includes an MIP model for routing and scheduling of the heterogeneous fleet of 

trucks considering synchronization of log trucks and loaders. The results of the suggested model 

for several test problems from the case study are presented.   

 A metaheuristic algorithm is developed as a solution approach in Chapter 5 to solve the 

routing and scheduling of trucks for large-sized problems. The algorithm is then applied to the 

case study, and the results are provided and analyzed.  

 Finally, Chapter 6 concludes the research work and includes strengths, limitations, and 

directions for future research. 
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Chapter 2: Literature review 

2.1 Synopsis  

Log logistics comprise of a variety of different activities including transportation and account for 

a considerable portion of total delivered costs. In different countries, delivering logs to mills can 

contribute to more than 45% of the operational costs (Audy et al., 2012). Therefore, various studies 

have been conducted in recent years to optimize log logistics and address different challenges. 

This chapter explains the log logistics and provides a review of previous studies. The studies are 

categorized into two groups: 1) Integrated optimization approach, and 2) Decomposition 

optimization approach. The main features and limitations of each group are described. 

Additionally, the papers on logistics and transportation of other forest products are reviewed. 

2.2 Log logistics and main features 

Log logistics include sorting, processing, transportation, and storage of logs. In sorting and 

processing, logs of different species are sorted into distinct sorts and diameters, while during the 

transportation phase logs are carried from forest areas to different demand locations including 

satellite yards, mills, and other industrial sites using the same or different types of trucks. It is 

important to note that full truckloads are often used for log transportation (Audy et al., 2012), 

which means a truck is fully loaded at a supply point and delivers the load to only one demand 

location. Due to the large volume of logs, each supply and demand point is usually visited more 

than once per day.  

The main decisions of log logistics and transportation at the operational level include the 

determination of log flows between supply and demand locations, the volume of stored logs, and 

routing and scheduling of trucks (Malladi & Sowlati, 2017). Routing of a log truck involves the 

determination of the sequence of locations that the truck should visit, while in the scheduling of 
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trucks, times are assigned to each transportation activity. In log logistics, machines may work 

together to perform an activity. Log trucks and loaders, for instance, work simultaneously for 

loading/unloading of logs. Thus, synchronization of different machines is an important aspect in 

logistics planning as it leads to more detailed scheduling and efficient plans.  

In recent years, optimization models have been introduced to address the complexities and 

make log logistics planning more practical. Previous studies can be classified into two main 

groups: 1) Integrated optimization approach, and 2) Decomposition optimization approach. 

2.2.1 Integrated optimization approach  

In this approach, an optimization model is developed to address the problem. The advantage of 

this method is to integrate various decisions in a single optimization model. However, it increases 

the complexities, leading to more computational expenses in optimization problems (e.g. Vacca et 

al., 2010). 

In this class, a group of studies considered a homogeneous fleet of trucks for delivering the 

logs. In (Murphy, 2003; Bordón et al., 2018; Melchiori et al., 2022, 2023), the authors employed 

commercial solvers to solve their problems. Murphy (2003) suggested that it was more efficient to 

have forest owners rather than purchasers to transport logs from supply points to demand points. 

The author proposed an integer programming (IP) model for the daily routing of homogeneous 

trucks to minimize the total costs for two case studies with different sizes in New Zealand. In 

addition to the demand and supply constraints, each truck could operate only for a limited amount 

of time. It was concluded that the application of the model could result in cost savings for both 

cases. Bordón et al. (2018) introduced an MIP model that could integrate the log flow decisions 

into the routing decisions to minimize the total costs. In their problem, the homogeneous trucks 

were assigned to routes for delivering the truckloads from harvest areas to plants. The authors 
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applied their suggested model to two case studies and evaluated the performance of their model 

using different scenarios. An MIP model integrating the log allocation decisions along with routing 

and scheduling of homogeneous trucks was presented by (Melchiori et al., 2022). The main 

decisions of their model included raw material allocation, routing, and the arrival time of trucks at 

supply and demand locations. For scheduling, the time was discretized into shifts for loading and 

unloading activities to synchronize log loaders and trucks. The proposed model was applied to 

several examples from the Argentinian forest industry. The same authors extended their work in 

(Melchiori et al., 2023) by incorporating the synchronization of multiple resources. An integer 

linear programming (ILP) model was developed for allocation, routing, and scheduling of 

homogeneous trucks. They introduced valid inequalities and symmetry-breaking constraints to 

improve solving large-sized problems, and a heuristic method to obtain good initial feasible 

solutions.   

For complex problems, other papers developed non-exact methods to get good solutions 

with a reasonable optimality gap. Zazgornik et al. (2012) investigated the daily routing and 

scheduling of single truck type with stackable and foldable containers to deliver predetermined 

orders to customers with minimum total working time. The trips of the problem were classified 

into three groups, namely full-container trips, empty-container trips, and empty trips. Full-

container trips were considered as transport orders and empty-container trips were those 

movements for relocations of empty containers at forest sites and sawmills. The authors developed 

an MIP model and implemented the Tabu1 search-based approach to solve the problem and get the 

 

1 Tabu search: It is one of the effective metaheuristic algorithms. In the Tabu search, already visited solutions are 

kept in the Tabu list, through which trapping in local optimum solutions is avoided (Gendreau & Potvin, 2019). 
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solution in a reasonable time. To evaluate the performance of their algorithm, generated data were 

used, and three scenarios were defined. A computational study was conducted by Derigs et al. 

(2012) for routing and scheduling of delivering predetermined truckloads from forest areas to 

plants using a heterogeneous fleet of trucks dispatched from multiple depots. The trucks had a 

maximum tour length and could not be assigned to some routes because of road weight 

requirements. The performance of the proposed heuristics was evaluated using test problems. 

Daily routing and scheduling of homogeneous trucks were developed by Haridass et al. (2014) to 

minimize the total unloaded traveled distance per day. The simulated annealing (SA) algorithm 

was used to solve their problem. The authors tested their proposed algorithm on a small-sized 

problem with four trucks, two mills, and three loggers and the algorithm could find the optimal 

solution in less than two minutes. Moreover, the algorithm was also implemented for a company 

in Mississippi with 68 trucks, 13 mills, and 22 loggers.  Based on the results, the unloaded traveled 

distance was decreased by 28% for the company. The synchronization of trucks and loaders was 

not considered in the problem. 

There have been few studies incorporating a heterogeneous fleet of trucks in the integrated 

models for log logistics planning. Non-exact methods were used in these papers to solve the routing 

and scheduling of trucks. Column generation based approaches were employed in (Rey et al., 2009; 

Rix et al., 2015). Rey et al. (2009) developed a column generation-based IP model for LTSP with 

a 1-day planning horizon to determine the number of employed trucks, the schedule of trucks, and 

the daily volume of pickups and deliveries with minimum costs. Rix et al. (2015) introduced a 

problem with a 1-year planning horizon, which was divided into working days. In the study, flows 

of logs and routing and scheduling of trucks were integrated through an MIP model that minimized 

the total hauling and storage costs. The authors considered the inventory between different periods, 



17 

 

deterioration of logs in the supply points, different truck types, smooth workload between different 

periods, and synchronization of loaders and trucks. The column generation method was employed 

to solve the problem. The model, then, was applied to four different case studies in Quebec and 

British Columbia. Hirsch (2011) was another author who modeled the log transportation problem 

with predetermined flows as a multi-depot vehicle routing problem with pickup and delivery and 

time windows where trucks were heterogeneous and weight limits of routes had to be met. The 

solution approach included heuristics and variants of the Tabu Search (TS) algorithm. To illustrate 

the suggested method, the approach was applied to two test problems, concluding that the 

algorithm could find proper solutions for real problems.   

2.2.2 Decomposition optimization approach 

In the decomposition hierarchy methods, a complex problem is decomposed into smaller and 

simpler sub-problems to reduce the computational complexity and to make the problem more 

tractable (Schneeweiss, 1999). In (Palmgren et al., 2003), a two-phase method was employed for 

addressing the log truck scheduling problem with homogeneous trucks considering multiple log 

assortments. It was assumed that the logs of different assortments would not be mixed, and each 

truck had a trailer with three blocks where each block could include only one assortment. In the 

first phase, the routes were generated, while the second phase determined the scheduling decisions 

using the branch and price method. The routes had to satisfy the time window and truck capacity 

constraints. Palmgren et al. (2004) extended their previous research by proposing the column 

generation approach and the shortest path to solve the routing and scheduling of a homogeneous 

fleet of trucks. A two-stage approach was employed by El Hachemi et al. (2011). In each forest 

area and wood product mill, there was a loader for loading and unloading of trucks, and the home 

base of the homogeneous trucks was at the wood product mills. In the problem, it was assumed 



18 

 

that different log types were combined as a single product and the goal was routing and scheduling 

of trucks delivering predetermined full truckloads between forest areas and the wood product mills 

with the minimum total unloaded driving time and waiting time. The authors developed a 

constraint programming (CP) model for routing and scheduling decisions considering 

synchronization of trucks and loaders, and an IP model to minimize the empty driving time. The 

two models were linked together through global constraints. The models were applied to a 

Canadian case study. In (Vitale et al., 2021), homogeneous trucks, dispatched from a depot, were 

considered to carry different types of raw material from harvest areas to mills. The authors 

introduced a column generation algorithm to determine log allocation, routing decisions, and the 

number of dispatched trucks considering the maximum travelling time. Their approach was applied 

to test problems and a real case in Argentina. 

In (El Hachemi et al., 2013, 2015; Amrouss et al., 2017), a two-phase decomposition 

method was used for routing and scheduling of homogeneous log trucks with a one-week planning 

horizon in Canadian forest companies. In this method, the daily flows of logs were determined in 

the first phase, and the second phase tackled the daily routing and scheduling problem. In the study 

conducted by El Hachemi et al. (2013) synchronization of homogeneous trucks and loaders, 

multiple products, and inventory stock were considered. The authors introduced two different 

heuristic approaches to schedule daily activities with the minimum waiting time. Their study was 

tested on two different case studies in Canada. In (El Hachemi et al., 2015), daily flows between 

demand and supply points were determined through an IP model. Then, an IP flow-based model 

considering lunch breaks and synchronization of trucks and loaders was introduced. A branching 

strategy was introduced to minimize the empty driving time and waiting time for loaders and trucks 

delivering full truckloads of different log assortments. In the network flow model, each activity 
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such as deadhead, loading, loaded travel, and unloading was modeled as an arc, and time was 

discretized into time slices of a fixed duration. The authors applied their model to two different 

case studies. In a study conducted by Amrouss et al. (2017), unforeseen events disrupting 

transportation activities in the daily routing and scheduling of trucks were considered. Uncertainty 

and unforeseen events were addressed through a time-space network model. The authors listed 

some common unforeseen events such as delays, demand and supply variations, and closure of 

forest sites, mills, and roads, and explained the consequences of each of these events. In their 

approach, after the occurrence of unforeseen events, the space network and parameters were 

adjusted, and the updated network was re-optimized. This model was used as the second phase of 

a 2-phase decomposition approach, in which the flow-based model developed by El Hachemi et 

al. (2015) determined the daily flows of logs in the first phase. The model was applied to six 

Canadian case studies with a 6-week planning horizon and a simulation procedure was used to 

generate unforeseen events. The results showed that their approach performed well compared to a 

case in which all events were known in advance. Bordón et al. (2020) introduced a two-phase 

decomposition approach for daily log allocation, routing, and scheduling of homogeneous trucks 

considering route limitations and the maximum operating time for the trucks. In the first phase, an 

MIP model was developed for log allocation and routing of the trucks, while the second phase 

used the results of the first phase and addressed the scheduling decisions through an MIP model. 

The proposed methodology was tested on two cases to show the applicability of the models. 

For heterogeneous truck fleets, there have been few studies using decomposition methods. 

Rummukainen et al. (2009) investigated timber transportation in Finland. They described that the 

planning had three stages, namely load collection, load assignment, and truck routing. For each 

stage, they defined the problem and explained the objectives and constraints. In the load collection 
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problem, batches were classified based on their assortments and diameters. In the load assignment 

problem, an MIP was presented to assign each load to a destination and a delivery date with 

minimum transport and penalty costs. The load assignment problem was constrained by long-term 

transport and harvest plans. Finally, a heuristic method was used for the routing and scheduling 

problem to find the optimal routes and schedules for each day with the minimum total 

transportation costs. The transportation problem contained different types of nodes, which were 

start nodes, collection nodes, delivery nodes, crane pick-up nodes, driver change nodes, and 

stoppage nodes. The authors suggested the TS algorithm to solve the three problems.  

A two-phase decomposition approach was introduced by (Flisberg et al., 2009). In the first 

phase, the authors proposed a linear programming (LP) model to determine flows between supply 

and demand points, and then, they suggested two methods, i.e., heuristics approach and 

mathematical programming, to create transport nodes. In the second phase, they employed a 

standard TS for having near-optimal routing and scheduling decisions. To evaluate their 

methodology, the authors applied their problem to different Swedish forest companies, concluding 

that their approach was efficient in solving case studies with different sizes.  

Table 2-1 summarizes the log logistics literature. 
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Murphy (2003) Daily   • • IP2 •  •     •  • 

Rey et al. (2009) Daily  • • IP/heuristic  • •      •  

Hirsch (2011) Daily  • • Metaheuristic  • •      • • 

Derigs et al. (2012) Daily  • • Metaheuristic  • •      •  

Zazgornik et al. (2012) Daily  • • MIP3/ Metaheuristic •  •      •  

Oberscheider et al. (2013) Daily  • • MIP/heuristic •  •  •    • • 

Haridass et al. (2014) Daily  • • LP4/ Metaheuristic •  •      • • 

 

2 IP: Integer programming 
3 MIP: Mixed integer programming 
4 LP: Linear programming 
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Rix et al. (2015) Yearly  • • MIP/heuristic  • •    •  • • 

Bordón et al. (2018) Daily • •  MIP •  •     •   

Vitale et al. (2021) Daily • •  IP •  •      • • 

Melchiori et al. (2022) Daily • • • MIP •  •    • •   

Melchiori et al. (2023) Daily • • • ILP/heuristic •  •    • •   
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Palmgren et al. (2003) Daily  • • IP/heuristic •  •      • • 

Palmgren et al. (2004) Daily  • • IP/heuristic •  •      • • 

Rummukainen et al. (2009)  • • • MIP/ heuristic  • •      • • 

Flisberg et al. (2009) Weekly • • • LP/ Metaheuristic  • •      • • 

El Hachemi et al. (2011) Daily  • • CP5/IP •  •    •  • • 

 

5 CP: Constraint programming 
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El Hachemi et al. (2013) Weekly • • • MIP/heuristic •  •    •  • • 

El Hachemi et al. (2015) Weekly • • • MIP/IP •  •    • •  • 

Amrouss et al. (2017) Weekly • • • MIP/IP •  •    • •  • 

Bordón et al. (2020) Daily • • • MIP/MIP •  •    • •   
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2.3 Logistics and transportation of other forest products 

Rantala et al. (2003) focused on long-distance transportation of different types of seedlings to 

nurseries at the tactical level. To optimize the annual transportation, an LP model was presented 

in which loading and unloading costs, and fixed and variable costs for each vehicle were 

considered. The authors compared the centralized with decentralized transportation strategy for 

different production allocation strategies, concluding that a centralized strategy led to cost savings 

for nurseries. Another research for seedling transportation was conducted by Rantala (2004) that 

considered unit transportation costs per vehicle load rather than per seedling. To address the 

problem, the author presented an MIP model in which the objective function included terminal 

costs and transportation costs. To estimate the transportation cost for each vehicle between given 

supply and demand points, a linear equation was proposed that considered fixed and variable costs. 

Finally, the MIP and LP models in (Rantala et al., 2003) were compared. The author concluded 

that the results of the MIP were more accurate compared with those of the LP model, but in 

practice, the LP model was sufficient for companies. 

Scheduling of woody biomass trucks in western Oregon was described in (Han & Murphy, 

2012). The authors proposed an IP model to schedule different types of trucks carrying pre-

determined orders of biomass from 45 sawmills to 20 conversion facilities with minimum 

transportation costs and total working time for a whole day. Their problem was subject to a number 

of constraints such as assignment constraints, time limitation constraints, and demand satisfaction 

constraints. To solve the problem, the authors employed the SA algorithm. 

Agricultural-based biomass transportation was addressed by Gracia et al. (2014). In the 

study, different obstacles in the collection, handling, and transportation of agricultural-based 

biomass were identified. To address the transportation problem, the authors developed an IP model 
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to minimize the total cost of transporting biomass from orchards to biomass storage facilities. For 

solving the problem, Gracia et al. (2014) proposed a hybrid approach based on the genetic 

algorithm and local search methods. To show the applicability of the suggested model, they applied 

the model to a case study in Spain, in which the network contained 18 supply points and biomass 

storages.  

Wood chips transportation was studied by Nadimi et al. (2015). In the problem, 

homogeneous trucks delivered wood chips from a set of sawmills to a demand point. The goal was 

to schedule the trucks with minimum waiting times on a weekly basis. In the proposed 

methodology, an IP model was introduced to assign loads to each truck. Then, another IP model 

was developed for scheduling decisions. These two models were related to each other, and the 

output of the first model was used as the input of the second model. The models were solved 

iteratively, and in each iteration, inputs of the models were adjusted. For the solution approach, 

the authors implemented the SA algorithm, and the suggested model was applied to a case study 

in British Columbia. Results revealed that the fleet size was reduced by one-third compared to the 

base case scenario. Malladi et al. (2018) considered a large biomass logistics company in British 

Columbia where the suppliers provided different types of biomass using heterogeneous trucks. A 

group of trucks was not compatible with some locations and biomass types. Some types of biomass 

could be delivered directly from suppliers to customers, while other types of biomass required 

processing. To address this problem, the authors developed optimization models using the 

decomposition approach to minimize total costs. Initially, a transshipment model was introduced 

by which the number of truckloads between demand and supply points, the quantity of biomass to 

be comminuted, and the required truck types for each day of a week were determined. Then, the 

authors developed a routing model to find the optimal daily routes. The output of the transshipment 
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model was the input of the routing model. The scheduling of activities, however, was not addressed 

in their study. 

2.4 Transportation of forest products using other modes 

In addition to trucks, other transportation modes such as vessels and trains can be used to transport 

forest products. As mentioned by Kogler & Rauch (2018) , multimodal transportation is suitable 

for large volumes and long distances, and it leads to robustness of wood supply chains. In the wood 

supply chain literature, logistics of forest products with other transportation modes have been 

investigated using simulation models. 

A group of studies considered water transportation modes such as vessels to deliver forest 

products. Asikainen (2001) conducted a simulation study to analyze vessel transportation 

delivering wood from islands to a mill in Finland. The authors concluded that in their case study, 

it was more beneficial to utilize a barge system including a pusher boat and three barges.  In another 

simulation study conducted by Karttunen et al. (2012), the cost efficiency of waterway 

transportation was compared with that of truck transportation for forest chips in a region in Finland. 

They found that waterway transportation was cost-competitive to the trucking for distances more 

than 100-150 km. 

Rail is another mode of transportation in forest products supply chains. Gronalt & Rauch 

(2018) focused on transportation of logs using railway by developing a discrete event simulation 

model. Different simulation experiments with several terminals and industrial sites were conducted 

to improve the scheduling of railway operations. The study recommended to replace a single 

wagon load by a shuttle system. Karttunen et al. (2013) investigated the cost-efficiency of 

combined truck and railway transportation of wood chips. In their study, a simulation model was 

introduced and applied to the case of central Finland. The authors considered three scenarios, and 
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concluded that the cost of traditional supply chains was 5-19% more than that of the multi-modal 

scenarios.  

2.5 Conclusions 

In previous years, researchers have developed optimization models, heuristics approaches and 

solution methods to improve log logistics planning. A group of studies (e.g. Melchiori et al., 2022; 

Rix et al., 2015) integrated logistics decisions. Although the integrated method ensures the 

feasibility of plans, it adds to the complexities particularly for large-sized problems. To overcome 

the computational burdens, other studies employed (e.g. Bordón et al., 2020; Flisberg et al., 2009) 

decomposition methods, in which decisions are determined in different stages. The main objective 

of papers in both methods was economic related, for example minimization of costs, time, and 

unloaded traveled distance. However, other objectives, specifically social objectives, have not 

been considered enough in log logistics planning. 

Some researchers (e.g. Derigs et al., 2012; Oberscheider et al., 2013) assumed that the 

flows of logs were given as inputs or determined from an upper-level plan, and the main decisions 

of their model included routing and scheduling of trucks. Other studies (e.g. Flisberg et al., 2009; 

Vitale et al., 2021) determined flows of logs along with routing and scheduling of trucks. These 

studies had one day (e.g. Melchiori et al., 2022; Rey et al., 2009) or longer planning horizons (e.g. 

El Hachemi et al., 2013; Rix et al., 2015). Inventory decisions were usually used to link different 

periods when the planning horizon was more than a day. The daily processing decisions, however, 

were not incorporated in the literature. 

In the literature, papers have included details to address the practical aspects of the logistics 

planning. Both homogeneous and heterogeneous fleets of trucks, time windows, and maximum 

driving time have been addressed in previous studies (e.g. Murphy, 2003; Flisberg et al., 2009; 
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Zazgornik et al., 2012). Additionally, road weight limitations were considered in previous works 

to ensure that appropriate trucks were dispatched for delivering logs. However, other real-world 

complexities received less attentions in the literature. In previous studies, it was assumed that each 

truck could carry only one type of logs, and all logs were already sorted. However, in the actual 

operations, logs need to be sorted based on their species, quality and diameter. There are also other 

considerations for dispatching trucks. For instance, some trucks might not be suitable for 

delivering some logs. The compatibility requirements of trucks need to be incorporated in the log 

logistics planning. Also, forest companies usually employ trucking contractors to fulfill 

transportation activities. These contractors and their considerations were not investigated in the 

existing literature.  

For the scheduling of log trucks, most papers considered discretized time slots, meaning 

that activities were scheduled by assigning them to these slots with predetermined start and finish 

times. However, few studies used continuous time representation for modeling of log truck 

scheduling. Using continuous time representation can avoid unnecessary waiting times and leads 

to more accurate schedules compared to discretized time representation.  

As the log logistics and transportation problem is NP-Hard, appropriate solution 

approaches are required to solve the problem in a reasonable time. In the literature, different 

methods such as column generation-based approaches (e.g. Palmgren et al., 2004; Rix et al., 2015) 

and metaheuristics (e.g. Flisberg et al., 2009; Haridass et al., 2014) were developed to solve the 

problem. However, less attention was given to include operational details including trucking 

contractors and synchronization of heterogeneous trucks at both pickup and delivery locations. 

Therefore, future studies need to incorporate these details to have more realistic and practical 

logistics plans. 
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Chapter 3: Optimization of monthly flows of logs 

3.1 Synopsis 

Log logistics include sorting, processing, and transportation of logs from their place of harvest to 

demand locations. These activities account for a significant portion of the total log procurement 

costs; therefore, attempts were made in previous studies to optimize some aspects of log logistics. 

This chapter achieves the first objective of this dissertation by proposing a bi-objective mixed-

integer programming model to minimize the logistics costs and to provide a balanced workload 

for trucking contractors. The goal programming approach is employed to solve the bi-objective 

model.  The proposed model addresses the research gaps by incorporating operational details, such 

as sorting decisions, truck compatibility requirements, and social objectives, leading to more 

realistic and applicable results. The model is applied to a large Canadian forest company, where 

trucking contractors use a heterogeneous fleet of trucks to carry various log sorts from cut blocks 

to sort yards. The planning horizon is one month with daily decisions.  

3.2 Problem definition 

The majority of previous log logistics studies focused on economic objectives. Real-world 

complexities such as log sorting were less investigated. In this chapter, a bi-objective optimization 

model is developed for the determination of log flows considering real-world complexities. The 

first objective of the model is to minimize the total costs of log logistics considering sorting 

decisions, a heterogeneous fleet of trucks, compatibility requirements, and multiple log 

assortments. The second objective balances the workload for log trucking contractors.  

It is noteworthy that our approach in balancing the workload is different from previous 

studies. While Hirsch and Gronalt (2013) balanced the workload for carriers after determining the 

transport orders in a separate optimization model, in our model, workload balancing is integrated 
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into the truckload optimization model. Unlike Rix et al. (2015), who added a constraint for 

balancing the workload into their optimization model, a second objective function is added in our 

model to balance the workload of contractors. This will allow the model to optimize the log 

logistics based on costs and social objective. The social objective minimizes the summation of 

maximum difference between truckload numbers and the desired number of truckloads for each 

contractor. Hence, the workload for all contractors is balanced in our work as opposed to 

minimizing the maximum working hours which was done in (Ramos et al. 2014). Compared to the 

log logistics literature, the novelty of this research is in incorporating truck/log-type/location 

compatibility requirements, log sorting decisions, different contractors, and the social objective 

into the mathematical programming model. 

3.3 Bi-objective optimization model 

The developed mathematical programming model is a bi-objective MIP model for optimizing the 

logistics problem. The inventory volume and the flows of logs between cut blocks and sort yards, 

and the volume of processed logs at sort yards are the decisions of the model, while the main inputs 

of the model include costs parameters, yard capacities, and compatibility requirements. The main 

outputs of the model are: (1) The daily number of truckloads of each type of truck transported from 

each cut block to each sort yard by each contractor, (2) The daily volume of unsorted logs that is 

sorted at each sort yard, (3) The inventory decisions at each sort yard, and (4) The workload of the 

trucking contractors over the planning horizon. The notations of the model are shown in Table 3-1. 

Table 3-1. The notations of the monthly flow optimization model 

Indices Description 

B Set of cut blocks b ∈ {1, … , B} 

Y Set of yards y ∈ {1, … , Y} 

S Set of log sorts s ∈ {1, … , S} 
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Indices Description 

R Set of truck types r ∈ {1, … , R} 

O Set of contractors o ∈ {1, … , O} 

T Set of time periods t ∈ {1, … , T} 

Parameters Description 

TTbyr 
Travelling time from cut block b to yard y by truck type r (including back 

and forth trips, loading and unloading times) (hour) 

TCr Transportation cost of truck type r per hour ($/hour) 

SWbs Supply volume of log sort s in sorted logs (m3) 

SCbs Supply volume of log sort s in unsorted logs (m3) 

Qr Capacity of truck type r (m3) 

αbo If contractor o can serve cut block b 1; otherwise, 0 

βro If contractor o has truck type r 1; otherwise, 0 

Nro The number of truck type r that contractor o owns 

ϕo 
Desired number of truckloads that each contractor prefers to carry on each 

day 

γr If truck type r can carry sorted logs 1; otherwise, 0 

εr If truck type r can carry unsorted logs 1; otherwise, 0 

M 
A large number that is used in compatibility constraints to ensure that 

appropriate contractors and trucks are used 

Dys
t  The demand volume of log sort s at yard y on each day (m3) 

SCy Space capacity of yard y for unsorted logs (m3) 

CWy Daily processing capacity of yard y for sorted logs (m3) 

CCy Daily processing capacity of yard y for unsorted logs (m3) 

CYy Daily total processing capacity of yard y (m3) 

Tmax Maximum driving time of trucks on each day (hour) 

P 
Penalty for having inventory at cut blocks at the end of the planning horizon 

($/m3) 
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Decision variables Description 

ibwbs 
Stored volume of log sort s in sorted logs at cut block b at the end of 

planning horizon (m3) 

ibcbs 
Stored volume of log sort s in unsorted logs at cut block b at the end of 

planning horizon (m3) 

vwbysro
t  

The volume of log sort s in sorted logs transported by contractor o using 

truck type r between cut block b and yard y on each day (m3) 

vcbysro
t  

The volume of log sort s in unsorted logs transported by contractor o using 

truck type r between cut block b and yard y on each day (m3) 

nwbysro
t  

The number of truckloads of log sort s transported between cut block b and 

yard y by contractor o using truck type r on each day 

ncbyro
t  

The number of truckloads for unsorted logs transported between cut block b 

and yard y by contractor o using truck type r on each day 

iwys
t  Inventory of log sort s at the water in yard y at the end of each day (m3) 

icys
t  Inventory of log sort s in unsorted logs in yard y at the end of each day (m3) 

pvys
t  

Volume of unsorted logs for sort s that is sorted (processed) in yard y at the 

end of each day (m3) 

uo 
Maximum difference between the daily number of truckloads and the desired 

number for contractor o 

 

3.3.1 Objective function 

The first objective function of this model, shown in equation (3-1), is to minimize the total costs 

associated with the logistics network. The first term represents the total monthly transportation 

costs, which include the fixed cost of using trucks and variable costs such as the drivers’ pay. The 

second term calculates the penalty costs for storing sorted and unsorted logs at the cut blocks. 

Min. Z1 = ∑ ∑ ∑ ∑ ∑ (∑ nwbysro
t

s∈S

+ ncbyro
t ) . TCr. TTbyr

o∈Or∈Ry∈Yb∈Bt∈T

+ ∑ ∑ P ∗ (ibwbs + ibcbs)

s∈Sb∈B

 (3-1) 
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As explained in (Malladi et al., 2018), because the volume of supply and demand is greater 

than the volume of trucks, and multiple truckloads are needed to fulfill the transport orders between 

supply and demand points, the travelling time includes back-and-forth trips and loading and 

unloading times. 

The second objective function, shown in equation (3-2), is the social objective to balance 

contractors’ workload by minimizing the summation of the maximum difference between the daily 

number of truckloads and the desired number of truckloads for each contractor. This leads to less 

variation in the daily number of truckloads that the contractors transport over the planning horizon. 

Hence, the workload of all contractors will be more balanced, which is assumed to result in the 

overall satisfaction of the contractors. 

Min Z2 = ∑ uo

o∈O

 (3-2) 

3.3.2 Constraints 

Constraint set (3-3) indicates that the total volume of sorted logs sent from the roadside of each 

cut block plus the stored volume of the sorted logs at the cut block is equal to the available volume 

of sorted logs at that cut block over the entire planning horizon. Similarly, constraints (3-4) imply 

that at the roadside of each cut block, the total stored volume of unsorted logs and volume of 

unsorted logs sent from the roadside of the cut block during the planning horizon is equal to the 

available unsorted logs. 

∑ ∑ ∑ ∑ vwbysro
t

y∈Yr∈Ro∈Ot∈T

+ ibwbs = SWbs ∀b ∈ B, s ∈ S (3-3) 

∑ ∑ ∑ ∑ vcbysro
t

y∈Yr∈Ro∈Ot∈T

+ ibcbs = SCbs ∀b ∈ B, s ∈ S (3-4) 
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Some contractors cannot fulfill transport orders from some cut blocks. Additionally, some 

trucks cannot be used for transporting some types of logs. Hence, the number of truckloads 

between supply and demand points depends on the truck type. It means that the number of 

truckloads delivered by incompatible truck types should be zero. Constraint set (3-5) ensures that 

appropriate contractors and truck types are used for transporting loads containing sorted logs. 

Constraint set (3-6) guarantees that compatible trucks and contractors transport unsorted logs. 

∑ ∑ nwbysro
t

y∈Yt∈T

≤ M. αbo. βro. γr , ∀b ∈ B, s ∈ S, o ∈ O, r ∈ R, (3-5) 

∑ ∑ ncbyro
t

y∈Yt∈T

≤ M. αbo. βro. εr , ∀b ∈ B, o ∈ O, r ∈ R, (3-6) 

The daily number of truckloads of sorted and unsorted logs between cut blocks and sort 

yards is calculated using constraint sets (3-7) and (3-8), respectively. Constraint set (3-7) asserts 

that each sorted truckload has only one log sort, while constraints (3-8) imply that each unsorted 

truckload can include more than one log sort. 

(nwbysro
t − 1)Qr ≤ vwbysro

t ≤ nwbysro
t Qr , ∀b ∈ B, y ∈ Y, s ∈ S, o ∈ O, r ∈ R, t ∈ T (3-7) 

(ncbyro
t − 1)Qr ≤ ∑ vcbysro

t

s∈S

≤ ncbyro
t Qr , ∀b ∈ B, y ∈ Y, o ∈ O, r ∈ R, t ∈ T 

(3-8) 

Constraint set (3-9) ensures that for each contractor, the daily difference between the total 

number of truckloads and the desired number cannot exceed the maximum value. 

|(∑ ∑ ∑ (ncbyro
t + ∑ nwbysro

t

s∈S

)

r∈Ry∈Yb∈B

) − ϕo| ≤ uo , ∀o ∈ O, t ∈ T (3-9) 

Constraints set (3-10) calculates the daily inventory of stored unsorted logs for each sort at 

the sort yards, which is equal to the total inventory of the sort on the previous day and the volume 
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of the sort in unsorted logs delivered on that day minus the volume of the sort obtained from sorting 

the unsorted logs. The daily inventory of each sort in the water is determined using constraint set 

(3-11), where the volume of the sort coming out of unsorted logs is added to the total inventory of 

the sort on the previous day and the volume of sorted logs delivered on that day. Also, the daily 

demand of each sort is deducted from the inventory of the sort in the water.  

icys
t = icys

t−1 + ∑ ∑ ∑ vcbysro
t

r∈Ro∈Ob∈B

− pvys
t  , ∀y ∈ Y, s ∈ S, t ∈ T (3-10) 

iwys
t = iwys

t−1 + ∑ ∑ ∑ vwbysro
t

r∈Ro∈Ob∈B

+ pvys
t − Dys

t , ∀y ∈ Y, s ∈ S, t ∈ T (3-11) 

At each sort yard, there is a limited space available for storing unsorted logs. As shown in 

constraint set (3-12), the daily inventory of unsorted logs in each yard cannot exceed the storage 

capacity of the yard.  

∑ icys
t

s∈S

≤ SCy , ∀t ∈ T, y ∈ Y, (3-12) 

Each sort yard has a limited daily capacity for processing sorted and unsorted logs. 

Constraint set (3-13) ensures that on each day, each sort yard cannot process sorted logs more than 

its capacity. Constraint set (3-14) implies that the daily volume of unsorted logs that is sorted at 

each sort yard should be less than the capacity of the sort yard. 

∑ ∑ ∑ ∑ vwbysro
t

s∈Sb∈Bo∈Or∈R

≤ CWy , ∀t ∈ T, y ∈ Y (3-13) 

∑ pvys
t

s∈S

≤ CCy , ∀t ∈ T, y ∈ Y, (3-14) 
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There is a maximum capacity for each sort yard for processing both sorted and unsorted 

logs. Constraint set (3-15) guarantees that the total daily volume of sorted and unsorted logs that 

is processed in each sort yard cannot exceed the total processing capacity of the sort yard. 

∑ ∑ ∑ ∑ vwbysro
t

s∈Sb∈Bo∈OR∈R

+ ∑ pvys
t

s∈S

≤ CYy , ∀t ∈ T, y ∈ Y 

 

(3-15) 

Constraint set (3-16) ensures that contractors have sufficient trucks of each type to deliver 

both sorted and unsorted truckloads from cut blocks to sort yards on each day. 

∑ ∑ (∑ nwbysro
t

s∈S

+ ncbyro
t ) TTbyr

y∈Yb∈B

≤ Nro ∗ Tmax ∀o ∈ O, r ∈ R, t ∈ T (3-16) 

Finally, constraint sets (3-17) and (3-18) control the sign and the domain of the variables. 

vwbysro
t ≥ 0, vcbysro

t ≥ 0, ibwbs ≥ 0, ibcbs ≥

0, iwys
t ≥ 0 , icys

t ≥ 0, pvys
t ≥ 0 ,  

∀b ∈ B, y ∈ Y, s ∈ S, r ∈ R, o ∈ O t ∈ T, (3-17) 

nwbysro
t ∈ ℤ , ncbyro

t ∈ ℤ , uo ∈ ℤ , ∀b ∈ B, y ∈ Y, s ∈ S, r ∈ R, o ∈ O t ∈ T. (3-18) 

3.4 Goal programming model 

To solve the proposed bi-objective model, the goal programming method is employed. In this 

approach, a goal is defined for each objective function and deviations from the goals are minimized 

(readers are referred to (Jones, 2010) for a comprehensive explanation on goal programming). In 

order to determine the goals, one approach is to solve the single objective models and use the 

values of single objective functions as the goals. Another approach is to use decision makers’ 

defined goals (Colapinto et al., 2017). Additional notations for the goal programming model are 

shown in Table 3-2. 
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Table 3-2. Notations of the goal programming model 

Parameters Description 

w1 The weight for goal 1 

w2 The weight for goal 2 

Goal1 Goal for the first objective 

Goal2 Goal for the second objective 

Decision variables Description 

dev1
+ Positive deviation of objective function 1 from Goal 1 

dev2
+ Positive deviation of objective function 2 from Goal 2 

As underachievement of goals is desired, only positive deviations of objectives from their 

goals should be minimized. Objective function (3-19) minimizes the weighted summation of 

positive deviations where the weights reflect the importance of the goals.  

Min Z = w1. dev1
+ + w2. dev2

+,  (3-19) 

As the objectives do not have the same scale, the deviations from the goals are normalized. 

The model has the same constraints as shown for the bi-objective model (Constraint sets (3-3) to 

(3-18)).  

Constraint sets (3-20) and (3-21) are added in the goal programming model to link the first 

and the second objective functions to their goals. 

∑ ∑ ∑ ∑ ∑ (∑ nwbysro
t

s∈S

+ ncbyro
t ) . TCr. TTbyr

o∈Or∈Ry∈Yb∈Bt∈T

+ ∑ ∑ P ∗ (ibwbs + ibcbs)

s∈Sb∈B

− dev1
+

≤ Goal1 

(3-20) 

∑ uo

o∈O

− dev2
+ ≤ Goal2 (3-21) 

The sign and the domain of the decision variables are illustrated by constraints (3-22) and 

(3-23). 
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dev1
+ ≥ 0 (3-22) 

dev2
+ ∈ ℤ (3-23) 

3.5 Execution of the model 

As we were in contact with the forest company, and not with their contractors, we used the single 

objective model to estimate the desired number of truckloads for the contractors. If we were in 

contact with the contractors, we would just use the number of truckloads they would propose. In 

general, the desired number of truckloads can be given as a parameter to the model, and the goal 

programming model can generate workloads with small deviation from the desired number. 

First, the single-objective cost model (excluding the second objective function, equation 

(3-2), and constraint set (3-9)) is solved. Then, the minimum total cost from the single-objective 

model is considered as the cost goal. The daily number of truckloads for each contractor is 

determined by the model and is used to calculate the average number of truckloads (desired 

number) for each contractor. Next, the second goal, i.e., the summation of the maximum difference 

between daily number of truckloads and the desired levels, is set to zero, corresponding to the ideal 

case in which all contractors have even workloads over the planning horizon. Finally, the goal 

programming model with different weights for goals are solved. 

The proposed model for the case study has a 1-month planning horizon (20 working days) 

with 8.5 working hours per day. It is assumed that tugboats tow the logs from sort yards at the end 

of day 10 and day 20. The developed goal programming model for the case study had 3,080,403 

decision variables, among which 1,037,569 were binary and integer decisions. The model included 

2,105,195 constraints. Using CPLEX solver of AIMMS software package (CPLEX — AIMMS, 

2022) on a desktop computer with Intel® Core™ i7-6700 CPU, 3.40 GHz processor, and 16 GB 

RAM, led to a processing time of 8 hours. 
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3.6 Results 

3.6.1 Single-objective cost minimization model 

Table 3-3 summarizes the minimum, the average, and the maximum number of daily truckloads 

and also the maximum difference between daily truckload numbers and the average value for each 

contractor obtained from the single-objective optimization model. The total logistics cost obtained 

from the single objective model is $1,093,953. 

Table 3-3. Information regarding number of daily truckloads for each contractor (single objective model) 

Contractors 

Min. 

number of 

truckloads 

Average 

number of 

truckloads 

Max. 

number of 

truckloads 

Maximum difference between 

daily truckload numbers and 

the average value 

Contractor 1 1 1 2 1 

Contractor 2 4 20 33 16 

Contractor 3 2 5 22 17 

Contractor 4 1 4 12 8 

Contractor 5 3 16 28 13 

Contractor 6 3 4 6 2 

Contractor 7 1 5 11 6 

Contractor 8 13 30 50 20 

Total  85  83 

The number of each truckload type delivered to the sort yards and the volume of unsorted 

logs that is sorted are shown in Table 3-4. As Yard 2 has more processing capacity, it receives 

more truckloads and larger volume of unsorted logs are sorted there compared to the other yards. 

Table 3-4. Number of delivered truckloads and the volume of logs sorted in the sort yards (single objective model) 

Sort yards 
# of sorted 

truckloads 

# of unsorted 

truckloads 

Total number 

of truckloads 

Volume of unsorted 

logs that is sorted (m3) 

Yard 1 29 112 141 7,296 

Yard 2 205 691 896 31,104 

Yard 3 255 388 643 16,400 
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Figure 3-1 shows the inventory of stored logs in the water for each sort yard over the 

planning horizon. As more truckloads are delivered and processed at the sort yards, the inventory 

of logs in the water increases until the tugboats tow the logs. The tugboats are assumed to tow the 

logs on day 10 and day 20. Therefore, the log inventory at the water is reduced on these days. 

 

Figure 3-1. The inventory of logs in the water at each yard over the planning horizon 

The single objective model does not generate a balanced workload for the contractors. 

Figure 3-2 shows the daily number of both sorted and unsorted truckloads delivered by each 

contractor on each day. The total number of truckloads delivered by contractors varies over the 

planning horizon. Contractors prefer less workload variations among working days to avoid 

operation disruption in other regions. However, the variations for some contractors are 

significantly high. For instance, as shown in Figure 3-2, contractor 8 carries 14 truckloads on day 

15 and 50 truckloads on day 17. 
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Figure 3-2. Daily total number of truckloads for each contractor over the planning horizon (single objective model) 

3.6.2 Goal programming model 

The forest company indicated that the contractors prefer balanced workloads and they asked to 

consider that in the modeling. As shown earlier, the single objective model cannot generate smooth 

and balanced workloads. Even adding constraints to the single objective model in order to limit 

the variations of truckloads between consecutive days to the specified low values would lead to 

high variations over the planning horizon and that model had been tested. Therefore, the goal 

programming is used to balance the workload of contractors by minimizing the deviations from 

the total cost goal and deviations of daily number of truckloads from the desired number. 

In the goal programming model, the importance of goals is expressed by the value of their 

weights. Greater weights reflect more importance, while equal weights indicate the same 

importance. When the goal programming model with the same weight (w1 = w2 = 0.5) is solved, 

the model generates balanced workloads with only 0.4% increase in the total cost (Figure 3-3). 
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Figure 3-3. Daily workload of contractors (goal programming model when w1=w2=0.5) 

When the objectives have the same weights (w1 = w2 = 0.5), the contractors transport 1,709 

truckloads over the planning horizon, while 1,680 truckloads are carried to sort yards in the 

solutions obtained from the single-objective model. Table 3-5 depicts the total number of 

truckloads for each contractor resulted from the single objective and goal programming models. 

Table 3-5. The total number of truckloads carried by each contractor 

Contractor 

Total number of truckloads 

Single objective 

model 

Goal programming model  

(w1 = w2 = 0.5) 

Contractor 1 26 20 

Contractor 2 400 400 

Contractor 3 108 109 

Contractor 4 67 80 

Contractor 5 317 320 

Contractor 6 85 80 

Contractor 7 77 100 

Contractor 8 600 600 

Total 1680 1709 
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The number of truckloads delivered to each sort yard and the volume of processed unsorted 

logs at the sort yards from the goal programming model are shown in Table 3-6. The third and the 

fifth columns of Table 3-6 present the percentage of change in the number of truckloads compared 

to the solution from the single-objective model for sorted and unsorted truckloads, respectively. 

Table 3-6. Number of delivered truckloads and volume of logs sorted in the sort yards (goal programming model 

when w1=w2=0.5) 

Yards 

Sorted truckloads Unsorted truckloads 

Number 

Change 

compared 

to single-

objective 

model 

Number 

Change 

compared to 

single-

objective 

model 

Volume of 

unsorted logs that 

is sorted (m3) 

Yard 1 35 21% 119 6% 7,001 

Yard 2 243 19% 665 -4% 31,174 

Yard 3 270 6% 377 -3% 16,400 

The percentage of used and unused processing capacities are shown in Figure 3-4. It can 

be observed that Yard 3 is using 93% of its total processing capacity, while Yard 1 utilizes almost 

half of its capacity. 

 

Figure 3-4. Percentage of average processed volume when w1=w2=0.5 
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3.6.3 Sensitivity analysis 

In this section, two types of sensitivity analysis are conducted on the goal programming model to 

evaluate the impact of changes in parameters on the outputs of the model. 

In the first type of sensitivity analysis, different values are assigned to the weight of each 

goal to evaluate the changes in the total costs and the total maximum difference of truckload 

numbers from the desired value for the contractors (Table 3-7). In Table 3-7, the first and the 

second columns indicate the weights, which represent the importance of each goal, and the third 

and fourth columns show the value of objective functions. As it is shown, there is a trade-off 

between the two objectives, and increasing the weight of the second goal leads to a more balanced 

workload for the contractors. When the weight of the second goal is 0.9, the workload is fully 

balanced for all contractors over the planning horizon. 

Table 3-7. Sensitivity analysis of the goal programming model based on different weights 

Weight of the cost 

goal  

(𝒘𝟏) 

Weight of the 

workload balancing 

goal (𝒘𝟐) 

Cost objective 

(𝒁𝟏) 

Workload balancing objective  

(𝒁𝟐) 

0.1 0.9 $1,103,494 0 

0.5 0.5 $1,097,767 1 

0.9 0.1 $1,095,768 2 

The second type of sensitivity analysis is performed on the goal programming model for 

equal weights (when w1 = w2 = 0.5) to evaluate the impact of changes in the value of parameters 

on the achievement of the defined goals. The same approach as presented in (Chang, 2011) is 

applied for the second type of sensitivity analysis. As mentioned earlier, the cost goal is 

$1,093,953, while the second goal is set to be zero. The effect of changes in six parameters (space 

and processing capacities, transportation costs, supply, demand, the desired number of daily 

truckloads, and the penalty cost) is investigated. Similar to Vancas (2003), the parameters are 



45 

 

changed by ±20%. The achievement of each goal and the total deviation resulting from changes in 

input parameters are summarized in Table 3-8. 

Table 3-8. Sensitivity analysis of the goal programming model (w1=w2=0.5) based on variations in parameters 

Parameter (variation percentage) 
Goal 1 

achievement 

Goal 2 

achievement 

Total deviation 

from the goals 

Transportation cost (-20%) 100% 100% 0 

Demand (-20%) 100% 100% 0 

Yards capacity (+20%) 100% 100% 0 

Penalty cost (-20%) 99.8% 99% 0.004 

Penalty cost (+20%) 99% 99% 0.0043 

Desired number of truckloads (+20%) 96% 94% 0.0048 

Transportation cost (+20%) 80% 14% 0.51 

Supply (+20%) 0% 0% 1.22 

Desired number of truckloads (-20%) 90% 0% 4.94 

Yards capacity (-20%) Infeasible Infeasible Infeasible 

Demand (+20%) Infeasible Infeasible Infeasible 

Supply (-20%) Infeasible Infeasible Infeasible 

According to Table 3-8, decreasing hourly transportation cost and demand results in lower 

total transportation costs, and both goals are fully achieved by the goal programming model. Also, 

when capacities of yards increase, both goals are achieved as the model becomes more flexible to 

generate balanced workloads and reduce total costs. However, when supply increases, none of the 

goals are met because more logs need to be delivered to yards. As a result, the variation of 

workload from contractors’ desired value increases. In addition, when the daily desired number of 

truckloads decreases, the generated workload by the model would not be balanced and the cost 

goal would be achieved by 90%. 

It should be mentioned that the problem becomes infeasible when supply decreases or 

demand increases by 20%, as these changes cause supply shortage. Also, when the capacity of 
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yards decreases by 20%, the problem becomes infeasible because the yards would not have enough 

capacity to process the delivered logs. 

3.7 Discussion 

In the case study, the contractors (not drivers) are hired by the company to perform the 

transportation of logs, therefore, the company aims to address the contractors’ concerns. In the 

communication with the forest company, it was told that high variations in daily number of 

truckloads would not be acceptable by the trucking contractors. Therefore, the results of the single 

cost objective model were not acceptable because of high variations of daily truckload numbers 

over the planning horizon (Figure 3-2). In fact, a model was needed in order to balance the daily 

workload for the trucking contractors. 

According to previous studies (e.g. Matl et al. 2019; Vidal et al. 2020), more attention has 

been given to balancing the workload in logistics and supply chain networks. Balanced workloads 

result in reduced overtime costs, improved customer service, better utilization of resources, and 

stakeholder and employee satisfaction. It is noteworthy that there is no specific definition of 

workload (Mancini et al., 2021). Most studies considered tour length for balancing the workloads, 

while other important aspects such as the amount of delivered loads were often disregarded (Matl 

et al., 2019; Mancini et al., 2021). In our study, the daily number of truckloads is considered as a 

determinant of workload balancing. According to the forest company, balanced truckload numbers 

over the planning horizon would satisfy the trucking contractors.  Because each contractor in the 

case study operates in cut blocks that are geographically close to each other, and each truck delivers 

2 to 3 truckloads each day, balancing the number of truckloads for contractors translates to having 

a balanced number of trucks and consequently to a balanced workload for each truck driver over 

the planning horizon. The proposed bi-objective model introduced a separate objective function 
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that minimizes the summation of the maximum difference between the daily number of truckloads 

and the desired number of truckloads for each contractor. This separate objective achieves 

contractors’ satisfaction and indirectly drivers’ satisfaction. 

As mentioned above, employee/stakeholder satisfaction is one of the consequences of the 

workload balancing. Employee satisfaction is identified as one of the social aspects in previous 

studies (e.g. Banasik et al. 2018; Sherafati et al. 2020; Moghdani et al. 2021). For example, Banasik 

et al. (2018) considered stakeholder satisfaction along with other factors such as number of created 

jobs as social indicators in supply chain networks. As the generated workloads are accepted by the 

forest company and can lead to contractors’ satisfaction according to the forest company, the 

second objective function is called the “social objective” in this work.  

One of the advantages of balancing workloads in the form of a separate objective and 

employing the goal programming is that the workloads are balanced over the planning horizon. It 

may seem that if constraints were added to the single objective model to limit the workload 

difference between consecutive days, the solution would generate balanced truckload numbers 

during the planning horizon. However, that approach was tested, and the results showed high 

variations in the number of truckloads for contractors over the planning horizon. For instance, 

limiting the maximum difference of truckloads between consecutive days to 3 resulted in 48 

truckloads difference between day 1 and day 20 for one of the contractors. Besides, the goal 

programming model generates feasible solutions with the least deviation from contractors’ 

workload preferences. A single objective model with the workload balancing constraints might 

produce infeasible solutions as the preferred workload of contractors sometimes are not feasible. 

For example, if the difference of truckloads between the consecutive days is limited to less than 2, 

the model cannot satisfy other constraints, which leads to infeasibility of the problem. According 
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to Figure 3-3, incorporating the second objective for balancing the workload along with the cost 

objective can considerably reduce the variations. 

As shown in Table 3-3, the summation of the maximum difference between daily number 

of truckloads and the average value obtained from the single objective model (w1 = 1, w2 = 0) was 

83. However, considering even a small weight for the second objective led to a substantial 

reduction in the total maximum difference between the daily number of truckloads and the desired 

number of truckloads for the contractors (workload balancing objective, Z2, fourth column in Table 

3-7). Compared to the single objective model (total cost = $1,093,953), implementing the goal 

programming model increased the total cost (total cost = 1,097,767) by almost 0.4% because in 

order to balance the workload for the contractors, the demand of some sort yards has to be met 

using other contractors that serve different cut blocks with longer travelling times than the ones in 

the solution obtained from the single-objective model. It should be mentioned that the proposed 

approach was applied to different planning horizons, and the model could generate balanced 

workload for all of them. However, the level of workload for each contractor may not be the same 

in different months as the supply volume varies throughout a year. 

Based on the sensitivity analysis, there was a trade-off between the cost objective and the 

workload balancing objective. Additionally, decreasing the hourly transportation cost, decreasing 

demand, and increasing yards’ capacities by 20% led to the full achievement of both goals. 

The proposed models are flexible and can be applied to other cases and problems. For 

example, in this case, the fleet of trucks consisted of only highway and off-highway trucks 

differentiated by their capacity and compatibility requirements. However, more truck types with 

different compatibility requirements can be considered. Also, contractors and their working areas 
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and number of trucks are input parameters, and they can be adjusted in case there are changes to 

the contractors.  

3.8 Conclusions 

The focus of this chapter was on the log logistics problem. There have been several research papers 

addressing the log logistics problem in the literature, however, previous studies did not consider 

sorting decisions, compatibility requirements of assigned trucks, multiple trucking contractors, and 

balancing the workload for contractors. These gaps were addressed in this chapter. A bi-objective 

mixed integer programming model was developed and solved using the goal programming 

approach. The first objective of the model was to minimize the logistics costs. The second 

objective was to balance the workload for all contractors. Balancing the workload of contractors 

was done by minimizing the summation of the maximum difference between the daily number of 

truckloads and the desired number of truckloads for each contractor. The model was applied to a 

case study of a large forest company in British Columbia, Canada. The results of the goal 

programming model generated balanced workload for the contractors with less than 0.4% increase 

in the total cost compared to that of the single objective model. Sensitivity analysis conducted on 

the weights indicated a trade-off between the two objectives, while sensitivity analysis on input 

parameters showed that decreasing hourly transportation cost, decreasing demand, and increasing 

yard capacities by 20% would result in full achievement of both goals. 

In this chapter, the first objective of the thesis was achieved through the development of a 

bi-objective optimization model incorporating practical considerations. The proposed model can 

be modified and applied to the case of other forest companies to help managers in their decision-

making.   
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Chapter 4: Daily routing and scheduling optimization model 

4.1 Synopsis 

In this chapter, the second research objective of this study is achieved by developing an 

optimization model for daily routing and scheduling of heterogeneous trucks considering 

synchronization constraints. The daily log volumes and truckload numbers between each pair of 

cut blocks and sort yards are allocated in the upper-level plan generated from the mathematical 

model described in Chapter 3. Continuous time representation is used for modelling the problem 

to generate accurate schedules and to synchronize the trucks and loaders at cut blocks and sort 

yards. Compatibility requirements, overtime, and decisions related to the trucking contractors are 

incorporated in the model. The outputs of the model include: 1) the number of trucks utilized by 

each contractor, 2) the arrival times and waiting times of trucks at each location, 3) the detailed 

schedule of loaders, and 4) the amount of overtime assigned to the trucks. To validate the model, 

it is applied to test problems from a case of a Canadian forest company, where transportation 

activities are contracted out.  

4.2 Problem definition 

In this section, the developed optimization model for the daily routing and scheduling of a 

heterogeneous fleet of log trucks is presented. The number of truckloads between each pair of cut 

blocks and sort yards is determined by an upper-level model, developed in Chapter 3. The 

generated truckloads from the upper-level model ensures a daily balanced workload for the 

trucking contractors. Hence, the pickup (cut blocks) and delivery (sort yards) locations, the 

responsible contractor, and the truck type for each truckload are the inputs of the current model. It 

is assumed that there is a loader at each cut block and each sort yard for loading and unloading 

activities. The loaders and trucks need to be synchronized. It means that when a truck arrives at a 
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location, it has to wait until the loader becomes idle to load/unload the logs. The goal is to assign 

the truckloads to available compatible trucks and to find the detailed scheduling of delivering them 

at the sort yards with minimum costs. 

4.3 Network representation 

The scheduling problem is defined on a network where 𝑃 and 𝐷 are pickup (cut blocks) and 

delivery (sort yards) nodes, respectively. In this network, each truckload is represented by a pair 

of pickup and delivery nodes. It is noteworthy that as cut blocks (sort yards) can send (receive) 

more than one truckload, each cut block (each sort yard) can have one or several nodes. The 

approach adopted in this study to model the problem has similarities with the one employed in 

(Soares et al., 2019). In both studies network models are used to model the scheduling problem. 

Unlike (Soares et al., 2019), this chapter synchronizes log loaders and trucks at both pickup and 

delivery nodes and incorporates decisions related to the trucking contractors. 

For modelling purposes, the problem is divided into three sub-problems. Figure 4-1 

represents the network for the first sub-problem at the pickup (cut block) nodes. To model the 

problem, a virtual depot including two nodes is added to the network. The first node (𝑐+) is the 

start node and the second node (𝑐−) is the sink node. Therefore, the directed graph, shown in Figure 

4-1, can be defined as 𝐺1 = (𝑁1, 𝐴1), where 𝑁1 = 𝑐+ ∪ 𝑐− ∪ 𝑃 and the nodes are connected by 

arcs (𝐴1). This problem can be considered as a vehicle routing problem (VRP), where each node 

must be exactly visited once, by only one loader. These loaders start their trip from the start node 

and finish their work by visiting the sink node. In the directed graph, 𝜑𝑖𝑙
+ and 𝜑𝑖𝑙

− show the sets of 

nodes that succeed and precede node 𝑖 by loader 𝑙, respectively. A simple example is shown in 

Figure 4-2, where nodes 𝑐−and 𝑃3 succeed node 𝑃2 by loader 𝑙 (i.e. 𝜑𝑃2𝑙
+ ∈ {𝑐−, 𝑃3}), and nodes 

𝑐+, 𝑃1, and 𝑃4 precede node 𝑃2 by loader 𝑙 (i.e. 𝜑𝑃2𝑙
− ∈ {𝑐+, 𝑃1, 𝑃4}). 
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Figure 4-1. The sub-network for loaders at cut blocks (pickup network) 

 

Figure 4-2. Set of succeeding and preceding nodes in the directed graph 

The second sub-problem associated with the trucks is a pickup and delivery network 

(Figure 4-3). The network is presented by 𝐺2 = (𝑁2, 𝐴2), where 𝑁2 = 𝑓+ ∪ 𝑓− ∪ 𝑃 ∪ 𝐷 and arcs 

𝐴2 are connecting the nodes. Unlike the first sub-problem, the depot is a real depot in the second 
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sub-problem. Each pickup and delivery node must be visited only once by one truck. If a truck is 

used, it should start the work from the start node (𝑓+) and return to the sink node (𝑓−). In the 

directed graph displayed in Figure 4-3, solid arrows show the truckloads for which the pickup and 

delivery nodes, responsible contractor, and the required truck type are known from the upper-level 

model. The dotted arrows, however, are the possible paths that each truck can choose to traverse 

an arc. In other words, when a truck is at a pickup node, it has only one choice, i.e. choosing the 

solid arrow which means going to the destination of the truckload. However, when the truck is at 

the demand node, it can choose one of the succeeding dotted arrows, i.e. going to one of the pickup 

nodes or visiting the sink node. In this sub-network, 𝜑𝑖𝑣
+  and 𝜑𝑖𝑣

−  are the sets of nodes that succeed 

and precede node 𝑖 by truck 𝑣, respectively. 

 

 

Figure 4-3. The sub-network for trucks (pickup and delivery network) 
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Finally, Figure 4-4 depicts a directed graph 𝐺3 = (𝑁3, 𝐴3) for the loaders at the delivery 

nodes, where 𝑁3 = (𝑔+ ∪ 𝑔− ∪ 𝐷) and 𝐴3 include the arcs connecting different nodes. Similarly, 

a virtual start node (𝑔+) and a virtual sink node (𝑔−) are added to the graph and the problem is 

considered as a VRP, where each node should be visited only once, by a loader. Also, 𝜑𝑖𝑙
+ and 𝜑𝑖𝑙

− 

are the sets of nodes succeeding and preceding node 𝑖 by loader 𝑙, respectively. 

At each pickup and delivery node, the loaders and trucks have to be synchronized. It means 

that both machines should start a loading/unloading activity simultaneously at each node. If each 

of the machines arrived at a node earlier, it should wait until the other machine arrives at the node 

to start their work at the same time. As each pickup/delivery location can have several nodes, it is 

possible that two or more trucks can queue up for getting loaded/unloaded at each location. Each 

of the waiting trucks needs to wait until the loader visits the node for being synchronized with the 

truck. 

 

Figure 4-4. The sub-network for loaders at sort yards (delivery network) 
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4.4 Mathematical model 

For the scheduling problem, an MIP optimization model is developed for a one-day planning 

horizon to determine the routing and scheduling decisions considering the synchronization of the 

log loaders and heterogeneous trucks at both pickup and delivery nodes. Table 4-1 lists notations 

of the proposed model. 

Table 4-1. Notations of the daily routing and scheduling optimization model 

Sets Description 

N Set of all nodes 𝑖, 𝑗 ∈ {1,2, … , 𝑁} 

N1 Subset of nodes at the pickup network 𝑁1 ⊆  𝑁 

N2 Subset of nodes at the pickup and delivery network 𝑁2 ⊆ 𝑁 

N3 Subset of nodes at the delivery network 𝑁3 ⊆ 𝑁 

P Set of the pickup nodes 𝑃 ⊆ 𝑁 

D Set of the delivery nodes 𝐷 ⊆ 𝑁 

c+, c− The start and sink nodes for the loaders at the pickup network 

f +, f − The start and sink nodes for the trucks at the pickup and delivery 

network 

g+, g− The start and sink nodes for the loaders at the delivery network 

𝜑𝑖𝑙
+ Set of nodes succeeding node 𝑖 by loader 𝑙 

𝜑𝑖𝑙
− Set of nodes preceding node 𝑖 by loader 𝑙 

𝜑𝑖𝑣
+   Set of nodes succeeding node 𝑖 by truck 𝑣 

𝜑𝑖𝑣
−  Set of nodes preceding node 𝑖 by truck 𝑣 

L Set of all loaders 𝑙 ∈ {1,2, … L} 

L𝑃 Subset of loaders at the pickup network 𝐿𝑃 ⊆ 𝐿 

L𝐷 Subset of loaders at the delivery network 𝐿𝐷 ⊆ 𝐿 

O Set of trucking contractors 𝑜 ∈ {1,2, … , O} 

K Set of truck types 𝑘 ∈ {1,2, … , K} 

𝑉𝑜𝑘 Set of trucks of type 𝑘 that contractor 𝑜 owns 𝑣 ∈ {1,2, … , 𝑉𝑜𝑘} 
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Parameters Description 

FC𝑘 Fixed operating cost of using truck type 𝑘 ($) 

VC𝑘 Unit variable cost of using truck type 𝑘 ($/minute) 

OC𝑘 Unit overtime cost of using truck type 𝑘 ($/minute) 

DIS(i, j) Distance between node 𝑖 and node 𝑗 for loaders and dummy depots 

(km) 

DC𝑙 Unit travelling cost of loader 𝑙 per unit of distance ($/km) 

α𝑖𝑗
𝑜  If contractor o delivers a truckload from pickup node 𝑖 to delivery node 

𝑗 the value is 1; otherwise, 0 

β𝑖𝑗
𝑘  If truck type k delivers a truckload from pickup node 𝑖 to delivery node 

𝑗  the value is 1; otherwise, 0 

M A very large number used for logical constraints 

D𝑖𝑗
𝑙  Travelling time of loader 𝑙 from node 𝑖 to node 𝑗 (minute) 

D𝑖𝑗
𝑘  Travelling time of truck type k from node 𝑖 to node 𝑗 (minute) 

S𝑖 Service (loading or unloading) time at node 𝑖 (minute) 

T𝑀𝑎𝑥 Maximum daily driving time for each truck (minute) 

E𝑀𝑎𝑥 Maximum overtime that can be assigned to each truck (minute) 

Decision variables Description 

𝑥𝑖𝑗
𝑙  

If loader 𝑙 traverses from node 𝑖 to node 𝑗 (at the pickup network) the 

value is 1; otherwise, 0  

𝑦𝑖𝑗
𝑜𝑘𝑣 

If contractor 𝑜 uses truck 𝑣 of type 𝑘 to traverse from node 𝑖 to node 𝑗 

the value is 1; otherwise, 0  

𝑧𝑖𝑗
𝑙  

If loader 𝑙 traverses from node 𝑖 to node 𝑗 (at the delivery network) the 

value is 1; otherwise, 0 

𝑡𝑖
𝑙  Arrival time of loader 𝑙 at node 𝑖 

𝑡𝑖
𝑜𝑘𝑣 Arrival time of truck 𝑣 of type 𝑘 owned by contractor 𝑜 at node 𝑖 

𝑤𝑖 Waiting time of trucks at node 𝑖  

𝑢𝑖 Waiting time of loaders at node 𝑖 
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Decision variables Description 

𝑒𝑜𝑘𝑣 Overtime assigned for truck 𝑣 of type 𝑘 owned by contractor 𝑜  

4.4.1 Objective function 

Equation (4-1) presents the objective function of the model, which is to minimize the total costs 

including fixed, variable, and overtime costs of using trucks, and the travelling cost of loaders 

between nodes.  The fixed cost is an operating fixed cost, and it is different from the investment 

cost. It is noteworthy that incorporating the fixed cost results in a trade-off between allowing a 

truck to work overtime or dispatching a new truck. 

Min. 𝑍 = ∑ ∑ ∑ ∑ FC𝑘. 𝑦𝑓+𝑗
𝑜𝑘𝑣

𝑗∈𝜑
𝑓+𝑣
+𝑜∈𝑂𝑘∈𝐾𝑣∈𝑉𝑜𝐾

+ ∑ ∑ ∑ VC𝑘 . (𝑡𝑓−
𝑜𝑘𝑣 − 𝑒𝑜𝑘𝑣)

𝑜∈𝑂𝑘∈𝐾𝑣∈𝑉𝑜𝑘

+ ∑ ∑ ∑ OC𝑘. 𝑒𝑜𝑘𝑣

𝑜∈𝑂𝑘∈𝐾𝑣∈𝑉𝑜𝐾

+ ∑ ∑ DC𝑙. DIS𝑖𝑗. 𝑥𝑖𝑗
𝑙

(𝑖,𝑗)∈𝑁1𝑙∈𝐿𝑃

+ ∑ ∑ DC𝑙 . DIS𝑖𝑗. 𝑧𝑖𝑗
𝑙

(𝑖,𝑗)∈𝑁3𝑙∈𝐿𝐷

 

(4-1) 

4.4.2 Constraints 

Constraint sets (4-2)-(4-7) are related to the first sub-problem network for the loaders at the pickup 

nodes. Constraint sets (4-2) and (4-3) imply that if loaders are used, they have to return to the depot 

at the end of the day. 

∑ 𝑥𝑐+𝑗
𝑙

𝑗∈𝜑
𝑐+𝑙
+

= ∑ 𝑥𝑖𝑐−
𝑙

𝑖∈𝜑𝑐−𝑙
−

 
∀𝑙 ∈ 𝐿𝑃 (4-2) 

∑ 𝑥𝑐+𝑗
𝑙

𝑗∈𝜑
𝑐+𝑙
+

≤ 1 
∀𝑙 ∈ 𝐿𝑃 (4-3) 

Constraint set (4-4) is the flow balancing constraint, ensuring that the loaders do not get 

stuck at the pickup nodes. In this constraint set, if a loader enters a node, it should exit the node. 
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∑ 𝑥𝑖𝑗
𝑙

𝑖∈𝜑𝑗𝑙
−

= ∑ 𝑥𝑗𝑖
𝑙

𝑖∈𝜑𝑗𝑙
+

 
∀𝑙 ∈ 𝐿𝑃, 𝑗 ∈ 𝑁1\{𝑐+ ∪ 𝑐−} (4-4) 

The arrival time of a loader at each pickup node is calculated considering the service 

(loading) time using constraint sets (4-5) and (4-6). Constraint set (4-5) calculates the arrival time 

of loaders at the first node it visits after leaving the starting node, while constraint set (4-6) 

determines the arrival time of the loader at a node incorporating waiting time of the loader at the 

previous node. 

𝑆𝑐+ + 𝐷𝑖𝑗
𝑙 ≤ 𝑡𝑗

𝑙 + 𝑀(1 − 𝑥𝑐+𝑗
𝑙 ) ∀𝑙 ∈ 𝐿𝑃, 𝑗 ∈ 𝑁1\{𝑐+} (4-5) 

𝑡𝑖
𝑙 + 𝑆𝑖 + 𝐷𝑖𝑗

𝑙 + 𝑢𝑖 ≤ 𝑡𝑗
𝑙 + 𝑀(1 − 𝑥𝑖𝑗

𝑙 ) ∀𝑙 ∈ 𝐿𝑃, 𝑖 ∉ {𝑐+}, 𝑗 ∈ 𝑁1\{𝑐+} (4-6) 

The scheduling and loader assignment decisions in each pickup node are connected in 

constraint set (4-7), which ensures the arrival time of each loader at each pickup node is calculated 

only if the loader visits the node.  

𝑡𝑗
𝑙 ≤ 𝑀 ∑ 𝑥𝑖𝑗

𝑙

𝑖∈𝜑𝑗𝑙
−

 ∀𝑙 ∈ 𝐿𝑃, 𝑗 ∈ 𝑁1\{𝑐+ ∪ 𝑐−} (4-7) 

Constraint sets (4-8)-(4-15) are associated with the second sub-problem network for the 

trucks at the pickup and delivery nodes. Constraint set (4-8) forces the dispatched trucks to return 

to their depot after delivering the assigned truckloads. Constraints (4-9) state that contractors have 

a choice between using a truck or leaving it at the depot. 

∑ 𝑦𝑓+𝑗
𝑜𝑘𝑣

𝑗∈𝜑
𝑓+𝑣
+

= ∑ 𝑦𝑖𝑓−
𝑜𝑘𝑣

𝑖∈𝜑𝑓−𝑣
−

 
∀𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉𝑜𝑘 (4-8) 

∑ 𝑦𝑓+𝑗
𝑜𝑘𝑣

𝑗∈𝜑
𝑓+𝑣
+

≤ 1 
∀𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉𝑜𝑘 (4-9) 
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Constraint set (4-10) guarantees that a truck entering a node should exit the node to 

balance inflows and outflows. 

∑ 𝑦𝑖𝑗
𝑜𝑘𝑣

𝑖∈𝜑𝑗𝑣
−

= ∑ 𝑦𝑗𝑖
𝑜𝑘𝑣

𝑖∈𝜑𝑗𝑣
+

 
∀𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉𝑜𝑘, 𝑗 ∈ 𝑁2\{𝑓+ ∪ 𝑓−} (4-10) 

Constraint set (4-11) ensures that each truckload is assigned to its contractor and 

compatible truck type. The information regarding the compatibility of contractors and truck types 

for the truckloads is obtained from the upper-level model developed in Chapter 3. 

∑ 𝑦𝑖𝑗
𝑜𝑘𝑣

𝑣∈𝑉𝑜𝑘

≤ 𝑀. 𝛼𝑖𝑗
𝑜 . 𝛽𝑖𝑗

𝑘 , ∀𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝑁2\{𝑓+ ∪ 𝑓−} (4-11) 

Contractors have a certain number of trucks. Constraint set (4-12) indicates that the total 

number of trucks that each contractor uses for delivering the truckloads should not exceed the 

number of trucks that the contractor has. 

∑ ∑ 𝑦𝑓+𝑗
𝑜𝑘𝑣

𝑗∈𝜑
𝑓+𝑣
+𝑣∈𝑉𝑜𝑘

≤ |𝑉𝑜𝑘| 
∀𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾 (4-12) 

Constraint set (4-13) calculates the arrival time of trucks, dispatched from the depot, at 

each cut block. Constrain set (4-14), however, determines the arrival time of trucks travelling 

between every pair of nodes considering the waiting time of trucks at the nodes. 

𝑆𝑓+ + 𝐷𝑖𝑗
𝑘 ≤ 𝑡𝑗

𝑜𝑘𝑣 + 𝑀(1 − 𝑦𝑓+𝑗
𝑜𝑘𝑣) ∀𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉𝑜𝑘, 𝑗 ∈ 𝑁2\{𝑓+} (4-13) 

𝑡𝑖
𝑜𝑘𝑣 + 𝑆𝑖 + 𝐷𝑖𝑗

𝑘 + 𝑤𝑖 ≤ 𝑡𝑗
𝑜𝑘𝑣 + 𝑀(1 − 𝑦𝑖𝑗

𝑜𝑘𝑣) ∀𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉𝑜𝑘, 𝑖 ∉ {𝑓+}, 𝑗

∈ 𝑁1\{𝑓+} 

(4-14) 

Constraint set (4-15) guarantees that the arrival time of trucks can be calculated only at 

the nodes that the trucks visit. 



60 

 

𝑡𝑗
𝑜𝑘𝑣 ≤ 𝑀 ∑ 𝑦𝑖𝑗

𝑜𝑘𝑣

𝑖∈𝜑𝑗𝑣
−

 ∀𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉𝑜𝑘, 𝑗 ∈ 𝑁1\{𝑒+ ∪ 𝑒−} (4-15) 

Constraint sets (4-16)-(4-21) are related to the third sub-problem for the loaders at the 

delivery nodes. Constraint sets (4-16) and (4-17) state that if a loader for unloading a truck is used, 

it should start from the dummy depot and return to it. 

∑ 𝑧𝑔+𝑗
𝑙

𝑗∈𝜑
𝑔+𝑙
+

= ∑ 𝑧𝑖𝑔−
𝑙

𝑖∈𝜑𝑔−𝑙
−

 
∀𝑙 ∈ 𝐿𝐷 (4-16) 

∑ 𝑧𝑔+𝑗
𝑙

𝑗∈𝜑
𝑔+𝑙
+

≤ 1 
∀𝑙 ∈ 𝐿𝐷 (4-17) 

Constraint set (4-18) balances the inflows and outflows of each demand node for each 

loader. 

∑ 𝑧𝑖𝑗
𝑙

𝑖∈𝜑𝑗𝑙
−

= ∑ 𝑧𝑗𝑖
𝑙

𝑖∈𝜑𝑗𝑙
+

 
∀𝑙 ∈ 𝐿𝐷 , 𝑗 ∈ 𝑁3\{𝑔+ ∪ 𝑔−} (4-18) 

The arrival times of loaders at each demand node is calculated using constraint sets (4-19) 

and (4-20). Constraint set (4-19) calculates the arrival time of the first trip of loaders dispatched 

from the dummy depot, while the arrival times of loaders at nodes in other trips are calculated by 

constraint set (4-20). 

𝑆𝑔+ + 𝐷𝑖𝑗
𝑙 ≤ 𝑡𝑗

𝑙 + 𝑀(1 − 𝑧𝑔+𝑗
𝑙 ) ∀𝑙 ∈ 𝐿𝐷 , 𝑗 ∈ 𝑁3\{𝑔+} (4-19) 

𝑡𝑖
𝑙 + 𝑆𝑖 + 𝐷𝑖𝑗

𝑙 + 𝑤𝑙𝑖 ≤ 𝑡𝑗
𝑙 + 𝑀(1 − 𝑧𝑖𝑗

𝑙 ) ∀𝑙 ∈ 𝐿𝐷 , 𝑖 ∉ {𝑔+}, 𝑗 ∈ 𝑁3\{𝑔+} (4-20) 

In each demand node, constraint set (4-21) enforces the model to calculate the arrival time 

of the loaders visiting the node.  

𝑡𝑗
𝑙 ≤ 𝑀 ∑ 𝑧𝑖𝑗

𝑙

𝑖∈𝜑𝑗𝑙
−

 ∀𝑙 ∈ 𝐿𝐷 , 𝑗 ∈ 𝑁3\{𝑔+ ∪ 𝑔−} (4-21) 
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Constraint sets (4-22)-(4-24) ensure that each node is visited by appropriate machines. 

Constraint sets (4-22) and (4-23) impose that each pickup and delivery node would be visited 

exactly once by a loader. Constraint set (4-24) implies that pickup and delivery nodes must be 

visited exactly once by one truck, meaning that all truckloads should be delivered. 

∑ ∑ 𝑥𝑖𝑗
𝑙

𝑖∈𝜑𝑗𝑙
−𝑙∈𝐿𝑃

= 1 ∀𝑗 ∈ 𝑃 (4-22) 

∑ ∑ 𝑧𝑖𝑗
𝑙

𝑖∈𝜑𝑗𝑙
−𝑙∈𝐿𝐷

= 1 ∀𝑗 ∈ 𝐷 (4-23) 

∑ ∑ ∑ ∑ 𝑦𝑖𝑗
𝑜𝑘𝑣

𝑖∈𝜑𝑗𝑣
−𝑜∈𝑂𝑘∈𝐾𝑣∈𝑉𝑜𝑘

= 1 ∀𝑗 ∈ (𝑃 ∪ 𝐷) (4-24) 

Constraint sets (4-25) and (4-26) synchronize the log loaders and trucks performing a task 

together (loading or unloading) at cut blocks and sort yards, respectively. These constraints 

determine the waiting times of the loaders and trucks and ensure that the machines start 

loading/unloading activities simultaneously.  

∑ 𝑡𝑖
𝑙

𝑙∈𝐿𝑃

+ 𝑢𝑖 = ∑ ∑ ∑ 𝑡𝑖
𝑜𝑘𝑣

𝑜∈𝑂𝑘∈𝐾𝑣∈𝑉𝑜𝐾

+ 𝑤𝑖 
∀𝑖 ∈ 𝑃 

(4-25) 

∑ 𝑡𝑖
𝑙

𝑙∈𝐿𝐷

+ 𝑢𝑖 = ∑ ∑ ∑ 𝑡𝑖
𝑜𝑘𝑣

𝑜∈𝑂𝑘∈𝐾𝑣∈𝑉𝑜𝐾

+ 𝑤𝑖 
∀𝑖 ∈ 𝐷 

(4-26) 

Trucks have a maximum number of working hours, but these trucks can be assigned 

overtime. The amount of overtime for each truck is calculated using constraint set (4-27). 

Constraint set (4-28) states that the amount of overtime assigned to each truck should be less than 

the maximum amount of overtime that can be assigned. 

𝑡𝑓−
𝑜𝑘𝑣 ≤ T𝑚𝑎𝑥 + 𝑒𝑜𝑘𝑣 ∀𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉𝑜𝐾 (4-27) 
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𝑒𝑜𝑘𝑣 ≤ E𝑚𝑎𝑥 ∀𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉𝑜𝐾 (4-28) 

Constraint sets (4-29) and (4-30) control the domain of variables. 

𝑥𝑖𝑗
𝑙 , 𝑦𝑖𝑗

𝑜𝑘𝑣, 𝑧𝑖𝑗
𝑙  ∈ {0,1} ∀𝑖, 𝑗 ∈ (𝑁1⋃𝑁2⋃𝑁3), 𝑙 ∈ 𝐿, 𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉𝑜𝐾 (4-29) 

𝑡𝑖
𝑙 , 𝑡𝑖

𝑜𝑘𝑣, 𝑤𝑖, 𝑢𝑖 , 𝑒𝑜𝑘𝑣 ≥ 0 ∀𝑖 ∈ (𝑁1⋃𝑁2⋃𝑁3), 𝑙 ∈ 𝐿, 𝑜 ∈ 𝑂, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉𝑜𝐾 (4-30) 

4.4.3 Execution of the model 

According to the provided information by the forest company, each truck driver has a maximum 

regular working time of 8.5 hours (510 minutes). In addition, 2.5 hours (150 minutes) of overtime 

can be assigned. For confidentiality purposes, values for the cost parameters are not shown in this 

chapter. Additionally, it is assumed that there is one stationary loader at each pickup location and 

each delivery location. It means that loaders cannot visit those nodes that are in different locations 

since they are stationary and cannot move between cut blocks (or sort yards). Therefore, in the 

model, a loader has to be forced to visit only the nodes in the similar location. This is done by 

assigning zero to the distance between nodes within a location and a very large number to the 

distance between nodes in different locations. This assumption avoids the loaders to visit nodes in 

different locations. 

Similar to other papers in the literature (e.g. Flisberg et al. 2009; Melchiori et al. 2022), the 

proposed model is applied to several test problems from the real case. All the test problems are 

solved by CPLEX solver in AIMMS software package (CPLEX — AIMMS, 2022) on a desktop 

computer with Intel® Core TM i7-6700 CPU, 3.40 GHz processor, and 16 GB RAM. 

4.5 Test problems and results 

This section presents the results of the model applied to the test problems from the company’s case 

study, where pickup and delivery locations, responsible contractor, and truck type of truckloads 
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are determined from an upper-level model. Eight test problems, called TP 1 to TP 8, are solved. In 

the test problems, three sort yards (delivery locations) are considered. It is assumed that there is 

one loader in each location and 2 contractors deliver the truckloads. Each contractor has 3 highway 

and 3 off-highway trucks. Trucks 1-6 belong to contractor 1, while contractor 2 owns trucks 7-12. 

While TP 1 to TP 4 have 2 cut blocks, there are 3 cut blocks in TP 5 to TP 8. Table 4-2 summarizes 

the test problems and results. The total number of truckloads, nodes, and cut blocks are shown in 

the second, third, and fourth columns of Table 4-2, respectively. For each test problem, the fifth 

and sixth columns show the objective function and the percentage of improvement compared to 

the direct delivery of the truckloads. In the direct delivery case, there is no backhauling and each 

truck returns to the depot after delivering a truckload to a sort yard. Finally, the last column lists 

the amount of computational time for getting the optimum solution. It can be observed that by 

increasing the size of the case, the problem would not be solvable in a reasonable time. 

Table 4-2. Summary of test problems and the results 

Test 

problems 

 

No. of 

truckloads 

No. of 

nodes 

 

No. of cut 

blocks 

Obj. 

function 

Improvement 

compared to 

direct delivery 

CPU time 

(second) 

TP 1 9 24 2 $10,458 10.6% 3 

TP 2 10 26 2 $11,191 14% 8 

TP 3 11 28 2 $12,584 14% 47 

TP 4 12 30 2 $14,053 10.3% 794 

TP 5 9 24 3 $13,229 4.1% 9 

TP 6 10 26 3 $13,910 9.8% 11 

TP 7 11 28 3 $15,253 9.7% 839 

TP 8 12 30 3 $15,935 12.7% 3417 

For further analysis, test problem TP 8 is investigated in detail as it is the largest sized 

problem. The detailed schedule of one of the off-highway trucks is shown in Figure 4-5, where the 

truck is assigned to deliver 2 truckloads (truckload 6 and truckload 12). First, the truck is 
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dispatched from the depot to the third cut block to get loaded. When the truck arrives at the cut 

block, the loader is not idle as it is loading another truck. Therefore, the truck has to wait for 20 

minutes to be synchronized with the loader for the loading activity. After loading, the truck delivers 

truckload 6 to the second sort yard at minute 281, when the loader at the yard is idle and can be 

synchronized with the truck immediately. Finally, the truck returns to the depot at minute 558 after 

fulfilling truckload 12. As the arrival time at the depot is more than the maximum daily driving 

hours, which is 510 minutes, the truck has 48 minutes of overtime. 

 

Figure 4-5. Schedule of an off-highway truck in TP 8 

As shown in Figure 4-6, seven trucks have overtime to deliver their assigned truckloads. 

Some trucks (e.g. trucks 4 and 12) deliver more than one truckload. However, four trucks are not 

used by the contractors. In other words, in this problem, it would be more economical to assign 

overtime to existing trucks than dispatching a new truck. 
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Figure 4-6. Working time of trucks in TP 8 

In this problem, loaders are the resources required for loading and unloading trucks at cut 

blocks and sort yards, respectively. As dummy depots are considered for the loaders at cut blocks 

(sort yards), these loaders finish their work by loading (unloading) the last truckload, and they 

remain at their cut block (sort yard). The schedule of a loader in a cut block is shown in Figure 

4-7, where the loader loads four truckloads and must wait for 177 and 167 minutes to load the first 

and the last truckloads, respectively. 
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Figure 4-7. Schedule of a loader at cut block 1 in TP 8 

Similarly, Figure 4-8 depicts the schedule of a loader that unloads five truckloads at sort 

yard 2. The loader remains idle for 214 minutes to unload truckload 8, and it has to wait for 15 

minutes to be synchronized with a truck delivering truckload 4 to finish its work. 

 

Figure 4-8. Schedule of a loader at sort yard 2 in TP 8 
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We conducted a sensitivity analysis to examine how the objective function varies when 

input parameters are changed. Considered parameters are the fixed operating cost of using trucks, 

variable and overtime costs of using trucks, service (loading and unloading) time, maximum 

driving time, and maximum amount of overtime that can be assigned to each truck. As suggested 

in (Vancas, 2003), the parameter are changed by 20% to have a proper accuracy in the feasibility 

study. Figure 4-9 summarizes the results of the sensitivity analysis for test problem TP 8. 

 

Figure 4-9. Sensitivity analysis of TP 8 when parameters are changed by 20% 

As expected, when variable and overtime costs increase (decrease) by 20%, the total costs 

increase (decrease) by 19%. Reducing the maximum driving time by 20% leads to infeasibility as 

the required time for delivering a truckload to sort yard 1 would be greater than the summation of 

reduced maximum driving time and overtime. Also, the total costs will decrease by 10% when the 

maximum driving time increases because truckloads can be delivered during the regular driving 

-1%

-2%

0%

-19%

1%

2%

-4%

-10%

19%

-25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25%

Fixed operating costs

Service time

Maximum overtime

Maximum driving time

Variable and overtime costs

Percentage of changes in total costs

20%

-20%

Infeasible 



68 

 

time and the need for overtime will decrease. The effects of changing the maximum allowable 

overtime, service time, and fixed operating costs are negligible. Because cut blocks and sort yards 

are not close to each other and it takes considerable time for a truck to deliver a truckload, variable 

costs of trucks have a higher proportion in the total costs compared to fixed operating costs and 

changing the fixed operating costs would not significantly impact the total costs. 

4.6 Discussion 

The scheduling of log trucks without synchronizing trucks and loaders may lead to an infeasible 

solution because waiting times of the trucks can cause delays in delivering the truckloads, which 

consequently will result in exceeding the maximum driving time or violating time windows. 

Therefore, it is important to calculate waiting times of trucks at different locations. As shown in 

Figure 4-5, the developed model in this chapter allows for obtaining the detailed schedule of a 

truck departing and returning to the depot using continuous time representation, which leads to 

accurate daily plans. In some of the previous papers (e.g. El Hachemi et al. 2015; Melchiori et al. 

2022), scheduling and synchronization of resources were addressed using discrete time slots, 

which might generate unnecessary waiting times. In other words, if a truck arrives after the 

beginning of a time slot, it has to wait until the starting time of the next slot, which adds additional 

unnecessary waiting time. Besides, defining discrete time slots is more challenging for this 

problem as the trucks are heterogeneous, and the loading time is different for each truck type. 

Hence, using continuous time representation instead of the discrete one generates more accurate 

scheduling that can reflect the overall performance of the loaders (as shown in Figure 4-7 and 

Figure 4-8). 

 In the problem, there are contractors working in independent cut blocks. However, they all 

deliver the logs to three sort yards where the loaders need to be synchronized with trucks of 
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different contractors. Thus, having separate planning for a contractor’s truckloads cannot be 

appropriate for calculating the detailed unloading times as schedules of trucks of other contractors 

at the same sort yard are disregarded. Therefore, from the modeling perspective, the proposed 

model integrates decisions for all contractors, facilitating synchronization of trucks and loaders at 

sort yards. 

 Incorporating contractors in optimization models have impacts on the transportation 

planning. It was shown in (Ghotb et al., 2022) that considering contractors and satisfying their 

expectations and preferences affect decisions related to distribution of logs in a 1-month planning 

horizon and increased the costs by 0.4%. Also, the sensitivity analysis of the study highlighted the 

importance of contractual details in the feasibility and profitability of the daily scheduling of 

trucks. Proper cost rate, maximum driving time and overtime would generate costs savings.  

In TP 8, for each contractor, two trucks were not used, while the other trucks were assigned 

overtime (Figure 4-6). Indeed, dispatching a new truck resulted in additional costs, which included 

the fixed operating cost of using the truck and the variable cost from the depot to the cut block to 

pick up the truckload. In this problem, as the depot was far from cut blocks, it was more economical 

to pay for overtime and assign more truckloads to the existing trucks than using a new truck. 

Similar conclusions could be drawn from the sensitivity analysis (Figure 4-9), where increasing 

the maximum amount of overtime by 20% decreased the total transportation costs. When each 

truck can be assigned more overtime, contractors may realize cost savings from dispatching fewer 

number of trucks.  

As shown in Table 4-2, when the number of nodes increased, it took more time to get the 

optimal solution. Thus, when a truck had to deliver a significant number of truckloads, the problem 

could not be solved in a reasonable time using commercial software packages. As the scheduling 
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problem needs to be solved daily, non-exact solution approaches such as metaheuristic algorithms 

are required for larger problems to get good solutions in a short period of time.  

In this chapter, we introduced an optimization model for log transportation planning at the 

operational level considering different complexities that can address real world log transportation 

problems. Having the optimization model is useful in validation of heuristics methods for the 

scheduling of log trucks. According to (Bettinger et al. 2009), the highest level of validation of 

results generated by heuristics methods is to compare them with the results from mixed integer 

optimization models. Hence, as the proposed model is flexible and can be relaxed to consider one 

contractor or homogeneous trucks by having only one truck type, it can be used to validate 

heuristics methods for a wide variety of problems. 

4.7 Conclusions 

This chapter presented an MIP model for daily routing and scheduling of heterogeneous trucks 

using continuous time representation to address the second objective of the thesis. The proposed 

model synchronized log loaders and trucks owned by trucking contractors at both cut blocks and 

sort yards by determining the detailed schedules. The performance of the model was assessed by 

applying it to eight test problems from the real case of a large forest company in British Columbia, 

Canada. The results indicated that it was more economical to pay overtime than dispatching a new 

truck although the unit cost of overtime was 1.5 times the unit cost of regular time. As a result, 

there were some trucks that remained idle at the depot. Based on the conducted sensitivity analysis, 

variable costs and the maximum driving time were the most sensitive parameters, while changing 

the fixed operating costs had the least impact on the total transportation costs. 
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When the size of the problem increases, the model will have more binary decision variables 

and constraint. Hence, the model will not be solvable in a reasonable time. Therefore, Chapter 5 

will focus on developing non-exact solution approaches to solve the problem in a reasonable time.  
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Chapter 5: Solution approach for the daily routing and scheduling problem 

5.1 Synopsis 

Due to the significant volume of the supply and demand, forest companies usually deliver large 

number of truckloads between forest areas and demand locations. However, the introduced model 

in Chapter 4 could address daily routing and scheduling only for small and medium-sized 

problems. Thus, a solution approach based on the simulated annealing algorithm is developed in 

this chapter and is applied to the case study to address the third and fourth research objectives of 

this dissertation, respectively, for solving and getting good solutions in a reasonable time for the 

real case and large-sized problems. The main challenge is to incorporate details and complexities 

such as trucking contractors and a heterogeneous fleet of trucks with different service times into 

the solution approach. Additionally, the parameters of the algorithm are calibrated using the 

Taguchi method to improve the performance of the algorithm. The solution approach is then 

applied to the case where the upper-level planning developed in Chapter 3 determined the daily 

flows for a 1-month planning horizon.   

5.2 Problem definition 

In this thesis, a decomposition approach is used to determine the daily flows of logs, routing, and 

scheduling of log trucks for the forest company with a 1-month planning horizon. The approach 

divided the problem into two phases. Figure 5-1 depicts the scheme of the decomposition 

approach.
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Figure 5-1. The schematic view of the proposed decomposition approach 
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In the first phase, a bi-objective MIP model using the goal programming approach was 

developed in Chapter 3. The main outputs of model (the main decisions) are listed below. 

• The inventory levels of each log sort in both sorted and unsorted logs at every cut block at 

the end of the planning horizon. 

• The daily volume of each log sort in both sorted and unsorted logs delivered between each 

pair of cut blocks and sort yards. 

• The daily number of both sorted and unsorted truckloads transported between cut blocks 

and sort yards by each contractor using each truck type. 

• The daily volume of each log sort that is sorted at each sort yard. 

• The daily inventory level of each log sort in the unsorted logs at each sort yard. 

• The daily inventory level of each sort in the water at each sort yard. 

In the second phase, an MIP model was introduced in Chapter 4 for the daily routing and 

scheduling of a heterogeneous fleet of trucks using continuous time representation. The model 

determined the number of dispatched trucks, assigned the truckloads obtained from the first phase 

to the compatible trucks, calculated the detailed schedules of trucks and loaders, synchronized 

them at both the pickup and delivery locations, and assigned overtime to the trucks. The model 

was solved for test problems with different sizes from the case study.  

However, as the size of the problem increased, commercial software packages could not solve 

the model in a reasonable time. Therefore, a non-exact solution approach is needed to solve the 

daily scheduling optimization model (Phase II) in a reasonable time. To address the third and fourth 

research objective, a suitable solution approach for the daily scheduling of the trucks is developed 

in this chapter and the solution approach is applied to the real case, which addresses the fourth 

objective of this thesis. 
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5.3 Solution approach 

As shown in Chapter 4, the daily scheduling optimization model becomes computationally 

intractable when the number of truckloads increased. The main challenge of the solution approach 

is to synchronize the log loaders and the trucks at both cut blocks and sort yards in order to get 

detailed schedules. Also, heterogeneous trucks and compatibility requirements of truckloads, 

trucks, and contractors increase the complexity of the solution approach. 

To obtain near optimal solutions, the Simulated Annealing (SA) algorithm introduced by 

(Kirkpatrick et al., 1983) is used in this chapter. SA is a metaheuristic algorithm inspired by the 

annealing process of metals and starts with an initial solution. The algorithm explores the search 

space by moving to the neighboring solutions. Due to its ease of implementation, and its ability in 

local search without getting trapped in local optimum solutions, the SA algorithm has been 

employed in a wide variety of scheduling optimization problems (e.g. Haridass et al. 2014; Yağmur 

and Kesen 2021; Kress and Müller 2022). The main steps of the proposed solution approach 

including creating an initial solution, cost evaluation, creating a new neighborhood solution, and 

SA procedure are shown in Figure 5-2. 

 

Figure 5-2. The main steps of the proposed algorithm 
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In the following sections, the solution representation and the main steps are described. 

5.3.1 Solution representation 

A solution of the problem to be used in the algorithm is represented by a permutation of delimiters 

and truckloads. The delimiters separate truckloads of different trucks, truck types, and trucking 

contractors. Each truckload in the permutation has a known cut block (pickup) and sort yard 

(delivery). It means that when a truckload is assigned to a truck, the truck must first visit the cut 

block to pick up the load and then it must move to the corresponding sort yard for delivering the 

truckload. In addition, when extracting the assigned truckloads from the permutation, the central 

depot has to be added to the beginning and the end of the list of the truckloads that a truck carries 

to determine its route. 

An example of the solution representation with two contractors is shown in Figure 5-3, 

where each contractor has two truck types. First, the truckloads of each truck of every truck type 

are assigned to each contractor (Figure 5-3(a) and Figure 5-3(b)). Then, the permutations generated 

for contractors are combined to form the integrated solution representation (Figure 5-3(c)). As 

mentioned earlier, the truckloads of different contractors are separated by the delimiters. Now, the 

route of each truck can be obtained from the solution representation. For instance, truckloads 10 

and 4 are assigned to Truck 5. Therefore, Truck 5 starts its work by leaving the depot and moving 

to cut block of truckload 10 to pickup the truckload. Then, it delivers the load to the corresponding 

sort yard. After that, the truck fulfills truckload 4. Finally, Truck 5 returns to the depot after 

delivering the assigned truckloads. 
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Figure 5-3. The solution representation for (a) contractor 1, (b) contractor 2, and (c) for both contractors 1 and 2 

5.3.2 Creating initial solution 

The SA algorithm starts with an initial solution. The initial solution is randomly generated 

considering feasibility requirements. It means that each truckload has to be assigned to the 

responsible contractor and the compatible truck type. Algorithm 1 shows the pseudocode of the 

initial solution generating algorithm, which consists of integrating randomly generated 

permutations for every truck type of each contractor. 

Algorithm 1. Pseudocode for creating initial solution 

Input: List of truckloads for every truck type of each contractor 

Output: Initial solution 

For each contractor 

For each truck type 

Generate a random permutation of truckloads and delimiters 

End for 

Integrate strings of truck types for the contractor  
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End for 

Integrate strings of the contractors 

 

5.3.3 Cost evaluation 

To calculate the total costs and obtain the detailed schedules, the solution (string) needs to be 

evaluated. As mentioned earlier, each string shows which truckloads are assigned to which truck. 

First, it is assumed that there is no waiting time at the pickup and delivery locations, and trucks 

get loaded/unloaded once they arrive at cut blocks/sort yards. Therefore, we can calculate the 

arrival time of every truckload at sort yards using equation (5-1). 

ArrivalTime  = ArrivalTime (for previous truckload) + T1 + T2 + T3 + T4 (5-1) 

Where:  

• ArrivalTime: The arrival time of truckload at its corresponding sort yard 

• T1: Unloading time of previous truckload 

• T2: Travelling time from the sort yard of previous truckload to the cut block of the 

current truckload 

• T3: Loading time of the current truckload 

• T4: Travelling time from the cut block of current truckload to the sort yard of the 

current truckload 

As mentioned earlier, there is only one loader at each cut block and each sort yard. 

Therefore, activities need to be assigned according to an appropriate order. There are different 

priority rules for scheduling problems where a single machine (loader) performs its activities. In 

this research, we employed the shortest processing time (SPT) rule to minimize the total 

completion time (readers are referred to (Pinedo, 2012) for more information). According to this 
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rule, activities are prioritized based on their processing time for the scheduling. In this problem, 

the processing time for each truckload includes the unloading time of previous truckload, the 

travelling time between the sort yard of previous truckload and the cut block of current truckload, 

the loading time of the current truckload, and the travelling time between the cut block and sort 

yard of current truckload. In other words, the processing time of each truckload shows the required 

time for the assigned truck to arrive at the sort yard of the truckload. Therefore, truckloads with 

the earliest arrival time at the sort yards are first scheduled and assigned to the loaders. 

Therefore, we define a Pool matrix, in which sorted elements are arrival time of each 

truckload at its sort yard determined by equation (5-1). Hence, the algorithm starts with the first 

element of the Pool matrix and calculates the waiting time at cut block (WTC), starting time at cut 

block (STC), finishing time at cut block (FTC), waiting time at sort yard (WTS), starting time at 

sort yard (STS), and finishing time at sort yard (FTS).  The algorithm continues until the detailed 

schedules for all truckloads are determined. The detailed algorithm and calculations are shown in 

Algorithm 2. 

Whenever a truck carrying a truckload has waiting time at cut blocks and/or sort yards, the 

arrival times of the following truckloads of the truck and the Pool matrix are updated immediately, 

ensuring that the remaining unassigned truckloads are selected and scheduled based on the SPT 

priority rule. 

When the detailed schedules for all truckloads are determined, the total working time for 

each truck can be extracted. It is noteworthy that each solution must be feasible. The feasibility of 

the assignment of truckloads to compatible contractors and truck types are addressed in the initial 

solution and in creating a new solution algorithm. Also, having an overtime more than 150 minutes 

leads to infeasibility. In this case, the penalty cost for the violation of maximum overtime, which 
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is 150 minutes, is added to the objective function. The detailed algorithm of the cost calculation is 

shown in Algorithm 2. 

Algorithm 2. Pseudocode for cost evaluation 

Input: Solution string 

Output: Detailed schedules, overtime violation, and transportation costs 

For each truckload 

Calculate ArrivalTime 

End for 

Pool  sort (ArrivalTime) 

For j = 1 to |Pool| 

X(j)  Calculate arrival time of truckload (j) at the cut block 

if X(j) >= Finishing time of the loader for the previous loading activity  

WTC(j) =0 

STC(j) = X(j) 

Else 

WTC(j) = max. (Finishing time of loader for the previous loading activity – 

X(j),0) 

STC(j) = X(j)+WTC(j) 

End if 

FTC(j)=STC(j)+LoadingTime  

Update the schedules of the loader in the cut block 

Y(j)  Calculate arrival time of truckload (j) at the sort yard considering waiting time 

at the cut block 

If Y(j) >= Finishing time of the loader for the previous unloading activity 

WTS(j) = 0 

STS(j)=Y(j) 

Else 

WTS(j) = max. (Finishing time of loader for the previous unloading activity – 

Y(j),0) 
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STS(j) = Y(j)+WTS(j) 

End if 

FTS(j)=STS(j)+UnloadingTime  

Update the schedules of the loader in the sort yard 

If WTC(j)+WTS(j) >0 

Update ArrivalTime 

Pool  sort (ArrivalTime) 

End if 

End for 

For each truck 

ArrivalTimeAtDepot  FTS (Last activity) + travelling time (sort yard, depot) 

Overtime = max (ArrivalTimeAtDepot-510,0) 

RegularTime=min (ArrivalTimeAtDepot, 510) 

Violation = max (Overtime - 150,0) 

End for 

TotalCost = (FixedCost*number of truck) + (RegularTime*RegularRate) + 

(Overtime*OvertimeRate) + (Penalty*Violation) 

5.3.4 Creating a new neighbourhood solution 

In the SA algorithm, a new neighbourhood solution is generated using the swap, reversion, and 

insertion operators (Yu et al., 2021). In this study, a random operator is applied to truckloads of 

both truck types for a randomly selected contractor to generate a new solution. 

In the swap operator, two random cells are chosen, and the position of the cells are swapped 

in order to generate a new string. In the reversion operator, after swapping the two cells randomly, 

the in-between cells are reversed. Finally, in the inversion operator, first two random cells are 

selected. Then, one of the cells is excluded from its position and placed after the other one in the 

string. An example for each operator is shown in Figure 5-4, where truckloads 14 and 6 are 

randomly selected. The positions of truckloads 14 and 6 are swapped by the swap operator to get 
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a new string (Figure 5-4(a)), while in the reversion operator truckloads between truckloads 14 and 

6 are reversed in Figure 5-4(b), and in the insertion operator, truckload 6 is placed right after 

truckload 14 (Figure 5-4(c)). 

 

Figure 5-4. Neighbourhood operators (a) Swap, (b) Reversion, and (c) Insertion 

5.3.5 SA procedure 

Algorithm 3 describes the SA procedure, where the initial temperature (𝑇0), minimum temperature 

(𝑇𝑚𝑖𝑛), maximum number of iterations in each temperature (𝐼𝑡𝑚𝑎𝑥), and the cooling rate (𝛼) are 

the parameters of the algorithm. The algorithm generates a new neighborhood solution using one 

of the operators (swap, reversion, and insertion) for certain number of iterations (𝐼𝑡𝑚𝑎𝑥) at each 

temperature. In every iteration, a new solution is accepted if it surpasses the current solution. For 

the worse solution, however, a random number (r) is generated to investigate if the solution is 

accepted with a probability of 𝑝 = 𝑒(−
∆

𝑇
)
, where 𝑇 is the current temperature, and ∆=

𝐶𝑜𝑠𝑡 (𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) − 𝐶𝑜𝑠𝑡 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛). Then, the current temperature is updated 

using equation (5-2). 

𝑇𝑈𝑝𝑑𝑎𝑡𝑒𝑑 = 𝛼𝑇𝐶𝑢𝑟𝑟𝑒𝑛𝑡 , (5-2) 

where 𝛼 is the cooling rate for reducing the temperature. It should be noted that accepting the 

worse solution results in more diversification and avoids getting stuck in the local optimum. 

However, as the temperature decreases, the probability of accepting a worse solution reduces. The 
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algorithm keeps searching the solution space until the current temperature becomes less than the 

minimum temperature. 

Algorithm 3. Pseudocode for SA algorithm  

Input: SA parameters: 𝑇0, 𝑇𝑚𝑖𝑛, 𝐼𝑡𝑚𝑎𝑥, 𝛼 

Output: Best solution 

Create an initial solution (𝑆𝑜𝑙) 

Calculate Cost (𝑆𝑜𝑙) 

𝑇 ← 𝑇0 

While 𝑇 ≥ 𝑇𝑚𝑖𝑛 

While 𝑖 ≤ 𝐼𝑡𝑚𝑎𝑥  

Create a new solution (𝑆𝑜𝑙𝑖
𝑛𝑒𝑤)  

Calculate 𝐶𝑜𝑠𝑡(𝑆𝑜𝑙𝑖
𝑛𝑒𝑤) 

If 𝐶𝑜𝑠𝑡(𝑆𝑜𝑙𝑖
𝑛𝑒𝑤) ≤ 𝐶𝑜𝑠𝑡 (𝑆𝑜𝑙) 

𝑆𝑜𝑙 ← 𝑆𝑜𝑙𝑖
𝑛𝑒𝑤 

Else 

r  random (0,1) 

If 𝑟 ≤ e(−
𝐶𝑜𝑠𝑡(𝑆𝑜𝑙𝑖

𝑛𝑒𝑤)−𝐶𝑜𝑠𝑡(𝑆𝑜𝑙)

𝑇
)  

𝑆𝑜𝑙 ← 𝑆𝑜𝑙𝑖
𝑛𝑒𝑤 

End if 

End if 

If 𝐶𝑜𝑠𝑡(𝑆𝑜𝑙) ≤ 𝐵𝑒𝑠𝑡𝐶𝑜𝑠𝑡 

BestSol=Sol 

End if 

𝒊 ← 𝒊 + 𝟏 

End while 

𝑇 ← 𝛼𝑇  

End while 
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5.3.6 Parameter calibration 

As mentioned in (Turanoğlu & Akkaya, 2018), the parameters of the SA algorithm are the initial 

temperature, the maximum number of iterations, the cooling rate, and the minimum temperature. 

The performance of metaheuristic algorithms is impacted by their input parameters, and proper 

design of the parameters improve the efficiency of the algorithms (Hamzadayi & Yildiz, 2013). 

Hence, it is required to design experiments to calibrate the input parameters of the metaheuristic 

algorithms. The Taguchi method is usually employed to calibrate parameters of metaheuristic 

algorithms (Mousavi et al., 2016). In this method, the orthogonal arrays are employed to determine 

the required experiments. Orthogonal arrays are fractional factorial designs that require less 

experiments compared to the full factorial design, leading to less computational expenses (Banks 

and Fienberg, 2003). The Taguchi method classifies the factors into two groups: the controllable 

ones and the noise factor. The goal is to minimize the noise factor to assign the optimal levels for 

the controllable factors. In other words, the method tries to maximize a measure called the signal 

to noise (S/N) ratio. As the objective function of our problem is to minimize the total costs, the 

S/N ratio is calculated using equation (5-3). 

𝑆

𝑁
= −10 log10 (

1

𝑛
∑ 𝑦𝑖

2

𝑛

𝑖=1

) 
(5-3) 

In equation (5-3), 𝑦𝑖 and 𝑛 are the values of the response variables in 𝑖th experiments and the 

number of experiments, respectively. As mentioned earlier, our algorithm has four parameters, and 

three levels are defined for each parameter (Table 5-1). The same number of levels was considered 

for SA parameters in previous studies (e.g. Zandieh et al. 2017; Salama and Srinivas 2021). 
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Table 5-1. Factor levels in the SA algorithm 

Factors Level 1 Level 2 Level 3 

Initial temperature (𝑇0) 300 350 400 

Minimum temperature (𝑇𝑚𝑖𝑛) 0.00025𝑇0 0.0005𝑇0 0.00075𝑇0 

Cooling rate (𝛼) 0.85 0.9 0.95 

Maximum number of iterations (𝐼𝑡𝑚𝑎𝑥) 50 70 90 

Based on the number of parameters and levels, a standard orthogonal array of L9 in the 

Taguchi method is chosen. The selected orthogonal array (L9) has nine different combinations of 

parameter levels, and the goal is to find the best combination. To conduct the experiments, three 

instances (small, medium, and large-sized) using the parameters with uniform distributions are 

generated (Table 5-2). Each instance is solved 5 times for every combination of parameters to have 

more reliable results. Hence, the number of experiments will be 9×3×5=135. 

Table 5-2. Characteristics of instances 

Instance size Number of truckloads 

Small 40 

Medium 60 

Large 80 

Similar to other studies (e.g. Ramezanian and Saidi-Mehrabad 2013; Turanoğlu and 

Akkaya 2018), the Relative Percentage Deviation (RPD) is used in this chapter as the response 

variable for each experiment (equation (5-4)). 

𝑅𝑃𝐷𝑖 =
𝑆𝑜𝑙𝑖 − 𝑆𝑜𝑙𝑚𝑖𝑛

𝑆𝑜𝑙𝑚𝑖𝑛
 

(5-4) 

In equation (5-4), 𝑆𝑜𝑙𝑖 is the solution obtained for experiment 𝑖, and 𝑆𝑜𝑙𝑚𝑖𝑛 is the best solution 

found.  

For all instances, we calculated 𝑅𝑃𝐷𝑖 for each experiment. The resulted mean S/N ratios are 

displayed in Figure 5-5. 
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Figure 5-5. The S/N ratio plot for level of parameters 

As the goal is to maximize the S/N ratios, the highest level of each parameter in Figure 

5-5 is considered as the optimal value for the value of the parameter (Table 5-3). 

Table 5-3. The optimal values of SA parameters 

Parameter Optimal value 

Initial temperature (𝑇0) 300 

Minimum temperature (𝑇𝑚𝑖𝑛) 0.0005× 𝑇0 

Cooling rate (𝛼) 0.95 

Maximum number of iterations (𝐼𝑡𝑚𝑎𝑥) 90 

5.4 Results 

In this section, the results of the algorithm are shown for different test problems and the real case 

study. For parameters of the algorithm, we used their optimal values listed in Table 5-3.  The 

algorithm is coded in MATLAB and is implemented on a desktop computer with a configuration 

of Intel® CoreTMi7-6700, 3.40 GHz CPU, and 16 GB RAM. 



87 

 

5.4.1 Results for test problems 

When developing heuristic and metaheuristic algorithms, validation of the results is of great 

importance. Comparing the results obtained from the developed algorithm with the results of 

mathematical optimization models has the highest level of validation (Bettinger et al., 2009). 

Therefore, we compared the solution of the proposed algorithm with the results of the optimization 

model developed in Chapter 4 for different test problems. Columns 1-3 of Table 5-4 summarize 

the test problems and their characteristics, while the objective function and the optimality gap are 

shown in the fourth and fifth columns, respectively. Finally, the last two columns represent the 

CPU time for the CPLEX solver in AIMMS (CPLEX — AIMMS, 2022) and our SA algorithm, 

respectively. 

Table 5-4. Comparison of CPLEX solver and the SA algorithm for test problems 

Test 

problems 

 

|Truckloads| 

|Nodes| 

 

|Cut blocks| 

|yards| 

Obj. 

function 

(Total cost) 

GAP 

CPLEX 

CPU time 

(second) 

SA  

CPU time  

(second) 

TP 1 |9| |24| |2| |3| $10,458 0 3 0.33 

TP 2 |10| |26| |2| |3| $11,191 0 8 0.37 

TP 3 |11| |28| |2| |3| $12,584 0 47 0.65 

TP 4 |12| |30| |2| |3| $14,053 0 794 0.98 

TP 5 |9| |24| |3| |3| $13,229 0 9 0.36 

TP 6 |10| |26| |3| |3| $13,910 0 11 0.39 

TP 7 |11| |28| |3| |3| $15,253 0 839 0.77 

TP 8 |12| |30| |3| |3| $15,935 0 3417 1.23 

As it can be observed from Table 5-4, the algorithm compared with the CPLEX solver can 

get solutions with zero optimality gap in a shorter amount of time for all test problems. The strong 

performance of the SA algorithm can be attributed to several reasons. First, the proposed operators 

avoid generating infeasible solutions. This reduces the search space for the SA algorithm. In 

addition, the operators are applied to all contractors when creating a new solution string, which 
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leads  to diverse solutions. Moreover, accepting the worse solutions in the search procedure helps 

the algorithm to avoid getting trapped into local optimum. It is remarkable that when the number 

of truckloads increases to 13, the problem becomes computationally intractable, and the CPLEX 

solver cannot solve the problems. Hence, the SA algorithm is proposed for solving larger problems 

in a reasonable amount of time. 

5.4.2 Results for the real case 

In this section, the solution approach is applied to the real case study, in which the daily number 

of truckloads between cut blocks and sort yards are obtained from the first phase of the proposed 

framework (Chapter 3). To ensure that loaders at both cut blocks and sort yards can process all 

delivered truckloads within the regular time and overtime, the following constraints are added to 

the MIP model developed in Chapter 3. 

• Yard 1 cannot receive more than 12 truckloads each day. 

• Yards 2 and 3 cannot process more than 42 truckloads each day. 

• Each cut block can send up to 10 truckloads to sort yards each day. 

The aforementioned modifications to the first phase are determined according to the input data 

and tested by several trials.  

Based on the results obtained from the first phase model, 81 truckloads are transported from 

cut blocks to sort yards each day. In this section, we are focusing on one of the days in which 

truckloads should be delivered from 13 cut blocks to three sort yards resulting in 168 nodes. As 

the problem cannot be solved by CPLEX solver, our algorithm was applied, and it took 125.8 

seconds to get a solution. The proposed algorithm could synchronize loaders and log trucks at both 

cut blocks and sort yards and generate detailed schedules. 
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According to the results, some trucks are not dispatched at all, while other trucks have one to 

three assigned truckloads. As Truck 55, which belongs to contractor 8, delivers three truckloads, 

it is considered as an example to show the detailed schedule (Figure 5-6). First, the truck arrives 

at cut block 4 for loading the first truckload. As the loader is idle at the cut block, the truck 

immediately gets loaded. Then, the truck carries the truckload to sort yard 3 for unloading. 

However, in order to be synchronized with the loader at sort yard 3, the truck has to wait for 8 

minutes as the loader is unloading another truck. Similarly, the truck continues its work to deliver 

the second and the third truckloads. Finally, the truck returns to the depot once it delivers all the 

assigned truckloads. It should be mentioned that as sort yard 3 is very close to the central depot, 

the travelling time from the sort yard to the depot is assumed to be zero. Similar to Truck 55, the 

detailed schedules can be shown for all trucks. 

 

Figure 5-6. The schedule of Truck 55 

For unloading the trucks, there is only one loader at each sort yard. As there is a large 

number of trucks delivering truckloads to sort yards, some trucks may need to wait in order to be 
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synchronized and get unloaded by the loader in each sort yard. As shown in Figure 5-7, sort yard 

2 has the highest waiting times among the sort yards as it receives the largest number of truckloads.  

 

Figure 5-7. Total waiting times at sort yards 

Table 5-5 lists the arrival times and waiting times of trucks at sort Yard 2. Hence, having 

more loaders may reduce the total waiting times of trucks at this sort yard. Alternatively, the 

demand of sort yards can be adjusted in the upper-level model to reduce the number of truckloads 

that sort yard 2 receives, thereby balancing the waiting times among the sort yards. 

Table 5-5. Schedules of trucks arriving at Yard 2 

Truck Truckload 
Arrival time 

(minute) 

Waiting time 

(minute) 

Truck 2 Truckload 33 141.8 0 

Truck 4 Truckload 31 156.8 0 

Truck 6 Truckload 28 171.8 9 

Truck 13 Truckload 32 186.8 2 

Truck 69 Truckload 59 164.6 0.2 

Truck 1 Truckload 26 167.3 5.5 

Truck 48 Truckload 58 190.1 6.7 

Truck 54 Truckload 57 205.1 0 
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Truck 44 Truckload 63 205.1 8 

Truck 47 Truckload 61 225.1 4 

Truck 42 Truckload 9 213.5 7.6 

Truck 3 Truckload 34 235.2 1.9 

Truck 34 Truckload 54 243.2 1.9 

Truck 37 Truckload 56 258.2 2.9 

Truck 39 Truckload 49 273.2 11.9 

Truck 40 Truckload 50 288.2 12.9 

Truck 14 Truckload 41 251.6 1.5 

Truck 18 Truckload 40 266.6 2.5 

Truck 22 Truckload 45 281.6 11.5 

Truck 23 Truckload 46 296.6 12.5 

Truck 2 Truckload 36 271.8 5.3 

Truck 13 Truckload 37 318.8 0 

Truck 4 Truckload 27 320.4 6.4 

Truck 6 Truckload 30 344.4 0 

Truck 42 Truckload 10 351.7 0.7 

Truck 68 Truckload 11 352.6 7.8 

Truck 3 Truckload 39 367.1 1.3 

Truck 34 Truckload 52 379.3 0 

Truck 37 Truckload 48 395.3 0 

Truck 14 Truckload 44 395.7 7.6 

Truck 2 Truckload 35 407.1 4.2 

Truck 47 Truckload 62 417.3 2 

Truck 39 Truckload 53 419.3 8 

Truck 40 Truckload 55 435.3 0 

Truck 22 Truckload 42 435.7 7.6 

Truck 13 Truckload 38 448.8 2.5 

Truck 23 Truckload 43 451.7 7.6 

Truck 34 Truckload 47 476.3 0 

Truck 42 Truckload 51 486.6 0 

Truck 4 Truckload 29 490.4 4.2 

Truck 44 Truckload 60 503.9 0 

 

The loaders at sort yards operate until all trucks deliver their loads. Figure 5-8 shows the 

distribution of start times of loaders for unloading the trucks at the sort yards. In Figure 5-8, the 

line inside each box indicates the median of start times. It means that 50 percent of start times 
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occur above the line. Therefore, half of the unloading activities of the loader at sort yard 3 start in 

the last 160 minutes of the working day as trucks getting unloaded at the sort yard can immediately 

return to the depot after leaving the yard without exceeding the maximum overtime. However, sort 

yards 2 and 3 are far from the depot. Hence, unloading activities are scheduled and assigned to the 

loaders of these sort yards in a way that trucks have enough time to return to the depot without 

having more than the maximum amount of overtime (150 minutes). Also, the loader at sort yard 1 

starts to unload the trucks later than the loaders at the other sort yards as sort yard 1 is the furthest 

yard from the cut blocks. 

 

Figure 5-8. The quartile chart for start times of loaders at the sort yards 

The trucking contractors have a different number of trucks to deliver truckloads to sort 

yards. When contractors dispatch a new truck, the fixed operating costs are incurred. In Figure 5-9, 

the utilization rate of trucks for each contractor is shown. Most contractors have used less than 
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60% of their trucks to fulfill their truckloads. Contractor 1, however, has only one truck, leading 

to a 100% utilization rate. 

 

Figure 5-9. Resource utilization of contractors 

As mentioned earlier, the contractors can assign overtime for each truck. The unit overtime 

cost is 1.5 times greater than the regular time cost. For the contractors, the decision to assign 

overtime to existing trucks or dispatching new trucks has a trade-off. While overtime has a higher 

rate than the regular time, assigning a truckload to a new truck leads to the fixed cost of using the 

truck and a variable cost of empty travel time from the central depot to a cut block to load the 

truck. Figure 5-10 indicates that most contractors have trucks with overtime. As the contractors 

underutilized their trucks (Figure 5-9), these results suggest that although overtime has a higher 

cost rate, assigning it to trucks generates costs savings compared to using a new truck. 
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Figure 5-10. Distribution of trucks of contractors 

5.5 Discussion 

In the case, the company aims to get a detailed schedule of each activity and reduce the total daily 

transportation costs, which can be translated into minimizing the total completion time of 

delivering the truckloads to the yards. Therefore, in this chapter, log loaders and trucks are 

synchronized at both cut blocks and sort yards to get waiting times and detailed schedules. In 

addition, the SPT first rule is employed in the proposed heuristic method for assigning and 

scheduling the truckloads. Here, the processing time for a given truckload includes unloading time 

of the previous truckload, travelling time to arrive at the cut block, loading time of the truckload, 

and travelling time from the cut block to the sort yard. Based on the proposed approach, the FIFO 

rule is met at sort yards. The rule, however, may lead to violation of the FIFO rule at cut blocks in 

rare cases.  In these rare cases, a truck may arrive later at a cut block, but may get loaded earlier 

than other trucks waiting at the cut block. This violation happens when trucks, waiting at the cut 
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block, have different destinations. Under this scenario, a truck with the shortest processing time 

(or earliest arrival time at the destination) gets loaded first even if it arrives later than other waiting 

trucks. Despite the violation, according to (Pinedo, 2012), the SPT first rule is optimal when the 

goal is to minimize the completion time of a single machine (loader in our problem). Additionally, 

as the schedules of different activities are highly interdependent, fixing the schedules at cut blocks 

to meet the FIFO rule may result in infeasibility of the problem because some trucks would have 

excessive waiting times, leading to having overtime greater than the maximum amount of overtime 

that can be assigned to each truck. 

As 81 truckloads are sent to three sort yards with only one loader at each yard, the loaders 

at yards are the bottleneck. Therefore, the problem is sensitive to the unloading time, and any 

loader breakdown or lower productivity of loaders can cause more waiting times. Adding one more 

loader to each sort yard may reduce the total completion time of truckloads. Thus, as the schedule 

of activities are highly interdependent, the waiting times at both cut blocks and sort yards may 

change if the trucks get unloaded by more than one loader at sort yards. Nevertheless, the decision 

to add one more loader to a sort yard requires consideration of incurred costs such as capital costs, 

insurance costs, and labour costs. Also, as shown in Figure 5-8, loaders unload more truckloads in 

some time intervals. For instance, the loader at yard 3 unloads 50% of the assigned truckloads in 

the last 2.5 hours of the day. Therefore, it would be recommended to avoid considering any breaks 

(e.g., lunch break) during peak times, when more trucks arrive at the yard to prevent causing further 

delays in unloading of trucks. 

From Figure 5-9 and Figure 5-10, it was concluded that assigning overtime to the trucks 

would be more economical than dispatching new trucks because of the reduced deadhead trips. 

Therefore, it is expected that the company can have more cost savings if they increase the 
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maximum amount of over time that is assigned to each truck to avoid sending new trucks. 

However, the contractors may have other limitations such as contractual requirements for their 

drivers. Indeed, the balanced workload as the social aspect of the problem was addressed in the 

first phase for the contractors in Chapter 3, while the contractors may need to consider a balanced 

workload for their drivers. It means that if the contractors try to assign more overtime and reduce 

the number of trucks, they may violate their contractual requirements as some drivers may not get 

enough driving time or a balanced workload. 

The solution approach developed in this chapter was tested for all days of a 1-month 

planning horizon. Due to the balanced workload generated by the upper-level model, all truckloads 

could be delivered without violating the overtime of drivers on each day. However, the 

transportation costs of different days were not the same as contractors had to deliver truckloads 

from different cut blocks.  

It is noteworthy to mention that transportation activities are contracted out, and the trucking 

contractors serve at specific cut blocks. In this study, it was assumed that the contractors were 

independent, and there was no partnership among them. However, it is useful to consider potential 

collaborations among the trucking contractors. According to (Piltan & Sowlati, 2014), companies 

can collaborate through sharing resources and information to have partnership advantages such as 

reducing logistics costs, improving overall logistic services, and reducing emissions. In our case, 

the contractors can collaborate by sharing their cut blocks. In other words, trucks of a contractor 

can visit cut blocks originally served by another contractor to pick up truckloads. Therefore, the 

proposed solution approach should be adjusted by removing the delimiters that was separating the 

truckloads of collaborating contractors. Despite this, the contractors would be willing to have a 

collaboration only if they get benefit. Therefore, different types of collaboration among the 



97 

 

contractors need to be investigated to assess the benefits or cost savings that each contractor may 

gain. 

5.6 Conclusions 

In this research, a decomposition approach was introduced for addressing the log logistics problem 

considering real world operational details. In the first phase, a bi-objective mixed integer 

programming model was developed in Chapter 3 to minimize the transportation costs and balance 

the workload of contractors, and to determine the daily flows of logs and sorting decisions. In the 

second phase, truckloads were assigned to compatible trucks and daily schedules of trucks were 

obtained. As the proposed MIP model introduced in Chapter 4 could solve only small and medium-

sized problems, the SA algorithm was employed in this chapter to solve large-sized problems and 

to achieve the third and fourth research objectives. The parameters of the algorithm were calibrated 

using the Taguchi method. The performance of the proposed metaheuristic approach was validated 

by comparing its solution with the results from the optimization model for the small and medium 

sized problems. We applied the algorithm to a real case of transportation planning of a forest 

company in British Columbia, Canada with a 1-month planning horizon. Using the algorithm, it 

was possible to synchronize loaders and trucks at both cut blocks and sort yards and generate 

detailed schedules. It was shown that assigning overtime would be less costly than dispatching 

new trucks for delivering the truckloads.  
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Chapter 6: Conclusions, strengths, limitations, and future research 

6.1 Summary and conclusions 

Log logistics deal with a variety of different activities before logs arrive at their destinations. The 

logs need to be processed, stored, and transported to the demand locations in a timely manner 

considering complexities and limitations. These activities have a significant contribution to the 

total log procurement costs and impact the competitiveness of forest companies. Thus, efficient 

logistics planning helps the forest industry to flourish.  

The main goal of this dissertation was to propose a practical logistics plan at the operational 

level incorporating specific log logistics considerations. The goal was achieved through a 

decomposition framework, which suggested mathematical optimization models and a solution 

approach for allocation of logs, routing, and scheduling of log trucks. To illustrate the applicability 

of the proposed methodology, the models and solution approach were applied to a real case of a 

large forest company in British Columbia, Canada. In the case, the planning horizon was one 

month, and the logs were sent from cut blocks to sort yards by trucking contractors using a 

heterogeneous fleet of trucks. The company intends to know the daily allocation of logs between 

cut blocks and sort yards, and detailed scheduling of trucks with minimum costs considering 

contractors’ limitations. 

In Chapter 2, the log logistics problem was briefly described, and the main decisions and 

issues were elaborated. Then, the log logistics studies were reviewed. The previous studies 

addressed the log logistics for one day or a longer planning horizon using mathematical 

optimization models solved by exact or non-exact solution approaches. These studies were divided 

into two groups: (1) Integrated optimization approach, (2) Decomposition optimization approach. 

In the former group, the decisions of the problems were integrated, while in the latter group, the 
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decisions were determined in different stages. In both groups, there were studies determining the 

log allocation along with routing and scheduling decisions, and there were studies in which the log 

flows were the inputs of the problem. In the existing literature, some log logistics aspects such as 

inventory decisions, time windows, and road weight requirements were addressed. Also, previous 

studies used discretized time slots for scheduling purposes. It was concluded that the existing log 

logistics planning could be more practical by incorporating operational details including social 

aspects, sorting decisions, trucking contractors, and compatibility requirements. In addition, 

continuous time representation can also be used for scheduling logistics activities to have a detailed 

schedule. 

In Chapter 3, a bi-objective mixed integer programming (MIP) model using the goal 

programming approach was developed to determine the daily allocation of logs between cut blocks 

and sort yards considering compatibility requirements and trucking contractors. The first objective 

of this model was to minimize the total transportation costs, while the second objective balanced 

the workload of trucking contractors by minimizing the summation of maximum difference 

between daily workload and a preferred level defined by each contractor. As the generated 

workload could lead to contractors’ satisfaction and indirectly could satisfy drivers, the second 

objective was called the social objective. This research could determine how much volume of logs 

should be sorted each day. To the best of my knowledge, previous studies did not consider sorting 

decisions in the log logistics planning and assumed that the logs had been already sorted. The 

proposed model was applied to the case study and solved using the CPLEX solver in AIMMS 

(CPLEX — AIMMS, 2022). The results indicated that the proposed model could generate a smooth 

workload for the contractors with only 0.4% increase in total transportation costs compared to the 

single objective model, in which the objective was only to minimize the costs. The sensitivity 
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analysis was conducted on goal weights and input parameters, which showed that there was a 

trade-off between the two objectives. Additionally, decreasing transportation costs and demands 

and increasing yard capacities by 20% led to the full achievement of both goals. 

An MIP model was developed in Chapter 4 for daily routing and scheduling of log trucks 

considering synchronization requirements at both origins (cut blocks) and destinations (sort yards).  

It was assumed that the heterogeneous fleet of trucks would be dispatched from a central depot to 

cut blocks and would return to the depot after fulfilling their truckloads. The outputs of the model 

were the assignment of truckloads to trucks considering compatibility requirements, routing, and 

detailed scheduling of activities including arrival times and waiting times of trucks at each 

location, and the amount of overtime assigned to each truck. The model was solved for eight test 

problems taken from the case. In conclusion, for the test problems, the model could synchronize 

log loaders and trucks at both cut blocks and sort yards and generate detailed schedules of different 

activities. The results of the sensitivity analysis highlighted that variable and overtime costs were 

the most sensitive parameters. However, the fixed operating costs of trucks had the least impact 

on the total costs. 

As the MIP model presented in Chapter 4 could be solved only for small-sized problems, 

a solution approach using the simulated annealing (SA) algorithm was developed in Chapter 5 for 

the daily routing and scheduling of log trucks for the real case. The solution approach incorporated 

the complexities of the problem including the heterogeneous fleet of trucks with different service 

times (loading times), trucking contractors, and synchronization of machines at both pickup and 

delivery locations using continuous time representation. The parameters of the SA algorithm were 

calibrated using the Taguchi method. The performance of the algorithm was validated by 

comparing the results of the test problems with the results obtained from the MIP model. The 
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results showed that the algorithm could synchronize log loaders and trucks at both cut blocks and 

sort yards. The number of dispatched trucks and the amount of assigned overtime for each truck 

were other outputs of the algorithm. 

6.2 Strengths 

This research provided a practical framework for addressing log logistics optimization problem 

considering real-world complexities. This work is based on a real case study and represents real-

world log logistics operations. For example, sorting of logs is one of the primary activities of the 

company in daily operations. Unlike previous studies, sorting decisions are considered in this work 

that help the company to keep track of daily volume of log sorts that are processed and dumped 

into the water. Moreover, this study could address one of the forest company’s concerns by 

generating smooth workloads for the trucking contractors. The balanced workload results in 

contractors’ satisfaction and leads to more sustainable planning through incorporating social 

aspects. It is noteworthy that the problem, issues, considerations, and limitations were understood 

through numerous meetings and an in-person visit of the operations, and the results of this study 

were verified by the forest company’s manager. Furthermore, in order to facilitate the 

implementation, the proposed models and solution approach are delivered on platforms that are 

compatible with the company’s existing internal tools.  

Synchronizing log loaders and trucks at both pickup and delivery locations and using 

continuous time representation are the essential considerations of the daily scheduling of activities 

as they could generate detailed schedules. It is notable that neglecting the synchronization in the 

problem, where more than 80 truckloads should be delivered, can reduce the accuracy of schedules 

and increase the costs. These detailed schedules guarantee the feasibility of the problem and 

decrease the transportation costs. Besides, inaccurate schedules may cause unwanted overtime 
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which can potentially make the problem infeasible by assigning an overtime more than the 

maximum value. 

The important managerial insights are another strength of this dissertation. The decision 

makers can identify the bottlenecks of operations. For instance, they can investigate if adding more 

resources (loaders or operators) in sort yards to have smoother operations, considering upper-level 

limitations such as investment costs, is economically reasonable. Also, the company can 

understand how contractual details such as the maximum amount of regular time and overtime of 

trucks and the flexibility of contractors in their daily workload can play a crucial role in the log 

logistics plans. In addition, the advantage of assigning overtime and better utilization of trucks are 

important managerial insights for the trucking contractors. 

From the modelling perspective, this work has some strengths. This research could 

overcome the challenge of quantifying the social index at the operational level. Considering the 

social aspect as a separate objective rather than constraints was useful as it could generate a 

balanced workload over the entire planning horizon and not just between consecutive days. 

Additionally, the trucking contractors can be involved in the planning by specifying their preferred 

levels. 

Unlike previous studies (e.g. El Hachemi et al., 2013; Melchiori et al., 2022), the planning 

horizon in this work is one month with daily continuous decision variables, indicating the huge 

size and complexity of the problem. The suggested decomposition framework can handle the size 

of the problem where the daily log allocations considering various complexities are addressed in 

the first phase using the goal programming model solved by CPLEX solver in eight hours with 

less than 3% optimality gap. This solution time of the first phase is reasonable for the company as 

the model is executed once a month. The presented solution approach in Chapter 5 would be 
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implemented daily and can obtain the schedules in less than three minutes. In addition, the input 

data are defined in a way that could reduce the complexities of the problem. For instance, the 

compatibility requirements are addressed through binary parameters. These data modifications can 

avoid increased computational burden.  

Using the goal programming approach for solving the bi-objective model allows the 

company to prioritize the goals by modifying the weight of the goals and assess how decisions 

would change under different scenarios. Moreover, the sensitivity analysis on the parameters of 

the first phase model may give an insight to decision makers to achieve the defined goals by 

improving operational practices such as expanding the processing capacities of the sort yards.   

6.3 Limitations 

Despite the strengths, this research has some limitations. This work did not consider some 

operational details. Lunch break and driver changes, for instance, were not considered in this work. 

Besides, due to high volume of supply and demand, a large number of trips is required to fulfill 

the demands. Additionally, loaders and trucks may have waiting times for loading/unloading 

activities. These trips and waiting times are sources of emissions. Although this research indirectly 

addresses environmental impacts through minimization of travel time of trucks, these impacts were 

not quantified in this research.  

In this work, it was assumed that all parameters have deterministic values, but there are 

multiple uncertainty sources that affect the log logistics planning at the operational level. Demand 

and supply variations impact the upper-level plans and affect the workload of contractors. 

Breakdown of machines is another source of uncertainty that may disrupt logistics activities. If a 

loader breakdown happens at one location, trucks need to wait more, resulting in delays for the 
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following trips of the trucks. Hence, the costs would increase as a result of increased total travelling 

time of trucks. These uncertainty sources were not incorporated in the proposed logistics planning.  

6.4 Future work 

For future studies, environmental impacts of log logistics activities such as emissions can be 

quantified as another objective function in the optimization model. Looking into environmental 

concerns along with economic and social aspects leads to more sustainable log logistics plans and 

can address one of the open questions identified in (Rönnqvist et al., 2015). Also incorporating 

more operational details such as lunch breaks for drivers can enhance the applicability of the 

logistics plans. 

 Moreover, electrifying the fleets of trucks is getting more attention in recent years. 

However, employing electric trucks can raise different challenges. These trucks have limited 

driving ranges that may impact the delivering of the truckloads. In addition, charging stations need 

to be established in appropriate locations to improve the overall transportation planning. Also, 

these charging stations may need to be synchronized with the trucks to reduce waiting times of 

trucks. Addressing these aspects in future research paves the way to improve log transportation, 

leading to a more sustainable logistics planning.    

Furthermore, uncertainty of input parameters can be incorporated into the log logistics by 

developing robust optimization models. In addition, the variation of supply and demand volumes 

can be addressed by defining scenarios to implement stochastic programming approaches. This 

would assist decision makers to evaluate the logistics under uncertain circumstances such as loader 

breakdowns. Collaborative log logistics planning is another avenue for future research. This 

dissertation can be extended by considering collaboration among contractors by sharing their 

assigned cut blocks. 
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Finally, new metaheuristic algorithms can be employed for solving the daily routing and 

scheduling of log trucks to get better solutions. Another method to improve the solution approach 

is to hybridize different metaheuristic algorithms to take advantage of different algorithms. 
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