
Anomaly Detection in Multiplex Networks: From Human
Brain Activity to Financial Networks

by

Ali Behrouz

B.Sc. Computer Engineering, Sharif University of Technology, 2020

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

August 2023

© Ali Behrouz, 2023

The following individuals certify that they have read, and recommend to the Faculty
of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Anomaly Detection in Multiplex Networks: From Human Brain Activity
to Financial Networks

submitted by Ali Behrouz in partial fulfillment of the requirements for the degree
of Master of Science in Computer Science.

Examining Committee:

Margo Seltzer, Professor, Computer Science, UBC
Supervisor

Laks V.S. Lakshmanan, Professor, Computer Science, UBC
Supervisory Committee

ii

Abstract

The problem of identifying anomalies in dynamic networks is a fundamental task

with a wide range of applications from understanding brain diseases/disorders to

fraud detection in financial networks. However, it raises critical challenges due

to the complex nature of anomalies, lack of ground truth knowledge, and com-

plex and dynamic interactions in the network. Most existing approaches usually

study simple networks with a single type of connection. However many complex

systems exhibit natural relationships with different types of connections, yielding

multiplex networks. We first propose ANOMULY, a graph neural network-based

unsupervised edge anomaly detection framework for multiplex dynamic networks.

ANOMULY learns node encodings in different relation types, separately, and then

uses an attention mechanism that incorporates information across different types

of relations. To improve generalizability and scalability, we further propose AD-

MIRE, an inductive and unsupervised anomaly detection method that extracts the

causality of the existence of connections by temporal network motifs. To extract

the temporal network motifs, ADMIRE uses two different casual multiplex walks,

inter-view and intra-view that automatically extract and learn temporal multiplex

network motifs. Despite the outstanding performance of ADMIRE, using it in

sensitive decision-making tasks requires explanations for the model’s predictions.

Accordingly, we introduce an interpretable, weighted optimal sparse decision tree

model, ADMIRE++, that mimics ADMIRE, to provide explanations for ADMIRE’s

predictions. With extensive experiments, we show the efficiency and effectiveness

of our approaches in detecting anomalous connections in various domains, includ-

ing social and financial networks. We further focus on understanding abnormal

human brain activity of people living with Parkinson’s Disease, Attention Deficit

iii

Hyperactivity Disorder, and Autism Spectrum Disorder to show how these methods

can assist in understanding the biomarkers for these diseases.

iv

Lay Summary

This thesis focuses on the detection of abnormal connections or interactions in com-

plex systems. Identifying unexpected connections is a fundamental problem with

broad applications, ranging from understanding brain diseases/disorders to identify-

ing fraudulent transactions in financial networks. Existing approaches apply only to

simple systems in which participants in a system interact in only one way. However,

there are many different types of interactions in the real world. We introduce two

machine learning-based methods that identify abnormal patterns without having

access to examples of such abnormal patterns. We then present a technique that

explains why our method made the predictions it did. This explainability procedure

is crucial for fostering transparency and trust in decision-making processes, enabling

humans to understand the basis of AI-driven decisions. Finally, we demonstrate

how the proposed methods contribute to understanding abnormal brain activity that

might underlie brain diseases/disorders.

v

Preface

The work presented in this thesis is an original work done by Ali Behrouz under the

supervision of Prof. Margo Seltzer. A version of chapters 4, 5, and 6 of this work

have been published as:

1. Ali Behrouz and Margo Seltzer. “Anomaly Detection in Multiplex Dynamic

Networks: from Blockchain Security to Brain Disease Prediction.” Temporal

Graph Learning Workshop in NeurIPS 2022 [17].

2. Ali Behrouz and Margo Seltzer. “Anomaly Detection in Human Brain via

Inductive Learning on Temporal Multiplex Networks” Machine Learning for

Healthcare Conference 2023 [18].

3. Ali Behrouz and Margo Seltzer. “ADMIRE++: Explainable Anomaly De-

tection in the Human Brain via Inductive Learning on Temporal Multiplex

Networks” Interpretable Machine Learning in Healthcare Workshop in ICML

2023 [19].

vi

Table of Contents

Abstract . iii

Lay Summary . v

Preface . vi

Table of Contents . vii

List of Tables . x

List of Figures . xii

List of Abbreviations . xiv

Acknowledgments . xvi

1 Introduction . 1
1.1 Motivation . 1

1.2 Contributions . 4

2 Preliminaries and background . 6
2.1 Terminology . 6

2.2 Graph Neural Networks . 7

2.3 GRU Cell . 8

2.4 Skip-connections . 10

2.5 MLP-Mixer . 10

vii

2.6 (Weighted) Optimal Sparse Decision Trees 11

2.7 Brain Networks . 12

3 Related Work . 14
3.1 Anomaly Detection in Dynamic Networks 14

3.2 Dynamic Graph Neural Networks 15

3.3 Multiplex Graph Learning . 16

3.4 Anomaly Detection in Multiplex Networks 16

4 ANOMULY: Edge Anomaly Detection Framework in Multiplex Dy-
namic Networks . 18
4.1 Introduction . 18

4.2 ANOMULY: Anomaly Detection in Multiplex Dynamic Networks 19

4.2.1 GNN Architecture . 21

4.2.2 Update Modules . 21

4.2.3 Attention Mechanism . 22

4.2.4 view-dependent Embedding 22

4.2.5 Anomaly Score Computation 23

4.2.6 Training and Loss Function 23

4.3 Experiments . 25

4.3.1 Experimental Setup and Metrics 25

4.3.2 Datasets . 25

4.3.3 Inject Anomalous Edges in Multiplex Networks 27

4.3.4 Baselines . 27

4.3.5 Results . 28

4.4 Conclusion . 33

5 ADMIRE: Inductive and Scalable Anomaly Detection in Multiplex
Dynamic Networks . 34
5.1 Introduction . 34

5.2 ADMIRE . 35

5.2.1 Anonymous Multiplex Temporal Walk 35

5.2.2 Neural Encoding . 40

5.2.3 ADMIRE Framework . 43

viii

5.3 ADMIRE++: Explainable Anomaly Detection in Multiplex Dy-

namic Networks . 45

5.4 Experiments . 46

5.4.1 Experimental Setup . 46

5.4.2 Results . 47

5.4.3 Ablation Study . 48

5.4.4 How Well Does ADMIRE++ Mimic ADMIRE? 50

5.4.5 What Does the Generated Tree Look Like? 50

5.5 Conclusion . 51

6 Anomaly Detection in the Human Brain 54
6.1 Introduction . 54

6.2 Related Work on Machine Learning for Brain Networks 56

6.3 Why/How to Model Human Brain as a Multiplex Network 57

6.4 Modified Attention Mechanism For Multiplex Brain Networks . . 58

6.5 Experiments . 59

6.5.1 Experimental Setting Details 59

6.5.2 Datasets . 59

6.5.3 Baselines . 61

6.5.4 Experimental Setup . 61

6.5.5 Results . 62

6.5.6 Results on Real-world Datasets 66

6.5.7 ADMIRE++ Explanations 69

7 Conclusions . 71

Bibliography . 73

A Supporting Materials . 96
A.1 Performance of the Modified Attention on General Datasets 96

ix

List of Tables

Table 4.1 The value of hyper-parameters of ANOMULY. Here, η and µ

control how close the encodings of two nodes should be so their

connection is normal. Also, λ controls the tradeoff between the

margin-based pairwise loss function and the regularization term. 25

Table 4.2 Network Statistics. Here |V| is the number of nodes, |E| is the

number of edges in all views, and |L| is the number of views. . 26

Table 4.3 Performance comparison of ANOMULY and baselines in multi-

plex networks (AUC). 28

Table 4.4 Performance comparison of ANOMULY and baselines in single-

layer networks (AUC). 29

Table 4.5 Ablation study on ANOMULY (AUC). The first row replaces

the GRU with an MLP. The second row removes the attention

mechanism, and the third row replaces the attention mechanism

with SUM(.). 29

Table 5.1 Performance comparison of ADMIRE and baselines in multiplex

networks (AUC). 47

Table 5.2 Performance comparison of ADMIRE and baselines in single-

layer networks (AUC). 47

Table 5.3 Ablation study on ADMIRE (AUC). In each row, we remove/re-

place one of the ADMIRE’s components and keep the others

unchanged. 49

x

Table 5.4 Accuracy (%) of generated tree explanation on Amazon, DBLP

and Ethereum. This table shows how well ADMIRE++ mimics

ADMIRE predictions. We embolden the best results for each

depth and use an underline to show the best performance for

each dataset. 49

Table 6.1 Performance comparison of ADMIRE and baselines in multiplex

brain networks (AUC). 63

Table 6.2 Ablation study of ADMIRE on brain network datasets. (AUC). 63

Table 6.3 Accuracy (%) of generated tree explanation. This table shows

how well ADMIRE++ mimics ADMIRE predictions. 70

Table A.1 Performance of the modified attention on general datasets (AUC). 97

xi

List of Figures

Figure 2.1 GNN Message passing from the perspective of node x0. First,

each node passes a message to each of its neighbors. After

sending messages, each node receives the messages from its

neighbors. Then each node aggregates its received messages

and updates its node encoding. 9

Figure 4.1 Framework and design of ANOMULY model. ANOMULY first

encodes nodes in each snapshot of the network and updates

them with a GRU cell (embedding update module). Finally, to

train the model in an unsupervised manner, it uses a negative

sampling approach that corrupts normal connections to generate

negative samples. 20

Figure 4.2 Stability over different training ratios on Ripple. 30

Figure 4.3 Event detection in Ethereum network. The top-4 local maxi-

mums all coincide with major events annotated in the figure . 30

Figure 4.4 Anomalous edges in the brain network of a sampled individual. 31

Figure 4.5 Distribution of anomalous edges in ADHD group. 32

Figure 5.1 Schematic of the ADMIRE model. ADMIRE consists of four

main stages called (1) Walk Sampling, (2) Anonymization, (3)

Walk Encoding, and (4) Training via generating negative samples. 36

xii

Figure 5.2 (Top) Motif clusters and example of an extracted motif in each

cluster. (Bottom) The ADMIRE++ tree explanation on the

Amazon dataset (depth=4). Different colors in the motif ex-

amples show the changes in views. Here, P j i are the features

constructed in Equation 5.20. 51

Figure 5.3 3D visualization of clusters using t-SNE (k = 4). While clus-

ters of walks in the Amazon dataset are simply distinguishable,

clusters in DBLP and Ethereum datasets are hard to distinguish,

which is the reason for the worse performance of ADMIRE++

(see Table 5.4) on these two datasets. 52

Figure 6.1 The effect of hyperparameters on the performance (a-c), and λ

evolution (d). 65

Figure 6.2 The advantage of multiplex brain networks over monoplex brain

networks. 67

Figure 6.3 The distribution of anomalous edges in PD group. 67

Figure 6.4 The distribution of anomalous edges in ADHD group. 67

Figure 6.5 The distribution of anomalous edges in ASD group. 68

Figure 6.6 (Left) Motif clusters and example of an extracted motif in

each cluster. (Right) The ADMIRE++ tree explanation on PD

dataset (depth=3). Different colors in the motif examples show

the changes in views. Here, P j i are the features constructed in

Equation 5.20. 69

xiii

List of Abbreviations

ABIDE Autism Brain Imaging Data Exchange

ADHD Attention Deficit Hyperactivity Disorder

ANOMULY Anomaly Detection in Multiplex Dynamic Networks

ANT Attention Network Test

ASD Autism Spectrum Disorder

AUC Area Under the ROC Curve

CNN Convolutional Neural Network

DMRI Diffusion Magnetic Resonance Imaging

FMRI Functional Magnetic Resonance Imaging

GCN Graph Convolutional Networks

GELU Gaussian Error Linear Units

GNN Graph Neural Networks

GRU Gated Recurrent Unit

LDA Latent Dirichlet Allocation

MLP Multilayer Perceptron

NS Negative Sampling

PD Parkinson’s Disease

RNN Recurrent Neural Network

ROI Region of Interest

xiv

SMRI Structural Magnetic Resonance Imaging

TD Typically Developed

xv

Acknowledgments

First of all, I would like to deeply thank my advisor Professor Margo Seltzer for

guiding me throughout my M.Sc. study. I learned so much about research from her

over the past three years, and I would like to deeply thank her for giving me the

opportunity to be a member of the Systopia Lab and learn from her.

I am also grateful to Professor Laks V.S. Lakshmanan, whose research inspired

me in many of my research projects. I am fortunate to have had the chance to

collaborate with and learn from him during my M.Sc. study.

I would like to thank Professor Cynthia Rudin and Professor Mathias Lécuyer,

who I have the chance to work with and learn from. I learned a lot from them which

also inspired me for a part of this thesis.

I would like to thank my parents and my sister for supporting me throughout

this way. Despite being on the opposite side of the earth, I could still feel the love

and care of them.

Finally, I would like to thank my collaborator, my projects partner, my best

friend, and my love, Farnoosh, whose support, love, and care have been unwavering

throughout this journey. Having her as a collaborator, friend, and partner, I feel

fortunate to have the chance to share every moment of this journey with her.

xvi

Chapter 1

Introduction

1.1 Motivation
Identifying anomalous activities in networks is a long-standing and vital prob-

lem with a wide variety of applications in different domains, e.g., finance, social

networks, security, and public health [2, 8, 9, 115, 141]. While several anomaly

detection approaches focus on the topological properties of networks [63, 64, 110,

133, 134, 157], detecting anomalies in real-world networks also requires attention

to their dynamic nature [141]. Anomalies might appear as malware in computer

systems [77], social bots and social spammers in social networks [51], or finan-

cial fraud in financial systems [7, 8]. Accordingly, anomaly detection in dynamic

(evolving) complex systems has recently attracted much attention.

Most prior work focuses on detecting anomalies in dynamic networks whose

edges are all of the same type [24, 32, 40, 65, 66, 141, 180, 188]; these networks

are called single-layer, dynamic networks. However, in many complex dynamic

systems, such as social, transportation, and financial networks, there are many

different kinds of interactions between objects. For example, interactions between

people can be social or professional, and professional interactions can differ ac-

cording to topics. We model graphs with different kinds of edges as Multilayer or

Multiplex networks [98], where nodes can interact in multiple views, each of which

is associated with a specific type of connection. In these networks, the different

types of connections are complementary to each other, providing more complex and

1

richer information than simple graphs. Surprisingly, anomaly detection in multiplex

networks is relatively less explored and has only recently attracted attention.

Existing approaches to anomaly detection in multiplex networks suffer from

three main limitations: 1 Structure and feature inflexibility: existing methods

assume pre-defined anomaly patterns or man-made features. Such approaches are

application dependent and do not easily generalize to different domains. Moreover,

in real-world networks, anomalies might be more complex in nature, and it is nearly

impossible to detect anomalies with high accuracy using pre-defined patterns/roles.

2 Same importance for all types of connections: these methods treat each view

identically, assigning the same importance to each view. However, real-world multi-

plex networks can contain noisy/insignificant views [71, 79]. Moreover, all vertices

might not participate equally in all layers, so which layers are noisy/insignificant

can be different for each vertex [71, 79]. 3 Lack of edge anomaly detection: pre-

vious methods for anomaly detection in multiplex networks focus on identifying

anomalous nodes, subgraphs, or events. However, in many real-world applications,

a connection between two vertices might be an anomaly [24, 40, 180, 188]. This

anomalous connection might be a suspicious transaction in a financial network, a

fake follower in a social network, or an abnormal functional correlation between

two regions of the brain.

In addition to the limitations of existing anomaly detection methods in multiplex

networks, existing methods for anomaly detection in single-layer dynamic graphs

also exhibit limitations. i Structure inflexibility: even in single-layer networks,

most existing anomaly detection methods for dynamic networks rely on pre-defined

patterns or heuristic rules (see [142, 160]). These heuristic rules are usually content

features or long-term temporal factors. However, these factors are not flexible and

are restricted to specific patterns, while real-world anomalies have complex nature

and a fixed description of an anomaly does not apply in all situations. ii Memory

usage: deep learning-based methods [180, 188], which are commonly proposed, re-

quire storing entire snapshots of the network at each time window, consuming large

and increasing amounts of memory. iii Discrete timestamps: existing anomaly

detection methods consider time as a discrete variable, while in many complex

dynamic systems, interactions are continuous. Accordingly, modeling their con-

nections’ timestamps as discrete variables misses temporal properties and patterns.

2

That is, these methods consider discrete approximations of dynamic systems, but

this discretization fails if we have irregularly observed data [96].

To overcome the above limitations, we study the problem of anomaly detection

in multiplex, dynamic networks. Since multiplex networks provide richer and more

complex information than simple networks, they also improve anomaly detection in

simple dynamic graphs [9, 115, 141], delivering better solutions. Next, we discuss

two of anomaly detection that apply only to multiplex networks.

Applications: Brain Networks. Monitoring functional systems in the human brain

is a fundamental task in neuroscience [26, 139]. Each node in a brain network

represents a region of interest (ROI), which is responsible for a specific function,

and edges represent an association between two ROIs. For example, one common

mode of analysis is to construct a brain network from functional magnetic resonance

imaging (FMRI), where edges represent high functional correlation between two

ROIs. A temporal brain network lets us measure the statistical association between

the functionality of ROIs over time. Since a (dynamic) brain network generated

from an individual can be noisy and/or incomplete [6, 20, 101, 185], prior work

used the average of brain networks from many individuals [1, 42]. However, these

methods ignore the complex relationships in each individual’s brain. We can capture

these missing relationships by modeling the network as a multiplex (dynamic)

network [59], where each view represents an individual’s brain network. An edge

anomaly detection approach in multiplex networks can be used to reveal abnormal

brain activity patterns that might cause or be indicative of a brain disease or disorder.

In Chapter 6, we discuss this application in more detail.

Applications: Fraud Detection in Multiple Blockchain Networks. Anomaly

detection in (dynamic) blockchain transaction networks has recently attracted enor-

mous attention [39, 62, 81, 116, 135, 137], due to the emergence of a huge assort-

ment of financial systems’ applications [36, 76, 90]. While most existing work

focuses on detecting illicit activity in a single blockchain network, recent research

shows that cryptocurrency criminals increasingly use cross-cryptocurrency trades

to hide their identity [125, 127]. Accordingly, Yousaf et al. [175] recently showed

that analyzing links across several blockchain networks is critical for identifying

emerging criminal activity on the blockchain. An edge anomaly detection approach

3

in multiplex networks can be used to detect suspicious transactions and identify

criminal activity across several blockchain transaction networks more accurately.

1.2 Contributions
The contributions of this work are:

1. We address the lack of edge anomaly detection in multiplex networks, by

introducing ANOMULY, an end-to-end unsupervised framework for detecting

edge anomalies in dynamic multiplex networks. ANOMULY uses a novel

layer-aware node embedding approach in multiplex dynamic networks, Snap-

shot Encoder, which uses an attention mechanism to incorporate both tempo-

ral and structural information on different relation types. Next, ANOMULY

uses a GRU cell to incorporate the outputs of Snapshot Encoder for different

snapshots, keeping node encodings updated over time. Finally, it uses a

negative sampling approach in the training phase to overcome the lack of

ground truth data (Chapter 4).

2. While ANOMULY shows outstanding performance in experiments on nine

real-world multiplex and simple networks, it exhibits poor scalability, lack

of generalizability to abnormal connections whose endpoints have not been

seen in the training, and imprecise temporal modeling using a discrete ap-

proximation of network dynamics. To address these limitations, we present

ADMIRE, an end-to-end inductive unsupervised learning method. ADMIRE

uses inter-view and intra-view temporal walks to implicitly extract network

motifs and causal relationships across different views and within a view,

respectively. Next, ADMIRE adopts a novel anonymization process based

on the correlation between multiplex network motifs to hide the identity of

nodes and views. Next, it uses an MLP-Mixer to encode the sequence of

nodes and views in a walk. By aggregating all the walks started from a node,

ADMIRE encodes nodes’ neighborhoods. Encoded neighborhoods are fed to

a classifier to detect anomalous connections (Chapter 5).

3. Decision-making in sensitive domains (e.g., healthcare), requires models that

explain the reason for each prediction to experts. To this end, we design

4

a post-hoc decision-tree-based explanation method to explain ADMIRE’s

predictions based on its extracted motifs. ADMIRE++ first uses inter-view

and intra-view walks to extract network motifs around each node, and then

constructs a feature vector that describes the neighborhood of each node

based on the counting of extracted motifs. Finally, it trains an interpretable

weighted optimal sparse decision tree model that gets these features as inputs

and mimics ADMIRE predictions (Section 5.3).

4. We demonstrate a new application of edge-anomaly detection in dynamic

multiplex networks and present several case studies on the brain network

of people living with Attention Deficit Hyperactivity Disorder, Parkinson’s

Disease, and Autism Spectrum Disorder. The results show the potential of

ADMIRE and ANOMULY in detecting abnormal brain activity that might

reveal a disease or disorder (Chapter 6).

5. We further conduct extensive experiments on nine real-world multiplex and

simple networks to evaluate the performance of ANOMULY and ADMIRE

in different domains, varying from social, co-purchasing, co-authorship, and

human mobility networks to financial networks. These experimental results

are reported at the end of each chapter.

5

Chapter 2

Preliminaries and background

We first describe the terminology used in this thesis for describing multiplex dynamic

networks and the problem of anomaly detection. Next, we discuss the preliminary

background on graph neural networks, GRU cells, skip-connections, MLP-Mixer,

optimal sparse decision trees, and brain networks.

2.1 Terminology
There are two types of representation for dynamic networks, so we begin by formally

describing them.

Definition 1 (Multiplex Temporal Networks). Let G = {Gr}Lr=1 = (V, E ,X)

denotes a multiplex temporal network, where Gr = (V, Er,X) is a graph of the

relation type r ∈ L (also known as view), V is the set of nodes, E =
⋃L
r=1 Er is the

set of edges such that each edge is associated with a timestamp τe and X ∈ R|V|×f

is a matrix that encodes node attribute information for nodes in V . Here, f is the

number of available features for each node.

In temporal multiplex networks, we assume that each node and each edge is

associated with a timestamp, which shows the time that a node/edge first appears in

the network. In the literature, there are two ways to process temporal multiplex net-

works based on whether time is a discrete or continuous variable. In Chapter 4, we

consider time as a discrete variable and take a snapshot-based anomaly detection ap-

proach for multiplex dynamic networks: a multiplex dynamic graph G = {G(t)}Tt=1

6

can be represented as a sequence of multiplex network snapshots, where each

snapshot is a static multiplex graph G(t) = {G(t)
r }Lr=1 = (V(t), E(t),X (t)) with

V(t) = {v ∈ V|τv = t} and E(t) = {e ∈ E|τe = t}. Our goal is to detect anoma-

lous edges in E(t). Note that, here, a snapshot of the network, G(t), represents the

state of a graph at time t.

In Chapter 5, we consider time as a continuous variable and take a streaming

anomaly detection approach for multiplex dynamic networks:

Definition 2 (Stream Temporal Multiplex Networks). A temporal stream multiplex

network G = {Gr}Lr=1 = (V, E ,X), can be represented as a sequence of connec-

tions with different types that arrive over time, i.e., E = {(e1, t1), (e2, t2), . . . },

where V is the set of nodes, L is the set of relation types (views), {e1, e2, . . . } ⊆
V × V × L, and X ∈ R|V|×f is a matrix that encodes node attribute information

for nodes in V .

Given a relation type r, we use Gr = (V, Er,X) to denote the corresponding

graph of the relation type r (also known as the r-th view of the graph), and we

denote the set of vertices in the neighborhood of u ∈ V in relation r as Nr(u).

Given time t, we use E tr(u) = {(e, t′) ∈ Er|u ∈ e and t′ < t} to represent the set of

connections attached to a node u in relation type r before a given time t.

2.2 Graph Neural Networks
Message-passing Graph Neural Networks (GNNs) are a class of neural network

models designed to operate on graph-structured data. The core idea behind message-

passing GNNs is to iteratively update the node representations by aggregating

and exchanging information with neighboring nodes. This process allows nodes

to gather and propagate information across the graph, capturing both local and

global structural patterns. We can mathematically formulate the process of message-

passing as follows:

7

h(0)
v = xv ∀v ∈ V (2.1)

m(k)
v = AGGREGATE(k)

({
h(k−1)
u : u ∈ N (v)

})
(2.2)

h(k)
v = COMBINE(k)

(
h(k−1)
v ,m(k)

v

)
(2.3)

h(k)
v = UPDATE(k)

(
h(k−1)
v

)
(2.4)

In the above equations, xv represents the input feature vector for node v in

the graph. h
(k)
v denotes the representation of node v at iteration k, and m

(k)
v

represents the aggregated message from neighboring nodes of v at iteration k.

The functions AGGREGATE(k)(.), COMBINE(k)(.), and UPDATE(k)(.) represent

the aggregation, combination, and update functions used in the message-passing

process, respectively. The specific choices of these functions can vary depending

on the design of the GNN model. Common aggregation functions include SUM(.),

MEAN(.), or MAXPOOLING(.), while combination functions typically involve

concatenation or element-wise operations. The update function can be a simple

feed-forward neural network or a more complex recurrent or attention mechanism.

By iteratively applying the message-passing equations, GNNs capture increas-

ingly refined representations of the graph structure and learn node embeddings that

encode both local and global information. These learned node representations can

then be used for various downstream tasks, including anomaly detection.

Figure 2.1 shows an example of message passing in a simple graph. Each node

passes messages to its neighbors and when a node receives all messages from its

neighbors, aggregate them to update its own encoding.

2.3 GRU Cell
The Gated Recurrent Unit (GRU) is a type of recurrent neural network (RNN) that

has been widely used for modeling sequential data [48]. It is known for its ability to

capture long-term dependencies in the data while mitigating the vanishing gradient

problem that can occur in traditional RNNs [48]. The GRU cell consists of various

gates that control the flow of information within the network. These gates include

8

Figure 2.1: GNN Message passing from the perspective of node x0. First, each
node passes a message to each of its neighbors. After sending messages,
each node receives the messages from its neighbors. Then each node
aggregates its received messages and updates its node encoding.

an update gate, a reset gate, and an output gate. The update gate determines how

much of the past information should be retained, the reset gate decides how much of

the past information should be forgotten, and the output gate regulates the amount

of information to be outputted. The mathematical formulation of the GRU cell can

be represented as follows:

zt = σ (Wz · [ht−1, xt]) (2.5)

rt = σ (Wr · [ht−1, xt]) (2.6)

h̃t = tanh (Wh · [rt ⊙ ht−1, xt]) (2.7)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t. (2.8)

In the above equations, xt represents the input at time step t, ht−1 is the hidden

state of the previous time step, and ht is the updated hidden state at time step t.

Wz,Wr and Wh are weight matrices specific to each gate. σ(.) denotes the sigmoid

activation function, ⊙ represents element-wise multiplication, and [a, b] denotes

concatenation of vectors a and b. The update gate zt controls how much of the

previous hidden state to retain and how much of the new information to incorporate.

The reset gate rt determines how much of the previous hidden state should be

forgotten. The input and previous hidden state are combined with the reset gate

9

to compute an intermediate hidden state h̃t. Finally, the new hidden state ht is

obtained by combining the previous hidden state with the updated information from

h̃t based on the update gate zt. This formulation allows the GRU cell to selectively

retain or forget information, making it well-suited for tasks involving sequential

data, such as language modeling, machine translation, and speech recognition.

2.4 Skip-connections
A skip connection [104], also known as residual connection, is a technique com-

monly used in deep machine learning methods to improve the flow of information

and alleviate the vanishing gradient problem [104]. They allow the network to retain

and propagate important information from earlier layers to later layers.

Mathematically, in GNNs, skip connections can be represented as follows [104]:

h(k)
v = AGGREGATE

({
h(k)
u : u ∈ N (v)

})
+ h(k−1)

v (2.9)

h(k+1)
v = COMBINE

(
h(k)
v ,h(k+1)

v

)
(2.10)

In the above equations, h(k)
v represents the hidden state of node v at layer k.

The first equation combines the aggregated information from neighboring nodes

with the hidden state of the previous layer, allowing the current layer to have direct

access to both local and global information. The second equation combines the skip

connection output with the output of the current layer using a combining function.

The skip connections enable GNNs to effectively handle deep architectures by

facilitating the flow of gradients during training. By retaining information from

earlier layers, the network can mitigate the vanishing gradient problem and improve

the learning of long-range dependencies. Furthermore, skip connections also help

preserve and propagate important features throughout the network.

2.5 MLP-Mixer
MLP-Mixer, an all-Multilayer Perceptron (MLP) architecture, is a type of neural

network architecture that has gained attention in the field of computer vision. It is

10

designed as an alternative approach to traditional convolutional neural networks

(CNNs) and Transformers [153]. Each layer in the architecture of MLP-Mixer con-

sists of two distinct sub-layers: a token-mixing layer and a channel-mixing layer.

Channels refer to pixel values in an image. The token-mixing layer processes the spa-

tial information within each channel independently, while the channel-mixing layer

integrates the information across different channels. This mixing of information

helps capture both local and global dependencies within the image.

The mathematical formulation of MLP-Mixer can be represented as follows:

1 Token Mixer:

Htoken = E+W
(2)
tokenσ

(
W

(1)
tokenLayerNorm (E)T

)T
, (2.11)

1 Channel Mixer:

Hchannel = Htoken +W
(2)
channelσ

(
W

(1)
channelLayerNorm (Htoken)

)
, (2.12)

In the above equations, E is the input matrix and σ(.) is a nonlinear activation

function (usually Gaussian Error Linear Units (GELU) [84]). The main advantage of

MLP-Mixer is its simplicity as well as its ability to capture cross-feature and cross-

sample dependencies. That is, the Token-Mixer phase captures the dependencies

between all samples across each feature, while the Channel-Mixer phase learns the

dependencies of features in each sample. This combination produces promising

advantages in various domains such as graph learning [22, 49], computer vision [151,

177], and natural language processing [70].

2.6 (Weighted) Optimal Sparse Decision Trees
Decision trees are one of the most popular forms of interpretable models [144].

While full decision tree optimization is NP-hard [102], it is possible to make

assumptions, e.g., feature independence, that simplifies the hard optimization to

cases where greedy methods suffice [99]. However, these assumptions are unrealistic

in practice, causing suboptimal performance in real-world scenarios. More recently

there have been several approaches that fully optimize sparse trees to yield the

best combination of performance and interpretability [23, 68, 75, 126]. This work

11

leverages the fact that the loss takes on a discrete number of values to enable efficient

computation [4, 5, 107, 120]. Although in real-world applications, samples might

differ in their importance, none of these methods handle weighted samples. To

address this limitation, Behrouz et al. [21] extend the decision tree optimization

problem to include weighted samples.

Let T be a decision tree that gives predictions {ŷTi }Ni=1. The weighted loss of

T is:

Lw(T , x̃,y) =
1∑N
i=1wi

N∑
i=1

1[yi ̸= ŷTi]× wi . (2.13)

Building on the work of McTavish et al. [120], Behrouz et al. [21] provides

the option to use either soft sparsity regularization on the number of leaves, hard

regularization on the tree depth, or both:

minimize
T

Lw(T , x̃,y) + λHT s.t. depth(T) ≤ d , (2.14)

where HT is the number of leaves in T and λ is a per-leaf regularization parameter.

Behrouz et al. [21] develop three algorithms to find the optimal weighted tree.

The first approach directly optimizes the weighted loss function by the dynamic

programming algorithm of Lin et al. [107], which requires using floating point

vector operations, rather than bit vector operations, leading to poor scalability. The

second approach scales better by transforming weights to integer values and using

data duplication to transform the weighted decision tree optimization problem into

an unweighted problem with more data samples. The third algorithm, which scales

to much larger datasets, uses a randomized procedure that samples each data point

with a probability proportional to its weight.

2.7 Brain Networks
Brain networks refer to interconnected patterns of neural activity or structural

connections within the human brain. These networks provide valuable insights into

brain organization, function, and information processing. They are often studied

using neuroimaging techniques such as functional magnetic resonance imaging

(FMRI) and structural magnetic resonance imaging (SMRI) [191].

12

Mathematically, brain networks can be represented as graphs, where the brain

regions are nodes, and the connections or any other association between them

are edges. To obtain brain networks from fMRI data, a common approach is to

extract the time series of activity from different brain regions and then calculate

the correlation or coherence between the time series of different brain regions. The

resulting correlation matrix represents the functional connectivity network of the

brain. In the case of sMRI data, the goal is to map the structural connections between

different brain regions, which can be done using diffusion MRI (DMRI) and then

estimating the white matter pathways connecting different brain regions [57]. The

study of brain networks has contributed to our understanding of brain function [14,

20, 80, 152], cognitive processes [15, 145], and neurological disorders [42, 109].

In Chapter 6, we provide more detail on how to obtain the brain network from

neuroimaging data.

13

Chapter 3

Related Work

We begin with a review of anomaly detection algorithms in dynamic simple net-

works, then discuss methods for dynamic and multiplex graph learning, and finally

present the state of the art in anomaly detection in multiplex networks. For additional

related work, we refer the reader to the extensive survey by Ma et al. [115].

3.1 Anomaly Detection in Dynamic Networks
There has been much work in anomaly detection for single-layer dynamic networks.

That work falls in four categories: (1) Probabilistic methods [3, 24, 43, 83, 131,

156, 178] that identify anomalies based on deviations from regular communication

patterns. (2) Distance-based methods [65, 66, 142, 160, 172] that use certain

time-evolving measures of dynamic network structures and use their changes to

detect anomalies. (3) Density-based methods [31, 85, 168] that view anomalies as

subgraphs with high density or as subgraphs with sudden changes in their density.

(4) Matrix factorization methods [117, 147, 148, 150, 179] that use the low-rank

property of network structures and define anomalies as breakers of this property.

All approaches in these four groups are based on pre-defined patterns/rules and

cannot learn unforseen anomalous patterns, which limits their application. Learning-

based methods that combine the graph embedding method into the anomaly de-

tection approach [33, 87, 111, 180, 188, 189] address this shortcoming. These

learning-based models assume the dynamic nature of these graphs is accurately

14

modeled as a sequence of graph snapshots. Here, each snapshot represents the state

of the graph at a specific timestamp. These methods must store the entire snapshot,

which requires large memory, limiting their ability to scale to large graphs. Also, all

these methods apply to single-layer networks only and do not naturally extend to

multiplex networks. That is, these methods are not able to consider different types

of connections, missing the semantics of the interactions.

3.2 Dynamic Graph Neural Networks
The problem of learning from dynamic networks has been extensively studied in the

literature [22, 45, 72, 80, 105, 106, 128, 132, 149, 171]. The first group of existing

methods uses Recurrent Neural Networks (RNN) and then replaces the linear layer

with a graph convolution layer [106, 146, 187]. The second group uses a Graph

Neural Network (GNN) as a feature encoder and then deploys a sequence model

on top of the GNN to encode temporal properties [132, 162, 176]. To address the

scalability and model design issue of these methods, You et al. [174] presented

ROLAND, a graph learning framework for dynamic graphs that can re-purpose any

static GNN to dynamic graphs. Recently, more sophisticated learning methods for

temporal graphs have been designed based on temporal random walks [22, 88, 163],

line graphs [41], GraphMixer [49], neighborhood representation [113], and subgraph

sketching [37]. However, all these methods differ from ADMIRE and ANOMULY

as they are designed for temporal graphs with only a single view and cannot easily

be extended to multiplex networks.

The Snapshot Encoder in ANOMULY can be seen as the extension of ROLAND

to multiplex networks. However, natural attempts to use multiplex graph neural

networks [16, 35, 47, 136, 169, 182] in the ROLAND framework (e.g., replacing

the GNN block with a multiplex GNN) ignore historical data in other views. For

example, assume that we want to use ANOMULY’s attention mechanism (see Sec-

tion 4.2.3) in the ROLAND framework. Then, we need to use the attention mecha-

nism in the GNN block, which means we incorporate information about different

relation types before the Embedding update module. Accordingly, for each times-

tamp, we do not incorporate historical data on other relation types, which could

produce undesirable performance. By introducing an attention mechanism that

15

incorporates relation-specific hierarchical node states in each snapshot after each

Embedding update, ANOMULY takes advantage of both multiplex and temporal

information.

3.3 Multiplex Graph Learning
In a multiplex network, also known as multilayer, multi-view, or multi-dimensional

networks, all nodes have the same type, but edges (relations) have multiple types [98].

Several methods have been proposed to learn network embeddings on multiplex

networks by integrating information from individual relation types [35, 38, 136, 161,

166, 169]. Other work proposed Graph Convolutional Networks (GCN) methods

for multiplex networks [16, 47, 182]. Inspired by Deep Graph Infomax [155], Park

et al. [130] and Jing et al. [89] proposed unsupervised approaches to learn node

embeddings by maximizing the mutual information between local patches and the

global representation of the entire graph. Zhang et al. [183] proposed a method that

uses a latent space to integrate the information across multiple views. Recently,

Wang et al. [159] proposed DPMNE to learn from incomplete multiplex networks.

Several methods have been proposed for learning on heterogeneous networks

(networks with multiple vertex and edge types) [38, 166, 170]. Although multi-

plex networks can be seen as a special case of heterogeneous networks (with a

single type of nodes), these learning methods on heterogeneous graphs emphasize

heterogeneous types of entities connected by different relationships, which is differ-

ent from the concept of multiplex networks [130]. That is, these methods do not

take advantage of the complementary information provided by different types of

connections among the same type of nodes, missing their complex interactions.

Existing methods for multiplex networks differ from ADMIRE and ANOMULY

as they ignore the temporal properties of the graph.

3.4 Anomaly Detection in Multiplex Networks
The problem of anomaly detection in multiplex networks has recently attracted

attention. Mittal and Bhatia [122] use eigenvector centrality, page rank centrality,

and degree centrality as handcrafted features for nodes to detect anomalies in

static multiplex networks. Bindu et al. [25] proposed a node anomaly detection

16

algorithm in static multiplex networks that uses handcrafted features based on

clique/near-clique and star/near-star structures. Bansal and Sharma [12] defined

a quality measure, Multi-Normality, which employs the structure and attributes

together of each layer to detect attribute coherence in neighborhoods between layers.

Maulana and Atzmueller [119] use centrality of all nodes in each layer and apply

many-objective optimization with full enumeration based on minimization to obtain

Pareto Front. Then, they use Pareto Front as a basis for finding suspected anomaly

nodes. Chen et al. [46] proposed ANOMMAN that uses an auto-encoder module

and a GCN-based decoder to detect node anomalies in static multiplex networks.

Although this model can learn from the data, it is limited to static networks, and

it treats each layer equally in the Structure Reconstruction step. Finally, Ofori-

Boateng et al. [127] developed a new persistence summary and used it to detect

events in dynamic multiplex blockchain networks.

All of these approaches are designed to detect topological anomalous subgraphs,

nodes, or events, and cannot identify anomalous edges. Moreover, as we discussed

in Section 4.1, these methods, except ANOMAN [46], are based on pre-defined pat-

terns/roles or handcrafted features, while real-world network anomalies have com-

plex nature and have varied and unknown patterns that preclude pre-identification.

Therefore, these models cannot be generalized to different domains, limiting their

application.

17

Chapter 4

ANOMULY: Edge Anomaly
Detection Framework in
Multiplex Dynamic Networks

We present ANOMULY, an unsupervised generic graph neural network-based frame-

work for anomaly detection in multiplex dynamic networks. ANOMULYlearns

the low-dimensional representation of vertices in graphs by taking advantage of

historical data and complementary information provided by different views of the

network. Then, we use the vertex encodings to classify future connections as normal

or abnormal.

4.1 Introduction
As discussed in Chapter 1, existing approaches to anomaly detection in multiplex

networks suffer from three main limitations: 1 Structure and feature inflexibility 2

Same importance for all types of connections. 3 Lack of edge anomaly detection.

We introduce ANOMULY (Anomaly Detection in Multiplex Dynamic Networks),

which mitigates all of these limitations. ANOMULY extends the idea of hierarchical

node states [174] to multiplex dynamic networks by using an attention mechanism

that incorporates information about different relation types to take advantage of both

temporal properties and complementary information present in multiple relation

18

types. Next, it uses selective negative sampling to learn anomalous edges in an

unsupervised manner. To the best of our knowledge, ANOMULY is the first edge-

anomaly detection method for multiplex networks. Further, when it is possible to

model a simple network as a multiplex network, ANOMULY outperforms existing

simple network approaches, because the multiplex network provides richer and

more complex information than does a simple network [9, 115, 141].

4.2 ANOMULY: Anomaly Detection in Multiplex Dynamic
Networks

ANOMULY is a snapshot-based anomaly detection approach for multiplex dynamic

networks. Accordingly, we model the multiplex dynamic network as a sequence of

multiplex network snapshots as we described in Chapter 2: a multiplex dynamic

graph G = {G(t)}Tt=1 can be represented as a sequence of multiplex network

snapshots, where each snapshot is a static multiplex graph G(t) = {G(t)
r }Lr=1 =

(V(t), E(t),X (t)) with V(t) = {v ∈ V|τv = t} and E(t) = {e ∈ E|τe = t}. Our goal

is to detect anomalous edges in E(t). Specifically, for each edge e = (u, v, r) ∈ E(t),

we produce a view-dependent anomalous probability φr(e) in view r ∈ L.

Figure 4.1 provides an overview of our framework for edge anomaly detection

in dynamic networks with multiple types of interactions. To learn the pattern of

normal edges, ANOMULY uses the Snapshot Encoder architecture to encode each

snapshot of the network. The Snapshot Encoder is a GNN that takes as input a

snapshot of the graph and produces, for each view of the graph, an embedding for

each vertex. It incorporates both structural and temporal properties of each snapshot,

as well as node features in each view. Next, it uses an attention mechanism to

take advantage of complementary information from different views. The attention

mechanism is a module that learns the importance of each view for each node and

then uses these weights in a weighted sum to obtain the node encodings. Since

the graph is dynamically changing, the node embeddings can change over time, so

Snapshot Encoder uses a GRU cell [48] (see Chapter 2 for more explanation about

GRU cells) to update the node states over time. Finally, we use the hierarchical node

states at each timestamp to calculate the view-dependent anomalous probabilities of

an existing edge and a negative sampled edge and use them as inputs to a margin

19

G
N

N
 L

ay
er

1
G

N
N

 L
ay

er
1

G
N

N
 L

ay
er

1

A
tt

en
tio

n

E
m

be
dd

in
g

up
da

te

E
m

be
dd

in
g

up
da

te
E

m
be

dd
in

g
up

da
te

G
N

N
 L

ay
er

2
G

N
N

 L
ay

er
2

G
N

N
 L

ay
er

2

A
tt

en
tio

n

E
m

be
dd

in
g

up
da

te

E
m

be
dd

in
g

up
da

te
E

m
be

dd
in

g
up

da
te

A

B

C D

F G

H

I

J

K

A

B

C D

E
F G

I

J

K

B

D

E
F G

H

I

J

K

Snapshot

(a) Architecture of the Snapshot Encoder

Snapshot
Encoder

Snapshot
Encoder

Score

Function

Margin Loss

(b) ANOMULY Framework

Figure 4.1: Framework and design of ANOMULY model. ANOMULY first
encodes nodes in each snapshot of the network and updates them with a
GRU cell (embedding update module). Finally, to train the model in an
unsupervised manner, it uses a negative sampling approach that corrupts
normal connections to generate negative samples.

20

loss computation. Next, we explain each part in more detail.

4.2.1 GNN Architecture

A GNN iteratively aggregates messages from the local neighborhood of nodes to

learn node embeddings. For a given type of relation r, we use the embedding matrix

H̃
(ℓ)
r = {h̃(ℓ)

ru }u∈V to denote the embedding of all vertices in relation type r after

applying the ℓ-th GNN layer. Given a relation type r, the ℓ-th layer of the GNN,

H̃
(ℓ)
r = GNNr(H̃

(ℓ−1)
r), is defined as:

mℓ
r(v→u)

=W (ℓ)
r CONCAT

(
h̃(ℓ−1)
rv , h̃(ℓ−1)

ru , τ(v,u,r)

)
,

h̃(l)
ru = AGG(ℓ)

({
mℓ
r(v→u)

|v ∈ Nr(u)
})

+ h̃(ℓ−1)
ru .

(4.1)

In our experiments, we follow You et al. [174], and use summation as the aggre-

gation function, i.e., AGG(.) = SUM(.). We also use skip-connections [104] (see

Chapter 2) after aggregation.

4.2.2 Update Modules

Given the snapshot G(t) = (V(t), E(t),X (t)) at time t and a relation type r, we

denote the embedding matrix in relation r after the ℓ-th GNN layer at time t by

H̃
(t)(ℓ)

r = {h̃(t)(ℓ)

ru }u∈V . To take advantage of historical data and update the node

embeddings at each timestamp, in the Embedding update block (see Figure 4.1),

we use a GRU cell [48]. Given a relation type r, the output of the ℓ-th Embedding

update, Ĥ(t)(ℓ)

r = {ĥ(t)(ℓ)

ru }u∈V , is:

Ĥ(t)(ℓ)

r = GRUr

(
H̃(t)(ℓ)

r , H(t−1)(ℓ)

r

)
, (4.2)

where H̃(t)(ℓ)

r is the output of the ℓ-th GNN layer, and H
(t−1)(ℓ)

r is the view-

dependent embedding matrix at time t− 1. The view-dependent embedding matrix,

H
(t)(ℓ)

r , is defined later in this section (see Equation 4.5).

21

4.2.3 Attention Mechanism

The role of our attention mechanism is to incorporate information from different

relation types in a weighted manner. As discussed in Chapter 1, the importance of a

view can differ for different nodes, so we cannot calculate a single weight for each

view. Accordingly, we introduce an attention mechanism that learns the importance

of view r for an arbitrary node u ∈ V . Let ζ(t)
(ℓ)

u be the aggregated hidden feature

of node u ∈ V after the ℓ-th attention layer at time t, we call it a network-level

embedding, and α(ℓ)
ru indicates the importance of relation type r for vertex u, then:

ζ(t)
(ℓ)

u =
L∑
r=1

α(ℓ)
ru ĥ

(t)(ℓ)

ru , (4.3)

where ĥ(t)(ℓ)

ru is the output of ℓ-th Embedding update for node u at time t. Following

the recent attention-based models [11, 130], we use the Softmax(.) function to

define the importance weight of relation type r for node u:

α(ℓ)
ru =

exp

(
σ

(
s(t)

(ℓ)

r

T
Watt

r ĥ
(t)(ℓ)

ru

))
∑L

k=1 exp

(
σ

(
s(t)

(ℓ)

k

T
Watt

k ĥ
(t)(ℓ)

k

)) , (4.4)

where s(t)
(ℓ)

r is a summary of the network in relation type r at time t, i.e., s(t)
(ℓ)

r =∑
u∈V ĥ

(t)(ℓ)

ru , and Watt
r is a trainable weight matrix. In our experiments, we use

tanh(.) as the activation function σ(.). The main intuition behind this attention

mechanism is that the numerator of Equation 4.4 captures how much a specific node

encoding (e.g., ĥ(t)(ℓ)

ru) contributes to the encoding of a view (e.g., s(t)
(ℓ)

r). That is,

it uses the inner product of these two vectors followed by a multiplication by a

learnable matrix Watt
r which captures the weighted similarity of these two vectors.

4.2.4 view-dependent Embedding

The output of the attention mechanism is a network-level node embedding matrix,

which summarizes the properties of nodes over all relation types. Given a relation

type r, to obtain the view-dependent node embedding of a vertex u ∈ V , we

22

aggregate the output of the Embedding update block, i.e. ĥ(t)(ℓ)

ru , and this network-

level node embedding, i.e. ζ(t)
(ℓ)

u . That is:

h(t)(ℓ)

ru = AGG(ℓ)
(
ĥ(t)(ℓ)

ru , ζ(t)
(ℓ)

u

)
. (4.5)

Based on Equation 4.5, we obtain the view-dependent node embedding matrix,

H
(t)(ℓ)

r = {h(t)(ℓ)

ru }u∈V , for any relation type r. Note that we use the view-dependent

node embedding matrix at time t − 1, H(t−1)(ℓ)

r , in Equation 4.2 to update node

embeddings after the ℓ-layer GNN.

4.2.5 Anomaly Score Computation

Now, we get the view-dependent node embedding matrix H(t)
r = H

(t)(L)

r at time t,

for each relation type r. Here L is the number of GNN layers. Inspired by Zheng

et al. [188], for an edge (u, v) ∈ Er, we define its anomaly score as follows:

φ(t)
r (u, v) = σ

(
η.
(
||a⊙ h(t)

ru + b⊙ h(t)
rv ||

2
2 − µ

))
, (4.6)

where σ(.) is an activation function, a and b are trainable vectors, and η and µ are

hyperparameters.

4.2.6 Training and Loss Function

In the training phase, we use a negative sampling approach to corrupt edges and gen-

erate anomalous connections. Inspired by the negative sampling methods proposed

by Wang et al. [164] and Zheng et al. [188], given a relation type r, and a normal

edge (u, v) ∈ Er, we use a Bernoulli distribution such that we replace u (resp. v)

with probability degr(u)
degr(u)+degr(v)

(resp. degr(v)
degr(u)+degr(v)

) in relation type r to generate

random negative samples. The main intuition is: changing one endpoint of an edge

might result in another valid connection, and to avoid this, we prefer to replace an

endpoint with a larger degree and keep the endpoint with a smaller degree. Since

the corrupted edges might be normal, a strict loss function (e.g., cross-entropy) can

affect the performance. Accordingly, we use the margin-based pairwise loss [28]

in each relation type r. Given a relation type r, we also use a L2-regularization

loss, L reg
r , which is the summation of the L2 norm of all trainable parameters, to

23

Algorithm 1 ANOMULY Training Algorithm

Input: A multiplex dynamic network G = {G(t)}Tt=1

Output: Node embeddings for all relation types {H(T)
r }Lr=1

1: Initialize

{{
H

(0)(ℓ)

r

}L
ℓ=1

}L

r=1

with features or one-hot encoding;

2: while not converged do
3: for t = 1, . . . , T do
4: for r = 1, . . . ,L do
5: Let L

(t)
r = 0;

6: for ℓ = 1, . . . , L do
7: H̃

(t)(ℓ)

r = GNNr

(
H

(ℓ−1)
r

)
;

8: Ĥ
(t)(ℓ)

r = GRUr

(
H̃

(t)(ℓ)

r , H
(t−1)(ℓ)

r

)
;

9: Z
(t)(ℓ)

r = {ζ(t)
(ℓ)

u }u∈V =
{∑L

r=1 α
(ℓ)
ru ĥ

(t)(ℓ)

ru

}
u∈V

;

10: H
(t)(ℓ)

r = AGG(ℓ)

(
Ĥ

(t)(ℓ)

r , Z
(t)(ℓ)

r

)
11: for (u, v) ∈ E(t)

r do
12: Sample (u′, v′) for φ(t)

r (u, v);
13: L

(t)
r = L

(t)
r +max

{
0, γ + φ

(t)
r (u, v)− φ

(t)
r (u′, v′)

}
;

14: L
(t)
r = L

(t)
r + λL reg

r ;
15: L (t) = 1

L

(∑L
r=1 L

(t)
r

)
;

16: Minimize L (t);
return {H(T)

r }Lr=1

avoid overfitting. Finally, to aggregate the loss function over all relation types in the

multiplex networks, we use the average of loss functions, i.e.:

L =
1

|L|

 L∑
r=1

∑
(u,v)∈Er

∑
(u′,v′)̸∈Er

max
{
0, γ + φr(u, v)− φr(u

′, v′)
}
+ λL reg

r

 .

(4.7)

Here, 0 ≤ γ ≤ 1 is the margin between normal and corrupted edges.

ANOMULY’s training algorithm appears in detail in Algorithm 1.

24

4.3 Experiments

4.3.1 Experimental Setup and Metrics

The Snapshot Encoder uses a GNN with 200 hidden dimensions for node states, lay-

ers with skip-connection, sum aggregation, and batch-normalization. We tune hyper-

parameters by cross-validation on a rolling basis and search the hyper-parameters

over (i) the numbers of GNN layers (1 to 5); (ii) the learning rate (0.001 to 0.01);

and (iii) the margin γ (in increments of 0.05 in the range 0.3 to 0.7). The values of

other hyper-parameters are reported in Table 4.1. The hidden dimension of GNN is

fine-tuned by searching in {32, 64, 100, 200, 320}.

Table 4.1: The value of hyper-parameters of ANOMULY. Here, η and µ con-
trol how close the encodings of two nodes should be so their connection is
normal. Also, λ controls the tradeoff between the margin-based pairwise
loss function and the regularization term.

Dataset
Multiplex Networks Single-layer Networks

DKPol RM Amazon DBLP Ethereum Ripple Bitcoin Amazon-S DBLP-S

η 1 1 1 3 1 1 1 1 3
µ 0.3 0.25 0.5 0.5 0.3 0.3 0.3 0.5 0.5
λ 5× 10−7 5× 10−7 5× 10−7 5× 10−7 5× 10−7 5× 10−7 5× 10−7 5× 10−7 5× 10−7

We implement ANOMULY with the GraphGym library [173] and use an

NVIDIA V100 GPU in the experiments. We use the AUC (the area under the

ROC curve) as the metric of comparison. The higher the AUC value, the higher the

quality of the method.

4.3.2 Datasets

We use nine real-world public datasets [20, 78, 82, 97, 100, 127] whose domains

cover social, brain, co-authorship, blockchain, and co-purchasing networks. We

summarize their statistics in Table 4.2.

Social Networks. RM [97] has 10 networks, each with 91 nodes. Nodes represent

phones and an edge exists if two phones detect each other in a mobile network.

Each network describes connections between phones in a month. DKPol [78] is

25

Table 4.2: Network Statistics. Here |V| is the number of nodes, |E| is the
number of edges in all views, and |L| is the number of views.

Dataset
Multiplex Networks Single-layer Networks

RM DKPol Amazon Ethereum Ripple DBLP Bitcoin Amazon-S DBLP-S

|V| 91 490 17.5K 221K 54K 513K 3.7K 8.6K 23K
|E| 14K 20K 282K 473K 837K 1M 24.1K 90K 95.2K
|L| 10 3 2 6 5 10 1 1 1

Twitter dataset collected during the month leading up to the 2015 Danish parliamen-

tary election. Nodes are Twitter accounts of Danish politicians, and relations are

"Retweet", "Reply", and "Topical Interaction" [78].

Co-purchasing Network. Amazon [82] is a co-purchasing network, where each

node is an item and the type of connections are "Also-view" and "Also-bought". We

focused on items with four categories, i.e., Beauty, Automotive, Patio Lawn and

Garden, and Baby.

Co-authorship Network. DBLP is a co-authorship network until 2014 from dblp

team [58] and pre-processed by Behrouz et al. [20]. In this dataset, each node is

a researcher, an edge shows co-authorship, and each type of connection is a topic

of research. For each collaboration, we consider the bag of words drawn from the

titles of the paper and apply Latent Dirichlet Allocation (LDA) topic modeling [27]

to automatically identify 240 topics. We then cluster their non-zero elements into

ten known research topics. Each view in the network represents connections in one

of the ten topics.

Blockchain Networks. Ethereum [127] is a blockchain transaction network over

576 days, where views are different tokens, nodes are addresses of investors, and

edges denote the transferred token values. Since the same address may trade multiple

tokens, the address appears in networks of all the tokens it has traded. Ripple [127]

is derived from the Ripple Credit Network and covers a timeline of Oct-2016 to

Mar-2020. Similar to the Ethereum dataset, nodes are investors and edges represent

transactions. Here views (relation types) correspond to the five most issued fiat

currencies on the Ripple network: JPY, USD, EUR, CCK, and CNY.

26

Single-layer Networks. DBLP-S is a subgraph of the multiplex DBLP network,

where we collect a subset of researchers who work on data mining and related areas.

Amozon-S, is a subgraph of the multiplex Amazon network, where we focus on the

"Also-view" relation type. The Bitcoin dataset contains who-trusts-whom network

of people who trade on the Alpha platforms [100].

Note that all of the datasets are anonymized and do not contain any personally

identifiable information or offensive content.

4.3.3 Inject Anomalous Edges in Multiplex Networks

Since the ground truth for anomaly detection is difficult to obtain [9], we follow

the methodology used in existing studies[9, 180, 188] and inject anomalous edges

into our datasets. However, existing methods inject anomalous edges only in

single-layer networks and cannot add complex anomalies in multiplex networks.

Accordingly, here we divide injected edges into two groups (50% each), (1) view-

independent anomalies, and (2) view-dependent anomalies. For the first group,

we use existing methods [9], which randomly change one of the endpoints of

some existing connections. In multiplex networks, the rich information about node

connections leads to repetitions, meaning edges between the same pair of nodes

repeatedly appear in multiple views. Repeated connections are more likely to

represent a strong tie and may even suggest that the nodes in comprising these

connections belong to the same community [20, 181]. Accordingly, in the second

type of injected anomalies, we inject random connections that do not appear in any

relation type. That is, we first choose a random edge (u, v) such that (u, v) ̸∈ Ek
for all k ∈ L, and then we inject this edge to a random relation type r ∈ L. Since

this connection does not appear in any relation type, it is more likely to be an

anomaly. This type of anomaly helps us to understand whether ANOMULY can

take advantage of complementary information of different relation types.

4.3.4 Baselines

Since there is no prior work on edge anomaly detection in multiplex networks,

we first compare ANOMULY with single-layer edge anomaly detection methods:

GOutlier [3] builds a generative model for edges in a node cluster. CM-Sketch [142]

27

Table 4.3: Performance comparison of ANOMULY and baselines in multiplex
networks (AUC).

Methods RM DKPol Amazon DBLP Ethereum Ripple

Anomaly % 1% 5 % 1% 5 % 1% 5 % 1% 5 % 1% 5 % 1% 5 %

Single-layer Methods

GOUTLIER 0.7138 0.6982 0.6844 0.6597 0.6973 0.6672 0.7059 0.6901 0.7017 0.6799 0.7036 0.6851
CM-SKETCH 0.7127 0.7012 0.7058 0.6930 0.6881 0.6719 0.7186 0.6915 0.7408 0.7277 0.7360 0.7194
NETWALK 0.7739 0.7641 0.7706 0.7581 0.7228 0.7122 0.7742 0.7523 0.7956 0.7885 0.7904 0.7823
ADDGRAPH 0.8005 0.8093 0.8149 0.8087 0.7796 0.7735 0.8024 0.7995 0.8133 0.8090 0.8205 0.8217

Multiplex Methods

MNE 0.7994 0.7955 0.8050 0.7913 0.7108 0.7017 0.7532 0.7499 0.7541 0.7495 0.7813 0.7754
ML-GCN 0.7921 0.7886 0.7915 0.7907 0.7344 0.7263 0.7519 0.7439 0.7940 0.7918 0.8115 0.8072
ANOMULY 0.8783 0.8729 0.8694 0.8610 0.8289 0.8195 0.8825 0.8754 0.8906 0.8852 0.8938 0.8871

Improvement 9.71% 7.85% 6.68% 6.46% 6.32% 5.92% 9.98% 9.49% 9.50% 9.41% 8.93% 7.96%

uses a Count-Min sketch for approximating global and local structural properties.

NetWalk [180] uses a random walk to learn a unified embedding for each node and

then dynamically clusters the nodes’ embeddings. AddGraph [188] is an end-to-end

approach that uses an extended GCN in temporal networks. Finally, we compare

with two multiplex network embedding baselines, ML-GCN [16] and MNE [183].

We apply K-means clustering on their obtained node embeddings for anomaly

detection [180].

4.3.5 Results

Results on Multiplex Networks. We compare ANOMULY with the baseline meth-

ods on both dynamic and static multiplex networks with different percentages of

anomalous edges (i.e., 1%, 5%). Table 4.3 reports the AUC for both the base-

lines and ANOMULY. Our method outperforms all baselines in all datasets and

improves the best baseline results by 8.18% on average. There are three reasons

for ANOMULY’s superior performance: (1) it outperforms competitors for static

datasets, because it can learn structural anomaly patterns in the network, rather than

depending on pre-defined patterns/roles. (2) ANOMULY outperforms single-layer

methods due to its attention mechanism that incorporates complementary informa-

tion from different relation types. (3) ANOMULY outperforms multiplex methods

as it is an end-to-end method and is optimized for anomaly detection. It is also a

28

Table 4.4: Performance comparison of ANOMULY and baselines in single-
layer networks (AUC).

Methods Bitcoin Amazon-S DBLP-S

Anomaly % 1% 5 % 1% 5 % 1% 5 %

GOUTLIER 0.7143 0.7091 0.6923 0.6614 0.7108 0.6995
CM-SKETCH 0.7146 0.7015 0.7049 0.6621 0.7084 0.6877
NETWALK 0.8375 0.8367 0.7483 0.7302 0.7779 0.7590
ADDGRAPH 0.8534 0.8416 0.7872 0.7828 0.7911 0.7932
ANOMULY 0.8707 0.8661 0.8014 0.7943 0.8129 0.8236

Improvement 2.03% 2.91% 1.80% 1.47% 2.76% 3.83%

Table 4.5: Ablation study on ANOMULY (AUC). The first row replaces the
GRU with an MLP. The second row removes the attention mechanism,
and the third row replaces the attention mechanism with SUM(.).

Methods Amazon DBLP Ethereum

ANOMULY 0.8289 0.8825 0.8906
w/ MLP 0.8023 0.8606 0.8718
w/o Attention 0.7831 0.8219 0.8275
w/ Summation 0.8007 0.8571 0.8688

dynamic method and can take advantage of the temporal properties of the network.

The ablation study below illustrates these effects in more detail.

Results on Single-layer Dynamic Networks. We also compare ANOMULY with

single-layer method baselines on single-layer dynamic datasets. Table 4.4 summa-

rizes the results. Once again, we see that ANOMULY outperforms all the baselines,

even in single-layer graphs, by 2.46% on average. This is mainly due to Snapshot

Encoder’s architecture, which enables our method to incorporate the outputs of

GNN layers after each view and recurrently update them over time using a GRU

cell.

Parameter Sensitivity. We evaluate the effect of the training ratio of the dataset:

29

60% 50% 40% 30% 20%
Training Ratio

0.8

0.9

1.0
A

U
C

Figure 4.2: Stability over different training ratios on Ripple.

Dec '17 Jan '18 Feb '18 March '18 Apr '18 May '18

0.4
0.5
0.6
0.7
0.8
0.9

1

A
ve

ra
ge

 A
no

m
al

y
Sc

or
e

Bitcoin reaches a new all-time
high price of $19,783.06

South Korea bans anonymous
trading of cryptocurrencies

Visa and Mastercard re-classify
cryptocurrencies purchases Twitter announces a ban on

cryptocurrencies advertisings

Figure 4.3: Event detection in Ethereum network. The top-4 local maximums
all coincide with major events annotated in the figure

we change the training ratio from 60% to 20% and report the results on the Ripple

dataset in Figure 4.2. Decreasing the training ratio tends to increase both the average

and maximum AUC, except for the 20% case, and decreases the minimum AUC

for all training ratios. These results show that performance stays relatively stable,

which demonstrates that our framework is robust in the presence of a small amount

of training data.

Ablation Study. Next, we conduct experiments to show that the ANOMULY

architecture design is effective in boosting performance. We examine the effect of

GRU cells by replacing them with a 2-layer MLP. We also investigate the effect of

the attention mechanism by (1) removing the attention, learning node embeddings

in each relation-type separately, and (2) aggregating the information of different

relation types by summation (without weights). Table 4.5 summarizes the results.

We found that both our attention mechanism and the GRU cells are important for

30

Figure 4.4: Anomalous edges in the brain network of a sampled individual.

ANOMULY, producing significant performance boosts.

Effectiveness in Detecting Events. Next, we evaluate how well ANOMULY detects

events in the Ethereum transaction network. In each timestamp, we calculate the

anomaly score for all the edges in the snapshot. We then compute the average of the

top-15 edge anomaly scores and report them in Figure 4.3. We find that the top-4

local maximums all coincide with major events annotated in the figure.

Case Study of Brain Networks. Behavioral disturbances in Attention Deficit

Hyperactivity Disorder (ADHD) are thought to be caused by the dysfunction of

spatially distributed, interconnected neural systems [74]. We used ANOMULY to

detect anomalous connections in the brain network of people with ADHD. We

use the ADHD-Brain dataset [30] derived from the functional magnetic resonance

imaging (fMRI) of 40 individuals–20 individuals in the condition group, labeled

ADHD, and 20 individuals in the control group, labeled Typically Developed

(TD)–using the same methodology used by Lanciano et al. [101]. Here, each view

(relation type) is the brain network of an individual person, where nodes are brain

regions, and each edge measures the statistical association between the functionality

of its endpoints.

Anomalous functional correlations between the brain network of people with

31

ADHD compared to those without can help us understand which brain regions are

involved in ADHD. We present two results: (1) 74% of all detected anomalies

are connections in the brain networks of people in the ADHD group. (2) 69% of

all found anomalies in the ADHD group correspond to edges in the frontal and

occipital cortex of the brain. Figure 4.4 illustrates the anomalous edges in the brain

network of an individual in the ADHD group. These findings show an unexpected

functional correlation of occipital and frontal lobes regions with other parts, which

are consistent with previous studies on ADHD [42, 158].

(a) Left View (b) Right View

(c) Up View

Figure 4.5: Distribution of anomalous edges in ADHD group.

Next, we investigate how anomalous edges found by ANOMULY are distributed

in the brain. Figure 4.5 reports the average distribution of anomalous edges in

the brain networks of people living with ADHD. Most anomalous edges found by

ANOMULY have a vertex in the Occipital lobes. Moreover, the Temporal lobes are

the brain regions with the most anomalous connections with the Occipital lobes.

These findings can help to reveal new insights into understanding ADHD and the

regions of the brain that are connected to its symptoms. These findings also show

the potential of ANOMULY to extract features that can help predict brain diseases

32

or disorders.

In Chapter 6, we further discuss the application of anomaly detection in under-

standing the abnormal brain activities that might cause a brain disease or disorder.

4.4 Conclusion
We present ANOMULY, an end-to-end unsupervised framework for detecting edge

anomalies in dynamic multiplex networks. ANOMULY is based on a new architec-

ture that uses GNN and GRU cells to take advantage of both temporal and structural

properties and adds an attention mechanism that effectively incorporates information

across different types of connections. Finally, it uses a negative sampling approach

in training to overcome the lack of ground truth data. Extensive experiments show

the power of ANOMULY to effectively identify temporal and structural anomalies

in both single-layer and multiplex networks. Our case studies on brain networks

and blockchain transaction networks show the usefulness of ANOMULY in widely

varying domains.

33

Chapter 5

ADMIRE: Inductive and Scalable
Anomaly Detection in Multiplex
Dynamic Networks

5.1 Introduction
While ANOMULY achieves state-of-the-art performance in all datasets, it suffers

from several limitations: 1 Transductive learning: The ANOMULY framework is

designed in a transductive setting and cannot be applied to unseen nodes/patterns.

That is, ANOMULY in the message-passing procedure uses the identity of nodes

in training, limiting its ability to predict anomalous connections between nodes

that are unseen in the training phase. 2 Memory and scalability: The ANOMULY

framework is snapshot-based. That is, it requires storing the entire snapshot of

the temporal network at each timestamp, which consumes a great deal of memory.

Moreover, since it uses different GNN modules for each type of connection, it

cannot be used for multiplex networks with a large number of views. 3 Lack

of generalizability: The ANOMULY framework uses a simple negative sampling

method by randomly changing one endpoint of a connection to learn anomalous

interactions. While this negative sampling method is fast and lets the model be

trained in an unsupervised manner, these negative sample generator methods are

34

too simple and can cause poor performance in more complicated datasets [138].

We now present ADMIRE, an inductive, scalable, unsupervised method that

learns the underlying dynamic laws of the multiplex dynamic networks to detect

anomalous patterns, thus addressing the limitation of ANOMULY. ADMIRE uses

two different casual multiplex walks, inter-view and intra-view, to automatically

extract and learn temporal network motifs. It then uses an anonymization strategy

to hide node and relation type identities, making the model inductive. ADMIRE is a

streaming method, requiring only constant memory (see Section 5.2.1). Moreover,

its random walk encoder scales to multiplex networks with more than 100 views.

ADMIRE introduces a novel negative sampling method for multiplex networks that

addresses the generalizability issue in ANOMULY.

5.2 ADMIRE

The main intuition behind ADMIRE is to use multiplex temporal walks as a proxy

for temporal motifs in multiplex networks and extract the causality of the existence

of an edge in a specific type of connection. After extracting temporal multiplex

motifs, we use an anonymization process to hide nodes’ identities in walks, keeping

the model inductive in the training phase. Next, we design a simple yet effective

walk encoding method to encode each walk. Using encoded walks, we define the

node encoding of a vertex u as the aggregation of all walks started from u. Using

the obtained node encoding, we classify connections based on the encoding of their

endpoints.

5.2.1 Anonymous Multiplex Temporal Walk

We define the multiplex temporal walk as a walk that starts from a connection

of interest and backtracks over time by traversing adjacent edges. By traversing

adjacent edges in reverse time sequence, this allow us to discover and encode the

underlying causality of network dynamics. The main challenge in extracting the

causality of an edge in multiplex networks is determining whether there is a causal

relationship between different views. In multiplex networks, different views provide

complementary information about the network and each vertex. However, this does

not always mean that there is a causal relationship between different views. For

35

View 1

View

Intra-view walks

Inter-view walks

View Encoding

Node Encoding

Time Encoding

Training via

negative samples

...

Vi
ew

s
hi

dd
en

 I
D

s

AnonymizationWalk Sampling Walk Encoding via MLP-Mixer

N
od

es
 h

id
de

n
ID

s

...

Figure 5.1: Schematic of the ADMIRE model. ADMIRE consists of four
main stages called (1) Walk Sampling, (2) Anonymization, (3) Walk
Encoding, and (4) Training via generating negative samples.

example, consider the flight transportation network [34], where each node shows

a city, and each view shows flights operated by a specific airline. Two cities in

view r are connected if there is a flight between them operated by airline r. In

this example, there is no causal relationship between different views, as flights in

different views are operated by different airlines. To address this challenge, we

design two multiplex temporal walks, intra-view, and inter-view walks, to extract

the causality within a specific view and across different views, respectively. When

there is no causal relationship between different views, we expect the model to

ignore inter-view walks.

Intra-view Temporal Walk. An intra-view walk is a time-ordered random walk

among edges of a specific type (i.e., within a single view). Given a type of relation

r, an intra-view temporal walk W r
intra on a view of a temporal multiplex network

can be represented as:

W r
intra = ((u0, r, t0), (u1, r, t1), . . . , (um, r, tm)) ; t0 ≥ t1 ≥ · · · ≥ tm, (5.1)

where (ui, ui+1, r, t+ 1) ∈ E . Note that we only allow walks that progress back-

ward in time, to limit ourselves to possible sources of causality. Since different

views still provide complementary information about the global property of the

network as well as the local structure around each node, in Section 5.2.2, we use

an attention mechanism that incorporates the information provided by intra-view

36

walks in different types of connections.

Inter-view Temporal Walk. To capture the correlation between different views

and extract the causality of an edge from different views of the network, in the

inter-view temporal walk, we let the walker walk across views. Accordingly, an

inter-view temporal walk Winter on temporal multiplex networks can be represented

as:

Winter = ((u0, r0, t0), (u1, r1, t1), . . . , (um, rm, tm)) ; t0 ≥ t1 ≥ · · · ≥ tm, (5.2)

where (ui, ui+1, ri+1, t+ 1) ∈ E . That is, not only does the walker walk over time

and capture the temporal causality of an edge, but also can walk over different views

to capture the dependencies of connections in different views, taking advantage of

complementary information provided by different types of relations. Note that ris

are not necessarily distinct. We let Winter(i) denote the i-th element of the temporal

multiplex walk, (ui, ri, ti). Also, we use Winter(i, 0),Winter(i, 1), and Winter(i, 2) to

refer to ui, ri, and ti, respectively.

How to sample temporal multiplex walk? As discussed in previous studies,

newer connections in temporal networks are often more informative [88, 163]. To

this end, we use a biased sampling method with hyperparameter µ to control the

importance of recent connections. Given the time of a previously sampled edge,

t0, we sample an adjacent edge at time t < t0 with probability proportional to

exp (µ(t− t0)). In multiplex networks, the correlation of different pairs of views

can be different [17, 130] and for connections in a given view r, a subset of views

might play more important roles in causality extraction. Accordingly, in inter-view

temporal walks, we use a biased sampling method and sample link (u′1, u
′
2, r

′, t′)

after previously sampled link (u1, u2, r, t) with probability proportional to φ(r, r′).

In fact, φ(r, r′) shows the importance of view r for view r′. In §5.2.2, we discuss

how to calculate φ(r, r′).

The first step in our sampling is to compute the sampling probability of an

incoming connection in relation type r. For an incoming edge e = (u, v, r, t) we

37

Algorithm 2 Temporal multiplex walk sampling procedure

Input: The edge set E , previously sampled node wp in view rp at time t, and
hyperparameter µ

Output: Next sampled connection (wn, wp, rn, tn)
1: for e = (wn, wp, rn, tn) ∈ E tp(wp) do
2: Sample b ∼ UNIFORM(0, 1);
3: if b < q

tp
rp(wp, e)× φ(rp, rn) then

4: return e = (wn, wp, rn, tn);

5: return (eX , tX); ▷ (eX , rX , tX) is a dummy empty edge signaling the end of
the algorithm.

compute the probabilities qtr(w) for w ∈ {u, v} as follows:

qtr(w, e) =
exp (µt)∑

(w0,t′)∈N t
r (w)

exp (µt′)
, (5.3)

where N t
r (w) represents the set of w’s neighbor in view r and before time t. This

probability needs to be computed one time when the connection arrives and does

not need to be updated anymore. Also, for calculating the probability of sampling

this connection after a connection from another relation type r′, we simply multiply

this probability by φ(r, r′).

Algorithm 2 shows the sampling procedure. Given a previously sampled con-

nection in view r at time t, we sample the next connection in view r′ at time t′ < t

with a probability proportional to exp (µ(t′ − t))× φ(r, r′). It is not hard to show

that Algorithm 2 samples the next connection with a probability proportional to

exp (µ(tn − tp))×φ(rp, rn). Inspired by Wang et al. [163], in our experiments, we

store the k most recent connections with k ∝ O
(

1
µ

)
. The intuition is that if we sort

connections in E t(wp) by their timestamp {ti}hi=1, and assume that exp (µ(ti − t))

are i.i.d., the probability of sampling the j-th connection is:

P[sampling j-th connection] =
∏j
i=1 exp (µ(ti − t))× φ(rp, ri)∑h

i=1

∏i
s=1 exp (µ(ts − t))× φ(rp, rs)

.

This probability decreases when we increase the value of j. Accordingly, in practice,

we need to store only a constant number of the most recent connections at each

38

time.

Given a (potential) link (u, v, r, t), we use the above procedure to generate M

inter-view and M ′ intra-view walks with m steps starting from each of nodes u and

v. We use Sinter(u), Sintra(u), Sinter(v), and Sintra(v) to store started walks from u

and v, respectively.

Anonymization Process. Recent studies argue that traditional anonymization

methods (e.g., [121]), where we assign node IDs based on only one walk, suffer from

several limitations (e.g., missing the correlation of different walks) and suggest using

an anonymization process that assigns hidden node IDs based on the correlation of

sampled walks [88, 163]. On the other hand, in multiplex networks, we need to hide

the identity of both nodes and views (e.g., relation types) to keep the model inductive.

Given a (potential) link (u, v, r, t), letw0 ∈ {u, v}. To capture the correlation across

different walks, which could be a key to reflecting the network dynamics [163], for

a given node w that appears on at least one walk in Sinter(u) ∪ Sinter(v), we use

a relative vector C(Sinter(w0), w) ∈ Zm+1 that represents the number of times in

Sinter(w0) that node w appears at certain positions. That is,

Ci (Sinter(w0), w) = |{Winter|Winter ∈ Sinter(w0), w =Winter(i, 0)}| , ∀0 ≤ i ≤ m.

(5.4)

Similarly, we define C(Sintra(w0), w) over intra-view temporal walks. Until now,

node identities were accessible, but we now remove node identities and use only

these four vectors in the training phase to represent each node, thereby hiding their

identity:

ID(w) = {C(Sinter(u), w), C(Sinter(v), w), C(Sintra(u), w), C(Sintra(v), w)} .
(5.5)

We hide the identity of relations, r, in a similar manner. Given a set of walks

(e.g., Sinter(w0)), we count the number of times we see a relation type at each

position when we start from a specific relation type; this captures the correla-

tion among different views. For a given relation type r, we use a relative vector

Cview(Sinter(w0), r) ∈ Zm+1 that counts times in Sinter(w0) that a relation with type

39

r appears at each position:

Cview
i (Sinter(w0), r) = |{Winter|Winter ∈ Sinter(w0), r =Winter(i, 1)}| , ∀0 ≤ i ≤ m.

(5.6)

In this way, IDview(r) = {Cview (Sinter(u), r) , Cview (Sinter(v), r)} hides the identity

of view r. Note that, although intra-view walks are within a single view, we still

need to hide the identity of that view, and we use the same IDview(r) as above.

5.2.2 Neural Encoding

We next present our fast and simple, yet effective and generalizable, neural network

to encode temporal multiplex walks so that we can extract structural and temporal

information from the network. The intuition of this neural encoding is to use

anonymous temporal multiplex walks to learn the structural and temporal properties

as well as casual rules of the network in an inductive manner.

Most existing methods on walk encoding treat a walk as a sequence of vertices

and use sequence encoders such as RNNs or TRANSFORMERs to encode each walk.

The main drawback of these methods is that they fail to directly process temporal

walks with irregular gaps between timestamps. That is, sequential encoders can be

seen as discrete approximations of dynamic systems; however, this discretization

often fails if we have irregularly observed data [96]. We present a neural network

to encode temporal multiplex walks so that we can extract structural and temporal

information from the network with continuous time dynamics. The process consists

of 1 a time encoding module to encode the time, 2 a node encoding module to

encode the position of vertices, 3 a view encoding module to encode relation type,

and 4 a walk encoding module to encode each extracted motif.

Time Encoding. Existing methods in temporal graph learning [49, 163] use ran-

dom Fourier features [95] to encode time. However, this approach captures only

periodicity in the data, while in many domains, e.g., brain activity patterns, we also

need to learn non-periodic patterns dependent on the progression of time (e.g., in

task-based fMRI). We address this need by adding a learnable linear term to the

feature representation of time encoding. That is, we encode a given time t as:

T (t) = (ωlt+ bl) || cos(tω), (5.7)

40

where ωl,bl ∈ R and ω ∈ Rd are learnable parameters, and || denotes concatena-

tion.

Node Encoding. We now define a node encoding function ζ(.) that encodes

each node w based on ID(w). Since the concept and task of intra-view and inter-

view walks are different, we first break the ζ(.) function into ζintra(.) and ζinter(.),

respectively, and then interpolate between them by a learnable parameter λ to obtain

ζ(.).

For each node w that appears on at least one walk in Sinter(u) ∪ Sinter(v), we

use one simple MLP to encode the w’s hidden identities:

ζinter(w) = MLP (C(Sinter(u), w)) + MLP (C(Sinter(v), w)) . (5.8)

While inter-view walks naturally capture the causal relationship and correlation

between different types of connections, intra-view walks have a different role

and capture causality within a single view. However, we need to aggregate the

information provided by inter-view walks in different views to take advantage of

complementary information in multiplex networks. As discussed in Section 4.2.3,

the importance of each view for each vertex can be different; we use the attention

mechanism introduced in Section 4.2.3 to learn the importance of views r for vertex

u, ψ(w, r).

ψ(w, r) =
exp

(
σ
(
srTWatt ζrintra(w)

))∑L
k=1 exp

(
σ
(
skTWatt ζkintra(w)

)) , (5.9)

where sr is a summary of the network in relation type r, i.e., sr =
∑

u∈V ζ
r
intra(u),

and Watt is a trainable weight matrix. In our experiments, we use tanh(.) as the

activation function σ(.). Similarly, we define the importance of node w for view r

as follows:

ψ(r, w) =
exp

(
σ
(
srTWatt ζrintra(w)

))∑
w0∈V exp

(
σ
(
srTWatt ζrintra(w0)

)) , (5.10)

In these equations, ζrintra(w) is the view-based node encoding of w in view r, which

we define as follows: Given a relation type r′ ∈ L, we define view-based node

41

encoding ζr
′

intra(w) as:

ζr
′

intra(w) = MLP
(
C(Sr′intra(u), w)

)
+ MLP

(
C(Sr′intra(v), w)

)
. (5.11)

Next, we aggregate these node embeddings to incorporate information from different

views and obtain ζintra(w):

ζintra(w) =
∑
r′∈L

ψ(w, r′)ζr
′

intra(w). (5.12)

Now, we use a learnable parameter λ to automatically learn the importance of each

ζintra(w) and ζinter(w) based on the data. This formulation lets our model learn to

interpolate between Equation 5.8 and Equation 5.12, which enables it to be flexible

in whether causal relationship between views exists or not. Therefore, ζ(w) is

defined as:

ζ(w) = ζintra(w) + λ× ζinter(w). (5.13)

When there is no causal relation between different views, our model is expected to

set λ ≈ 0 (see §5.4).

View Encoding. For each view r ∈ L, we use one simple MLP to encode the r’s

hidden identities:

η(r) = MLP
(
Cview(Sinter(u), r)

)
+ MLP

(
Cview(Sinter(v), r)

)
. (5.14)

As discussed in Section 5.2, we use the importance of view r for view r′, φ(r, r′),

to sample the next connection in inter-view walks. In fact, φ(r, r′) measures how

similar these two views are. Given the vector representation of views, we use

the inner product to measure the similarity of different views. Now based on the

obtained view encoding, η(r), we define:

φ(r, r′) =
η(r).η(r′)∑
r̂∈L η(r).η(r̂)

. (5.15)

Walk Encoding. Given a walk Ŵ ∈ {Winter,Wintra}, we use node encoding

function ζ(.) : Z(m+1)×4 → Rk1 to encode hidden node identities and η(.) :

42

Z(m+1)×2 → Rk2 to encode hidden view identities. We then concatenate their

outputs with the embedding of the node’s corresponding timestamp. Finally, we use

an MLP-Mixer [151] to mix these encodings to obtain the walk encoding:

ENC(Ŵ) = MEAN
(
Htoken +W(2)σ

(
LayerNorm (Htoken)W

(1)
))

, (5.16)

where the i-th row of Htoken is defined as:

Hi
token =

[
ζ
(

ID
(
Ŵ (i, 0)

))
|| η

(
IDview

(
Ŵ (i, 1)

))
|| T (ti)

]
. (5.17)

In the above equations, W(1),W(2),W
(1)
token, and W

(2)
token are learnable parameters,

LayerNorm is layer normalization [10] and σ(.) is a nonlinear function (e.g.,

Gaussian error linear units, GeLU [84]).

Anomaly Score. To assign an anomaly score to a given link e = (u, v, r, t) ∈ E , we

first sample temporal multiplex walks and then encode each walk W ∈ Sinter(u) ∪
Sinter(v)∪Sintra(u)∪Sintra(v) as described above. Next, we use an AGG(.) function

(e.g., mean-pooling) to aggregate walks’ encodings and encode link e. Finally, we

use a 2-layer perceptron to make the anomaly score:

Υ(e) = MLP

 1

M +M ′

∑
Ŵ

ENC(Ŵ)

 , (5.18)

where M and M ′ are the numbers of inter-view and intra-view walks.

5.2.3 ADMIRE Framework

We next explain how we use the view-aware edge encoding method to detect

anomalous interactions. Figure 5.1 illustrates the ADMIRE framework.

Negative Sample Generator. We generate negative samples (NS) to train ADMIRE

in an unsupervised manner. Previous anomaly detection methods mostly use (simple

or biased) random negative samples [17, 188], which limit their generalizability to

real anomalous patterns [138]. Moreover, these methods are designed for simple

networks and cannot generalize to anomalous patterns in multiplex networks. In-

spired by Poursafaei et al. [138], we design a novel negative sampling method for

43

temporal multiplex networks.

Let Etrain and Et ⊆ Etrain be the set of edges in the training set and in timestamp

t, respectively. For each edge in the training set e = (u, v, r, t) ∈ E , we generate

three types of negative samples: 1 Inter-view negative samples: We use these

negative samples so our model learns to detect connections that are anomalous across

different views. We randomly generate a negative connection with relation type r

with probability inversely proportional to the number of views (or the summation of

views’ weight, in the case that the importance of views are different) in which this

connection appears. The intuition is that if two nodes are already connected with

several types of connections, a connection of yet another type is unlikely to be an

anomalous connection. 2 Intra-view negative samples: Here, we follow previous

negative sampling generation methods [17, 188] and randomly change one endpoint

of a connection to another node and keep the type of connection unchanged. 3

Historical negative samples: we generate negative edges from the set of edges

that have been observed during previous timestamps but are absent in the current

timestamp. That is, we randomly sample an edge e ∈ Etrain ∩ Ēt.

Training and Loss Function. Let Etrain be the set of edges in the training set and

Eneg be the set of generated negative samples. For each edge e ∈ Etrain ∪ Eneg we

generate temporal multiplex walks to find a view-aware edge encoding of e. Next,

we use the margin-based pairwise loss [28] to train the model. To avoid overfitting,

we also use an L2-regularization loss, L reg
r , which is the summation of the L2

norm of all trainable parameters. This produces the loss function:

L =
∑

(u,v,r,t)∈Etrain

∑
(u′,v′,r,t)∈Eneg

max
{
0, γ +Υ(u, v, r, t)−Υ(u′, v′, r, t)

}
+λL reg,

(5.19)

where 0 ≤ γ ≤ 1 is the margin between normal and negative sampled edges.

44

5.3 ADMIRE++: Explainable Anomaly Detection in
Multiplex Dynamic Networks

To apply ADMIRE in real-world sensitive applications (e.g., health-related domains

or financial networks), it is not sufficient to simply make accurate predictions;

domain experts often want to understand why the given model made the prediction

it did. We design a post-hoc explainability method to mimic the predictions of

ADMIRE. Recall that the main intuition behind ADMIRE is to extract the causality

of network dynamics by backtracking over time, extracting network multiplex

motifs. We use these extracted motifs to describe the neighborhood of each node

and then use this data to train a decision tree model. Our goal is that the decision

tree can explain why a connection is abnormal based on the neighborhoods of its

endpoints.

The main challenge is that we have diverse network motifs in large and dense

networks, so we need many features to accurately describe the neighborhood of

each node. We use k-mean clustering [112] on the walk embeddings obtained in

Section 5.2.2, grouping network motifs based on their similarity. Clearly, bigger

values for k produce better explanations.

Let Minter and Mintra be the set of sampled walks started from the endpoints of

all connections in the training set. We encode all walks w ∈Minter ∪Mintra by using

the procedure introduced in Section 5.2.2. Next, we apply k-mean clustering [112]

to obtain C1, . . . , and Ck. Then, for each connection e = (u1, u2, r) ∈ Etrain, we

construct feature vector ve = (vu1 vu2) as follows:

ve =

p11 p12 . . . p1k︸ ︷︷ ︸
vu1

p21 p22 . . . p2k︸ ︷︷ ︸
vu2

 , (5.20)

where p1i and p2i are normalized counting number of sampled walks (motifs) starting

from u1 and u2 in cluster i. That is, p1i =
C1

i
C , where C1

i is the number of sampled

walks starting from u1 that are in cluster Ci, and C is the total number of sampled

walks. Similarly, p2i =
C2

i
C , where C2

i is the number of sampled walks starting

from u2 that are in cluster i. Therefore, in this design, p1i s and p2i s describe the

distribution of motifs in the neighborhoods of nodes u1 and u2, respectively.

45

Given the set of connections in the training set Etrain, let V = {ve|e ∈ Etrain},

and M be the ADMIRE model trained on Etrain. We use M(e) to represent the

prediction of ADMIRE for e. We use ψ(r, u) to denote the importance of node

u for view r (see Equation 5.10), and based on that, we define the importance of

connection e = (u, v, r) as ψ(e) = ψ(r,u)+ψ(r,v)
2 . Finally, we use Ψ to denote the

set of ψ(e) for e inEtrain. Let y = {ye ∈ {“Normal”, “Anomaly”}|M(e) = ye},

we construct a dataset Dtree = (V,y,Ψ) to train a weighted optimal decision tree.

Here, the constructed feature for each connection is a data sample, the prediction of

ADMIRE for this data sample is the label, and ψ(e) is the weight of each sample.

Finally, we train our decision tree on this dataset via the algorithm from Behrouz

et al. [21]; the sparsity in optimal sparse decision trees guarantees interoperability

and the algorithm guarantees the performance quality of the model [21].

To choose the value of k, we need to consider the number of walks, the number

of samples, and the computing resources. That is, larger k leads to more accurate

clustering and better performance, accordingly; however, it can significantly affect

the running time of the weighted sparse decision tree algorithm. To this end, we

tune 2× k as the maximum number of features that the weighted sparse decision

tree algorithm can find the optimal solution in less than a time threshold.

Inference. In the inference phase, for each connection e = (u, v, r) we first sample

inter-view and intra-view walks starting from u and v. Based on the sampled walks,

we construct the feature ve using Equation 5.20. Finally, we use the constructed

feature vector to make a prediction for e by the trained optimal tree. Since the model

is an interpretable tree the path of prediction explains ADMIRE’s prediction.

5.4 Experiments

5.4.1 Experimental Setup

We tune hyper-parameters by cross-validation and search the hyper-parameters over

1 µ ∈ {0.5, 1, 2, 4}×10−5, 2 Inter-view sampling numberM ∈ {32, 64, 128, 256},

3 Intra-view sampling number per view M ′ ∈ {8, 16, 32, 64}, 4 Walk length

m ∈ {2, 4, 8, 12}. In training, we use a learning rate of 0.0001, hidden dimension

100 in MLP-Mixer, and batch size of 600.

46

Table 5.1: Performance comparison of ADMIRE and baselines in multiplex
networks (AUC).

Methods RM DKPol Amazon DBLP Ethereum Ripple

Anomaly % 1% 5 % 1% 5 % 1% 5 % 1% 5 % 1% 5 % 1% 5 %

Single-layer Methods

GOUTLIER 0.7138 0.6982 0.6844 0.6597 0.6973 0.6672 0.7059 0.6901 0.7017 0.6799 0.7036 0.6851
CM-SKETCH 0.7127 0.7012 0.7058 0.6930 0.6881 0.6719 0.7186 0.6915 0.7408 0.7277 0.7360 0.7194
NETWALK 0.7739 0.7641 0.7706 0.7581 0.7228 0.7122 0.7742 0.7523 0.7956 0.7885 0.7904 0.7823
ADDGRAPH 0.8005 0.8093 0.8149 0.8087 0.7796 0.7735 0.8024 0.7995 0.8133 0.8090 0.8205 0.8217

Multiplex Methods

MNE 0.7994 0.7955 0.8050 0.7913 0.7108 0.7017 0.7532 0.7499 0.7541 0.7495 0.7813 0.7754
ML-GCN 0.7921 0.7886 0.7915 0.7907 0.7344 0.7263 0.7519 0.7439 0.7940 0.7918 0.8115 0.8072
ANOMULY 0.8783 0.8729 0.8694 0.8610 0.8289 0.8195 0.8825 0.8754 0.8906 0.8852 0.8938 0.8871
ADMIRE 0.9016 0.9125 0.9093 0.8952 0.8097 0.8041 0.8873 0.8824 0.8416 0.8392 0.9160 0.8899

Improvement 2.65% 4.53% 4.59% 3.97% -2.31% -1.88% 0.54% 0.79% -5.50% -5.19% 2.48% 0.32%

Table 5.2: Performance comparison of ADMIRE and baselines in single-layer
networks (AUC).

Methods Bitcoin Amazon-S DBLP-S

Anomaly % 1% 5 % 1% 5 % 1% 5 %

GOUTLIER 0.7143 0.7091 0.6923 0.6614 0.7108 0.6995
CM-SKETCH 0.7146 0.7015 0.7049 0.6621 0.7084 0.6877
NETWALK 0.8375 0.8367 0.7483 0.7302 0.7779 0.7590
ADDGRAPH 0.8534 0.8416 0.7872 0.7828 0.7911 0.7932
ANOMULY 0.8707 0.8661 0.8014 0.7943 0.8129 0.8236
ADMIRE 0.8996 0.8902 0.7935 0.8007 0.8521 0.8509

Improvement 3.32% 2.78% 0.99% 0.81% 4.82% 3.31%

The experimental setup, datasets, baselines, and anomaly injection approach are

all the same as what we used for ANOMULY as described in Section 4.3.

5.4.2 Results

We compare ADMIRE with the baseline methods as well as ANOMULY on both

dynamic and static multiplex networks with different percentages of anomalous

47

edges (i.e., 1%, 5%). Table 5.1 reports the AUC for ADMIRE and both the baselines

and ANOMULY. ADMIRE outperforms all baselines in all datasets and outper-

forms ANOMULY in four out of six multiplex network datasets. It improves the

ANOMULY results by 2.48%, on average, in the four datasets. There are three

reasons for ADMIRE’s superior performance: (1) ADMIRE is an inductive method

and does not rely on node identities, which makes it a powerful tool for the detection

of complex patterns. (2) ADMIRE uses a time encoder module that can capture

the temporal patterns in continuous timestamps, instead of approximating time by

discrete snapshots. (3) ADMIRE uses a novel negative sample generator that allows

it to learn more complex anomalous patterns.

ANOMULY outperforms ADMIRE in two datasets: Amazon and Ethereum.

These datasets have discrete timestamps and are naturally snapshot-based, so

ANOMULY correctly captures their temporal properties; ADMIRE’s continuous

time modeling is not useful. Also, these two datasets are particularly sparse, and

random-walk-based methods might not be able to capture neighborhoods properly.

This sparsity might cause the inter-view and intra-view walks in ADMIRE to treat

far nodes as neighbors.

Table 5.2 reports the AUC for both the baselines and ANOMULY on single-layer

networks. Results show the same pattern as in Table 5.1. The only exception is

Amazon-S data when we have 5% anomalous connections. ADMIRE’s ability to

detect more complex anomalous patterns coupled with the relatively large percentage

of anomalous connections makes this task more difficult for ANOMULY than for

ADMIRE, leading to ADMIRE outperforming ANOMULY.

5.4.3 Ablation Study

We next conduct ablation studies on the Amazon, DBLP, and Ethereum datasets to

validate the effectiveness of ADMIRE’s critical components. Table 5.3 shows AUC

results for the anomaly detection task in multiplex networks with an anomaly rate of

1%. The first row reports the performance of the complete ADMIRE implementation.

Each subsequent row shows results for ADMIRE with one module modification: the

second row removes inter-view walks, the third row removes intra-view walks, and

the fourth row removes learnable parameter λ and uses the summation of inter-view

48

Table 5.3: Ablation study on ADMIRE (AUC). In each row, we remove/re-
place one of the ADMIRE’s components and keep the others unchanged.

Methods Amazon DBLP Ethereum

1 ADMIRE 0.8097 0.8873 0.8416
2 w/o inter-view 0.7901 0.8699 0.8254
3 w/o intra-view 0.7619 0.8307 0.8352
4 w/o λ (λ = 1) 0.7946 0.8651 0.8390
5 w/o attention 0.7953 0.8612 0.8208
6 w/o time encoding 0.7615 0.8644 0.8025
7 w/o inter-view NS 0.7998 0.8819 0.8211
8 w/o intra-view NS 0.8032 0.8794 0.8387
9 w/o historical NS 0.8055 0.8537 0.8376
10 w/ RNN 0.7812 0.7929 0.8341

Table 5.4: Accuracy (%) of generated tree explanation on Amazon, DBLP
and Ethereum. This table shows how well ADMIRE++ mimics ADMIRE

predictions. We embolden the best results for each depth and use an
underline to show the best performance for each dataset.

Depth Amazon DBLP Ethereum

k = 3 k = 4 k = 5 k = 6 k = 3 k = 4 k = 5 k = 6 k = 3 k = 4 k = 5 k = 6

4 67.04 74.19 75.73 75.54 65.33 67.15 69.78 70.12 65.23 67.91 68.52 70.36
5 71.95 79.47 81.28 82.56 70.49 71.62 73.91 75.35 66.07 70.24 74.50 79.48
6 72.62 82.80 84.36 86.71 71.15 75.86 76.02 78.11 69.19 75.09 82.39 84.05

and interview encodings. The fifth row removes the attention module, the sixth row

moves the time encoding module, the seventh to ninth rows remove different types

of negative samples in the training, and the last row replaces MLP-Mixer with an

RNN. The results show that each component contributes to ADMIRE’s performance.

The greatest contribution comes from intra-view, MLP-Mixer, and time encoding

module.

49

5.4.4 How Well Does ADMIRE++ Mimic ADMIRE?

We evaluate how well ADMIRE++ mimics ADMIRE by reporting the accuracy

of ADMIRE++ on the Amazon, DBLP, and Ethereum datasets in Table 5.4. As

expected, considering more features (larger k) results in better performance, because

increasing the k allows ADMIRE to more accurately distinguish different network

motifs. However, even with a small number of features, k = 4, we can achieve good

performance (Acc ≥ 75%) on mimicking ADMIRE’s prediction.

5.4.5 What Does the Generated Tree Look Like?

We now examine how to use ADMIRE++ to interpret predictions. Figure 5.2 shows

the generated tree by ADMIRE++ and the motif clusters with an extracted motif

in each cluster when k = 3 and depth= 4. One can interpret the decision tree

prediction as: a link is abnormal if one of its endpoints has some connections in

only one view. However, if both of its endpoints have the same status (both have

neighbors in either only one view or different views), the connection is normal.

That is, given the fact that the Amazon dataset has only two views, clusters 1 and

3 represent the neighborhood of a node where most of its connections are in one

view. Cluster 2 represents the neighborhood of a node where its connections with

neighbors have diverse types. Therefore, for a normal connection, we expect to

see the same distribution of clusters 1 and 3 in sampled walks started from the

connection endpoints.

What Do the Clusters Look Like? As discussed in Table 5.4, the number of

clusters (i.e., k) can directly affect the performance of ADMIRE++. However, it

is not the only factor as the distribution of the walk encodings in the embedding

space is also important. That is, if walk encodings in the embedding space are hard

to distinguish, the decision tree might not be able to distinguish them either. To

this end, we use t-SNE and visualize the walk encodings in a 3D space. The results

are shown in Figure 5.3. While clusters of walks in the Amazon dataset are easily

distinguishable, clusters in DBLP and Ethereum datasets are harder to distinguish.

Accordingly, it is harder for the decision tree to mimic ADMIRE on the DBLP and

Ethereum than on the Amazon dataset, which explains ADMIRE++’s performance

in Table 5.4.

50

Motif Clusters

Cluster 1:

Cluster 2:

Cluster 3:

Normal Normal

NormalNormal Anomaly Anomaly

Figure 5.2: (Top) Motif clusters and example of an extracted motif in each
cluster. (Bottom) The ADMIRE++ tree explanation on the Amazon
dataset (depth=4). Different colors in the motif examples show the
changes in views. Here, P j i are the features constructed in Equa-
tion 5.20.

We further discuss ADMIRE++ for analyzing the human brain in Chapter 6.

5.5 Conclusion
We present ADMIRE, an end-to-end inductive unsupervised learning method

on multiplex networks to detect anomalous connections. ADMIRE uses inter-

view (resp. intra-view) temporal walks to implicitly extract network motifs and

causal relationships across different views (resp. within a view) and adopts novel

anonymization based on the correlation between multiplex network motifs to hide

the identity of nodes and views. Next, it uses an MLP-Mixer to encode the sequence

of nodes and views in a walk. By aggregating all the walks starting from a node,

51

(a) Amazon (b) DBLP

(c) Ethereum

Figure 5.3: 3D visualization of clusters using t-SNE (k = 4). While clusters
of walks in the Amazon dataset are simply distinguishable, clusters in
DBLP and Ethereum datasets are hard to distinguish, which is the reason
for the worse performance of ADMIRE++ (see Table 5.4) on these two
datasets.

52

ADMIRE encodes its neighborhood. Finally, it uses a classifier that labels con-

nections as normal/abnormal based on their endpoints’ neighborhood. To explain

ADMIRE’s prediction in sensitive domains, we present ADMIRE++ that leverages

the extracted inter-view and intra-view walks in ADMIRE to explain why a con-

nection is predicted as abnormal. It uses a weighted optimal sparse decision tree

model, which is a provably powerful interpretable model, to mimic ADMIRE’s

predictions. Our experimental results show the superior performance of ADMIRE

against ANOMULY and baselines.

53

Chapter 6

Anomaly Detection in the Human
Brain

We now turn to a particularly interesting application of ANOMULY and ADMIRE at

the intersection of health and neuroscience. We discuss three different approaches to

modeling multimodal neuroimaging data as multiplex networks and show how

ANOMULY and ADMIRE can address the limitations of existing methods in

anomaly detection in human brain networks. Our experiments on Parkinson’s

Disease (PD), Attention Deficit Hyperactivity Disorder (ADHD), and Autism Spec-

trum Disorder (ASD) show the efficiency and effectiveness of our approach in

detecting anomalous brain activity in people living with these diseases or disorders.

6.1 Introduction
Recently, the fields of neuroscience and brain imaging research have undergone a

significant shift in focus from region-specific analyses to network models [13, 123],

largely due to the rapid development of modern neuroimaging technology. Network

models of the brain represent regions of interest (ROIs) as nodes and calculate

pairwise similarities between regions to form edges [69], usually derived from

functional Magnetic Resonance Imaging (fMRI) or structural Magnetic Resonance

Imaging (sMRI). These models have been helpful in enhancing our understanding of

brain diseases and disorders [42, 140]. As a result, empirical data on brain networks

54

has substantially increased in size and complexity, leading to a strong demand for

appropriate tools and methods to model and analyze it [140].

At the same time, there has been significant interest in machine learning methods

for analyzing graph-structured data in various domains, such as drug discovery [167],

neuroscience [1], and biology [73]. While several studies demonstrated the effi-

cacy of machine learning on graphs for analyzing human brain networks, most

focus on graph or node classification tasks [54, 94]. These tasks involve detecting

diseases [190], predicting biological features [94], and identifying functional sys-

tems [16]. However, detecting abnormal brain activity in people with neurological

disorders is a crucial step in understanding the causal mechanisms of symptoms,

facilitating early detection and the development of medical treatments. Most ex-

isting studies consider a single brain network (from a single type of neuroimage

or a single subject), which can be noisy or incomplete [6, 185]. To address this

limitation, De Domenico [59] suggests using static multiplex networks. Multiplex

networks are graphs where nodes can be connected by different types of edges [98].

Edge types can be the brain networks of different subjects or different neuroimaging

modalities.

Limitation of Previous Methods. Although anomaly detection in graphs is a

well-studied problem, brain networks have five unique traits that make directly

applying existing graph anomaly detection models impractical: 1 Noisy data:

a single neuroimaging data sample can be extremely noisy and inaccurate [6],

which hinders the identification of biological insights into the structure of brain

networks. Existing general anomaly detection methods can use only a single

brain image, making them sensitive to noise, or one must aggregate different

neuroimages as a pre-processing step, missing complex brain activity in each

brain image. 2 Multimodal neuroimaging: while several studies discussed the

importance of using different neuroimage types (e.g., fMRI, sMRI, etc.), because

different modalities provide complementary information [186, 191], existing works

are limited to a single type of neuroimage and are unable to incorporate information

about different modalities. 3 Complex activity: brain activities are complex and

potentially different in different subjects, while existing methods are designed in the

transductive setting, which limits their generalizability to unseen nodes or patterns.

55

4 Time alignment: existing methods assume that the timestamps in different graphs

are meaningfully related. However, while modeling neuroimage data as temporal

brain networks, the timestamps might be shifted and are unlikely to be aligned

across brain images of different subjects. 5 Explainability: decision making on

health-related data, which is sensitive, requires explainable models, but existing

methods are uninterpretable black boxes.

There are two other limitations that plague existing studies: i These studies

assume pre-defined anomaly patterns or man-made features. Such approaches do

not easily generalize to the brain activity of different individuals. Moreover, in a

real-world scenario, brain activity might be more complex in nature, and it is nearly

impossible to detect anomalies with high accuracy using pre-defined patterns/roles.

ii These methods are designed for static brain networks, missing the dynamics of

brain activity over time.

6.2 Related Work on Machine Learning for Brain
Networks

Feature Learning in Brain Networks. In recent years, several studies focused

on analyzing brain networks to understand and distinguish healthy and diseased

human brains [44, 86, 165]. Recently, due to the success of GNNs in analyzing

graph-structured data, deep models have been proposed to predict brain diseases

by learning the graph structures of brain networks [52, 54, 91, 92, 190]. All these

methods are designed for either graph or node classification and cannot easily be

extended to edge-anomaly detection.

Anomaly Detection in Brain Networks. Several recent studies focus on analyzing

brain networks to distinguish healthy and diseased human brains [44, 86, 165].

Due to the success of GNNs in analyzing graph-structured data, deep models have

been proposed to predict brain diseases by learning the brain network structure [52,

54, 91, 92, 190]. Several anomaly detection methods have been proposed to find

anomalous regions or subgraphs in the brain, which might indicate the presence

of a disease [42, 109, 184]. All these methods are designed for node or subgraph

anomaly detection tasks in single brain networks and cannot easily be extended to

detect anomalous edges in multiplex brain networks. Also, these methods do not

56

learn anomalous patterns; they find only pre-defined patterns/rules for anomalies.

6.3 Why/How to Model Human Brain as a Multiplex
Network

Given a neuroimaging dataset, we answer the following three questions:

Q1: How does multiplex modeling improve upon modeling a single network? While

modeling the human brain as a network has gained much attention in the neuro-

science community in recent years [108, 114], most studies have focused on a single

type of simple brain networks [42, 109]. However, recent research on brain network

analysis suggests that different modalities of brain networks provide complementary

information [186, 191]. The fusion of multiple modalities can lead to consistent

improvements in brain analysis. Additionally, several studies suggest that brain

networks generated from an individual can be noisy and incomplete [6, 101, 185].

Consequently, researchers are exploring the possibility of studying the human brain

without necessarily discarding or aggregating the vast amount of data available [59].

Multiplex brain networks, where each view represents a type of neuroimaging

data or the neuroimage of an individual, are accurate models that can capture the

complementary information provided by different neuroimaging data and increase

the model’s robustness to noise and incompleteness in individual neuroimages.

Q2: How can neuroimaging data be modeled as (temporal) multiplex networks? We

focus on three ways to model neuroimaging data as multiplex networks.

1 Activity in different frequency bands: in the context of fMRI images, previous

work utilizes filtering procedures to extract signals within a particular frequency

range, typically between 0.01 and 0.1 Hz [59, 61]. However, the selection of the

frequency band carries significant implications for the functional representation of

the brain. In fact, existing methods do not distinguish the contributions coming from

different frequency bands, overlooking the contributions of different ranges, and

instead, concentrate on a single frequency range. To this end, De Domenico et al.

[60] shows that brain signals in a range between 0.01 and 0.25 Hz, in steps of 0.02

Hz, provide unique information and should be neither aggregated nor neglected. We

suggest using multiplex brain networks, where each view represents the graph of

signals in a specific range.

57

2 Multimodal brain networks: Recently, several studies discussed the importance

of using different neuroimage types (e.g., fMRI, sMRI, Diffusion Tensor Imaging

(DTI), etc.) in brain network analysis, as different modalities of brain networks

provide complementary information [186, 191]. A multiplex brain network can

represent a multimodal brain network, where each view models the brain network

produced from a specific type of neuroimage (e.g., fMRI or sMRI).

3 Different subjects: Previous studies discuss the challenges of the existence of

noise in a brain network generated from an individual [101, 185]. Most existing

methods aggregate (e.g., averaging) the data from different individuals to mitigate

the noise in the dataset [1, 42]. However, this aggregation discards complex patterns

in each individual’s brain activity, causing missing information. Moreover, in

brain network disease/disorder analysis, it is known that individuals having the same

disease or disorder share similar patterns [55, 93], which means that disorder/disease-

specific anomalous activity requires consideration of the brain networks of different

subjects. In a multiplex brain network, each view can represent the brain network

of an individual.

6.4 Modified Attention Mechanism For Multiplex Brain
Networks

As we discussed in Chapter 1 and Section 4.2.3, different views might exhibit differ-

ent importance. For example, one disease might be more correlated with functional

connectivity than structural connectivity, or a brain network of an individual can be

noisy, and we need to automatically ignore it in the training process. We addressed

this in Section 4.2.3 by using an attention mechanism that learns the importance of

each view for each node. While this attention mechanism is designed for general

multiplex networks, assuming that the importance of each view for each node is

different, it is not the best approach to balance the trade-off between scalability and

performance. That is, although this mechanism is more general, it requires learning

many parameters, limiting its scalability to large networks with a large number of

views. In our experimental evaluations on multiplex brain networks, we observe

that the importance of one view for different nodes is almost the same. Therefore,

we design a more efficient and scalable attention mechanism for multiplex brain

58

networks that learns the importance of each view for other views (independent of

nodes), because in a multiplex brain network we might have a large number of

views (e.g., a large number of subjects, a large number of image modalities, or a

large number of frequency bands). One can interpret this attention mechanism as a

model that learns the correlation between each pair of views.

Given two arbitrary views r1, r2, let η(r1) and η(r2) be the learned encoding

of r1 and r2 (see Section 5.2.2). Inspired by Graph Attention Networks [154], we

define the importance of r2 for r1, ψ(r1, r2), as:

ψ(r1, r2) =
exp

(
σ
(
a⃗T .[Watt η(r1) || Watt η(r2)]

))∑
r′∈L exp (σ (⃗aT .[Watt η(r1) || Watt η(r′)]))

,

where a⃗ and Watt are learnable parameters and σ(.) is an activation function (e.g.,

ReLU). The main intuition of this attention mechanism is to (1) use learnable matrix

Watt to project view encodings to the same embedding space, and (2) use a⃗ to learn

the importance of each view in the concatenation. Note that the softmax function is

used to normalize weights.

6.5 Experiments

6.5.1 Experimental Setting Details

We tune hyper-parameters by cross-validation, and search the hyper-parameters over

1 µ ∈ {0.5, 1, 2, 4}×10−5, 2 Inter-view sampling numberM ∈ {32, 64, 128, 256},

3 Intra-view sampling number per view M ′ ∈ {8, 16, 32, 64}, 4 Walk length

m ∈ {2, 4, 8, 12}. Also, in the training, following the previous chapters, we use

a learning rate of 0.0001, hidden dimension 100 in MLP-Mixer, and batch size of

600.

To visualize the average distribution of anomalous connections, we use Brain-

Painter [118] with the Desikan-Killiany atlas.

6.5.2 Datasets

We evaluate ADMIRE and ANOMULY on multiplex brain networks using three

real-world datasets, PD [57], ADHD [29], and ASD [50]. Each of the datasets

59

represents one type of multiplex brain network modeling proposed in Section 6.3.

PD Dataset. Attention dysfunction is a common symptom of Parkinson’s disease

(PD) and has a significant impact on quality of life. This dataset [57] uses the

Attention Network Test (ANT) [67] and is designed to study three aspects of atten-

tion: alerting (maintaining an alert state), executive control (resolving conflict), and

orienting. It consists of both structural and functional MRI images of participants

with and without PD, with six repetitions of the ANT task [67]. It contains data for

25 subjects (7 female, age = 66.1± 10.0 yrs, years since disease onset = 8.4± 4.8)

in the PD group and 21 subjects (12 female, age = 62.1 ± 9.9 yrs) in the healthy

control group. We model the data using a temporal multiplex brain network with

two views, 114 ROIs, and six timestamps (fMRI during each task). The first view

represents the brain network obtained from fMRI, while the second view represents

that generated from T1-weighted structural MRI.

ADHD Dataset. This dataset consists of resting fMRI data taken from the USC

Multimodal Connectivity Database [29]. The dataset contains data for 50 subjects

(27 female, age = 9.84± 3.57 yrs) in the ADHD group and 50 subjects (25 female,

age = 12.74± 4.1 yrs) in the typically developed (TD) control group. This dataset

is preprocessed (https://ccraddock.github.io/cluster_roi/atlases.html). We model

this data using a temporal multiplex brain network with 50 views, 190 ROIs, and 10

timestamps; each view represents the brain network of an individual.

ASD Dataset. This dataset consists of resting fMRI data taken from the Autism

Brain Imaging Data Exchange (ABIDE) [50]; it contains data for 45 subjects (23

female, age = 23.1± 8.1 yrs) in the ASD group and 45 subjects (22 female, age

= 25.4± 8.9 yrs) in the typically developed control group. We have followed the

five pre-processing strategies denoted as DPARSF, followed by Band-Pass Filtering

with different filters in a range between 0.01 and 0.25 Hz, in steps of 0.02 Hz. This

range and steps are previously motivated by De Domenico et al. [60]. We model

this data using a temporal multiplex brain network with 12 views, 116 ROIs, and

10 timestamps; the i-th view represents the brain network obtained by filtering the

fMRI values in the range [0.01 + (i− 1)× 0.02, 0.01 + i× 0.02] Hz.

Synthetic Anomalies. In addition to real-world case studies on PD, ADHD, and

60

https://ccraddock.github.io/cluster_roi/atlases.html

ASD, we use these datasets and inject anomalies (as we have done in Section 4.3) to

investigate the parameter sensitivity of ADMIRE and also compare the performance

of ADMIRE and ANOMULY in inductive and transductive setting on the brain

network analysis domain.

Pre-pocessing. Unless stated otherwise, for preprocessing and constructing brain

networks from original fMRI and DTI data, we use the FSL toolbox and BrainGB [53].

6.5.3 Baselines

We evalute both ANOMULY and ADMIRE in the transductive setting and then

further evaluate ADMIRE in the inductive setting. Accordingly, in addition to

the baselines we used in Sections 4.3 and 5.4, we use three new methods that are

specifically designed for inductive settings, because none of the existing methods for

anomaly detection are designed for inductive settings. These new baselines help us

to investigate the performance of ADMIRE in the inductive setting. CAW-N [163]

is an inductive method that uses causal anonymous walks to extract network motifs

and a novel set-based anonymization process that keeps the model inductive by

hiding the identity of nodes during the training phase. EvolveGCN [129] uses

a RNN to estimate the GCN parameters for future snapshots. TGAT [56] uses

GAT [154] to extract node representations where the nodes’ neighbors are sampled

from the history and then encode temporal information via random Fourier features.

We exclude ANOMULY in the inductive setting as it is designed for the transductive

setting and cannot generalize to unseen patterns or nodes.

6.5.4 Experimental Setup

In each real-world experiment, we use the neuroimages of people in the control

group (either healthy or TD) to train the models. Once the models are trained, we

test them by using the neuroimages of people in the condition group (living with

PD, ADHD, or ASD). In the inductive setting, we follow previous work [88, 163]

and randomly hide 10% of nodes in the training phase.

61

6.5.5 Results

Effectiveness Evaluation. We first compare the effectiveness of ADMIRE and

ANOMULY with baselines on the task of detecting synthetic anomalous connec-

tions. Table 6.1 reports the AUC of all the methods on different datasets. ADMIRE

outperforms ANOMULY and all baselines by a significant margin (min = 6.42%

and max = 18.04% performance improvement over the ANOMULY performance)

in the transductive setting. There are four reasons for ADMIRE’s superior perfor-

mance: 1 ADMIRE outperforms monoplex methods as it is a multiplex method

and is able to learn from different data sources, image modalities, or frequency

bands by using inter-view walks and attention mechanism over intra-view walks that

incorporates complementary information from different views. 2 It outperforms

multiplex methods as it can capture the complex underlying rules of brain activities

through its two causal walks over time. Also, its anonymization process hides the

identity of nodes and views and captures the correlation between walks, increasing

its ability to generalize better to unseen patterns in the test data. ANOMULY uses

GRU cells to update node embeddings in discretized time steps, limiting its ability

to model time as a continuous variable, which misses some continuous temporal

patterns in brain activity. That is, ADMIRE is a stream-based method and uses a

time encoding module to capture time information, while ANOMULY is snapshot-

based and aggregates edges into network snapshots, which remove some useful

time information [163]. 3 ADMIRE is scalable with respect to the number of

views and can be trained on many data sources, image modalities, or frequency

bands. ANOMULY, as well as ML-GCN, use different GNN modules for each

view, making them infeasible for large networks with a large number of views (e.g.,

ADHD dataset with 50 subjects).

Table 6.1 reports the performance of ADMIRE and inductive baselines in the

inductive setting. We attribute ADMIRE’s superior performance (with min =

11.08% and max = 26.89% improvement over the best baseline) to two main

reasons: 1 ADMIRE is an end-to-end anomaly detection method with an exclusive

62

Table 6.1: Performance comparison of ADMIRE and baselines in multiplex
brain networks (AUC).

Methods PD ADHD ASD

Anomaly % 1% 5 % 1% 5 % 1% 5 %

Tr
an

sd
uc

tiv
e

Monoplex Methods

GOUTLIER 61.42 59.98 65.37 64.70 60.85 59.13
NETWALK 69.71 0.6902 70.29 69.86 69.07 68.52
ADDGRAPH 71.94 70.33 71.89 70.11 71.30 70.96

Multiplex Methods

MNE 70.39 70.54 73.78 72.31 70.19 69.94
ML-GCN 68.50 68.33 -∗ -∗ 69.56 69.35
ANOMULY 78.07 79.85 -∗ -∗ 77.14 77.08
ADMIRE 85.09 84.98 88.67 88.53 91.06 89.95

In
du

ct
iv

e EvolveGCN 55.18 55.06 57.23 57.41 56.89 56.21
TGAT 59.34 58.72 60.19 60.10 60.28 59.93
CAW-N 75.85 75.90 71.64 71.02 71.31 71.96
ADMIRE 84.72 84.31 88.03 88.97 90.49 90.28

∗ Training time exceeds the threshold.

Table 6.2: Ablation study of ADMIRE on brain network datasets. (AUC).

Methods PD ADHD ASD

1 ADMIRE 85.09 88.67∗ 91.06
2 w/o inter-view 78.59 88.73∗ 80.65
3 w/o intra-view 77.14 69.59 79.62
4 w/o λ (λ = 1) 80.42 80.36 89.30
5 w/o attention 84.79 86.14 86.57
6 w/o time encoding 84.16 82.78 85.92
7 w/o inter-view NS 84.77 84.28 83.46
8 w/o intra-view NS 79.91 78.75 81.09
9 w/o historical NS 84.68 84.16 84.31
10 w/ RNN 83.90 85.32 89.13
11 Monoplex-ADMIRE 76.52 72.07 74.15
∗ There is no causal relation between views.

63

design of generating negative samples and training process, while baselines are

designed to learn the temporal and structural properties of the network. 2 ADMIRE

is a multiplex method, while baselines are monoplex methods.

Ablation Studies. We further conduct ablation studies to validate the effectiveness

of each component of ADMIRE. The results are summarized in Table 6.2. Rows

2 and 3 show the effectiveness of inter-view and intra-view walks. The only

exception is removing the inter-view walks in the ADHD dataset. As we discussed

in Section 5.2.2, when there is no causal relation between views, inter-view walks

are not informative and our model is expected to learn to ignore these walks (set

λ = 0). Accordingly, removing these walks from ADMIRE does not hurt the

performance on the ADHD dataset, because there is no causal relation between

views. Rows 4 and 5 show the importance of the learnable parameter λ and the

attention mechanism that incorporates information from different views. Rows 7,

8, and 9 show the importance of our new negative sample generator. When using

RNN instead of MLP-Mixer in the walk encoding phase (row 10), we gain better

performance due to its ability to learn the dependency of nodes’ encoding in a

walk. Finally, the last row shows the superior performance of multiplex ADMIRE

over monoplex ADMIRE, when using only one brain network generated from an

individual, image modality, or frequency band. These results show the importance

of multiplex modeling of neuroimages.

Why Modified Attention Mechanism? Given a view r and a node u, we use Ω(u, r)

to show the importance of view r for node u. We use the attention mechanism

proposed in Section 4.2.3 and train the model on PD, ADHD, and ASD datasets.

We observe that Ω(u, r) ≈ Ω(v, r) for any given view r and arbitrary nodes u and

v. That is, given a view r, the maximum variance of Ω(u, r) for different nodes u is

0.02, 0.05, and 0.02 in PD, ADHD, and ASD datasets, respectively.

Our experimental evaluation shows that this attention mechanism, on average,

requires ≈ 45% less training time on PD, ADHD, and ASD datasets.

Parameter Sensitivity. We systematically analyze the effect of hyperparameters

used in ADMIRE on the performance. Figure 6.1(a) shows that only a small number

of intra-view walks are enough to achieve competitive performance. While more

inter-walks improve the performance until some point, the performance gain is

64

22 24 26

Number of inter-view walks (M)

0.800

0.825

0.850

0.875

0.900

A
U

C
PD ADHD ASD

(a) Intra-view walks

22 24 26

Number of intra-view walks (per view)

0.800

0.825

0.850

0.875

0.900

A
U

C

PD ADHD ASD

(b) Inter-view walks

2 4 6 8 10
Sampling Length m

0.70

0.75

0.80

0.85

0.90

A
U

C

PD ADHD ASD

(c) Walk Length

0 200 400 600 800 1000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0
λ

va
lu

e

PD ADHD ASD

(d) Evolution of λ

Figure 6.1: The effect of hyperparameters on the performance (a-c), and λ
evolution (d).

saturated after that. A similar pattern can be seen for increasing the number of intra-

view walks (Figure 6.1(b)). Note that this figure reports the number of intra-view

walks per view. Accordingly, we expect to see more performance gain on datasets

with a fewer views (e.g., PD). Figure 6.1(c) shows that ADMIRE might achieve

the best performance at a certain walk length, while the exact value depends on the

complexity of higher-order motifs that are required to learn the underlying network

dynamics as well as the number of views. Networks with a large number of views

might need longer walks to learn the causal relation in different views, because it

takes more steps to visit all the interrelated views. Finally, Figure 6.1(d) shows

the evolution of λ in training. As expected, in datasets with no causal relationship

65

between different views (e.g., ADHD), ADMIRE learns to set λ ≤ 0.1 after only

a few epochs. For other datasets, it shows that ADMIRE converges quickly to the

best value of λ.

Is Multiplex Modeling Robust to Noise? As discussed in Section 6.3, one of

the main motivations for modeling neuroimaging datasets as multiplex networks

is to make the model more robust to noise in each brain image. To validate the

efficacy of this approach, we add Gaussian noise to a subset of brain images

(5%, 10%, 20%, 30% and 40%) in the ADHD dataset. We model the noisy dataset

as a multiplex brain network and use it to train ADMIRE. Next, as a baseline,

following previous methods [101, 185], we take the average of all brain images in

the noisy dataset and use it to train the monoplex ADMIRE. Figure 6.2 reports the

performance of ADMIRE and monoplex ADMIRE with a varying fraction of noisy

samples. Not only does ADMIRE achieve superior performance by a significant

margin, but it is more robust to noise than monoplex ADMIRE. This experiment

shows the importance of multiplex modeling and also the efficacy of the proposed

attention mechanism that learns to ignore noisy samples.

6.5.6 Results on Real-world Datasets

We next report findings from applying ADMIRE to real-world datasets. We train our

model on the healthy control group and then test it on the condition group (living

with PD, ADHD, ASD) to find anomalous brain activity of people in the condition

group.

Parkinson’s Disease. We focus on abnormal brain structure and functional activity

of PD patients. Since the brain of each individual in each task might also have

unique complex activity, we need to focus on common or more frequently appeared

anomalous connections between ROIs over different subjects to capture abnormal

activity that might be correlated to PD. To this end, we show how anomalous

connections found by ADMIRE are distributed in the brain of people living with

PD. Figure 6.3 reports the average distribution of anomalous edges in the brain

networks of people living with PD. Most anomalous edges found by ADMIRE

have a vertex in either Posterior Cingulate, Superior Parietal, Medial Orbitofrontal,

66

5% 10% 20% 30% 40%
Noisy Data

0.7

0.8

0.9

A
U

C

(a) Performance of ADMIRE

5% 10% 20% 30% 40%
Noisy Data

0.5

0.6

0.7

A
U

C

(b) Performance of monoplex ADMIRE

Figure 6.2: The advantage of multiplex brain networks over monoplex brain
networks.

Figure 6.3: The distribution of anomalous edges in PD group.

Figure 6.4: The distribution of anomalous edges in ADHD group.

67

Figure 6.5: The distribution of anomalous edges in ASD group.

Pars Opercularis, or Supramarginal Gyrus (≥ 95% of all found anomalies). Most

anomalous edges found by ANOMULY have a vertex in the same brain regions.

Next, we apply ADMIRE and ANOMULY on the healthy control group to see

whether these findings are exclusive to the PD group and to identify possible noise

in the dataset. We observe that ADMIRE finds 94.2% fewer anomalous connections

in the healthy control group, most of which have a node in either Temporal Pole

or Anterior Insula. ANOMULY finds 85.91% fewer anomalous connections in the

healthy control group, most of which have a node in Temporal Pole.

Attention Deficit Hyperactivity Disorder. Following the previous experiment, we

first focus on abnormal brain activity in subjects in the ADHD group. Figure 6.4

shows the average distribution of anomalous edges in the brain networks of subjects

in the condition ADHD group. Most abnormal connections found by ADMIRE

have an endpoint in either Frontal Pole, Right Lateral Occipital Cortex, Lingual

Gyrus, Left Temporal Pole, or Right Superior Parietal Lobule (≥ 95% of all found

anomalies). Interestingly, these findings are consistent with previous studies on

ADHD, using voxel-wise estimation of regional tissue volume changes [158], ab-

normality in DTI images [103], and Forman–Ricci curvature changes [42], which

shows the potential of ADMIRE in revealing abnormal connections that might be

correlated to a brain disease or disorder. ANOMULY misses abnormal activities in

Lingual Gyrus, Left Temporal Pole, and Right Superior Parietal Lobule.

Applying ADMIRE on the healthy control group, we observe that ADMIRE

finds 89.6% fewer anomalous connections in the healthy control group, most of

which have an endpoint in either Planum Polare or Angular Gyrus. ANOMULY

finds 74.36% fewer anomalous connections in the healthy control group, most of

which have a node in either Frontal Pole or Angular Gyrus.

68

C

A

#P1
1 > 0.55

#P3
1 > 0.39 #P1

2 > 0.51

#P3
2 > 0.50

 Normal

Normal#P2
2 > 0.47#P4

2 > 0.39

Normal Anomaly NormalAnomalyAnomaly

Cluster 1:
Motif Clusters

Cluster 2:

Cluster 3:

Cluster 4:

AB

ABA

BA A D

DA B C E

How well does ADMIRE++ mimic ADMIRE?

Figure 6.6: (Left) Motif clusters and example of an extracted motif in each
cluster. (Right) The ADMIRE++ tree explanation on PD dataset
(depth=3). Different colors in the motif examples show the changes
in views. Here, P j i are the features constructed in Equation 5.20.

Autism Spectrum Disorder. Figure 6.5 shows the average distribution of anoma-

lous edges in the brain networks of subjects in the condition ASD group. Most

abnormal connections found by ADMIRE have an endpoint in either Right Superior

Temporal Gyrus, Right Cerebellum Cortex, Right Precuneus, Frontal Pole, Left Lat-

eral Occipital (≥ 95% of all found anomalies). Although several studies about ASD

found different abnormality patterns, there is still no known ASD biomarker [124].

However, part of our findings about abnormal activity in the cerebellum cortex is

consistent with previous studies [143]. ANOMULY misses abnormal activities in

Left Lateral Occipital and Right Cerebellum Cortex.

Applying ADMIRE on the healthy control group, ADMIRE finds 93.7% fewer

anomalous connections in the healthy control group, most of which have an endpoint

in either Temporal Pole or Posterior Cingulate Cortex. ANOMULY finds 79.14%

fewer anomalous connections in the healthy control group, most of which have a

node in Temporal Pole.

6.5.7 ADMIRE++ Explanations

To evaluate the quality of ADMIRE++, we use the PD dataset and set k = 4, so we

have 4 clusters and 8 features for each edge (4 features for each of its endpoints).

Figure 6.6 (left) and (middle) show an example of motifs in each cluster and a

decision tree with depth 3 that mimics the ADMIRE’s predictions. While motifs in

cluster 1 and 2 shows that the neighborhood of a node is sparse, motifs in cluster

3 and 4 show that the neighborhood of the node is dense. One can interpret the

decision tree prediction as: a link is normal if the neighborhoods of its endpoints

69

Table 6.3: Accuracy (%) of generated tree explanation. This table shows how
well ADMIRE++ mimics ADMIRE predictions.

Depth PD ADHD ASD

3 75.43 74.98 83.39
4 81.76 77.15 90.28
5 87.52 83.17 91.06

are both sparse or dense and is abnormal otherwise.

The Table 6.3 reports the accuracy of how well ADMIRE++ mimics ADMIRE’s

predictions. Even with small depths, ADMIRE++ produces explanations with high

accuracy.

70

Chapter 7

Conclusions

We introduced two novel frameworks, ANOMULY and ADMIRE, for detecting edge

anomalies in dynamic multiplex networks. ANOMULY utilizes a combination of

GNN layers and GRU cells, incorporating temporal and structural properties, along

with an attention mechanism that integrates information across different types of

connections. It further uses negative sampling during training to learn the anomalous

patterns in an unsupervised manner. While ANOMULY achieves good performance

and outperforms baselines, it suffers from poor scalability and memory usage and

an inability to generalize to unseen nodes.

To address these limitatons, we introduced ADMIRE, which leverages inter-view

and intra-view temporal walks to capture network motifs and causal relationships

within and across different views, respectively. ADMIRE uses an anonymization

technique to hide node and view identities, keeping the model inductive. Next,

it utilizes an MLP-Mixer to encode the sequence of nodes and views in a walk.

By aggregating walks from a node, ADMIRE encodes its neighborhood and use

a classifier to label connections as normal or abnormal based on their endpoints’

neighborhoods. We then introduced ADMIRE++ to explain ADMIRE’s predictions

using weighted optimal sparse decision trees.

We demonstrate the efficacy of ANOMULY and ADMIRE in analyzing the

abnormal brain activity that might cause a brain disease/disorder. We conduct

case studies on brain networks of individuals with Attention Deficit Hyperactivity

Disorder, Parkinson’s Disease, and Autism Spectrum Disorder. The results highlight

71

the potential of these frameworks to identify abnormal brain activity associated with

various diseases and disorders. Overall, these frameworks provide valuable tools

for analyzing dynamic multiplex networks and detecting anomalies with potential

applications in diverse domains.

72

Bibliography

[1] C. Abrate and F. Bonchi. Counterfactual graphs for explainable
classification of brain networks. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery; Data Mining, KDD ’21, page
2495–2504, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450383325. doi:10.1145/3447548.3467154. URL
https://doi.org/10.1145/3447548.3467154. → pages 3, 55, 58

[2] C. C. Aggarwal. Outlier analysis. In EDBT. Springer Cham, 2019. ISBN
978-3-319-83772-7. doi:https://doi.org/10.1007/978-3-319-47578-3. →
page 1

[3] C. C. Aggarwal, Y. Zhao, and P. S. Yu. Outlier detection in graph streams. In
2011 IEEE 27th International Conference on Data Engineering, pages
399–409, 2011. doi:10.1109/ICDE.2011.5767885. → pages 14, 27

[4] S. Aghaei, M. J. Azizi, and P. Vayanos. Learning optimal and fair decision
trees for non-discriminative decision-making. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01):1418–1426, Jul. 2019.
doi:10.1609/aaai.v33i01.33011418. URL
https://ojs.aaai.org/index.php/AAAI/article/view/3943. → page 12

[5] S. Aghaei, A. Gómez, and P. Vayanos. Strong optimal classification trees.
arXiv preprint arXiv:2103.15965, 2021. → page 12

[6] U. Agrawal, E. N. Brown, and L. D. Lewis. Model-based physiological
noise removal in fast fmri. NeuroImage, 205:116231, 2020. ISSN
1053-8119. doi:https://doi.org/10.1016/j.neuroimage.2019.116231. URL
https://www.sciencedirect.com/science/article/pii/S1053811919308225. →
pages 3, 55, 57

[7] M. Ahmed, A. N. Mahmood, and M. R. Islam. A survey of anomaly
detection techniques in financial domain. Future Generation Computer
Systems, 55:278–288, 2016. → page 1

73

http://dx.doi.org/10.1145/3447548.3467154
https://doi.org/10.1145/3447548.3467154
http://dx.doi.org/https://doi.org/10.1007/978-3-319-47578-3
http://dx.doi.org/10.1109/ICDE.2011.5767885
http://dx.doi.org/10.1609/aaai.v33i01.33011418
https://ojs.aaai.org/index.php/AAAI/article/view/3943
http://dx.doi.org/https://doi.org/10.1016/j.neuroimage.2019.116231
https://www.sciencedirect.com/science/article/pii/S1053811919308225

[8] L. Akoglu and C. Faloutsos. Anomaly, event, and fraud detection in large
network datasets. In Proceedings of the Sixth ACM International Conference
on Web Search and Data Mining, WSDM ’13, page 773–774, New York, NY,
USA, 2013. Association for Computing Machinery. ISBN 9781450318693.
doi:10.1145/2433396.2433496. URL
https://doi.org/10.1145/2433396.2433496. → page 1

[9] L. Akoglu, H. Tong, and D. Koutra. Graph based anomaly detection and
description: a survey. Data Mining and Knowledge Discovery, 29(3):
626–688, May 2015. ISSN 1573-756X. doi:10.1007/s10618-014-0365-y.
URL https://doi.org/10.1007/s10618-014-0365-y. → pages 1, 3, 19, 27

[10] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization, 2016. → page
43

[11] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. In Y. Bengio and Y. LeCun, editors, 3rd
International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1409.0473. → page 22

[12] M. Bansal and D. Sharma. Ranking and discovering anomalous
neighborhoods in attributed multiplex networks. In Proceedings of the 7th
ACM IKDD CoDS and 25th COMAD, CoDS COMAD 2020, page 46–54,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450377386. doi:10.1145/3371158.3371164. URL
https://doi.org/10.1145/3371158.3371164. → page 17

[13] D. S. Bassett and O. Sporns. Network neuroscience. Nature Neuroscience,
20(3):353–364, Mar 2017. ISSN 1546-1726. doi:10.1038/nn.4502. URL
https://doi.org/10.1038/nn.4502. → page 54

[14] R. E. Beaty, M. Benedek, P. J. Silvia, and D. L. Schacter. Creative cognition
and brain network dynamics. Trends in cognitive sciences, 20(2):87–95,
2016. → page 13

[15] R. E. Beaty, M. Benedek, P. J. Silvia, and D. L. Schacter. Creative cognition
and brain network dynamics. Trends in cognitive sciences, 20(2):87–95,
2016. → page 13

[16] A. Behrouz and F. Hashemi. Cs-mlgcn: Multiplex graph convolutional
networks for community search in multiplex networks. In Proceedings of the
31st ACM International Conference on Information and Knowledge

74

http://dx.doi.org/10.1145/2433396.2433496
https://doi.org/10.1145/2433396.2433496
http://dx.doi.org/10.1007/s10618-014-0365-y
https://doi.org/10.1007/s10618-014-0365-y
http://arxiv.org/abs/1409.0473
http://dx.doi.org/10.1145/3371158.3371164
https://doi.org/10.1145/3371158.3371164
http://dx.doi.org/10.1038/nn.4502
https://doi.org/10.1038/nn.4502

Management, CIKM ’22, page 3828–3832, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450392365.
doi:10.1145/3511808.3557572. URL
https://doi.org/10.1145/3511808.3557572. → pages 15, 16, 28, 55

[17] A. Behrouz and M. Seltzer. Anomaly detection in multiplex dynamic
networks: from blockchain security to brain disease prediction. In NeurIPS
2022 Temporal Graph Learning Workshop, 2022. URL
https://openreview.net/forum?id=UDGZDfwmay. → pages vi, 37, 43, 44

[18] A. Behrouz and M. Seltzer. Anomaly detection in human brain via inductive
learning on temporal multiplex networks. In Machine Learning for
Healthcare Conference. PMLR, 2023. → page vi

[19] A. Behrouz and M. Seltzer. ADMIRE++: Explainable anomaly detection in
the human brain via inductive learning on temporal multiplex networks. In
ICML 3rd Workshop on Interpretable Machine Learning in Healthcare
(IMLH), 2023. URL https://openreview.net/forum?id=t4H8acYudJ. → page
vi

[20] A. Behrouz, F. Hashemi, and L. V. S. Lakshmanan. Firmtruss community
search in multilayer networks. Proc. VLDB Endow., 16(3):505–518, nov
2022. ISSN 2150-8097. doi:10.14778/3570690.3570700. URL
https://doi.org/10.14778/3570690.3570700. → pages 3, 13, 25, 26, 27

[21] A. Behrouz, M. Lécuyer, C. Rudin, and M. Seltzer. Fast optimization of
weighted sparse decision trees for use in optimal treatment regimes and
optimal policy design. CEUR Workshop Proc, 3318, Oct. 2022. → pages
12, 46

[22] A. Behrouz, F. Hashemi, S. Sadeghian, and M. Seltzer. Cat-walk: Inductive
hypergraph learning via set walks, 2023. → pages 11, 15

[23] D. Bertsimas and J. Dunn. Optimal classification trees. Machine Learning,
106(7):1039–1082, 2017. → page 11

[24] S. Bhatia, B. Hooi, M. Yoon, K. Shin, and C. Faloutsos. Midas:
Microcluster-based detector of anomalies in edge streams. Proceedings of
the AAAI Conference on Artificial Intelligence, 34(04):3242–3249, Apr.
2020. doi:10.1609/aaai.v34i04.5724. URL
https://ojs.aaai.org/index.php/AAAI/article/view/5724. → pages 1, 2, 14

75

http://dx.doi.org/10.1145/3511808.3557572
https://doi.org/10.1145/3511808.3557572
https://openreview.net/forum?id=UDGZDfwmay
https://openreview.net/forum?id=t4H8acYudJ
http://dx.doi.org/10.14778/3570690.3570700
https://doi.org/10.14778/3570690.3570700
http://dx.doi.org/10.1609/aaai.v34i04.5724
https://ojs.aaai.org/index.php/AAAI/article/view/5724

[25] P. Bindu, P. S. Thilagam, and D. Ahuja. Discovering suspicious behavior in
multilayer social networks. Computers in Human Behavior, 73:568–582,
2017. ISSN 0747-5632. doi:https://doi.org/10.1016/j.chb.2017.04.001. URL
https://www.sciencedirect.com/science/article/pii/S0747563217302303. →
page 16

[26] B. B. Biswal, M. Mennes, X.-N. Zuo, S. Gohel, C. Kelly, S. M. Smith, C. F.
Beckmann, J. S. Adelstein, R. L. Buckner, S. Colcombe, et al. Toward
discovery science of human brain function. Proceedings of the National
Academy of Sciences, 107(10):4734–4739, 2010. → page 3

[27] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach.
Learn. Res., 3(null):993–1022, mar 2003. ISSN 1532-4435. → page 26

[28] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in
neural information processing systems, 26, 2013. → pages 23, 44

[29] J. A. Brown, J. D. Rudie, A. Bandrowski, J. D. Van Horn, and S. Y.
Bookheimer. The UCLA multimodal connectivity database: a web-based
platform for brain connectivity matrix sharing and analysis. Front
Neuroinform, 6:28, Nov. 2012. → pages 59, 60

[30] J. A. Brown, J. D. Rudie, A. Bandrowski, J. D. Van Horn, and S. Y.
Bookheimer. The ucla multimodal connectivity database: a web-based
platform for brain connectivity matrix sharing and analysis. Frontiers in
neuroinformatics, 6:28, 2012. → page 31

[31] J. Cadena, F. Chen, and A. Vullikanti. Graph anomaly detection based on
steiner connectivity and density. Proceedings of the IEEE, 106(5):829–845,
2018. → page 14

[32] J. Cadena, F. Chen, and A. Vullikanti. Graph anomaly detection based on
steiner connectivity and density. Proceedings of the IEEE, 106(5):829–845,
2018. doi:10.1109/JPROC.2018.2813311. → page 1

[33] L. Cai, Z. Chen, C. Luo, J. Gui, J. Ni, D. Li, and H. Chen. Structural
temporal graph neural networks for anomaly detection in dynamic graphs. In
Proceedings of the 30th ACM international conference on Information &
Knowledge Management, pages 3747–3756, 2021. → page 14

[34] A. Cardillo, J. Gómez-Gardenes, M. Zanin, M. Romance, D. Papo, F. d.
Pozo, and S. Boccaletti. Emergence of network features from multiplexity.
Scientific reports, 3(1):1344, 2013. → page 36

76

http://dx.doi.org/https://doi.org/10.1016/j.chb.2017.04.001
https://www.sciencedirect.com/science/article/pii/S0747563217302303
http://dx.doi.org/10.1109/JPROC.2018.2813311

[35] Y. Cen, X. Zou, J. Zhang, H. Yang, J. Zhou, and J. Tang. Representation
learning for attributed multiplex heterogeneous network. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 1358–1368, 2019. → pages 15, 16

[36] S. Chakraborty, S. Aich, S. J. Seong, and H.-C. Kim. A blockchain based
credit analysis framework for efficient financial systems. In 2019 21st
International Conference on Advanced Communication Technology (ICACT),
pages 56–60. IEEE, 2019. → page 3

[37] B. P. Chamberlain, S. Shirobokov, E. Rossi, F. Frasca, T. Markovich, N. Y.
Hammerla, M. M. Bronstein, and M. Hansmire. Graph neural networks for
link prediction with subgraph sketching. In The Eleventh International
Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=m1oqEOAozQU. → page 15

[38] S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and T. S. Huang.
Heterogeneous network embedding via deep architectures. In Proceedings of
the 21th ACM SIGKDD international conference on knowledge discovery
and data mining, pages 119–128, 2015. → page 16

[39] T.-H. Chang and D. Svetinovic. Improving bitcoin ownership identification
using transaction patterns analysis. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 50(1):9–20, 2018. → page 3

[40] Y.-Y. Chang, P. Li, R. Sosic, M. H. Afifi, M. Schweighauser, and J. Leskovec.
F-fade: Frequency factorization for anomaly detection in edge streams. In
Proceedings of the 14th ACM International Conference on Web Search and
Data Mining, WSDM ’21, page 589–597, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450382977.
doi:10.1145/3437963.3441806. URL
https://doi.org/10.1145/3437963.3441806. → pages 1, 2

[41] S. Chanpuriya, R. A. Rossi, S. Kim, T. Yu, J. Hoffswell, N. Lipka, S. Guo,
and C. N. Musco. Direct embedding of temporal network edges via
time-decayed line graphs. In The Eleventh International Conference on
Learning Representations, 2023. URL
https://openreview.net/forum?id=Qamz7Q_Ta1k. → page 15

[42] T. Chatterjee, R. Albert, S. Thapliyal, N. Azarhooshang, and B. DasGupta.
Detecting network anomalies using forman–ricci curvature and a case study
for human brain networks. Scientific Reports, 11(1):8121, Apr 2021. ISSN

77

https://openreview.net/forum?id=m1oqEOAozQU
http://dx.doi.org/10.1145/3437963.3441806
https://doi.org/10.1145/3437963.3441806
https://openreview.net/forum?id=Qamz7Q_Ta1k

2045-2322. doi:10.1038/s41598-021-87587-z. URL
https://doi.org/10.1038/s41598-021-87587-z. → pages
3, 13, 32, 54, 56, 57, 58, 68

[43] F. Chen and D. B. Neill. Non-parametric scan statistics for event detection
and forecasting in heterogeneous social media graphs. In Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 1166–1175, 2014. → page 14

[44] G. Chen, B. D. Ward, C. Xie, W. Li, Z. Wu, J. L. Jones, M. Franczak,
P. Antuono, and S.-J. Li. Classification of alzheimer disease, mild cognitive
impairment, and normal cognitive status with large-scale network analysis
based on resting-state functional mr imaging. Radiology, 259(1):213, 2011.
→ page 56

[45] J. Chen, X. Wang, and X. Xu. Gc-lstm: Graph convolution embedded lstm
for dynamic link prediction. arXiv preprint arXiv:1812.04206, 2018. →
page 15

[46] L.-H. Chen, H. Li, and W. Yang. Anomman: Detect anomaly on multi-view
attributed networks, 2022. URL https://arxiv.org/abs/2201.02822. → page
17

[47] J. Cheng, Q. Wang, Z. Tao, D. Xie, and Q. Gao. Multi-view attribute graph
convolution networks for clustering. In Proceedings of the Twenty-Ninth
International Conference on International Joint Conferences on Artificial
Intelligence, pages 2973–2979, 2021. → pages 15, 16

[48] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014. → pages 8, 19, 21

[49] W. Cong, S. Zhang, J. Kang, B. Yuan, H. Wu, X. Zhou, H. Tong, and
M. Mahdavi. Do we really need complicated model architectures for
temporal networks? In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=ayPPc0SyLv1.
→ pages 11, 15, 40

[50] C. Craddock, Y. Benhajali, C. Chu, F. Chouinard, A. Evans, A. Jakab, B. S.
Khundrakpam, J. D. Lewis, Q. Li, M. Milham, et al. The neuro bureau
preprocessing initiative: open sharing of preprocessed neuroimaging data
and derivatives. Frontiers in Neuroinformatics, 7:27, 2013. → pages 59, 60

78

http://dx.doi.org/10.1038/s41598-021-87587-z
https://doi.org/10.1038/s41598-021-87587-z
https://arxiv.org/abs/2201.02822
https://openreview.net/forum?id=ayPPc0SyLv1

[51] S. Cresci. A decade of social bot detection. Communications of the ACM, 63
(10):72–83, 2020. → page 1

[52] H. Cui, W. Dai, Y. Zhu, X. Li, L. He, and C. Yang. Brainnnexplainer: An
interpretable graph neural network framework for brain network based
disease analysis. arXiv preprint arXiv:2107.05097, 2021. → page 56

[53] H. Cui, W. Dai, Y. Zhu, X. Kan, A. A. Chen Gu, J. Lukemire, L. Zhan,
L. He, Y. Guo, and C. Yang. BrainGB: A Benchmark for Brain Network
Analysis with Graph Neural Networks. IEEE Transactions on Medical
Imaging (TMI), 2022. → page 61

[54] H. Cui, W. Dai, Y. Zhu, X. Li, L. He, and C. Yang. Interpretable graph neural
networks for connectome-based brain disorder analysis. In International
Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 375–385. Springer, 2022. → pages 55, 56

[55] H. Cui, W. Dai, Y. Zhu, X. Li, L. He, and C. Yang. Interpretable graph neural
networks for connectome-based brain disorder analysis. In L. Wang, Q. Dou,
P. T. Fletcher, S. Speidel, and S. Li, editors, Medical Image Computing and
Computer Assisted Intervention – MICCAI 2022, pages 375–385, Cham,
2022. Springer Nature Switzerland. ISBN 978-3-031-16452-1. → page 58

[56] da Xu, chuanwei ruan, evren korpeoglu, sushant kumar, and kannan achan.
Inductive representation learning on temporal graphs. In International
Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=rJeW1yHYwH. → page 61

[57] T. K. M. Day, T. M. Madhyastha, M. K. Askren, P. Boord, T. J. Montine, and
T. J. Grabowski. Attention network test fMRI data for participants with
parkinson’s disease and healthy elderly. F1000Res, 8:780, June 2019. →
pages 13, 59, 60

[58] T. dblp team. dblp computer science bibliography. https://dblp.uni-trier.de,
2014. → page 26

[59] M. De Domenico. Multilayer modeling and analysis of human brain
networks. GigaScience, 6(5), 02 2017. ISSN 2047-217X.
doi:10.1093/gigascience/gix004. URL
https://doi.org/10.1093/gigascience/gix004. gix004. → pages 3, 55, 57

[60] M. De Domenico, S. Sasai, and A. Arenas. Mapping multiplex hubs in
human functional brain networks. Front Neurosci, 10:326, July 2016. →
pages 57, 60

79

https://openreview.net/forum?id=rJeW1yHYwH
https://dblp.uni-trier.de
http://dx.doi.org/10.1093/gigascience/gix004
https://doi.org/10.1093/gigascience/gix004

[61] F. De Vico Fallani, J. Richiardi, M. Chavez, and S. Achard. Graph analysis
of functional brain networks: practical issues in translational neuroscience.
Philos Trans R Soc Lond B Biol Sci, 369(1653), Oct. 2014. → page 57

[62] S. Dey. Securing majority-attack in blockchain using machine learning and
algorithmic game theory: A proof of work. In 2018 10th computer science
and electronic engineering (CEEC), pages 7–10. IEEE, 2018. → page 3

[63] K. Ding, J. Li, R. Bhanushali, and H. Liu. Deep anomaly detection on
attributed networks. In Proceedings of the 2019 SIAM International
Conference on Data Mining, pages 594–602. SIAM, 2019. → page 1

[64] K. Ding, Q. Zhou, H. Tong, and H. Liu. Few-shot network anomaly
detection via cross-network meta-learning. In Proceedings of the Web
Conference 2021, WWW ’21, page 2448–2456, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450383127.
doi:10.1145/3442381.3449922. URL
https://doi.org/10.1145/3442381.3449922. → page 1

[65] D. Eswaran and C. Faloutsos. Sedanspot: Detecting anomalies in edge
streams. In 2018 IEEE International conference on data mining (ICDM),
pages 953–958. IEEE, 2018. → pages 1, 14

[66] D. Eswaran, C. Faloutsos, S. Guha, and N. Mishra. Spotlight: Detecting
anomalies in streaming graphs. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages
1378–1386, 2018. → pages 1, 14

[67] J. Fan, B. D. McCandliss, J. Fossella, J. I. Flombaum, and M. I. Posner. The
activation of attentional networks. Neuroimage, 26(2):471–479, 2005. →
page 60

[68] A. Farhangfar, R. Greiner, and M. Zinkevich. A fast way to produce
near-optimal fixed-depth decision trees. In Proceedings of the 10th
International Symposium on Artificial Intelligence and Mathematics
(ISAIM-2008), 2008. → page 11

[69] E. S. Finn, X. Shen, D. Scheinost, M. D. Rosenberg, J. Huang, M. M. Chun,
X. Papademetris, and R. T. Constable. Functional connectome fingerprinting:
identifying individuals using patterns of brain connectivity. Nature
Neuroscience, 18(11):1664–1671, Nov 2015. ISSN 1546-1726.
doi:10.1038/nn.4135. URL https://doi.org/10.1038/nn.4135. → page 54

80

http://dx.doi.org/10.1145/3442381.3449922
https://doi.org/10.1145/3442381.3449922
http://dx.doi.org/10.1038/nn.4135
https://doi.org/10.1038/nn.4135

[70] F. Fusco, D. Pascual, and P. Staar. pnlp-mixer: an efficient all-mlp
architecture for language. arXiv preprint arXiv:2202.04350, 2022. → page
11

[71] E. Galimberti, F. Bonchi, F. Gullo, and T. Lanciano. Core decomposition in
multilayer networks: Theory, algorithms, and applications. ACM Trans.
Knowl. Discov. Data, 14(1), 2020. ISSN 1556-4681. doi:10.1145/3369872.
→ page 2

[72] J. Gao and B. Ribeiro. On the equivalence between temporal and static
equivariant graph representations. In K. Chaudhuri, S. Jegelka, L. Song,
C. Szepesvari, G. Niu, and S. Sabato, editors, Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pages 7052–7076. PMLR, 17–23 Jul 2022.
URL https://proceedings.mlr.press/v162/gao22e.html. → page 15

[73] Z. Gao, C. Jiang, J. Zhang, X. Jiang, L. Li, P. Zhao, H. Yang, Y. Huang, and
J. Li. Hierarchical graph learning for protein–protein interaction. Nature
Communications, 14(1):1093, 2023. → page 55

[74] K. R. Griffiths, T. A. Braund, M. R. Kohn, S. Clarke, L. M. Williams, and
M. S. Korgaonkar. Structural brain network topology underpinning adhd and
response to methylphenidate treatment. Translational Psychiatry, 11(1):150,
Mar 2021. ISSN 2158-3188. doi:10.1038/s41398-021-01278-x. URL
https://doi.org/10.1038/s41398-021-01278-x. → page 31

[75] O. Günlük, J. Kalagnanam, M. Li, M. Menickelly, and K. Scheinberg.
Optimal decision trees for categorical data via integer programming. Journal
of Global Optimization, pages 1–28, 2021. → page 11

[76] Y. Guo and C. Liang. Blockchain application and outlook in the banking
industry. Financial innovation, 2(1):1–12, 2016. → page 3

[77] X. Han, T. F. J. Pasquier, A. Bates, J. Mickens, and M. I. Seltzer. Unicorn:
Runtime provenance-based detector for advanced persistent threats. In 27th
Annual Network and Distributed System Security Symposium, NDSS 2020,
San Diego, California, USA, February 23-26, 2020. The Internet Society,
2020. URL https://www.ndss-symposium.org/ndss-paper/
unicorn-runtime-provenance-based-detector-for-advanced-persistent-threats/.
→ page 1

[78] O. Hanteer, L. Rossi, D. V. D’Aurelio, and M. Magnani. From interaction to
participation: The role of the imagined audience in social media community

81

http://dx.doi.org/10.1145/3369872
https://proceedings.mlr.press/v162/gao22e.html
http://dx.doi.org/10.1038/s41398-021-01278-x
https://doi.org/10.1038/s41398-021-01278-x
https://www.ndss-symposium.org/ndss-paper/unicorn-runtime-provenance-based-detector-for-advanced-persistent-threats/
https://www.ndss-symposium.org/ndss-paper/unicorn-runtime-provenance-based-detector-for-advanced-persistent-threats/

detection and an application to political communication on twitter. In
Proceedings of the 2018 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, ASONAM ’18, page 531–534.
IEEE Press, 2018. ISBN 9781538660515. → pages 25, 26

[79] F. Hashemi, A. Behrouz, and L. V. Lakshmanan. Firmcore decomposition of
multilayer networks. In Proceedings of the ACM Web Conference 2022,
WWW ’22, page 1589–1600, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450390965.
doi:10.1145/3485447.3512205. URL
https://doi.org/10.1145/3485447.3512205. → page 2

[80] F. Hashemi, A. Behrouz, and M. R. Hajidehi. Cs-tgn: Community search via
temporal graph neural networks. In Companion Proceedings of the Web
Conference 2023, WWW ’23, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3543873.3587654. URL
https://doi.org/10.1145/3543873.3587654. → pages 13, 15

[81] M. U. Hassan, M. H. Rehmani, and J. Chen. Anomaly detection in
blockchain networks: A comprehensive survey. IEEE Communications
Surveys & Tutorials, 2022. → page 3

[82] R. He and J. McAuley. Ups and downs: Modeling the visual evolution of
fashion trends with one-class collaborative filtering. In proceedings of the
25th international conference on world wide web, pages 507–517, 2016. →
pages 25, 26

[83] N. A. Heard, D. J. Weston, K. Platanioti, and D. J. Hand. Bayesian anomaly
detection methods for social networks. The Annals of Applied Statistics, 4
(2):645–662, 2010. → page 14

[84] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus), 2020. →
pages 11, 43

[85] B. Hooi, H. A. Song, A. Beutel, N. Shah, K. Shin, and C. Faloutsos. Fraudar:
Bounding graph fraud in the face of camouflage. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data
mining, pages 895–904, 2016. → page 14

[86] B. Jie, M. Liu, X. Jiang, and D. Zhang. Sub-network based kernels for brain
network classification. In Proceedings of the 7th ACM International
Conference on Bioinformatics, Computational Biology, and Health
Informatics, pages 622–629, 2016. → page 56

82

http://dx.doi.org/10.1145/3485447.3512205
https://doi.org/10.1145/3485447.3512205
http://dx.doi.org/10.1145/3543873.3587654
https://doi.org/10.1145/3543873.3587654

[87] M. Jin, Y. Liu, Y. Zheng, L. Chi, Y.-F. Li, and S. Pan. Anemone: Graph
anomaly detection with multi-scale contrastive learning. In Proceedings of
the 30th ACM International Conference on Information & Knowledge
Management, CIKM ’21, page 3122–3126, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450384469.
doi:10.1145/3459637.3482057. URL
https://doi.org/10.1145/3459637.3482057. → page 14

[88] M. Jin, Y.-F. Li, and S. Pan. Neural temporal walks: Motif-aware
representation learning on continuous-time dynamic graphs. In A. H. Oh,
A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural
Information Processing Systems, 2022. URL
https://openreview.net/forum?id=NqbktPUkZf7. → pages 15, 37, 39, 61

[89] B. Jing, C. Park, and H. Tong. Hdmi: High-order deep multiplex infomax.
In Proceedings of the Web Conference 2021, pages 2414–2424, 2021. →
page 16

[90] A. Kafshdar Goharshady, A. Behrouz, and K. Chatteriee. Secure credit
reporting on the blockchain. In 2018 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), pages
1343–1348, 2018. doi:10.1109/Cybermatics_2018.2018.00231. → page 3

[91] X. Kan, H. Cui, Y. Guo, and C. Yang. Effective and interpretable fmri
analysis via functional brain network generation. arXiv preprint
arXiv:2107.11247, 2021. → page 56

[92] X. Kan, H. Cui, J. Lukemire, Y. Guo, and C. Yang. Fbnetgen: Task-aware
gnn-based fmri analysis via functional brain network generation. arXiv
preprint arXiv:2205.12465, 2022. → page 56

[93] X. Kan, H. Cui, J. Lukemire, Y. Guo, and C. Yang. FBNETGEN:
Task-aware GNN-based fMRI analysis via functional brain network
generation. In Medical Imaging with Deep Learning, 2022. URL
https://openreview.net/forum?id=oWFphg2IKon. → page 58

[94] X. Kan, W. Dai, H. Cui, Z. Zhang, Y. Guo, and C. Yang. Brain network
transformer. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors,
Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=1cJ1cbA6NLN. → page 55

83

http://dx.doi.org/10.1145/3459637.3482057
https://doi.org/10.1145/3459637.3482057
https://openreview.net/forum?id=NqbktPUkZf7
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00231
https://openreview.net/forum?id=oWFphg2IKon
https://openreview.net/forum?id=1cJ1cbA6NLN

[95] S. M. Kazemi, R. Goel, S. Eghbali, J. Ramanan, J. Sahota, S. Thakur, S. Wu,
C. Smyth, P. Poupart, and M. Brubaker. Time2vec: Learning a vector
representation of time. arXiv preprint arXiv:1907.05321, 2019. → page 40

[96] P. Kidger, J. Morrill, J. Foster, and T. Lyons. Neural controlled differential
equations for irregular time series. Advances in Neural Information
Processing Systems, 33:6696–6707, 2020. → pages 3, 40

[97] J. Kim and J.-G. Lee. Community detection in multi-layer graphs: A survey.
SIGMOD Rec., 44(3):37–48, dec 2015. ISSN 0163-5808.
doi:10.1145/2854006.2854013. URL
https://doi.org/10.1145/2854006.2854013. → page 25

[98] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A.
Porter. Multilayer networks. Journal of Complex Networks, 2(3):203–271,
07 2014. ISSN 2051-1310. doi:10.1093/comnet/cnu016. → pages 1, 16, 55

[99] A. R. Klivans, R. A. Servedio, and D. Ron. Toward attribute efficient
learning of decision lists and parities. Journal of Machine Learning
Research, 7(4), 2006. → page 11

[100] S. Kumar, B. Hooi, D. Makhija, M. Kumar, C. Faloutsos, and
V. Subrahmanian. Rev2: Fraudulent user prediction in rating platforms. In
Proceedings of the Eleventh ACM International Conference on Web Search
and Data Mining, pages 333–341, 2018. → pages 25, 27

[101] T. Lanciano, F. Bonchi, and A. Gionis. Explainable classification of brain
networks via contrast subgraphs. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery; Data Mining, KDD ’20,
page 3308–3318, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450379984. doi:10.1145/3394486.3403383. URL
https://doi.org/10.1145/3394486.3403383. → pages 3, 31, 57, 58, 66

[102] H. Laurent and R. L. Rivest. Constructing optimal binary decision trees is
np-complete. Information Processing Letters, 5(1):15–17, 1976. → page 11

[103] D. Lei, J. Ma, X. Du, G. Shen, X. Jin, and Q. Gong. Microstructural
abnormalities in the combined and inattentive subtypes of attention deficit
hyperactivity disorder: a diffusion tensor imaging study. Scientific reports, 4
(1):6875, 2014. → page 68

[104] G. Li, M. Muller, A. Thabet, and B. Ghanem. Deepgcns: Can gcns go as
deep as cnns? In Proceedings of the IEEE/CVF international conference on
computer vision, pages 9267–9276, 2019. → pages 10, 21

84

http://dx.doi.org/10.1145/2854006.2854013
https://doi.org/10.1145/2854006.2854013
http://dx.doi.org/10.1093/comnet/cnu016
http://dx.doi.org/10.1145/3394486.3403383
https://doi.org/10.1145/3394486.3403383

[105] J. Li, Z. Han, H. Cheng, J. Su, P. Wang, J. Zhang, and L. Pan. Predicting
path failure in time-evolving graphs. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 1279–1289, 2019. → page 15

[106] Y. Li, R. Yu, C. Shahabi, and Y. Liu. Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting. In International Conference
on Learning Representations, 2018. URL
https://openreview.net/forum?id=SJiHXGWAZ. → page 15

[107] J. Lin, C. Zhong, D. Hu, C. Rudin, and M. Seltzer. Generalized and scalable
optimal sparse decision trees. In International Conference on Machine
Learning (ICML), pages 6150–6160, 2020. → page 12

[108] J. Liu, M. Li, Y. Pan, W. Lan, R. Zheng, F.-X. Wu, and J. Wang. Complex
brain network analysis and its applications to brain disorders: A survey.
Complexity, 2017:8362741, Oct 2017. ISSN 1076-2787.
doi:10.1155/2017/8362741. URL https://doi.org/10.1155/2017/8362741. →
page 57

[109] J. Liu, W. Zhao, Y. Hong, S. Gao, X. Huang, Y. Zhou, A. D. N. Initiative,
et al. Learning features of brain network for anomaly detection. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 900–905. IEEE, 2020. → pages
13, 56, 57

[110] N. Liu, X. Huang, and X. Hu. Accelerated local anomaly detection via
resolving attributed networks. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI-17, pages
2337–2343, 2017. doi:10.24963/ijcai.2017/325. URL
https://doi.org/10.24963/ijcai.2017/325. → page 1

[111] Y. Liu, S. Pan, Y. G. Wang, F. Xiong, L. Wang, Q. Chen, and V. C. Lee.
Anomaly detection in dynamic graphs via transformer. IEEE Transactions
on Knowledge and Data Engineering, pages 1–1, 2021.
doi:10.1109/TKDE.2021.3124061. → page 14

[112] S. Lloyd. Least squares quantization in pcm. IEEE transactions on
information theory, 28(2):129–137, 1982. → page 45

[113] Y. Luo and P. Li. Neighborhood-aware scalable temporal network
representation learning. In The First Learning on Graphs Conference, 2022.
URL https://openreview.net/forum?id=EPUtNe7a9ta. → page 15

85

https://openreview.net/forum?id=SJiHXGWAZ
http://dx.doi.org/10.1155/2017/8362741
https://doi.org/10.1155/2017/8362741
http://dx.doi.org/10.24963/ijcai.2017/325
https://doi.org/10.24963/ijcai.2017/325
http://dx.doi.org/10.1109/TKDE.2021.3124061
https://openreview.net/forum?id=EPUtNe7a9ta

[114] C. W. Lynn and D. S. Bassett. The physics of brain network structure,
function and control. Nature Reviews Physics, 1(5):318–332, May 2019.
ISSN 2522-5820. doi:10.1038/s42254-019-0040-8. URL
https://doi.org/10.1038/s42254-019-0040-8. → page 57

[115] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and
L. Akoglu. A comprehensive survey on graph anomaly detection with deep
learning. IEEE Transactions on Knowledge and Data Engineering, pages
1–1, 2021. doi:10.1109/TKDE.2021.3118815. → pages 1, 3, 14, 19

[116] D. D. F. Maesa, A. Marino, and L. Ricci. Detecting artificial behaviours in
the bitcoin users graph. Online Social Networks and Media, 3:63–74, 2017.
→ page 3

[117] M. Mardani, G. Mateos, and G. B. Giannakis. Dynamic anomalography:
Tracking network anomalies via sparsity and low rank. IEEE Journal of
Selected Topics in Signal Processing, 7(1):50–66, 2012. → page 14

[118] R. Marinescu, A. Eshaghi, D. Alexander, and P. Golland. Brainpainter: A
software for the visualisation of brain structures, biomarkers and associated
pathological processes. arXiv preprint arXiv:1905.08627, 2019. → page 59

[119] A. Maulana and M. Atzmueller. Centrality-based anomaly detection on
multi-layer networks using many-objective optimization. In 2020 7th
International Conference on Control, Decision and Information
Technologies (CoDIT), volume 1, pages 633–638, 2020.
doi:10.1109/CoDIT49905.2020.9263819. → page 17

[120] H. McTavish, C. Zhong, R. Achermann, I. Karimalis, J. Chen, C. Rudin, and
M. Seltzer. Fast sparse decision tree optimization via reference ensembles.
In AAAI Conference on Artificial Intelligence, volume 36, 2022. → page 12

[121] S. Micali and Z. A. Zhu. Reconstructing markov processes from
independent and anonymous experiments. Discrete Applied Mathematics,
200:108–122, 2016. → page 39

[122] R. Mittal and M. Bhatia. Anomaly detection in multiplex networks.
Procedia Computer Science, 125:609–616, 2018. → page 16

[123] B. Mišić and O. Sporns. From regions to connections and networks: new
bridges between brain and behavior. Current Opinion in Neurobiology, 40:
1–7, 2016. ISSN 0959-4388. doi:https://doi.org/10.1016/j.conb.2016.05.003.
URL

86

http://dx.doi.org/10.1038/s42254-019-0040-8
https://doi.org/10.1038/s42254-019-0040-8
http://dx.doi.org/10.1109/TKDE.2021.3118815
http://dx.doi.org/10.1109/CoDIT49905.2020.9263819
http://dx.doi.org/https://doi.org/10.1016/j.conb.2016.05.003

https://www.sciencedirect.com/science/article/pii/S095943881630054X.
Systems neuroscience. → page 54

[124] R.-A. Müller and A. Linke. Functional connectivity in autism spectrum
disorders: Challenges and perspectives. Brain Network Dysfunction in
Neuropsychiatric Illness: Methods, Applications, and Implications, pages
239–272, 2021. → page 69

[125] D. Nelson. Crypto criminals have already stolen $1.4b in 2020, says
ciphertrace, June 2020. URL https://www.coindesk.com/policy/2020/06/02/
crypto-criminals-have-already-stolen-14b-in-2020-says-ciphertrace/. →
page 3

[126] S. Nijssen and E. Fromont. Mining optimal decision trees from itemset
lattices. In 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 530–539, 2007. → page 11

[127] D. Ofori-Boateng, I. S. Dominguez, C. Akcora, M. Kantarcioglu, and Y. R.
Gel. Topological anomaly detection in dynamic multilayer blockchain
networks. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 788–804. Springer, 2021. →
pages 3, 17, 25, 26

[128] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi,
T. Kaler, T. Schardl, and C. Leiserson. Evolvegcn: Evolving graph
convolutional networks for dynamic graphs. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 5363–5370, 2020.
→ page 15

[129] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi,
T. Kaler, T. Schardl, and C. Leiserson. Evolvegcn: Evolving graph
convolutional networks for dynamic graphs. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages 5363–5370, 2020. →
page 61

[130] C. Park, D. Kim, J. Han, and H. Yu. Unsupervised attributed multiplex
network embedding. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 5371–5378, 2020. → pages 16, 22, 37

[131] L. Peel and A. Clauset. Detecting change points in the large-scale structure
of evolving networks. In Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015. → page 14

87

https://www.sciencedirect.com/science/article/pii/S095943881630054X
https://www.coindesk.com/policy/2020/06/02/crypto-criminals-have-already-stolen-14b-in-2020-says-ciphertrace/
https://www.coindesk.com/policy/2020/06/02/crypto-criminals-have-already-stolen-14b-in-2020-says-ciphertrace/

[132] H. Peng, H. Wang, B. Du, M. Z. A. Bhuiyan, H. Ma, J. Liu, L. Wang,
Z. Yang, L. Du, S. Wang, et al. Spatial temporal incidence dynamic graph
neural networks for traffic flow forecasting. Information Sciences, 521:
277–290, 2020. → page 15

[133] Z. Peng, M. Luo, J. Li, H. Liu, and Q. Zheng. Anomalous: A joint modeling
approach for anomaly detection on attributed networks. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI-18, pages 3513–3519. International Joint Conferences on Artificial
Intelligence Organization, 7 2018. doi:10.24963/ijcai.2018/488. URL
https://doi.org/10.24963/ijcai.2018/488. → page 1

[134] Z. Peng, M. Luo, J. Li, L. Xue, and Q. Zheng. A deep multi-view framework
for anomaly detection on attributed networks. IEEE Transactions on
Knowledge and Data Engineering, 34(6):2539–2552, 2022.
doi:10.1109/TKDE.2020.3015098. → page 1

[135] T. Pham and S. Lee. Anomaly detection in bitcoin network using
unsupervised learning methods. arXiv preprint arXiv:1611.03941, 2016. →
page 3

[136] L. Pio-Lopez, A. Valdeolivas, L. Tichit, É. Remy, and A. Baudot. Multiverse:
a multiplex and multiplex-heterogeneous network embedding approach.
Scientific Reports, 11(1):1–20, 2021. → pages 15, 16

[137] B. Podgorelec, M. Turkanović, and S. Karakatič. A machine learning-based
method for automated blockchain transaction signing including personalized
anomaly detection. Sensors, 20(1):147, 2019. → page 3

[138] F. Poursafaei, A. Huang, K. Pelrine, and R. Rabbany. Towards better
evaluation for dynamic link prediction. In Thirty-sixth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2022.
URL https://openreview.net/forum?id=1GVpwr2Tfdg. → pages 35, 43

[139] J. D. Power, A. L. Cohen, S. M. Nelson, G. S. Wig, K. A. Barnes, J. A.
Church, A. C. Vogel, T. O. Laumann, F. M. Miezin, B. L. Schlaggar, and
S. E. Petersen. Functional network organization of the human brain. Neuron,
72(4):665–678, Nov 2011. ISSN 1097-4199.
doi:10.1016/j.neuron.2011.09.006. URL
https://pubmed.ncbi.nlm.nih.gov/22099467. S0896-6273(11)00792-6[PII].
→ page 3

88

http://dx.doi.org/10.24963/ijcai.2018/488
https://doi.org/10.24963/ijcai.2018/488
http://dx.doi.org/10.1109/TKDE.2020.3015098
https://openreview.net/forum?id=1GVpwr2Tfdg
http://dx.doi.org/10.1016/j.neuron.2011.09.006
https://pubmed.ncbi.nlm.nih.gov/22099467

[140] M. G. Preti, T. A. Bolton, and D. Van De Ville. The dynamic functional
connectome: State-of-the-art and perspectives. Neuroimage, 160:41–54,
2017. → pages 54, 55

[141] S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, and N. F.
Samatova. Anomaly detection in dynamic networks: A survey. WIREs
Comput. Stat., 7(3):223–247, may 2015. ISSN 1939-5108.
doi:10.1002/wics.1347. URL https://doi.org/10.1002/wics.1347. → pages
1, 3, 19

[142] S. Ranshous, S. Harenberg, K. Sharma, and N. F. Samatova. A scalable
approach for outlier detection in edge streams using sketch-based
approximations. In Proceedings of the 2016 SIAM international conference
on data mining, pages 189–197. SIAM, 2016. → pages 2, 14, 27

[143] T. D. Rogers, E. McKimm, P. E. Dickson, D. Goldowitz, C. D. Blaha, and
G. Mittleman. Is autism a disease of the cerebellum? an integration of
clinical and pre-clinical research. Front Syst Neurosci, 7:15, May 2013. →
page 69

[144] C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong.
Interpretable machine learning: Fundamental principles and 10 grand
challenges. Statistics Surveys, 16:1–85, 2022. → page 11

[145] D. A. Seminowicz and K. D. Davis. Pain enhances functional connectivity
of a brain network evoked by performance of a cognitive task. Journal of
neurophysiology, 97(5):3651–3659, 2007. → page 13

[146] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson. Structured
sequence modeling with graph convolutional recurrent networks. In
International conference on neural information processing, pages 362–373.
Springer, 2018. → page 15

[147] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs: dynamic
tensor analysis. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 374–383, 2006.
→ page 14

[148] J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is more: Compact matrix
decomposition for large sparse graphs. In Proceedings of the 2007 SIAM
International Conference on Data Mining, pages 366–377. SIAM, 2007. →
page 14

89

http://dx.doi.org/10.1002/wics.1347
https://doi.org/10.1002/wics.1347

[149] A. Taheri, K. Gimpel, and T. Berger-Wolf. Learning to represent the
evolution of dynamic graphs with recurrent models. In Companion
proceedings of the 2019 world wide web conference, pages 301–307, 2019.
→ page 15

[150] X. Teng, Y.-R. Lin, and X. Wen. Anomaly detection in dynamic networks
using multi-view time-series hypersphere learning. In Proceedings of the
2017 ACM on Conference on Information and Knowledge Management,
pages 827–836, 2017. → page 14

[151] I. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner,
J. Yung, A. P. Steiner, D. Keysers, J. Uszkoreit, M. Lucic, and
A. Dosovitskiy. MLP-mixer: An all-MLP architecture for vision. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances
in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=EI2KOXKdnP. → pages 11, 43

[152] M. P. Van Den Heuvel and H. E. H. Pol. Exploring the brain network: a
review on resting-state fmri functional connectivity. European
neuropsychopharmacology, 20(8):519–534, 2010. → page 13

[153] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. → page 11

[154] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio.
Graph attention networks. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.
→ pages 59, 61

[155] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm.
Deep graph infomax. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=rklz9iAcKQ.
→ page 16

[156] H. Wang, M. Tang, Y. Park, and C. E. Priebe. Locality statistics for anomaly
detection in time series of graphs. IEEE Transactions on Signal Processing,
62(3):703–717, 2013. → page 14

[157] J. Wang, R. Wen, C. Wu, Y. Huang, and J. Xiong. Fdgars: Fraudster
detection via graph convolutional networks in online app review system. In
Companion Proceedings of The 2019 World Wide Web Conference, WWW
’19, page 310–316, New York, NY, USA, 2019. Association for Computing

90

https://openreview.net/forum?id=EI2KOXKdnP
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rklz9iAcKQ

Machinery. ISBN 9781450366755. doi:10.1145/3308560.3316586. URL
https://doi.org/10.1145/3308560.3316586. → page 1

[158] J.-z. Wang, T.-z. Jiang, Q.-j. Cao, and Y. Wang. Characterizing anatomic
differences in boys with attention-deficit/hyperactivity disorder with the use
of deformation-based morphometry. American Journal of Neuroradiology,
28(3):543–547, 2007. → pages 32, 68

[159] Q. Wang, Y. Fang, A. Ravula, R. He, B. Shen, J. Wang, X. Quan, and D. Liu.
Deep partial multiplex network embedding. In Companion Proceedings of
the Web Conference 2022, WWW ’22, page 1053–1062, New York, NY,
USA, 2022. Association for Computing Machinery. ISBN 9781450391306.
doi:10.1145/3487553.3524717. URL
https://doi.org/10.1145/3487553.3524717. → page 16

[160] T. Wang, C. Fang, D. Lin, and S. F. Wu. Localizing temporal anomalies in
large evolving graphs. In Proceedings of the 2015 SIAM International
Conference on Data Mining, pages 927–935. SIAM, 2015. → pages 2, 14

[161] X. Wang, Y. Lu, C. Shi, R. Wang, P. Cui, and S. Mou. Dynamic
heterogeneous information network embedding with meta-path based
proximity. IEEE Transactions on Knowledge and Data Engineering, 2020.
→ page 16

[162] X. Wang, Y. Ma, Y. Wang, W. Jin, X. Wang, J. Tang, C. Jia, and J. Yu. Traffic
flow prediction via spatial temporal graph neural network. In Proceedings of
The Web Conference 2020, pages 1082–1092, 2020. → page 15

[163] Y. Wang, Y.-Y. Chang, Y. Liu, J. Leskovec, and P. Li. Inductive
representation learning in temporal networks via causal anonymous walks.
In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=KYPz4YsCPj. → pages
15, 37, 38, 39, 40, 61, 62

[164] Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding by
translating on hyperplanes. In Proceedings of the AAAI conference on
artificial intelligence, volume 28, 2014. → page 23

[165] C.-Y. Wee, P.-T. Yap, W. Li, K. Denny, J. N. Browndyke, G. G. Potter, K. A.
Welsh-Bohmer, L. Wang, and D. Shen. Enriched white matter connectivity
networks for accurate identification of mci patients. Neuroimage, 54(3):
1812–1822, 2011. → page 56

91

http://dx.doi.org/10.1145/3308560.3316586
https://doi.org/10.1145/3308560.3316586
http://dx.doi.org/10.1145/3487553.3524717
https://doi.org/10.1145/3487553.3524717
https://openreview.net/forum?id=KYPz4YsCPj

[166] Y. Xie, Z. Ou, L. Chen, Y. Liu, K. Xu, C. Yang, and Z. Zheng. Learning and
updating node embedding on dynamic heterogeneous information network.
In Proceedings of the 14th ACM International Conference on Web Search
and Data Mining, WSDM ’21, page 184–192, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450382977.
doi:10.1145/3437963.3441745. URL
https://doi.org/10.1145/3437963.3441745. → page 16

[167] Z. Xiong, D. Wang, X. Liu, F. Zhong, X. Wan, X. Li, Z. Li, X. Luo, K. Chen,
H. Jiang, et al. Pushing the boundaries of molecular representation for drug
discovery with the graph attention mechanism. Journal of medicinal
chemistry, 63(16):8749–8760, 2019. → page 55

[168] H. Yan, Q. Zhang, D. Mao, Z. Lu, D. Guo, and S. Chen. Anomaly detection
of network streams via dense subgraph discovery. In 2021 International
Conference on Computer Communications and Networks (ICCCN), pages
1–9. IEEE, 2021. → page 14

[169] Y. Yan, S. Zhang, and H. Tong. Bright: A bridging algorithm for network
alignment. In Proceedings of the Web Conference 2021, pages 3907–3917,
2021. → pages 15, 16

[170] C. Yang, Y. Xiao, Y. Zhang, Y. Sun, and J. Han. Heterogeneous network
representation learning: Survey, benchmark, evaluation, and beyond. CoRR,
abs/2004.00216, 2020. URL https://arxiv.org/abs/2004.00216. → page 16

[171] C. Yang, C. Wang, Y. Lu, X. Gong, C. Shi, W. Wang, and X. Zhang.
Few-shot link prediction in dynamic networks. In Proceedings of the
Fifteenth ACM International Conference on Web Search and Data Mining,
pages 1245–1255, 2022. → page 15

[172] M. Yoon, B. Hooi, K. Shin, and C. Faloutsos. Fast and accurate anomaly
detection in dynamic graphs with a two-pronged approach. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 647–657, 2019. → page 14

[173] J. You, R. Ying, and J. Leskovec. Design space for graph neural networks.
In NeurIPS, 2020. → page 25

[174] J. You, T. Du, and J. Leskovec. Roland: Graph learning framework for
dynamic graphs. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, KDD ’22, page 2358–2366, New
York, NY, USA, 2022. Association for Computing Machinery. ISBN

92

http://dx.doi.org/10.1145/3437963.3441745
https://doi.org/10.1145/3437963.3441745
https://arxiv.org/abs/2004.00216

9781450393850. doi:10.1145/3534678.3539300. URL
https://doi.org/10.1145/3534678.3539300. → pages 15, 18, 21

[175] H. Yousaf, G. Kappos, and S. Meiklejohn. Tracing transactions across
cryptocurrency ledgers. In 28th USENIX Security Symposium (USENIX
Security 19), pages 837–850, 2019. → page 3

[176] B. Yu, H. Yin, and Z. Zhu. Spatio-temporal graph convolutional networks: A
deep learning framework for traffic forecasting. In IJCAI, pages 3634–3640,
2018. URL https://doi.org/10.24963/ijcai.2018/505. → page 15

[177] T. Yu, X. Li, Y. Cai, M. Sun, and P. Li. S2-mlp: Spatial-shift mlp
architecture for vision. In Proceedings of the IEEE/CVF winter conference
on applications of computer vision, pages 297–306, 2022. → page 11

[178] W. Yu, C. C. Aggarwal, S. Ma, and H. Wang. On anomalous hotspot
discovery in graph streams. In 2013 IEEE 13th International Conference on
Data Mining, pages 1271–1276. IEEE, 2013. → page 14

[179] W. Yu, C. C. Aggarwal, and W. Wang. Temporally factorized network
modeling for evolutionary network analysis. In Proceedings of the Tenth
ACM International conference on web search and data mining, pages
455–464, 2017. → page 14

[180] W. Yu, W. Cheng, C. C. Aggarwal, K. Zhang, H. Chen, and W. Wang.
Netwalk: A flexible deep embedding approach for anomaly detection in
dynamic networks. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’18, page
2672–2681, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450355520. doi:10.1145/3219819.3220024. URL
https://doi.org/10.1145/3219819.3220024. → pages 1, 2, 14, 27, 28

[181] X. Zhai, W. Zhou, G. Fei, W. Liu, Z. Xu, C. Jiao, C. Lu, and G. Hu. Null
model and community structure in multiplex networks. Scientific reports, 8
(1):1–13, 2018. → page 27

[182] C. Zhang, H. Fu, Q. Hu, X. Cao, Y. Xie, D. Tao, and D. Xu. Generalized
latent multi-view subspace clustering. IEEE transactions on pattern analysis
and machine intelligence, 42(1):86–99, 2018. → pages 15, 16

[183] H. Zhang, L. Qiu, L. Yi, and Y. Song. Scalable multiplex network
embedding. In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18, pages 3082–3088.

93

http://dx.doi.org/10.1145/3534678.3539300
https://doi.org/10.1145/3534678.3539300
https://doi.org/10.24963/ijcai.2018/505
http://dx.doi.org/10.1145/3219819.3220024
https://doi.org/10.1145/3219819.3220024

International Joint Conferences on Artificial Intelligence Organization, 7
2018. doi:10.24963/ijcai.2018/428. URL
https://doi.org/10.24963/ijcai.2018/428. → pages 16, 28

[184] J. Zhang, B. Cao, S. Xie, C.-T. Lu, P. S. Yu, and A. B. Ragin. Identifying
connectivity patterns for brain diseases via multi-side-view guided deep
architectures. In Proceedings of the 2016 SIAM International Conference on
Data Mining, pages 36–44. SIAM, 2016. → page 56

[185] R.-Y. Zhang, X.-X. Wei, and K. Kay. Understanding multivariate brain
activity: Evaluating the effect of voxelwise noise correlations on population
codes in functional magnetic resonance imaging. PLOS Computational
Biology, 16(8):1–29, 08 2020. doi:10.1371/journal.pcbi.1008153. URL
https://doi.org/10.1371/journal.pcbi.1008153. → pages 3, 55, 57, 58, 66

[186] X. Zhang, L. He, K. Chen, Y. Luo, J. Zhou, and F. Wang. Multi-View graph
convolutional network and its applications on neuroimage analysis for
parkinson’s disease. AMIA Annu Symp Proc, 2018:1147–1156, Dec. 2018.
→ pages 55, 57, 58

[187] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li.
T-gcn: A temporal graph convolutional network for traffic prediction. IEEE
Transactions on Intelligent Transportation Systems, 21(9):3848–3858, 2019.
→ page 15

[188] L. Zheng, Z. Li, J. Li, Z. Li, and J. Gao. Addgraph: Anomaly detection in
dynamic graph using attention-based temporal gcn. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI-19, pages 4419–4425. International Joint Conferences on Artificial
Intelligence Organization, 7 2019. doi:10.24963/ijcai.2019/614. URL
https://doi.org/10.24963/ijcai.2019/614. → pages 1, 2, 14, 23, 27, 28, 43, 44

[189] Y. Zheng, M. Jin, Y. Liu, L. Chi, K. T. Phan, and Y.-P. P. Chen. Generative
and contrastive self-supervised learning for graph anomaly detection. IEEE
Transactions on Knowledge and Data Engineering, 2021. → page 14

[190] Y. Zhu, H. Cui, L. He, L. Sun, and C. Yang. Joint embedding of structural
and functional brain networks with graph neural networks for mental illness
diagnosis. In 2022 44th Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC), pages 272–276. IEEE,
2022. → pages 55, 56

94

http://dx.doi.org/10.24963/ijcai.2018/428
https://doi.org/10.24963/ijcai.2018/428
http://dx.doi.org/10.1371/journal.pcbi.1008153
https://doi.org/10.1371/journal.pcbi.1008153
http://dx.doi.org/10.24963/ijcai.2019/614
https://doi.org/10.24963/ijcai.2019/614

[191] Y. Zhu, H. Cui, L. He, L. Sun, and C. Yang. Joint embedding of structural
and functional brain networks with graph neural networks for mental illness
diagnosis, 2022. → pages 12, 55, 57, 58

95

Appendix A

Supporting Materials

A.1 Performance of the Modified Attention on General
Datasets

In Section 4.2.3, we define a complex attention mechanism that can learn the impor-

tance of each view for each node, while in Section 6.4, we design a more scalable

mechanism that considers the importance of a view for other views, independent

of the nodes. We discuss its advantages for brain networks in Section 6.4 and

6.5 but its performance on general multiplex networks remains unexplored. Here,

we explore its performance for general multiplex networks (different domains).

Table A.1 reports the results. ANOMULY and ADMIRE uses the complex attention

mechanism we proposed in Section 4.2.3, while ANOMULY-v2 and ADMIRE-v2

uses the scalable attention mechanism that proposed in Section 6.4. The results show

the superior performance of the complex attention mechanism. As motivated in

Section 6.4, the modified attention mechanism is useful for improving the scalability

in the domain of human brain networks.

96

Table A.1: Performance of the modified attention on general datasets (AUC).

Methods RM DKPol Amazon DBLP Ethereum Ripple

Anomaly % 1% 5 % 1% 5 % 1% 5 % 1% 5 % 1% 5 % 1% 5 %

ANOMULY 0.8783 0.8729 0.8694 0.8610 0.8289 0.8195 0.8825 0.8754 0.8906 0.8852 0.8938 0.8871
ADMIRE 0.9016 0.9125 0.9093 0.8952 0.8097 0.8041 0.8873 0.8824 0.8416 0.8392 0.9160 0.8899
ANOMULY-v2 0.8416 0.8387 0.8502 0.8439 0.7990 0.8021 0.8235 0.7992 0.8421 0.8399 0.8562 0.8286
ADMIRE-v2 0.8912 0.8841 0.8498 0.8515 0.7975 0.7926 0.8129 0.7953 0.8478 0.8257 0.0000 0.0000

97

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Preliminaries and background
	2.1 Terminology
	2.2 Graph Neural Networks
	2.3 GRU Cell
	2.4 Skip-connections
	2.5 MLP-Mixer
	2.6 (Weighted) Optimal Sparse Decision Trees
	2.7 Brain Networks

	3 Related Work
	3.1 Anomaly Detection in Dynamic Networks
	3.2 Dynamic Graph Neural Networks
	3.3 Multiplex Graph Learning
	3.4 Anomaly Detection in Multiplex Networks

	4 AnoMulY: Edge Anomaly Detection Framework in Multiplex Dynamic Networks
	4.1 Introduction
	4.2 ANOMULY: Anomaly Detection in Multiplex Dynamic Networks
	4.2.1 GNN Architecture
	4.2.2 Update Modules
	4.2.3 Attention Mechanism
	4.2.4 view-dependent Embedding
	4.2.5 Anomaly Score Computation
	4.2.6 Training and Loss Function

	4.3 Experiments
	4.3.1 Experimental Setup and Metrics
	4.3.2 Datasets
	4.3.3 Inject Anomalous Edges in Multiplex Networks
	4.3.4 Baselines
	4.3.5 Results

	4.4 Conclusion

	5 ADMire: Inductive and Scalable Anomaly Detection in Multiplex Dynamic Networks
	5.1 Introduction
	5.2 ADMire
	5.2.1 Anonymous Multiplex Temporal Walk
	5.2.2 Neural Encoding
	5.2.3 ADMIRE Framework

	5.3 ADMire++: Explainable Anomaly Detection in Multiplex Dynamic Networks
	5.4 Experiments
	5.4.1 Experimental Setup
	5.4.2 Results
	5.4.3 Ablation Study
	5.4.4 How Well Does ADMire++ Mimic ADMire?
	5.4.5 What Does the Generated Tree Look Like?

	5.5 Conclusion

	6 Anomaly Detection in the Human Brain
	6.1 Introduction
	6.2 Related Work on Machine Learning for Brain Networks
	6.3 Why/How to Model Human Brain as a Multiplex Network
	6.4 Modified Attention Mechanism For Multiplex Brain Networks
	6.5 Experiments
	6.5.1 Experimental Setting Details
	6.5.2 Datasets
	6.5.3 Baselines
	6.5.4 Experimental Setup
	6.5.5 Results
	6.5.6 Results on Real-world Datasets
	6.5.7 ADMire++ Explanations

	7 Conclusions
	Bibliography
	A Supporting Materials
	A.1 Performance of the Modified Attention on General Datasets

