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Abstract

This dissertation consists principally of four of the author’s research articles, included as Chapters 2
through 5, all within or related to the area of symbolic dynamics, especially to shifts of finite type
(SFTs) and sofic shifts. More specifically, each of the articles involves either Gibbs measures or factor
codes, with Chapter 3 involving both in an essential way.

The research in Chapter 2, in the thermodynamic formalism of dynamical systems, shows that two
commonly used definitions of a Gibbs measure coincide for an arbitrary subshift over an arbitrary
countable group, and that two different forms of one of these definitions are equivalent under certain
regularity hypotheses. The main innovation is a more careful decomposition of holonomies of the Gibbs
relation than had previously appeared.

Chapter 3 is concerned with the Dobrushin and Lanford-Ruelle theorems, which relate Gibbs and
equilibrium measures. This chapter establishes these theorems for irreducible sofic shifts, by lifting to
an irreducible SFT and using cyclic structure to reduce to the classical mixing SFT case. The result
was already known, by work of Haydn-Ruelle and Baladi, but the proof presented in this chapter
is more self-contained. In particular, the argument makes extensive use of the properties of doubly
transitive points, and relates them in a novel way to the Gibbs relation studied in Chapter 2.

The work in Chapter 4 resolves two new cases of a problem in automata theory that originated
in symbolic dynamics. The methods combine the notion of stability, introduced by Culik-Karhumaki-
Kari and used by Trahtman in the solution to the road colouring problem, with the framework of
graph homomorphisms introduced by Ashley-Marcus-Tuncel. The chapter also includes several new
algorithms relevant to the problem.

Chapter 5 solves a symbolic dynamics problem related to zero-error coding. The main result, which
generalizes Krieger’s embedding theorem, characterizes the subshifts of a given mixing SFT on which
a given sliding block code is injective. The proof follows the overall strategy of Krieger’s proof, but
with significant technical innovations required to make the embedding compatible with the code.
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Lay Summary

In certain areas of physics and computer science, a system of interest is represented by a large collection
of simple pieces arranged in a line or a grid. Each of the pieces can be in one of a few states, and
each piece is influenced by other pieces, especially the ones nearby. In physics, the classic example
is a magnet, made up of many pieces each pointing north or south, with each piece trying to align
itself with nearby pieces. In computing, the main examples are methods of storing data in patterns
of 0’s and 1’s in a way that is resilient against errors, by only allowing certain patterns. There may
be several ways of writing down models like this for the same system. This thesis investigates several
questions about when one system is essentially the same as another, even though they may be written
down in different-looking ways.
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Preface

Chapter 2. A version of this chapter has been published [15], having previously appeared as an arXiv
preprint [17]. An account of the research based closely on the published version appeared in Borsato’s
dissertation at the University of Sao Paulo, defended in October 2022 and not yet publicly available
as of the date of submission of this dissertation.

We began work on the research that is presented in this chapter after a meeting in the summer
of 2019 in which I raised the question of whether several definitions of a Gibbs measure extant in the
literature were in fact equivalent. I formulated the paper’s new definitions, namely Gibbs measures
with respect to general measurable cocycles, groups with bounded sphere ratios, shell-regular and
volume-regular potentials, and full-dimensional interactions. I devised the proofs of the main results,
building on Borsato’s detailed knowledge of the works of Kimura and Muir. I wrote the majority of
the manuscript, the quality of which Borsato brought to a substantially higher standard by identifying
errors and gaps in my reasoning and presentation while the work was in progress and while we were
preparing the manuscript for submission.

Chapter 3. A version of this chapter appeared as an arXiv preprint [16] but was not submitted for
publication. As with Chapter 2, an account of the research based closely on the preprint appeared in
Borsato’s dissertation at the University of Sao Paulo, defended in October 2022 and not yet publicly
available as of the date of submission of this dissertation. As with Chapter 2, I devised the over-
all structure of the argument and wrote the majority of the manuscript, while Borsato contributed
crucially to the review of the literature and corrected many errors throughout the work and the writing.

Chapter 4. A version of this chapter appeared as an arXiv preprint [51]. A manuscript based closely
on that preprint has been submitted for publication and is in review as of the date of submission of
this dissertation. I carried out the work and the writing with frequent supervisory feedback from Brian
Marcus and Tom Meyerovitch.

Chapter 5. A version of this chapter appeared as an arXiv preprint [50]. A manuscript based closely
on that preprint has been submitted for publication and is in review as of the date of submission of
this dissertation. I carried out the work and the writing with frequent supervisory feedback from Brian
Marcus and Tom Meyerovitch.
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Chapter 1

Introduction

1.1 Symbolic dynamics and entropy

1.1.1 Symbolic dynamics

This dissertation treats several problems in or related to symbolic dynamics. Symbolic dynamics is
a branch of the theory of abstract dynamical systems with a strong computational and combinato-
rial flavour, drawing heavily on automata theory, formal language theory, computability theory, and
information theory as well as on ergodic theory, topological dynamics, and statistical thermodynamics.

Much of the distinctive character of symbolic dynamics (see [49] for a standard introduction) comes
from the fact that, in contrast to other branches of ergodic theory and topological dynamics, which
study a diverse collection of spaces and often a wide array of transformations of any given space (for
instance, the many manifolds on which one can consider smooth flows, or the many automorphisms
of the two-dimensional torus), the dynamical system under consideration in symbolic dynamics is
always a subsystem of one of a small number of systems, i.e. spaces and transformations of them,
with very similar topological and measure-theoretic properties. Once the “ambient” space and the
transformation (or set of transformations) are fixed, one studies the restrictions of the transformation
to various invariant subsystems, which exhibit remarkable variety in their dynamical properties, as
well as maps between these subsystems that commute with the overall transformation.

The ambient system in question is a full shift space. A full shift is the set of all functions from
some fixed countably infinite group or semigroup, often the integers or a higher-dimensional integer
lattice, to a fixed finite (or sometimes, but never in this dissertation, countably infinite) set of symbols,
called the alphabet. There is therefore a full shift for each countable (semi)group and each positive
natural number (the cardinality of the alphabet). The (semi)group acts on this space of functions by
translation (hence the term shift space), with the transformation or set of transformations that define
the system generating the group. In the most classical theory, the alphabet consists of the binary
symbols 0 and 1 and the group is isomorphic to the group of integers, with a single generator, namely
the shift transformation.

When one equips the alphabet with the discrete topology and takes the product topology over
the group, the full shift is a zero-dimensional compact metric space on which the shift map is a
homeomorphism. The aforementioned functions from the group to the alphabet are the points in the
space. Symbolic dynamics studies the dynamical properties of the restrictions of the shift map to
the closed, shift-invariant subspaces of the full shift, known as subshifts, and the continuous, shift-
commuting (i.e. equivariant) maps between these systems. Any subshift is characterized by the set
of finite patterns of symbols that appear in its points; in particular, a one-dimensional subshift (i.e.
a subshift over the integers) is characterized by the language consisting of the finite words it allows.
This is the key idea of symbolic dynamics: a subshift is a topological dynamical system defined by
constraints on finite configurations of symbols.
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1.1.2 Entropy

Many of the stationary finite-valued stochastic processes or random fields studied in statistical physics
and information theory can be understood as shift-invariant Borel probability measures on subshifts,
which leads to fruitful interactions of these areas with symbolic dynamics via the application of ergodic
theory, the study of measure-preserving transformations in general.

In particular, a central concept in symbolic dynamics, imported from ergodic theory, is that of
entropy, which refers to several different, closely related quantities. The (topological) entropy of a
subshift is the asymptotic exponential growth rate of the number of finite patterns appearing in points
in the subshift, with respect to the size of the patterns. Although elementary, this definition does not
explain the significance of entropy in the subject. We need some history in order to convey the context
and meaning of the present dissertation to a reader not trained in ergodic theory.

The definition of the entropy of a measure-preserving system was introduced in its modern general-
ity by Kolmogorov [46], who introduced it in order to resolve isomorphism problems in ergodic theory.
In particular, he and Sinai [71] showed that entropy is an invariant of measure-theoretic isomorphism
and was able to distinguish systems which were not previously known to be non-isomorphic, the best-
known pair being the uniform Bernoulli processes on the full 2- and 3-shifts. Previously, the main
invariants known had been qualitative, such as ergodicity and other mixing properties, and spectral,
referring to the spectrum of the Koopman operator, which translates functions along orbits. The main
result on spectral invariants was due to von Neumann, who was motivated to work on the isomorphism
problem because he considered the essential properties of a physical system with an invariant measure
to be those that were preserved by measure-theoretic isomorphism [60].

When Kolmogorov introduced entropy into ergodic theory, he was drawing on the work of Shannon,
who had defined entropy in the special case of finite Markov chains and shown that it was the essential
quantity for determining whether a given communication channel could transmit a given Markov
source of messages with acceptably low probability of error [69]. Shannon had observed that entropy, as
defined and used in statistical physics by Boltzmann, Gibbs, and later von Neumann, is a generalization
of a quantity introduced to information theory by Hartley [35] to calculate, among other things, the
relationships between the redundancy of the code used for a telegraph and the electrical properties of
the telegraph lines required for a receiver to reliably decode the sender’s messages.

In these thermodynamic and information-theoretic contexts for entropy, although the probability
measures involved can often be formulated as measures on subshifts, the dynamical and topological
aspects are secondary. However, Kolmogorov also introduced another notion of entropy, namely a kind
of covering number for a metric space–specifically, the ε-entropy of a metric space is the logarithm
of the largest number of points that can be packed into the space such that any two are at distance
at least ε from each other [47]. A point in the space can be approximated to within a distance of
ε/2 by the nearest of these points, which is in a precise sense analogous both to the decoding of
continuously varying voltages over an analog channel back into symbols, and to the approximation
of the continuously varying thermodynamic variables in a small region of a system by a finite set
of possible values. Moreover, by considering a continuous transformation of a metric space (i.e. a
topological dynamical system), one can ask more generally about the largest number of points such
that after n iterations of the transformation, any two of the points have been separated by a distance
of at least ε at least once in their orbits. This number grows exponentially in n, and the limit, as ε
tends to 0, of its asymptotic exponential growth rate is the topological entropy of the system [76].

The concept of topological entropy allows us, both by analogy and by the essential theorems relating
it to measure-theoretic entropy, to ask information-theoretic and thermodynamic questions about
dynamical systems with no obvious connection to telecommunications or thermodynamics. Both the
information-theoretic and the statistical thermodynamic influences on symbolic dynamics are present
in this dissertation, with the thermodynamics emphasized in Chapters 2 and 3 and the information
theory in Chapter 5, as we now elaborate. In what follows, see the respective chapters for precise
definition and statements.
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1.2 Chapter 2

This chapter is concerned with two notions of a Gibbs measure on a subshift over a countable group.
The first of these is defined by the Dobrushin-Lanford-Ruelle (DLR) equations, or equivalently a
Gibbsian specification. This notion of a Gibbs measure appears for instance in the classical theorems
of Dobrushin [28] and Lanford-Ruelle [38]. The second is the notion of a conformal measure, introduced
in [63] and [27] and used for instance by Meyerovitch in [56] as the setting for a stronger Lanford-Ruelle
theorem. There are other definitions in the literature, such as a Gibbs measure in the sense of Bowen,
but we do not consider these here.

The purpose of this chapter is to show that the two notions of Gibbs measure recalled above
coincide in some generality. Our results build on those of Kimura, obtained in his Master thesis [44],
who proves two results relevant here. The first is that every conformal measure, with respect to an
appropriately regular potential, satisfies the DLR equations for that potential. The second is a partial
converse, namely that every measure satisfying the DLR equations for such a potential is a topological
Gibbs measure (see e.g [44], Definition 5.14). This is a weaker property than being conformal, although
equivalent on certain subshifts, such as shifts of finite type (SFTs) [56]. Sarig ([68], Proposition 2.1)
shows that the two notions of Gibbsianness are equivalent in the case of a one-sided topological Markov
shift, using martingale and Ruelle transfer operator methods (note that he uses the word “conformal”
for a notion that is related to but different from the one we consider). Cioletti-Lopes-Stadlbauer
([24]) prove the equivalence of the DLR and conformal notions of Gibbs measure for one-sided, one-
dimensional shifts with a compact metric alphabet and a continuous potential. Muir [58] also obtains
the full equivalence for the full shift on Zd over a countable alphabet.

Our main result in this chapter, Theorem 2.3.4, strengthens one of Kimura’s results in a more
general setting. Specifically, we show that any measure satisfying certain equations with respect to a
measurable cocycle on the Gibbs relation must also be conformal with respect to that cocycle. When
the cocycle is induced either by an interaction or by a potential in the standard way, these equations
reduce to the classical DLR equations. We prove this result for arbitrary subshifts with finite alphabet
on an arbitrary countable group. The results of Kimura and Sarig in the forward direction (conformal
implies DLR) can also be generalized to our setting; in §2.3, we mention the idea for the proof but
refer readers to [44] for the details in Kimura’s setting, as the proof strategy changes very little.

1.3 Chapter 3

The Dobrushin theorem establishes sufficient conditions on shift spaces X and potentials f ∈ C(X)
such that every Gibbs measure for f is an equilibrium measure for f . This theorem holds in any
shift space, not necessarily of finite type, with a certain mixing condition known in the literature as
condition (D) [66]. This condition is implied, for instance, by strong irreducibility, and in this paper
we only use the strongly irreducible case of the classical theorem.

The classical converse to the Dobrushin theorem is known as the Lanford-Ruelle theorem. To
our knowledge, the most general natural hypothesis known for the Lanford-Ruelle theorem is the
topological Markov property [9], which is satisfied in particular by SFTs. Examples are also known,
however, of shift spaces which lack the topological Markov property, but for which the conclusion of the
Lanford-Ruelle theorem nevertheless holds, at various levels of generality [56]. It is therefore desirable
to extend the Lanford-Ruelle theorem beyond the class of shifts with the topological Markov property,
in the hope of explaining such examples.

In this chapter, we do not treat the examples in [56], but we do prove a Lanford-Ruelle theorem for
irreducible sofic shifts in one dimension (Theorem 3.4.7), which generally lack the topological Markov
property. This is related to a question of Kitchens-Tuncel ([45], Remark 7.10(iii)). The proof relies on a
preservation of Gibbsianness result for almost invertible factor codes on irreducible SFTs (Proposition
3.3.7), which we generalize to finite-to-one factor codes in Corollary 3.4.10. We prove Theorem 3.4.7 by
lifting an equilibrium measure on a sofic shift to an equilibrium measure on a covering SFT, which is

3



Gibbs by the classical Lanford-Ruelle theorem, then concluding by Proposition 3.3.7 that the original
equilibrium measure is Gibbs. Irreducibility of the sofic shift is essential: the Lanford-Ruelle theorem
holds for SFTs with no irreducibility assumption, but it is false in general for reducible sofic shifts.
The simplest counterexample is the sunny-side-up shift (the set of sequences in {0, 1}Z with at most a
single 1) with its unique shift-invariant measure.

We also extend the Dobrushin theorem to irreducible sofic shifts (Theorem 3.4.11), which generally
lack the mixing properties hypothesized in the classical version. Here, our approach is based on the
cyclic structure of an irreducible SFT, combined with our other results.

After posting a version of this chapter on the arXiv, we became aware of the work of Viviane
Baladi [8], which obtains the same Dobrushin-Lanford-Ruelle result for Hölder potentials on finitely
presented systems, of which irreducible sofic shifts are a particular case. We also became aware of the
work of Haydn-Ruelle [36], which does the same for expansive homeomorphisms with specification, of
which mixing sofic shifts are a particular case. We hope that the self-contained symbolic approach of
this paper, which leverages the classical Dobrushin and Lanford-Ruelle theorems essentially as black
boxes, may be accessible to a wider audience and may draw attention to the earlier work by Baladi
and Haydn-Ruelle.

1.4 Chapter 4

1.4.1 Background: from toral automorphisms to finite automata

In this chapter, we are concerned with a generalization of the road (colouring) problem. That problem,
posed by Adler-Goodwyn-Weiss in [2] and solved by Trahtman in [74], asked whether every strongly
connected, aperiodic directed graph of constant out-degree is the underlying graph of a synchronizing
deterministic finite automaton (DFA). A finite automaton is a very simple model of a computer,
consisting of a directed graph with edges labeled with symbols from a finite alphabet. When there
is a distinguished initial state (vertex) and a distinguished set of accepting states, one considers the
question of which words over the alphabet label a route from the initial state to one of the accepting
states. More generally, one can ask about the mappings induced on the set of states by various words.
An automaton, or graph labeling, is synchronizing if for some word it routes all states to a common
state–that is, if the image of the mapping induced by some word is a singleton. Trahtman’s road
colouring theorem (Theorem 4.4.1 below) gives an affirmative answer to the road problem, showing
that every graph with the aforementioned properties indeed admits a synchronizing colouring, and [21,
10] give a generalization to periodic graphs (Theorem 4.4.2).

The motivation for the road problem comes from ergodic theory. Specifically, a weak form of
the road colouring theorem was used to prove the main theorem of [2], which gives a criterion for
measure-theoretic isomorphism of certain Markov chains. This was the first time the road problem
was explicitly posed, although the real origin of the problem is the earlier paper [3], which concerns
the analogous isomorphism problem for hyperbolic automorphisms of the two-dimensional torus.

This chapter concerns a generalization of the road problem motivated by graph-theoretic invariants
for a different, but related, isomorphism relation in ergodic theory. Specifically, Ashley-Marcus-Tuncel
[6] identified a graph-theoretic criterion for isomorphism of one-sided stationary Markov chains, implicit
in [19], and gave a complete, effectively computable set of isomorphism invariants. They observed that
a certain conjectural uniqueness result (the O(G) conjecture, below in §4.3.1) would, if proven, simplify
the set of invariants, and proved the conjecture in a family of special cases. The conjecture reduces to
a generalization of the road problem involving certain right-resolving graph homomorphisms (which
we call right-resolvers; see §4.2.1). For graphs of constant out-degree, these homomorphisms coincide
with road colourings.
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1.4.2 Main ideas and contributions

The main purpose of this chapter is to present new results toward the O(G) conjecture. There are two
main ideas in the paper. The first idea concerns the stability relation of a right-resolver, which was
introduced in [37] for DFAs or road colourings. For context, Kari [39] solved the road problem in the
Eulerian case by finding, for a given graph, a road colouring with nontrivial (i.e. not merely diagonal)
stability relation, then recursively finding a synchronizing road colouring of the strictly smaller quotient
graph (in which the states are stability classes), and lifting it to the original graph. Trahtman’s solution
of the full road problem uses the same inductive strategy, paired with a more sophisticated technique
for obtaining a colouring with a nontrivial stability relation.

By determining how the stability relation behaves with respect to composition of right-resolvers,
we are able to study the aforementioned recursive lifting constructions more systematically, allowing
us to apply them toward the O(G) conjecture. In particular, we adapt Trahtman’s proof of the road
colouring theorem to cover a larger family of cases (Theorem 4.4.3), in which the out-degrees of states
are allowed to vary cyclically. To do so, we generalize, to the setting of right-resolvers, a sufficient
condition for a road colouring to have a nontrivial stable pair, based on the idea of a function graph
with a unique tallest tree. This condition is at the heart of all proofs of the road colouring theorem to
date, and its importance has motivated detailed analysis [12].

The second main idea in this chapter is a graph property that we call bunchiness, along with a
weaker property called almost bunchiness. Bunchy and almost bunchy graphs are characterized by
the property that the right-resolvers they admit are unique up to automorphisms in a certain sense
(Proposition 4.5.4). We highlight the implicit role of bunchiness both in [6] and in the road colouring
literature, and prove the O(G) conjecture for bunchy and almost bunchy graphs (Theorem 4.5.6).
Furthermore, we show that the fiber product of right-resolving homomorphisms satisfies a universal
property (Theorem 4.5.12) that further highlights the essential role of bunchy graphs.

Motivated by these results, we introduce a new conjecture, which we call the bunchy factor con-
jecture (see §4.6), asserting essentially that the O(G) conjecture can be proved using the stability
approach that Trahtman used to prove the road colouring theorem, with bunchy graphs as the base
of the recursion. Another way of articulating this conjecture is that the barrier to proving the O(G)
conjecture is our lack of a sufficiently general method of producing homomorphisms with nontrivial
stability relation. The fact that the bunchy factor conjecture implies the O(G) conjecture is made
explicit in Proposition 4.6.2, which relies primarily on Proposition 4.5.15, a uniqueness result that uses
the universal property of the fiber product in an essential way.

1.5 Chapter 5

As mentioned above, Shannon introduced a model of a noisy communication channel [69], in which the
input and output are modeled by stationary probability measures on a space of sequences of symbols.
Shannon gave conditions under which the input can be recovered from the output, at least with an
acceptable rate of error or ambiguity, in the case of a Bernoulli source, and this work has since been
extended to more general sources [43].

This chapter is motivated by the particular question of when one can ensure zero error, not just
almost surely as in information theory but in fact deterministically. A deterministic channel can be
modeled by a sliding block code, i.e. a continuous, shift-commuting map on a subshift, on which a
stationary process could be supported. In this model, we can use symbolic dynamics to investigate
the effects of deterministic noise [54], also called distortion [69], which we can interpret as a failure of
injectivity of the sliding block code representing the channel, even in the absence of random errors.

The main result of this chapter, Theorem 5.1.1, determines the extent to which the non-injectivity
of a sliding block code on a mixing SFT can be avoided by restricting to a subshift of the domain.
Interpreting the sliding block code as a channel with deterministic noise, Theorem 5.1.1 characterizes
the sources with entropy strictly lower than that of the output which can be transmitted without error
or ambiguity. That is, let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y a factor code.
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Let Z be a subshift. For there to exist an embedding ψ : Z → X such that π ◦ ψ is injective, the
entropy of Z must be at most that of Y (with equality possible only if Z is conjugate to Y ), and Z
must have few enough periodic points that π ◦ ψ can be injective at least on the periodic points in Z.
The content of Theorem 5.1.1 is that these two sufficient conditions are enough.

In that spirit, Theorem 5.1.1 is a generalization of a theorem of Krieger (Theorem 2 in [48], quoted
as Theorem 5.1.2 in this dissertation), which shows that two necessary conditions for the existence of
an embedding of a subshift Z into a mixing SFT X are also sufficient. These conditions are that the
entropy of Z must be at most that of X, with equality possible if and only if Z and X are conjugate,
and that there must a shift-commuting injection at least from the periodic points of Z to those of X.
Krieger’s theorem is false if X is taken to be merely mixing sofic; indeed, the embedding problem for
mixing sofic shifts remains open, and seems to be delicate [73].

Because the asymptotic exponential growth rate, with respect to least period, of the number of
periodic points in a mixing sofic shift is equal to the entropy of the shift, the periodic point condition,
in both Krieger’s theorem and Theorem 5.1.1, presents only a finite number of possible obstructions,
coming from low-order periodic points in the source shift Z. In the proof of Theorem 5.1.1, which is
closely modeled on the proof of Krieger’s theorem as presented in [49], points in Z are broken into
blocks of moderate length and long blocks coming from lower-order periodic points. The entropy
and periodic point conditions are used to construct injections on the moderate and long segments
respectively, first to blocks in Y and then to blocks in X. The moderate and long blocks are then
stitched together using blocks which we call “stamps”, in such a way that the locations of the original
blocks in Z can be unambiguously identified once the factor code π has been applied. Much of the
chapter is concerned with establishing the existence of properties of these stamps.
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Chapter 2

Conformal measures and the Dobrushin-Lanford-Ruelle
equations

2.1 Introduction

The plan is as follows. In §2.2, we review the definitions and basic facts required to prove our main result
in §2.3. In §2.4 and §2.5, we recall well-known material on interactions and potentials, respectively, in
order to show that the equations involved in our main theorem do in fact reduce to the classical DLR
equations. In §2.6, we recall results of Muir and Kimura, elaborating on Ruelle, by which a potential
can be constructed from a sufficiently regular interaction, and vice versa, with “physical” data (Gibbs
and equilibrium measures) preserved.

In §2.5 and §2.6, we require that the underlying group admits a finite generating set that yields
a certain spherical growth condition, defined in §2.5. This condition is satisfied, for any generating
set, by any group of polynomial growth of nilpotency class at most 2, such as Zd, the case of greatest
physical interest. It is also satisfied by any free group Fn, with the usual generating set of cardinality
n, and, conditional on a folklore conjecture, is satisfied by any nilpotent group.

2.2 Cocycles and the Gibbs relation

Throughout, let G be a countable group with identity e. Let A be a finite alphabet equipped with the
discrete topology, and X ⊆ AG a subshift, i.e., a closed set in the product topology, invariant under
the shift action of G via (g · x)h = xg−1h. The topology on X is generated by cylinders, i.e., sets of
the form [ω] = {x |xΛ = ω} for finite sets Λ ⋐ G. We use the notation Λ ⋐ G to indicate that Λ is a
finite subset of G. This topology can be induced by a metric such that the resulting metric space is
complete and separable; that is, AG is a Polish space. We equip X with the Borel σ-algebra F . For
a set A ⊆ G, we write FA for the sub-σ-algebra of F determined by A—that is, for any E ∈ FA and
any x, x′ ∈ X, if x ∈ E and xA = x′A, then x

′ ∈ E.
The Gibbs relation, also called the asymptotic relation, is the equivalence relation TX ⊂ X×X such

that (x, y) ∈ TX if and only if xΛc = yΛc for some finite set Λ ⋐ G. Let (ΛN )∞N=1 be a sequence of finite
sets exhausting G, i.e., (ΛN )∞N=1 is an increasing sequence and G = ∪+∞

N=1ΛN . Define the subrelation
TX,N = {(x, y) : xΛc

N
= yΛc

N
} ⊆ TX . Observe that, for each subrelation TX,N , each equivalence class

is a finite set, and that TX = ∪∞
N=0TX,N . (In the language of Borel equivalence relations, this means

that TX is hyperfinite [41], which we mention for context, although we do not use any theorems about
hyperfiniteness in this paper.) In particular, every equivalence class in TX is at most countable. Note
that we can write each subrelation as TX,N = ∩∞

n=N ∪ω∈AΛn\ΛN [ω]× [ω], which shows that TX,N is a
measurable subset of X ×X in the product σ-algebra F ⊗ F , as is TX .

For Borel sets A,B ⊆ X, a holonomy of TX is a Borel isomorphism ψ : A → B such that
(x, ψ(x)) ∈ TX for all x ∈ A. We say that a holonomy ψ is global if A = B = X. The definitions for
TX,N are analogous, with a holonomy of TX,N also a holonomy of TX , for every N .
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For a Borel set A ⊆ X, we denote TX(A) =
⋃
x∈A{y ∈ X|(x, y) ∈ TX}, and the same for the

subrelations. The saturations TX(A) and TX,N (A) are easily shown to be Borel using the fact that
the diagonal in X ×X is measurable in the product σ-algebra, which follows as an easy exercise from
the fact that X is Polish.

Lemma 2.2.1. There exists a countable group Γ of global holonomies of X such that

TX = {(x, γ(x)) : x ∈ X, γ ∈ Γ}.

In other words, Γ generates TX .

Proof. The group Γ can be described explicitly as a countable increasing union of finite groups ΓN . For
each N , the group ΓN generates TX,N and is isomorphic to the symmetric group of order |AΛN |. Take
ΓN to be generated by holonomies ψ of the following form: given ω, η ∈ AΛN , define ψω,η : X → X by

ψω,η(x) =


ηxΛc

N
xΛN

= ω, ηxΛc
N
∈ X

ωxΛc
N

xΛN
= η, ωxΛc

N
∈ X

x otherwise

That is, ψω,η exchanges ω and η, wherever possible, and otherwise does nothing. These involutions
were considered in [56] and [44], for slightly different purposes.

Observe that (x, y) ∈ TX,N if and only if there exists ψ ∈ ΓN with ψ(x) = y, so TX,N is precisely
the orbit relation of ΓN . The result for Γ is immediate.

Remark 2.2.2. We mention for context that Lemma 2.2.1 is a special case of the main theorem of
[30], which in fact asserts the same for any Borel equivalence relation on a Polish space in which
every equivalence class is countable. This result was adapted to the symbolic setting in [56], with the
countability of the equivalence classes established via the expansivity of the shift action. The proof
is presented for subshifts over Zd, but the same proof goes through for arbitrary countable groups
without modification. However, since we establish Lemma 2.2.1 directly, we do not need to appeal to
the theorem of [30] (nor the symbolic corollary in [56]).

We say that a measure µ on X (by which we always mean a Borel probability measure) is TX -
nonsingular if for every Borel A ⊂ X with µ(A) = 0, we have µ(TX(A)) = 0. Note that if µ is
TX -nonsingular and ψ : A → B is a holonomy of TX , then whenever E ⊂ A has µ(E) = 0, we have

µ(ψ(E)) ≤ µ(TX(E)) = 0. In particular, the Radon-Nikodym derivative d(µ◦ψ)
dµ is well-defined. The

same holds with TX replaced by TX,N .
A (real-valued) cocycle on TX is a Borel measurable function ϕ : TX → R such that ϕ(x, y) +

ϕ(y, z) = ϕ(x, z) for all x, y, z ∈ X with (x, y), (y, z) ∈ TX (so that (x, z) ∈ TX as well). Any cocycle
on TX clearly restricts to a cocycle on TX,N , for any given N . Given a TX -nonsingular measure µ on
X, we say that a Borel function D : TX → R is a Radon-Nikodym cocycle on TX with respect to µ if

the pushforward of µ by any holonomy ψ : A → B of TX satisfies d(µ◦ψ)
dµ (x) = D(x, ψ(x)) for µ-a.e.

x ∈ A. It is routine to show, using Lemma 2.2.1, that any TX -nonsingular measure µ on X has a
µ-a.e. unique Radon-Nikodym cocycle.

Definition 2.2.1 (conformal measure). Let µ be a TX -nonsingular Borel probability measure on X,
and let ϕ : TX → R be a cocycle. We say that µ is (ϕ,TX)-conformal if for any holonomy ψ : A→ B
of TX , with A and B Borel sets, we have

µ(B) =

∫
A

exp(ϕ(x, ψ(x))) dµ(x)

Note that this is equivalent to the condition that

Dµ,TX
(x, ψ(x)) = exp(ϕ(x, ψ(x)))

for µ-a.e. x ∈ A. Note also that a TX -nonsingular measure is conformal precisely with respect to the
logarithm of its Radon-Nikodym cocycle.
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Remark 2.2.3. The name “conformal measure” was given to a related kind of measure in [27] with
respect to a N-action. It can be shown that these are precisely those measures which are conformal in
the present sense and are non-singular with respect to the N-action. Note that [27] uses a multiplicative
rather than an additive cocycle, and since Denker-Urbanski use only a single transformation, their
cocycle is a function of one variable rather than of two. The name “conformal” was motivated, in [27],
by analogy with Patterson’s study [62] of measures on the limit sets of Fuchsian groups of conformal
mappings of the unit disc in the complex plane.

Conformal measures in our sense were introduced in [22], where they were simply called Gibbs
measures. For links between similar notions on one- and two-sided shifts in one dimension, see [11].

Definition 2.2.2 (DLR equations for a cocycle). Let X ⊆ AG be a subshift, ϕ a cocycle on TX , and
µ a measure on X. For a Borel set A ⊆ X and a finite set Λ ⋐ G, the DLR equation for x ∈ X is as
follows:

µ(A | FΛc)(x) =
∑
η∈AΛ

 ∑
ζ∈AΛ

exp(ϕ(ηxΛc , ζxΛc))1X(ζxΛc)

−1

1A(ηxΛc) (2.1)

We say that µ is DLR with respect to ϕ if, for any Borel A ⊆ X and any Λ ⋐ G, (2.1) holds for µ-a.e.
x ∈ X.

2.3 Equivalence of the conformal and DLR properties

For us, the main value of Lemma 2.2.1 is the following lemma, which reveals in particular that to show
that a given measure is conformal (such as in Theorem 2.3.4), it is sufficient to consider only global
holonomies.

Lemma 2.3.1. Let µ be a Borel probability measure on X, let ϕ be a cocycle on TX , and let Γ be
a countable group generating TX . Then µ is (ϕ,TX)-conformal if and only if, for each γ ∈ Γ, the

pushforward µ ◦ γ is absolutely continuous with respect to µ, with d(µ◦γ)
dµ (x) = exp(ϕ(x, γ(x))) for

µ-a.e. x ∈ X.

Proof. The “only if” direction is immediate from the definition of conformal measure. To confirm the
“if” direction, we first check nonsingularity. Let A ⊂ X be Borel with µ(A) = 0. Then TX(A) =⋃
γ∈Γ γ(A), which is a countable union and thus has measure zero by the explicit expression for d(µ◦γ)

dµ .

Now let ψ : A → B be a holonomy of TX and let E ⊆ A be Borel. Let Γ = (γn)n∈N be an
enumeration of Γ. For each n ∈ N, let En = {x ∈ E : ψ(x) = γn(x)}. To see that each En is Borel,
define the map τn : X → X ×X by τn(x) = (ψ(x), γn(x)), which is clearly measurable in the product
σ-algebra. Then En = τ−1

n (D) where D ⊂ X ×X is the diagonal, which, as discussed above, is also
Borel in the product σ-algebra, because X is Polish.

Now let E′
0 = E0, and for n ≥ 1, let E′

n = En \ ∪n−1
k=0Ek. The Borel sets E′

n partition E, so

µ(ψ(E)) =

∞∑
n=0

µ(γn(E
′
n)) =

∫
E

exp(ϕ(x, ψ(x))) dµ(x)

Thus d(µ◦ψ)
dµ (x) = exp(ϕ(x, ψ(x)) for µ-a.e. x ∈ A, as required.

We will use Lemma 2.3.1 in concert with the following lemma, which reduces the question of
(ϕ,TX)-conformality to that of conformality with respect to the finite-order subrelations.

Lemma 2.3.2. Let µ be a measure on X and ϕ a cocycle on TX . Suppose that µ is (ϕ,TX,N )-conformal
for each N ≥ 0. Then, µ is (ϕ,TX)-conformal.

9



Proof. By Lemma 2.3.1, it is enough to consider only global holonomies. Let ψ : X → X be a global
holonomy of the Gibbs relation TX and let A ⊆ X be a Borel set. We begin by writing A as the
increasing union A = ∪∞

N=0AN , where AN = {x ∈ A : (x, ψ(x)) ∈ TX,N}. Since ψ|AN
is a holonomy

of TX,N and µ is (ϕ,TX,N )-conformal, we have

µ(ψ(A)) = lim
N→∞

µ(ψ(AN ))

= lim
N→∞

∫
AN

exp(ϕ(x, ψ(x))) dµ(x)

=

∫
A

exp(ϕ(x, ψ(x))) dµ(x),

by monotone convergence. Thus, µ is indeed (ϕ,TX)-conformal by Lemma 2.3.1.

To echo the comment above on hyperfiniteness, we remark here that both of these results apply,
with the same proofs, to any hyperfinite Borel equivalence relation on any Polish space. The following
lemma, by contrast, seems to rely more specifically on the structure of X as a subshift.

Lemma 2.3.3. Let X ⊆ AG be a subshift, let ϕ be a cocycle on X, and let µ be a DLR measure on
X with respect to ϕ. Let N ≥ 1. Then µ is (ϕ,TX,N )-conformal.

Proof. It is enough to show that µ(ψ([ω])) =
∫
[ω]

exp(ϕ(x, ψ(x))) dµ(x) for any cylinder [ω] and (by

Lemma 2.3.1) any global holonomy ψ of TX,N . Fix a holonomy ψ : X → X of TX,N . Since the
equivalence classes of TX,N are finite, and in fact have bounded cardinality, there exists some r ≥ 0
such that ψr(x) = x, for all x ∈ X. Let m ≥ N and fix ω ∈ AΛm . We now partition X according to
the orbits of points under ψ, in such a way that [ω] is partitioned into sets that are easy to control.
Specifically, for each η = (η0, . . . , ηr−1) ∈ (AΛm)r, let

Tη = {x ∈ X : ψj(x)Λm
= ηj , 0 ≤ j ≤ r − 1}

Note that Tη can be empty. We have [ω] = ⊔η:η0=ωTη, and ψ(Tη) = Tση, where ση = (η1, . . . , ηr−1, η0)
is a cyclic permutation of η. It is enough to show that, for all η ∈ (AΛm)r, we have

µ(ψ(Tη)) =

∫
Tη

exp (ϕ(x, ψ(x))) dµ(x).

By the equality ψ(Tη) = Tση, we have

µ(ψ(Tη)) =

∫
X

µ(Tση | FΛc
m
) dµ(x)

For any x ∈ X, we know that
1Tση

(η1xΛc
m
) = 1Tη

(η0xΛc
m
)

By this identity, as well as the DLR hypothesis and the defining property of a cocycle, we have the
following manipulations:

µ(Tση | FΛc
m
)(x) =

 ∑
ζ∈AΛm

exp(ϕ(η1xΛc
m
, ζxΛc

m
))1X(ζxΛc

m
)

−1

1Tση
(η1xΛc

m
)

=

 ∑
ζ∈AΛm

exp(ϕ(η0xΛc
m
, ζxΛc

m
))1X(ζxΛc

m
)

−1

× 1Tη
(η0xΛc

m
) exp(ϕ(η0xΛc

m
, η1xΛc

m
))

= µ(Tη | FΛc
m
)(x) exp(ϕ(η0xΛc

m
, η1xΛc

m
))

Integrating this equation yields the result.
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We have therefore done all the work required to prove the following:

Theorem 2.3.4. Let X ⊆ AG be a subshift, ϕ a cocycle on X, and µ a DLR measure on X with
respect to ϕ. Then µ is (ϕ,TX)-conformal.

Proof. By Lemma 2.3.3, µ is (ϕ,TX,N )-conformal for each N . The result is then immediate from
Lemma 2.3.2.

Theorem 2.3.4 was proven by Kimura ([44], Theorem 5.30) in the special case that G = Zd, X is
a shift of finite type, and the cocycle ϕ is induced by a potential, in the manner that we discuss in
Proposition 2.5.3 below. Furthermore, Kimura proved the following converse ([44], Corollary 5.33),
again in the case of G = Zd and ϕ induced by a potential, but with no finite type assumption on X.

Theorem 2.3.5. Let X ⊆ AG be a subshift, ϕ a cocycle on X, and µ a (ϕ,TX)-conformal measure
on X. Then µ is DLR with respect to ϕ.

The proof of Theorem 2.3.5 is a straightforward adaptation of the methods that Kimura used for
the case that he treated. The rough idea is to show that two cylinder sets have conditional measures
with the appropriate ratio by considering the holonomy that exchanges them, as in the proof of Lemma
2.2.1 above, then applying the conformal hypothesis. The main difference required to adapt the proof
is that the version stated here concerns the DLR equations for an arbitrary measurable cocycle, not
necessarily one induced by a potential.

2.4 Interactions

In this section, we show that, when a cocycle is induced by an interaction, the DLR equations for the
cocycle reduce to those for the interaction.

Definition 2.4.1 (interaction). An interaction is a family Φ = (ΦΛ)Λ⋐G of functions ΦΛ : X → R
such that for each Λ ⋐ G, ΦΛ is FΛ-measurable, and for all Λ ⋐ G, x ∈ X, the Hamiltonian series

HΦ
Λ (x) =

∑
∆⋐G

∆∩Λ̸=∅

Φ∆(x)

converges in the sense that there exists a real number HΦ
Λ (x) and, for every ε > 0, there exists some

F ⋐ G such that, for all F ′ ⊇ F , ∣∣∣∣∣∣∣∣H
Φ
Λ (x)−

∑
∆⊆F ′

∆∩Λ̸=∅

Φ∆(x)

∣∣∣∣∣∣∣∣ < ε

Proposition 2.4.1. Let Φ be an interaction. For each (x, y) ∈ TX , the series∑
Λ⋐G

[ΦΛ(x)− ΦΛ(y)]

converges in the same sense as the Hamiltonian series. Moreover, the function ϕΦ : TX → R defined
by

ϕΦ(x, y) =
∑
Λ⋐G

[ΦΛ(x)− ΦΛ(y)]

is a cocycle on TX .
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Proof. Let (x, y) ∈ TX be such that x∆c = y∆c . We claim that∑
Λ⋐G

[ΦΛ(x)− ΦΛ(y)] = HΦ
∆(x)−HΦ

∆(y)

with the equality understood in the sense of convergence discussed in the statement of the proposition.
Indeed, choose ε > 0. By the definition of an interaction, there exists some F ⋐ G sufficiently large
that whenever F ⊆ F ′ ⋐ G, we have (noting that ΦE(x)− ΦE(y) = 0 when E ∩∆ = ∅),∣∣∣∣∣∣[HΦ

∆(x)−HΦ
∆(y)]−

∑
E⊆F ′

[ΦE(x)− ΦE(y)]

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣H
Φ
∆(x)−

∑
E⊆F ′

E∩∆ ̸=∅

ΦE(x)

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣H

Φ
∆(y)−

∑
E⊆F ′

E∩∆ ̸=∅

ΦE(y)

∣∣∣∣∣∣∣∣
<ε

This establishes that the series converges, in the sense claimed, to a real number ϕΦ(x, y) = HΦ
∆(x)−

HΦ
∆(y). Moreover, this energy difference expression makes it obvious that ϕΦ is a cocycle, concluding

the proof.

We now observe that the DLR equations for the cocycle ϕΦ, in the sense of Definition 2.1, are
equivalent to the classical DLR equations for the interaction Φ. Indeed, if µ is a DLR measure with
respect to ϕΦ, then for any Λ ⋐ G, any Borel A ⊆ X, and µ-a.e. x ∈ X, we have

µ(A | FΛc)(x) =
∑
ζ∈AΛ

 ∑
η∈AΛ

exp(ϕΦ(ζxΛc , ηxΛc))1X(ζxΛc)

−1

1A(ζxΛc)

=
∑
ζ∈AΛ

 ∑
η∈AΛ

exp
(
HΦ

Λ (ζxΛc)−HΦ
Λ (ηxΛc)

)
1X(ηxΛc)

−1

1A(ζxΛc)

=
1

ZΦ
Λ (x)

∑
ζ∈AΛ

exp
(
−HΦ

Λ (ζxΛc)
)
1A(ζxΛc)

where
ZΦ
Λ (x) =

∑
η∈AΛ

exp
(
−HΦ

Λ (ηxΛc)
)
1X(ηxΛc)

By Theorem 2.3.4, if µ satisfies these (classical) DLR equations for Φ, then µ is (ϕΦ,TX)-conformal.

2.5 Potentials

In this section and the next, we restrict to finitely generated groups G satisfying a certain growth
condition. We need this condition in order to construct a cocycle from a potential in a way that is
compatible with interactions, in a sense to be made precise in §2.6. The condition is as follows. It
concerns the spherical growth function |Bk \ Bk−1|, which is a basic quantity studied in geometric
group theory, discussed for instance in ([34], §VI.A).

Definition 2.5.1 (bounded sphere ratios). Let G be a finitely generated group. With respect to a
finite generating set S ⋐ G, we can consider the open balls Bk = {g ∈ G : d(g, e) < n} of radius
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k centered at the identity in the Cayley graph of G with respect to S. We say that a group G has
bounded sphere ratios if there exists a finite generating set S such that

sup
m≥1

|Bm+1 \Bm|
|Bm \Bm−1|

< +∞.

In this section and the next, when we refer to balls in a group G with bounded sphere ratios, we
always mean balls with respect to a generating set that witnesses the bounded sphere ratios. Note
also that if G has bounded sphere ratios, then (for some generating set S) we have

sup
m≥1

|Bm+n \Bm+n−1|
|Bm \Bm−1|

< +∞.

for any n.

Remark 2.5.1. A finitely generated group G has polynomial growth if |Bn| ≤ cnd for some c > 0, d ∈ N
and all n; exponential growth if |Bn| ≥ cαn for some α > 1, c > 0 and all n; and intermediate
growth otherwise. Here we outline certain types of polynomial and exponential growth known to imply
bounded sphere ratios.

In the polynomial case, recall that a group has polynomial growth if and only if it is virtually
nilpotent, i.e. has a finite-index nilpotent group [32]. It is conjectured ([20], Conjecture 10) that for
any nilpotent group, we have |Bn| = cnd + O(nd−1), where c > 0 is a constant depending only on
the group, with the coefficients of the lower-order terms depending on the generating set. This would
imply ([20], Corollary 11) positive constant upper and lower bounds on the ratio |Bk \ Bk−1|/kd−1,
and thus that the group has bounded sphere ratios. What is known is more restricted. Associated
to any nilpotent group is its nilpotency class, a number measuring how far the group is from being
abelian (abelian groups, like Zd, have class 1). By a result of Stoll [72], the conjectured asymptotics
for |Bn| hold at least for groups of nilpotency class at most 2.

In the exponential case, we say that a group (with a given generating set) has exact exponential
growth if there exist α > 1 and 0 < c < C < cα with c ≤ |Bn|/αn ≤ C for all n ≥ 1. (This is not a
standard definition.) This condition is satisfied, for example, by a free group with the usual generating
set. To see that exact exponential growth implies bounded sphere ratios, note that

|Bk+1 \Bk|
|Bk \Bk−1|

≤ Cαk+1 − cαk

cαk − Cαk−1
=

(
Cα− c

cα− C

)
α <∞

We now turn our attention to potentials. For a function f : X → R and k ≥ 1, define the kth
variation of f as

vk(f) := sup
{
|f(y)− f(x)|

∣∣∣x, y ∈ X, xBk
= yBk

}
.

We separately define v0(f) = ∥f∥∞. It is also convenient to define B0 = ∅. We define the shell norm
∥·∥ShVar by

∥f∥ShVar :=

∞∑
k=0

|Bk+1 \Bk|vk(f).

We define the space ShReg(X) as the space of shell-regular potentials, i.e., functions f : X → R with
∥f∥ShVar < ∞. It is elementary to show that shell-regularity implies continuity, and that ShReg(X),
with the shell norm, is a Banach space. Note that this space depends, in general, on the generating
set chosen.

Remark 2.5.2. In earlier work on subshifts over Zd [56], the relevant space of potentials is known as
SVd(X), the space of potentials with d-summable variation, defined by the norm ∥f∥SVd

=
∑∞
k=1 k

d−1vk−1(f).
This space is also known as Regd−1(X) [59]. With Bn = Zd ∩ [−n, n]d, we have |Bk+1 \ Bk| =
2dd(1 + o(1))kd−1. Thus, on Zd, we have ShReg(X) = SVd(X), with the identity a continuous linear
map.
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Proposition 2.5.3. Let G be a group with bounded sphere ratios and X a subshift over G. For any
f ∈ ShReg(X) and any (x, y) ∈ TX , the series∑

g∈G
[f(g · y)− f(g · x)]

converges absolutely and defines a cocycle ϕf on TX .

Proof. Fix (x, y) ∈ TX , and let n ≥ 1 be such that xBc
n
= yBc

n
. If g ∈ G and m ≥ 1 are such that

Bm−1 ⊆ g−1Bcn, then (g · x)|Bm−1
= (g · y)|Bm−1

so |f(g · y) − f(g · x)| ≤ vm−1(f). For m ≥ 1 and
g ∈ Bk \ Bk−1, the triangle inequality guarantees that gBm−1 ⊆ Bcn if k − n ≥ m. Since the shells
Bk+1 \Bk partition G, we have

∑
g∈G

|f(g · y)− f(g · x)| ≤ 2|Bn|∥f∥∞ +

∞∑
k=n+1

|Bk \Bk−1|vk−n−1(f)

≤ 2|Bn|∥f∥∞ +

(
sup
k≥1

|Bk+n \Bk+n−1|
|Bk \Bk−1|

)
∥f∥ShVar

so indeed the cocycle is well-defined by an absolutely convergent series.

Just as in the case of an interaction, this expression for the cocycle ϕf allows us to rewrite the
DLR equations in a more classical form. Let f ∈ ShReg(X). It follows from a simple manipulation
that for any (x, y) ∈ TX , we have

exp(ϕf (x, y)) = lim
m→+∞

exp

 ∑
g∈Bm

[f(g · y)− f(g · x)]

 = lim
m→+∞

exp fm(y)

exp fm(x)
.

where fm(z) =
∑
g∈Bm

f(g · z). Now, let A ⊆ X be a Borel set. If µ is a DLR measure with respect
to ϕf , then for µ-a.e. x ∈ X, we have

µ(A | FΛc)(x) =
∑
η∈AΛ

 ∑
ζ∈AΛ

exp(ϕf (ηxΛc , ζxΛc))1X(ζxΛc)

−1

1A(ηxΛc)

=
∑
η∈AΛ

 ∑
ζ∈AΛ

lim
m→+∞

exp fm(ζxΛc)

exp fm(ηxΛc)
1X(ζxΛc)

−1

1A(ηxΛc)

= lim
m→∞

∑
η∈AΛ exp (fm(ηxΛc))1A(ηxΛc)∑
ζ∈AΛ exp (fm(ζxΛc))1X(ζxΛc)

These are the DLR equations as found in Kimura [44]. Applying Theorem 2.3.4 therefore shows
that any DLR measure with respect to a potential f ∈ ShReg(X) is necessarily (ϕf ,TX)-conformal,
providing the full converse for Kimura’s result described in the introduction.

2.6 Potentials induced by interactions, and vice versa

We have seen that the DLR property implies the conformal property for an arbitrary cocycle on the
Gibbs relation, with Gibbs measures for interactions and for potentials as two special cases. These cases
are not independent. In this section, we adapt the methods and results of Muir [59] and Ruelle [66] to
construct potentials from interactions and vice versa. In this section, all interactions are translation-
invariant, i.e., for any Λ ⋐ G and any x ∈ X, we require that ΦgΛ(g ·x) = ΦΛ(x). We recall a classical
space of particularly well-behaved interactions:
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Definition 2.6.1. For an interaction Φ, let

∥Φ∥B =
∑
Λ⋐G
e∈Λ

∥ΦΛ∥∞

We define B as the space of absolutely summable Φ, i.e., those for which ∥Φ∥B <∞.

It is routine to check that (B, ∥ · ∥B) is a Banach space. Moreover, forΦ ∈ B, we in fact have
absolute convergence of the series defining the cocycle ϕΦ, since for any (x, y) ∈ TX with x∆c = y∆c

for some ∆ ⋐ G, we have ∑
Λ⋐G

|ΦΛ(x)− ΦΛ(y)| ≤ 2
∑
Λ⋐G

Λ∩∆ ̸=∅

∥ΦΛ∥∞

≤ 2|∆|
∑
Λ⋐G
e∈Λ

∥ΦΛ∥∞

= 2|∆|∥Φ∥B <∞

We introduce a family of linear maps that convert interactions into potentials.

Definition 2.6.2 (translate-weighting maps). Let (aΛ)Λ⋐G, e∈Λ be a collection of nonnegative real
coefficients such that, for each Λ ⋐ G with e ∈ Λ, we have

∑
g∈Λ ag−1Λ = 1. Then, for an interaction

Φ, define the potential AΦ via

AΦ(x) = −
∑
Λ⋐G
e∈Λ

aΛΦΛ(x)

The map Φ 7→ AΦ is clearly linear. We refer to this map as the translate-weighting map determined
by the weights (aΛ)Λ⋐G,e∈Λ.

Remark 2.6.1. Two important examples are the following.

• The uniform map, where aΛ ∈ {0, 1
|Λ|} for every nonempty Λ ⋐ G. Muir uses the letter A to

denote this specific operator, i.e., A(Φ) = AΦ.

• The class of dictator maps, where aΛ ∈ {0, 1} for every Λ ⋐ G. For instance, on Zd, Ruelle
studies the operator for which aΛ = 1 if and only if 0 is the middle element, or more precisely
the ⌊(|Λ|+ 1)/2⌋-th element, of Λ in lexicographic order. In [59], Muir refers to this operator as
Â.

In Fact 7.8 in [59], it is claimed that AΦ ∈ ShReg(X) for every translate-weighting map and every
Φ ∈ B. This claim is incorrect, as we demonstrate with an example below. However, the argument
presented for this claim is correct in the case of what Muir calls “cubic-type” interactions. Here we
reproduce a version of this proof for a larger class of interactions.

Definition 2.6.3. An interaction Φ is full-dimensional if there exists some C > 0 such that, for all
Λ ⋐ G with e ∈ Λ and ΦΛ ̸≡ 0, we have the bound

sup{|Bn| : n ∈ N, Λ ∩Bcn−1 ̸= ∅} ≤ C|Λ|

Proposition 2.6.2. Let G be a group with bounded sphere ratios and let X be a subshift over G.
If Φ ∈ B is full-dimensional, then AΦ ∈ ShReg(X), where AΦ is the image of Φ under an arbitrary
translate-weighting map.
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Proof. We first estimate vk−1(AΦ):

vk−1(AΦ) = sup


∣∣∣∣∣∣∣
∑
Λ⋐G
e∈Λ

aΛ[ΦΛ(x)− ΦΛ(y)]

∣∣∣∣∣∣∣ : x, y ∈ X, xBk−1
= yBk−1


≤ 2

∑
Λ⋐G
e∈Λ

Λ∩Bc
k−1 ̸=∅

aΛ∥ΦΛ∥∞

We can now estimate the shell norm by an exchange of summations:

∥AΦ∥ShVar ≤ 2

∞∑
k=0

|Bk+1 \Bk|
∑
Λ⋐G
e∈Λ

Λ∩Bc
k ̸=∅

aΛ∥ΦΛ∥∞

= 2
∑
Λ⋐G
e∈Λ

aΛ∥ΦΛ∥∞
∑
k≥0

Λ∩Bc
k ̸=∅

|Bk+1 \Bk|

Observe that ∑
k≥0

Λ∩Bc
k−1 ̸=∅

|Bk+1 \Bk| = sup{|Bn| : n ∈ N, Λ ∩Bcn ̸= ∅} ≤ C|Λ|

so in fact
∥AΦ∥ShVar ≤ 2C

∑
Λ⋐G
e∈Λ

aΛ|Λ|∥ΦΛ∥∞

We need to rearrange this sum. For a given Λ ⋐ G, consider the set of translates of Λ contain-
ing the identity, denoted T (Λ) = {g−1Λ, g ∈ Λ}. For instance, in Z, if Λ = {0, 1}, then T (Λ) =
{{−1, 0}, {0, 1}}. Let T denote the set of such sets of translates, i.e., T = {T (Λ) : Λ ⋐ G, e ∈ Λ}.
Note that T is a partition of the set {Λ ⋐ G, e ∈ Λ}. Observe furthermore that |T | = |Λ| for any
Λ ∈ T .

For any given T ∈ T , the value |Λ|∥ΦΛ∥∞ is the same for any Λ ∈ T , i.e., any Λ such that T = T (Λ).
so we denote it by cT . We can then express the bound on ∥AΦ∥ShVar by summing over T ∈ T , as
follows: ∑

Λ⋐G
e∈Λ

aΛ|Λ|∥ΦΛ∥∞ =
∑
T∈T

∑
Λ∈T

aΛcT

=
∑
T∈T

cT
∑
Λ∈T

aΛ

=
∑
T∈T

cT

=
∑
T∈T

|Λ|∥ΦΛ∥∞

=
∑
T

∑
Λ∈T

∥ΦΛ∥∞

= ∥Φ∥B

Thus ∥AΦ∥ShVar ≤ 2C∥Φ∥B <∞.
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In the next example, Φ ∈ B is not full-dimensional, and AΦ is not shell-regular.

Example 1. Let X = {0, 1}Z, with Bk = (−k, k)∩Z. Define Φ = (ΦΛ)Λ⋐Z as follows: for any i, j ∈ Z,
Φ{i,j}(x) = 1

(j−i)2 if xi = xj = 1 and 0 otherwise; and ΦΛ ≡ 0 for all other Λ ⋐ G. Clearly Φ is

translation-invariant. We claim that Φ ∈ B but AΦ /∈ ShReg(X), where AΦ is the image of Φ under
the dictator map that ignores Λ ⋐ Z unless 0 = inf Λ. Indeed, ∥Φ∥B = 2

∑∞
j=1

1
j2 <∞, but

vk(AΦ) =

∞∑
l=k

1

l2
≥ 1

k

which implies that

∥AΦ∥ShVar ≥ 2

+∞∑
k=1

1

k
= +∞

We now show that for full-dimensional Φ ∈ B, the images AΦ and A′
Φ of Φ under any two translate-

weighting maps have the same Gibbs and equilibrium measures.

Proposition 2.6.3. Let G be a group with bounded sphere ratios, let X be a subshift on G, and let
Φ be an absolutely summable, full-dimensional interaction on X. Then Φ and AΦ induce the same
cocycle, i.e., ϕAΦ = ϕΦ, where AΦ is the image of Φ under an arbitrary translate-weighting map.

Proof. Suppose that (x, y) ∈ TX with x∆c = y∆c . Observe that

ϕΦ(x, y) =
∑
Λ⋐G

Λ∩∆ ̸=∅

[ΦΛ(x)− ΦΛ(y)]

Consider a translate-weighting map with weights aΛ. To compute ϕAΦ , we first obtain a convenient
expression for AΦ(g · x)−AΦ(g · y):

AΦ(g · x)−AΦ(g · y) = −
∑
Λ⋐G
e∈Λ

Λ∩g∆ ̸=∅

aΛΦg−1Λ(x) +
∑
Λ⋐G
e∈Λ

Λ∩g∆̸=∅

aΛΦg−1Λ(y)

= −
∑
Λ′⋐G
g∈Λ′

Λ′∩∆ ̸=∅

ag−1Λ′ [ΦΛ′(x)− ΦΛ′(y)]

We then compute:

ϕAΦ
(x, y) =

∑
g∈G

[AΦ(g · x)−AΦ(g · y)]

=
∑
g∈G

∑
Λ⋐G
g∈Λ

Λ∩∆ ̸=∅

ag−1Λ[ΦΛ(x)− ΦΛ(y)]

=
∑
Λ⋐G

Λ∩∆̸=∅

∑
g∈Λ

ag−1Λ

 [ΦΛ(x)− ΦΛ(y)]

= ϕΦ(x, y)

The interchange of summations is justified by the absolute convergence of the series defining the
cocycles ϕAΦ

and ϕΦ, implied by the regularity of Φ and AΦ.
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Proposition 2.6.3 is similar to Theorem 5.42 in [44], which is stated for Ruelle’s operator A, using
specifications rather than cocycles.

Proposition 2.6.4. Let G be a group with bounded sphere ratios and let X be a subshift on G. Let
µ be a G-invariant measure on X, let Φ ∈ B be full-dimensional. Let AΦ be the image of Φ under
a translate-weighting map with weights (aΛ)Λ⋐G, e∈Λ. Then the integral

∫
X
AΦ dµ depends only on Φ

and µ, and not on the weights aΛ.

Proof. As in the proof of Proposition 2.6.2, for each finite Λ ⋐ G with e ∈ Λ, let T (Λ) = {g−1Λ | g ∈ Λ}.
For any given T , the quantity

∫
X
ΦΛ dµ is constant as Λ ranges over T , so we denote it by bT . We now

compute: ∫
X

AΦ dµ = −
∫
X

∑
T∈T

∑
Λ∈T

aΛΦΛ dµ

= −
∑
T∈T

bT
∑
Λ∈T

aΛ

= −
∑
Λ⋐G
e∈Λ

1

|Λ|

∫
X

ΦΛ dµ

which does not depend on the weights aΛ, and in addition clearly expresses the integral
∫
X
AΦ dµ as

the average energy at the identity due to the interaction Φ.
To justify exchanging the integral and the sum above, let |Φ| be the interaction given by |Φ|Λ = |ΦΛ|.

Then |Φ| is still full-dimensional, with ∥|Φ|∥B = ∥Φ∥B , so

−
∑
T∈T

∑
Λ∈T

aΛ|ΦΛ| = A|Φ| ∈ ShReg(X)

by Proposition 2.6.2. Thus the sum converges absolutely to a continuous function.

Finally, we introduce a smaller Banach space VolReg(X) of volume-regular functions, defined anal-
ogously to ShReg(X) by a volume norm rather than a shell norm. That is, VolReg(X) = {f : X →
R : ∥f∥VolVar <∞} where we define

∥f∥VolVar :=

∞∑
k=0

|Bk|vk(f)

Volume-regularity clearly implies shell-regularity. The following result of Muir ([59], proof of Fact 7.6)
is stated for Zd, with the name Regd(X) for VolReg(X), but is valid, with the same proof, on any
finitely generated group.

Theorem 2.6.5. Let G be a finitely generated group and let f ∈ VolReg(X) be a volume-regular
potential. Then there exists an absolutely summable Φ ∈ B with AΦ = f where AΦ is the image of Φ
under some dictator map.

In particular, any Gibbs measure for f ∈ VolReg(X) is also a Gibbs measure for any potential
Φ ∈ B with AΦ = f , and vice versa.
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Chapter 3

A Dobrushin-Lanford-Ruelle theorem for irreducible sofic
shifts

3.1 Introduction

As advertised in the introduction to the dissertation, this chapter proves the equivalence of Gibbs and
equilibrium measures for irreducible sofic shifts in one dimension, extending the classical Dobrushin and
Lanford-Ruelle theorems, using a preservation of Gibbsianness approach. We repeat some definitions
from the previous chapter because we are now restricting to the group Z rather than more general
countable groups, and in order to be clear about the present notation.

3.2 Definitions, notations, and conventions

3.2.1 Symbolic dynamics

Let A be a finite set with the discrete topology, to be thought of as an alphabet, and AZ be the full shift
with the product topology, with respect to which AZ is compact and metrizable. The group Z acts
naturally on AZ by the shift action σ, given by (σnx)0 = xn. A shift space is any closed, σ-invariant
subset X ⊆ AZ.

For each n ≥ 1, we write Bn(X) to denote the set of words of length n in the language B(X) of
X—that is, the set of patterns w ∈ An such that x[0,n−1] = w for some x ∈ X. For w ∈ An we denote
by [w]i the set of x ∈ X with x[i,i+n−1] = w.

We will make extensive use of continuous, shift-equivariant factor codes π : X → Y between shift
spaces X and Y . By the Curtis-Hedlund-Lyndon theorem, any such map π is a sliding block code,
induced by a map Π : Bm(X) → B1(Y ) for some m ≥ 1. Up to a conjugacy of X, we can in fact
assume that Π maps symbols to symbols, i.e., m = 1 ([49], Proposition 1.5.12). When π : X → Y is
surjective, it is known as a factor code, and Y is a factor of X.

Our main results in this paper concern shifts of finite type and sofic shifts, which we now define.

Definition 3.2.1. [shift of finite type] A shift of finite type with alphabet A is any shift space of AZ

defined by excluding a finite number of finite words. In other words, X ⊆ AZ is a shift of finite type
if for some n ≥ 1 there exists a finite set F ⊆ An of forbidden words such that

X = {x ∈ AZ : σm(x)[0,n−1] /∈ F , for all m ∈ Z}

Definition 3.2.2. [sofic shift] A sofic shift is any shift space that is a continuous factor of a shift of
finite type.

Sofic shifts have an alternative characterization in terms of bi-infinite walks on finite edge-labeled
graphs (see [49]), but we will not need this here. Every shift of finite type is sofic, since the identity
code is continuous (more generally, conjugacies preserve the class of shifts of finite type), but not every
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sofic shift has finite type. An example of a shift that is sofic but not of finite type is the even shift,
which is the shift X ⊂ {0, 1}Z consisting of sequences in which 10n1 may appear only if n is even.

We will, in particular, consider measures on shift spaces, which will always be Borel probability
measures. We will refer to these as σ-invariant measures to avoid any possible ambiguity, since in
§3.4 we also consider measures that are σp-invariant for some positive power p, but in general are not
σ-invariant. In particular, we will often refer to ergodic measures, and these will always be ergodic
with respect to σ.

3.2.2 The Gibbs relation, cocycles, and Gibbs measures

The Gibbs relation on a shift space X, also called the tail, asymptotic, or homoclinic relation, is the
equivalence relation TX ⊂ X ×X such that (x, y) ∈ TX if and only if x[−N,N ]c = y[−N,N ]c for some
N ≥ 1. For Borel sets A,B ⊆ X, a holonomy of TX is a Borel isomorphism ψ : A → B such that
(x, ψ(x)) ∈ TX for all x ∈ A. We say that a measure µ on X is TX -nonsingular if for every Borel
A ⊂ X with µ(A) = 0, we have µ(TX(A)) = 0, where the saturation TX(A) is defined as

TX(A) = {x′ ∈ X : ∃x ∈ A such that (x, x′) ∈ TX}

Note that if µ is TX -nonsingular and ψ : A → B is a holonomy of TX , then whenever E ⊂ A has

µ(E) = 0, we have µ(ψ(E)) ≤ µ(TX(E)) = 0. In particular, the Radon-Nikodym derivative d(µ◦ψ)
dµ is

well-defined.
We note that TX is generated by a countable group Γ of holonomies, in the sense that (x, x′) ∈ TX

if and only if there exists γ ∈ Γ with γ(x) = x′. This is a special case of the main theorem of [30].
One could choose Γ consisting of holonomies of the form ψu,v,a,b, where u, v ∈ Bb−a+1(X), for some
a, b ∈ Z with a ≤ b, and

ψu,v,a,b(x) =


x(−∞,a)ux(b,∞), if x[a,b] = v and x(−∞,a)ux(b,∞) ∈ X

x(−∞,a)vx(b,∞), if x[a,b] = u and x(−∞,a)vx(b,∞) ∈ X

x, otherwise

That is, ψu,v,a,b replaces u with v, or vice versa, whenever possible, and otherwise does nothing.
A (real, additive) cocycle on TX is a Borel measurable function ϕ : TX → R such that ϕ(x, y) +

ϕ(y, z) = ϕ(x, z) for all x, y, z ∈ X with (x, y), (y, z) ∈ TX (so that (x, z) ∈ TX as well). By expo-
nentiating or taking logarithms, we can easily convert between additive and multiplicative notation
for cocycles. Additive notation is more natural when the cocycle is intended to represent an energy-
difference function, and multiplicative notation is more natural when the cocycle serves as a Jacobian
for a change of variables.

Given a TX -nonsingular measure µ on X, we say that a Borel function Dµ,TX
: TX → R+ is

a (multiplicative) Radon-Nikodym cocycle on TX with respect to µ if the pushforward of µ by any

holonomy ψ : A → B of TX satisfies d(µ◦ψ)
dµ (x) = Dµ,TX

(x, ψ(x)) for µ-a.e. x ∈ A. It is routine to
show that any TX -nonsingular measure µ on X has a µ-a.e. unique Radon-Nikodym cocycle.

Definition 3.2.3. [Gibbs measure] Let µ be a TX -nonsingular Borel measure on a shift space X, and
let ϕ : TX → R be a cocycle. We say that µ is a Gibbs measure if for any holonomy ψ : A→ B of TX ,
and µ-a.e. x ∈ A, we have Dµ,TX

(x, ψ(x)) = exp(ϕ(x, ψ(x))).

To put it another way, a measure is by definition Gibbs if and only if it is nonsingular, and
a nonsingular measure is Gibbs precisely with respect to the logarithm of its own Radon-Nikodym
cocycle. These measures are also known as conformal measures in the literature [15, 56].

In [15] it is shown, building on results of Kimura [44], Keller [42], and others, that the definition of
a Gibbs measure that we have given is equivalent to another well-known one involving the Dobrushin-
Lanford-Ruelle equations, in terms of which the theorems of Dobrushin (Theorem 3.4.2) and Lanford-
Ruelle (Theorem 3.4.3) were originally stated. These Gibbs measures do not coincide, in general,
with Gibbs measures in the sense of Bowen; see the second remark after Proposition 3.3.7 for further
discussion.
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3.3 Preservation of Gibbsianness

In this section, we prove a pair of preservation of Gibbsianness results, namely Propositions 3.3.7 and
3.3.10, which are essential to our main theorems, Theorem 3.4.7 and 3.4.11.

Definition 3.3.1. [irreducibility] A shift space X is irreducible if for every ordered pair of blocks
u, v ∈ B(X) there is w ∈ B(X) so that uwv ∈ B(X).

Definition 3.3.2. [period] The period of an irreducible sofic shift is the greatest common divisor of
the least periods of its periodic points.

Definition 3.3.3. [strong irreducibility] A shift space X is strongly irreducible if there exists some
r ≥ 1 such that for any u, v ∈ B(X) and any s ≥ r, there exists w ∈ Bs(X) with uwv ∈ B(X).

Remark 3.3.1. A shift of finite type is strongly irreducible if and only if it is topologically mixing, if
and only if it is irreducible and has period 1.

The following proposition generalizes part of the proof of Lemma 4.1 in [55]. (They treat the case
of a uniform Gibbs measure on a strongly irreducible shift of finite type over Zd.) The proof is also
very similar to that of Proposition 5.2 in [53].

Proposition 3.3.2. Let X be a strongly irreducible shift space. Then any TX-invariant nonsingular
measure on X has full support.

Proof. Let µ be a TX -invariant nonsingular measure on X. Let r ≥ 1 be a witness for the strong
irreducibility of X. Fix a, b ∈ Z with a < b, and fix w ∈ Bb−a(X). By strong irreducibility, for each
n ≥ 1 and each p, s ∈ Bn(X), there exists w′ ∈ B(b−a)+2r(X) such that w′

[a,b] = w and pw′s ∈ B(X).

By compactness, it follows that for every x ∈ X, there exists some u ∈ B(X) with u[a,b] = w and
x(−∞,a−r−1]ux[b+r+1,∞) ∈ X.

For each pair u, v ∈ B(b−a)+2r+1(X) with u[a,b] = w, let

Eu,v = [v]a−r ∩ {x ∈ X : x(−∞,a−r−1]ux[b+r+1,∞) ∈ X}

Then
⋃
u,v Eu,v = X. In particular, µ(Eu,v) > 0 for at least one pair u, v. Let ψu,v,a,b be the holonomy

of TX that exchanges u and v on [a, b] when possible and does nothing else, as in §3.2.2. By the
definition of Eu,v, we have that for every x ∈ Eu,v, ψu,v,a,b(x) ∈ [u]a−r. Then we have

µ([w]a) ≥ µ([u]a−r)

≥ µ(ψu,v,a,b(Eu,v))

=

∫
Eu,v

Dµ,TX
(x, ψu,v,a,b(x)) dµ(x)

> 0

Since w was an arbitrary word at an arbitrary position, µ has full support.

Remark 3.3.3. The statement and proof of Proposition 3.3.2 generalize essentially without modifi-
cation when Z is replaced by an arbitrary countable group, with a suitable generalization of strong
irreducibility [23, 9]. We also mention that strong irreducibility is used in the proof of Proposition
3.3.2 to show that all TX equivalence classes are dense in X. These equivalence classes are the orbits
of the action of the countable group Γ generating TX . In the special case of a shift of finite type, Γ
can be taken to be generated by homeomorphisms [56]. We can thus interpret Proposition 3.3.2 as the
statement that a nonsingular measure for a minimal continuous action must have full support.

Definition 3.3.4. [doubly transitive point] Let X be a shift space. A point x ∈ X is doubly transitive
if every word w ∈ B(X) appears in x infinitely often to the left and to the right.
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It is easy to check that a shift space X contains a doubly transitive point if and only if X is
irreducible (see §9.1, [49] for more details). The following lemma will also be useful.

Lemma 3.3.4. Let X be a shift space. Then the set DX ⊂ X of doubly transitive points is TX-
invariant.

Proof. If X is not irreducible then DX = ∅, which is trivially TX -invariant, so assume that X is
irreducible. Let x ∈ DX and suppose that x′ ∈ X with (x, x′) ∈ TX . Then there exists some
∆ = [a, b]∩Z such that x∆c = x′∆c . Since x ∈ DX , every word w ∈ B(X) appears infinitely often both
in x(−∞,a−1] = x′(−∞,a−1] and in x[b+1,∞) = x′[b+1,∞). Therefore x

′ ∈ DX .

It is then immediate that X \DX is also TX -invariant. (In general, if R is an equivalence relation
on X and A is an R-invariant subset, then Ac is also R-invariant.)

The following is a generalization of Theorem 9.4.9 in [49], which appears to be well-known ([78],
proof of Lemma 4.5). We thank Tom Meyerovitch for this short proof.

Proposition 3.3.5. Let X be an irreducible shift space and let µ be a fully supported σ-invariant
ergodic measure on X. Let DX denote the set of doubly transitive points. Then µ(DX) = 1.

Proof. Recall that a generic point, for a continuous transformation of a compact space with an σ-
invariant measure, is a point that satisfies the conclusion of the pointwise ergodic theorem (Theorem
1.14, [76]) for every continuous function. Since µ is ergodic with respect to σ, the sets of generic
points with respect to σ and σ−1 have full measure ([31], Proposition 3.7), so their intersection has full
measure as well. Since µ has full support, every point that is generic for both σ and σ−1 (in particular,
almost every point in X) is doubly transitive. In greater detail: we prove the contrapositive. Suppose
x is not doubly transitive. Then there is a word w which appears at most finitely often, without loss
of generality to the right, in x. Then

lim
n→∞

1

n

n−1∑
k=0

1[w]0(σ
kx) = 0 ̸= µ([w]0)

so x does not satisfy the conclusion of the ergodic theorem for the continuous function 1[w]0 . Therefore
x is not generic for σ.

Let X be a shift of finite type, let Y be a sofic shift, and let π : X → Y be a finite-to-one factor
code. Then there is an integer d ≥ 1, known as the degree of π, such that each doubly transitive point
y ∈ Y has exactly d π-preimages [49]. An important special case is when the degree is one, which is
in fact equivalent to the following condition, which a priori might seem more general.

Definition 3.3.5. [almost invertibility] Let X be an irreducible shift of finite type, let Y be an
irreducible sofic shift, and let π : X → Y be a factor code. We say that π is almost invertible if every
doubly transitive point y ∈ DY has a unique preimage.

Remark 3.3.6. A factor code on an irreducible shift of finite type is almost invertible if and only if it
is finite-to-one with degree one ([49], Proposition 9.2.2).

The following is our first preservation of Gibbsianness result.

Proposition 3.3.7 (preservation of Gibbsianness for almost invertible factor codes). Let X be an
irreducible shift of finite type, let Y be a sofic shift, and let π : X → Y be an almost invertible factor
code. Let µ be a measure on X which is fully supported, σ-invariant, ergodic, and TX-nonsingular.
Let ν = π∗µ. Then ν is TY -nonsingular. Moreover, if µ is Gibbs with respect to an additive cocycle ϕ,
then ν is Gibbs with respect to ϕ ◦ (π−1 × π−1), where π−1 is well-defined ν-almost everywhere.
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Proof. First, for a technical reason described below, we assume that π is a one-block code, in the sense
that it is induced by a map Π: B1(X) → B1(Y ). We assume further that it has a magic symbol—that
is, a symbol b ∈ B1(Y ) with a unique Π-preimage a ∈ B1(X), such that if π(x) = y and y0 = b, then
x0 = a. These assumptions incur no loss of generality ([49], §9.1).

These assumptions made, we see how to lift holonomies of TY to holonomies of TX . Since π is
a Borel map between complete separable metric spaces X,Y which restricts to an injection on the
Borel set DX , the inverse π|−1

DX
: DY → DX is Borel ([40], Theorem 15.1). Now let ψ : A → B be a

holonomy of TY . Define the map ψ̃ : π−1(A)∩DX → π−1(B)∩DX by ψ̃ = π−1 ◦ψ ◦ π; this is clearly
a measurable bijection.

Moreover, to see that (x, ψ̃(x)) ∈ TX for each x ∈ π−1(A) ∩DX , observe that (π(x), π ◦ ψ̃(x)) =
(π(x), ψ ◦ π(x)) ∈ TY , so there exist m < n with π(x)[m,n]c = ψ ◦ π(x)[m,n]c . Since π(x) and ψ ◦ π(x)
are doubly transitive, the magic symbol b for π appears infinitely often to the left and right. We may
therefore assume, by taking m and n larger if necessary, that

π(x)m−1 = ψ ◦ π(x)m−1 = b = π(x)n+1 = ψ ◦ π(x)n+1

Moreover, since the magic symbol occurs infinitely often to the left and right, any word outside [m,n]
appears within a word beginning and ending with b. Proposition 9.1.9 in [49] asserts, in the almost
invertible case, that such a word has a unique π-preimage. This shows that (x, ψ̃(x)) agree outside of
[m,n], so ψ̃ is indeed a holonomy of TX .

Now, let ΓX ,ΓY be countable groups of holonomies generating TX ,TY respectively, and let A ⊂ Y
be Borel with ν(A) = 0. Observe that TY (A) =

⋃
γ∈ΓY

γ(A). Observe further that, for each γ ∈ ΓY ,

ν(γ(A)) = ν(γ(A) \DY ) + ν(γ(A) ∩DY )

= µ
(
π−1(γ(A) ∩DY )

)
= µ(γ̃(π−1(A ∩DY )))

= 0

since π−1(A ∩DY ) is µ-null and µ is TX -nonsingular. Therefore ν is indeed TY -nonsingular.
Again, let ψ : A→ B be a holonomy of TY and let ψ̃ be as above. Then

ν(B) = µ(π−1(ψ(A ∩DY )))

= µ(ψ̃(π−1(A) ∩DX))

=

∫
π−1(A)∩DX

Dµ,TX
(x, ψ̃(x)) dµ(x)

=

∫
A∩DY

Dµ,TX
(π−1(y), π−1(ψ(y))) dν(y),

where the last equality follows from the change of variables formula.
On the other hand, since ν is TY -nonsingular, we know that

ν(B) =

∫
A

Dµ,TY
(y, ψ(y)) dν(y)

By the uniqueness of the Radon-Nikodym derivative, we then have, for almost all (y, y′) ∈ D2
Y ∩ TY ,

that Dν,TY
(y, y′) = Dµ,TX

(π−1(y), π−1(y′)).

Remark 3.3.8. In Corollary 3.4.10, we generalize Proposition 3.3.7 from almost invertible to finite-to-
one codes, in the case that the cocycle on the range is induced by a sufficiently regular potential. It
is therefore natural to ask whether the proof of Proposition 3.3.7 can be adapted to the finite-to-one
setting. However, such an adaptation would not be straightforward, because at higher degrees we lose
a key condition on which the proof of Proposition 3.3.7 relied: namely, that preimages of asymptotic
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doubly transitive points must themselves be asymptotic. Indeed, if π has degree d > 1, then every
doubly transitive point y ∈ Y has d preimages, no two of which ever exhibit the same symbol in the
same position (see Exercise 9.1.3, [49]), and are therefore about as far from asymptotic as one could
imagine.

Remark 3.3.9. The hypotheses of Proposition 3.3.7 are likely more restrictive than would be needed
simply to show that the pushforward of a TX -nonsingular measure is TY -nonsingular. The reason is
that, for the application in Theorem 3.4.7, we need pointwise control over the potential inducing the
Radon-Nikodym cocycle of the pushforward measure, whereas for the purposes of [64], for instance,
it is sufficient to determine the potential’s regularity. For instance, consider a very simple symbol
amalgamation code from the full 3-shift X = {0, 1, 2}Z to the full 2-shift Y = {0, 1}Z, given by
amalgamating the symbols 1, 2 into the symbol 1. This code takes the uniform Bernoulli measure on
X, which is Gibbs for the zero cocycle, to the (1/3, 2/3) Bernoulli measure on Y , which is Gibbs with
respect to a cocycle obtained from a locally constant potential. This would count as preservation of
Gibbsianness in the sense of [64] but not in ours.

We now prove Proposition 3.3.10, which is a converse result to Proposition 3.3.7, showing that every
nonsingular measure on an irreducible sofic shift is the pushforward, through an almost invertible code,
of a nonsingular measure on an irreducible shift of finite type. We observe that an almost invertible
factor code π : X → Y yields a Borel isomorphism πDX

: DX → DY , so a fully supported σ-invariant
measure ν on Y lifts to a unique measure µ on X, giving an isomorphism of measure-preserving
systems. In particular, if ν is ergodic, then so is µ.

Proposition 3.3.10 (lifting Gibbs measures through almost invertible factor codes). Let X be an
irreducible shift of finite type, let Y be a sofic shift, and let π : X → Y be an almost invertible factor
code. Let ν be a measure on Y which is fully supported, σ-invariant, ergodic, and TY -nonsingular. If
ν is Gibbs for an additive cocycle ϕ, then the unique σ-invariant measure µ on X with π∗µ = ν is
TX-nonsingular and, in particular, is a σ-invariant Gibbs measure for ϕ ◦ (π × π).

Proof. As in the proof of Proposition 3.3.7, we assume without loss of generality (that is, up to a
conjugacy of X) that π is a one-block code, induced by a block map Π : B1(X) → B1(Y ). We assume
further that π has a magic symbol b ∈ B1(Y ), which has a unique Π-preimage a ∈ B1(X).

Since π : DX → DY is a Borel isomorphism and ν(DY ) = 1 by Proposition 3.3.5, there is a unique
measure µ on X with π∗µ = ν, and µ is σ-invariant and ergodic. We now show that µ has full support.
Let w ∈ B(X) be arbitrary. By irreducibility, there exist u, v ∈ B(X) such that auwva ∈ B(X). Let
s = Π(uwv), so that, by the same argument as in the proof of Proposition 3.3.7 (using [49], §9.1),
[auwva]0 = π−1([bsb]0). Since ν has full support by hypothesis, ν([bsb]0) > 0, so µ([w]0) > 0, since
[auwva] ⊆ [w], with coordinates lined up appropriately. Since w was arbitrary and µ is σ-invariant, µ
has full support.

Let ψ : X → X be a holonomy of TX . As in the proof of Proposition 3.3.7 (but with the holonomies
being pushed in the opposite direction), π forms a Borel isomorphism between DX and DY , and if
x, x′ ∈ DX then (x, x′) ∈ TX if and only if (π(x), π(x′)) ∈ TY . Therefore, we have a holonomy
ψ̃ = π ◦ ψ ◦ (π|DX

)−1 : DY → DY of TY .
Let N ⊂ X be a Borel set with µ-measure zero. Observe that

ψ(N) = ψ(N ∩DX) ∪ ψ(N \DX)

This yields that µ(ψ(N)) = µ(ψ(N) ∩ DX), since ψ(N \ DX) = ψ(N) \ DX , and DX has full
measure by ergodicity and Proposition 3.3.5. Moreover,

ψ(N ∩DX) = π−1 ◦ ψ̃(π(N) ∩DY )

Now, ν(π(N)∩DY ) = µ(N ∩DX) = 0, so ν(ψ̃(π(N)∩DY )) = 0, since ν is TY -nonsingular. Therefore
µ(ψ(N ∩DX)) = 0 as well, so in fact µ(ψ(N)) = 0, which shows that µ is indeed TX -nonsingular. A
calculation in the same spirit, very similar to the calculation that concludes the proof of Proposition
3.3.7, shows that µ is Gibbs for ϕ ◦ (π × π), as claimed.
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3.4 Equilibrium measures

Definition 3.4.1. [topological pressure and equilibrium states] Let X be a shift space and let f : X →
R be a continuous function. The topological pressure of f is the value

PX(σ, f) = sup

{
h(µ) +

∫
X

f dµ

}
where the supremum is over all σ-invariant measures µ on X. Any measure µ attaining the supremum
is known as an equilibrium measure for f .

Remark 3.4.1. The pressure is sometimes defined as above (see [42]), but is often defined differently
(see e.g. [76]), with the variational property by which we defined it stated as a theorem. However, this
variational property is the only one we will need, apart from the two classical theorems below.

Definition 3.4.2. [the function space SV(X)] LetX be a shift space and let f : X → R be a continuous
function. We define the kth variation of f as

vk(f) = sup{|f(x)− f(y)| : x[−k,k] = y[−k,k]}

for k ≥ 0; it is convenient to define var−1(f) = ∥f∥∞. We then define

∥f∥SV(X) =

∞∑
k=0

vk−1(f)

and define the class of potentials SV(X) = {f ∈ C(X) : ∥f∥SV(X) <∞}.

It is easy to verify that
(
SV(X), ∥·∥SV(X)

)
is a Banach space, and that ([56], [15]) a potential

f ∈ SV(X) defines a cocycle ϕf on TX via the following absolutely convergent series:

ϕf (x, y) =
∑
n∈Z

[f(σny)− f(σnx)]

We refer to a Gibbs measure for ϕf simply as a Gibbs measure for f . With this definition, we
recall the following classical theorems, which we state only for the special cases that we require. These
theorems were originally proved in a somewhat different form, using the formalism of interactions
rather than potentials as we have used, but the methods adapt easily.

Theorem 3.4.2 (Dobrushin; see [66]). Let X be a strongly irreducible shift space and let f ∈ SV(X).
Every σ-invariant Gibbs measure for f is an equilibrium measure for f .

Theorem 3.4.3 (Lanford-Ruelle; see [56]). Let X be a shift of finite type and let f ∈ SV(X). Every
equilibrium measure for f is a Gibbs measure for f .

We also require the following result, closely following Lemma 4.5 in [78].

Proposition 3.4.4. Let X be an irreducible shift of finite type. Any equilibrium measure for f ∈
SV(X) has full support.

Proof. When X is a mixing shift of finite type, the result follows from Theorem 3.4.3 and Proposition
3.3.2. Now, let X be an irreducible shift of finite type such that X has period p. We decompose X
into p cyclically moving classes (see [49], §4.5), i.e., X = ⊔p−1

i=0Xi where σ(Xi) = Xi+1 mod p and each
Xi is mixing with respect to σp. In particular, σp is a homeomorphism of each clopen set Xi; the
system (X,σp) is known as the pth higher power shift of X ([49], §1.4).

There is a bijection between σ-invariant measures µ on X and σp-invariant measures µ′ on X0,
which is given by normalized restriction in one direction and averaging in the other. That is, we take
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µ′ = pµ|X0
and µ = p−1

∑p−1
j=0 σ

j
∗µ

′. Observe that µ has full support if and only if µ′ does. Moreover,
we have

hX(µ) +

∫
X

f dµ =
1

p

(
hX0

(µ′) +

∫
X0

Rpf dµ
′
)

where Rpf =
∑p−1
j=0 f ◦ σ−j . Therefore µ is an equilibrium measure for f on X precisely when µ′ is an

equilibrium measure for Rpf on X0. So far, our discussion is essentially identical to Yoo’s.
We now need to show that Rpf ∈ SV(X0); this is where we part from Yoo, who considers a different

class of potentials. Observe that, for each j ∈ {0, . . . , p − 1}, the k-th variation of a function on X0

behaves like the kp-th variation of that function on X, so we have

∥∥f ◦ σ−j∥∥
SV(X0)

≤
∞∑
k=0

vkp(f ◦ σ−j) ≤
∥∥f ◦ σ−j∥∥

SV(X)

It is also easy to check that SV(X) is closed under translation, showing that indeed Rpf ∈ SV(X0).

Let µ be an equilibrium measure for f . Then the unique µ′ on X0 such that µ = p−1
∑p−1
j=0 σ

j
∗µ

′ is
an equilibrium measure for Rpf ; since X0 is mixing, µ′ is fully supported. Thus µ is fully supported
as well.

We also require a result showing that equilibrium measures lift through almost invertible codes,
indeed through any finite-to-one codes. We first prove the following lemma, which is well-known,
and can be regarded as a relative version of the Krylov-Bogliubov theorem. One standard proof
uses the Hahn-Banach theorem. For completeness, and possibly independent interest, we include a
different proof, based on the standard proof of the (non-relative) Krylov-Bogliubov theorem [76]. The
Hahn-Banach argument requires no dynamical assumptions at all, whereas our argument relies on the
dynamical setting to make the argument somewhat more constructive. We state it only for ergodic
measures on shift spaces; the argument goes through for any continuous transformation of a compact
metric space, and it easily generalizes to any σ-invariant measure by convexity.

Lemma 3.4.5. Let X and Y be shift spaces, let π : X → Y be a factor code, and let ν be a σ-invariant
measure on Y . Then there exists a σ-invariant measure µ on X with π∗µ = ν. If ν is ergodic then µ
can be chosen to be ergodic as well.

Proof. Let y ∈ Y be a generic point with a preimage x ∈ X, and let νn = 1
n

∑n−1
k=0 δy ◦ σ−k be the nth

empirical measure for y. By the ergodic theorem, νn converges to ν in the weak-∗ topology. Similarly,
let µn = 1

n

∑n−1
k=0 δx ◦ σ−k, and appeal to compactness to extract a weak-∗ convergent subsequence

with limit µ. It is not hard to see that µ must be σ-invariant (since ∥µn−µn ◦σ∥TV ≤ 2/n). Moreover,
since νn = π∗µn and the pushforward operation is continuous, we conclude that π∗µ = ν. The fact
that µ can be chosen to be ergodic follows by a standard convexity argument (see [70], Chapter 8).

Lemma 3.4.6. Let X be an irreducible shift of finite type, Y a sofic shift, and π : X → Y a finite-to-
one factor code. Let f : Y → R be a function with summable variation, that is, f ∈ SV(Y ), and let ν be
an equilibrium measure for f . Then any σ-invariant measure µ on X with π∗µ = ν is an equilibrium
measure is an equilibrium measure µ for f ◦ π; in particular, there exists an equilibrium measure µ for
f ◦ π ∈ SV(X) with π∗µ = ν. If ν is ergodic, then µ can be chosen to be ergodic as well.

Proof. By Lemma 3.4.5, there exists a σ-invariant measure µ on X with π∗µ = ν, and we can choose
µ to be ergodic whenever ν is ergodic. We now show that any such µ is an equilibrium measure for
f ◦ π. Since π is finite-to-one, the Abramov-Rokhlin formula [1] shows that h(µ) = h(ν). Then

h(µ) +

∫
X

f ◦ π dµ = h(ν) +

∫
Y

f dν = PY (σ, f)
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We need to show that PX(σ, f ◦ π) = PY (σ, f). Clearly PX(σ, f ◦ π) ≥ PY (σ, f), so we only need the
reverse inequality. Let λ be any σ-invariant measure on X. Again h(π∗λ) = h(λ) by the Abramov-
Rokhlin formula, so we have

h(λ) +

∫
X

f ◦ π dλ = h(π∗λ) +

∫
Y

f dπ∗λ ≤ PY (f)

Therefore PX(σ, f ◦ π) = PY (σ, f), so µ is indeed an equilibrium measure for f ◦ π.

We can now state and prove the first main result of this section.

Theorem 3.4.7 (Lanford-Ruelle theorem for irreducible sofic shifts). Let Y be an irreducible sofic
shift and let f : Y → R be a potential with summable variation, that is, f ∈ SV (Y ). Let ν be an
equilibrium measure for f . Then ν is a Gibbs measure for f .

Proof. Since Y is an irreducible sofic shift, there exist an irreducible shift of finite type X and an
almost invertible factor code π : X → Y , for instance the minimal right-resolving presentation ([49],
§3.3, §9.2).

Suppose first that ν is ergodic. By Lemma 3.4.6, there exists an ergodic equilibrium measure µ for
f ◦ π such that ν = π∗µ. Then, by Theorem 3.4.3, µ is a Gibbs measure for f ◦ π, and by Proposition
3.4.4, µ has full support. Then, by Proposition 3.3.7, which requires ergodicity and full support, ν is
a Gibbs measure for f .

The general result follows from the ergodic case via the Krein-Milman theorem [70], together with
the compactness and convexity of the sets of Gibbs and equilibrium measures [42] and the fact that
the extreme points of these sets are precisely their ergodic elements.

We now change course and proceed towards a Dobrushin type theorem for irreducible sofic shifts,
which is the second main result of this section.

Lemma 3.4.8. Let X be an irreducible shift of finite type of period p, partitioned into p cyclically
moving classes Xi, 0 ≤ i ≤ p − 1. Then any TX-equivalence class is contained in a single cyclically
moving class. That is, if x ∈ Xi and x

′ ∈ Xj with (x, x′) ∈ TX , then i = j.

Proof. Suppose without loss of generality that X is an edge shift with alphabet A = B1(X). Then A
can be partitioned into p subsets Ai, 0 ≤ i ≤ p− 1, corresponding to the cyclically moving classes Xi,
such that for any x ∈ X, x ∈ Xi if and only if x ∈ Ai. Thus for x, x′ ∈ X, if xn = x′n for some n,
then x, x′ are in the same cyclically moving class. But if (x, x′) ∈ TX then xn = x′n for all but finitely
many n, so in particular x and x′ are in the same cyclically moving class.

Lemma 3.4.9 (Dobrushin theorem for irreducible shifts of finite type). Let X be an irreducible shift
of finite type and f : X → R be a potential with summable variation, that is f ∈ SV (X). Then every
σ-invariant Gibbs measure for f is an equilibrium measure for f .

Proof. Let X have period p and let X0, . . . , Xp−1 be the cyclically moving classes of X as in the proof
of Proposition 3.4.4. Note that each Xi, 0 ≤ i ≤ p − 1 is TX -invariant and that we can regard each
one as a mixing shift of finite type with alphabet a subset of Bp(X), so that it is meaningful to speak
of the Gibbs relations TXi

. Moreover, since each class Xi is TX -invariant, we have for each i that TXi

is simply the restriction of TX to Xi ×Xi.
Let µ be a Gibbs measure for f and µ′ be the normalized restriction of µ of X to X0, i.e., µ

′(E) =
pµ(E) for any Borel set E ⊆ X0. Lemma 3.4.8 shows that every holonomy ψ : A→ B of TX restricts
to a holonomy ψ0 : A ∩X0 → B ∩X0 of the relation TX0 . Moreover, every holonomy of TX0 clearly
arises as such a restriction: if ψ0 is a holonomy of TX0

, ψ0 = ψ|X0
where ψ|Xi

= σi◦ψ0◦σ−i. Therefore

the measure µ′ inherits the Gibbsianness of µ, with respect to Rpf =
∑p−1
j=0 f ◦ σj . Since each Xi,
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0 ≤ i ≤ p− 1 is a mixing shift of finite type, therefore strongly irreducible, Theorem 3.4.2 shows that
µ′ is an equilibrium measure for Rpf . As in the proof of Proposition 3.4.4, we have

hX(µ) +

∫
X

f dµ =
1

p

(
hX0(µ

′) +

∫
X0

Rpf dµ
′
)
,

which concludes that µ is an equilibrium measure for f .

The next corollary generalizes Proposition 3.3.7 from almost invertible codes to finite-to-one codes,
in the case of a cocycle induced by a sufficiently regular potential. As discussed in §3.3, the proof
technique that we used for Proposition 3.3.7 does not generalize to higher degrees. To obtain Corollary
3.4.10, we apply Theorem 3.4.7, even though the statement of Corollary 3.4.10 does not mention
equilibrium measures explicitly.

Corollary 3.4.10 (preservation of Gibbsianness for finite-to-one factor codes). Let X be an irreducible
shift of finite type and Y an irreducible sofic shift. Let π : X → Y be a finite-to-one factor code, let
f : Y → R be a potential with summable variation, that is, f ∈ SV (Y ), and let µ be a σ-invariant
Gibbs measure for f ◦ π. Then ν = π∗µ is a Gibbs measure for f .

Proof. First note that µ is an equilibrium measure for f ◦ π by Lemma 3.4.9. Since π is finite-to-one,
ν is an equilibrium measure for f ([78], Lemma 4.4), so by Theorem 3.4.7, ν is Gibbs for f .

While Corollary 3.4.10 may look like it generalizes Proposition 3.3.7 in that µ need no longer be
ergodic and π need no longer have degree one. However, the cocycle in Proposition 3.3.7 need not a
priori be induced by the pullback of a potential with summable variation. Corollary 3.4.10 therefore
generalizes Proposition 3.3.7 only in this special case.

Theorem 3.4.11 (Dobrushin theorem for irreducible sofic shifts). Let Y be an irreducible sofic shift
and let f : Y → R be a potential with summable variation, that is, f ∈ SV (Y ). Let ν be a σ-invariant
Gibbs measure for f . Then ν is an equilibrium measure for f .

Proof. First suppose that ν is ergodic. Let π : X → Y be the minimal right-resolving presentation of
Y . By Lemma 3.3.10, there exists an ergodic σ-invariant Gibbs measure µ for f ◦ π with π∗µ = ν.
By Lemma 3.4.9, µ is an equilibrium measure for f ◦ π. Finally, again by Lemma 4.4 in [78], ν is an
equilibrium measure for f . The result for general (not necessarily ergodic) ν follows from the ergodic
case by compactness and convexity as in the proof of Theorem 3.4.7.

Taken together, Theorems 3.4.7 and 3.4.11 show that for a potential with summable variations on
an irreducible sofic shift, the equilibrium measures are precisely the σ-invariant Gibbs measures.

Finally, we can use Theorem 3.4.11 to generalize Proposition 3.3.10 from almost invertible to finite-
to-one codes, in the same special case for which Corollary 3.4.10 generalizes Proposition 3.3.7.

Corollary 3.4.12 (lifting Gibbs measures through almost invertible factor codes). Let X be an irre-
ducible shift of finite type and Y an irreducible sofic shift. Let π : X → Y be a finite-to-one factor code,
let f : Y → R be a potential with summable variation, that is, f ∈ SV (Y ), and let ν be a σ-invariant
Gibbs measure for f . Then there exists a σ-invariant Gibbs measure µ for f ◦ π with π∗µ = ν.

Proof. By Theorem 3.4.11, ν is an equilibrium measure for f . By Lemma 3.4.6, there is an equilibrium
measure µ for f ◦ π with π∗µ = ν. By Theorem 3.4.3, µ is a Gibbs measure for f ◦ π, and is certainly
σ-invariant.

In closing, we note that it is an open problem to determine the existence of a finite-to-one factor
code from a given shift of finite type X onto a given sofic shift Y , as in the hypotheses of Corollaries
3.4.10 and 3.4.12. Equal entropy is necessary, but there are additional necessary conditions; see [49],
§12.2.
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Chapter 4

The road problem and homomorphisms of directed graphs

4.1 Introduction

In §4.2, we recall and adapt standard material on graphs and homomorphisms. In §4.3, we define the
stability relation for a right-resolver, give its main structural properties, and relate it to synchroniza-
tion. In §4.4, we recall from [6] the connection between the road problem and the O(G) conjecture,
and state our generalization of the road colouring theorem.

In §4.5, we introduce the concepts of bunchiness and almost bunchiness and present results involving
them, including the O(G) conjecture for bunchy and almost bunchy graphs and the universal property
of the fiber product. In §4.6, we pose the bunchy factor conjecture, which has several equivalent
formulations, and discuss its relation to the O(G) conjecture and the road problem. In §4.7, we
give polynomial-time algorithms for construction and decision problems involving right-resolvers, and
discuss the algorithmic implications of the O(G) and bunchy factor conjectures.

The proofs of many results in §§4.2–4.7, comprising the structural properties of right-resolvers, are
deferred to §4.8. The proof of our generalization of the road colouring theorem is deferred to §4.9.

4.2 Graphs and graph homomorphisms

4.2.1 Basic definitions

We take all graphs to be finite and directed. A graph G consists of a set V (G) of states, or vertices,
and a set E(G) of edges, together with a pair of maps s, t : E(G) → V (G) giving the source and target
of each edge. Loops (edges e with s(e) = t(e)) and parallel edges (distinct edges e, e′ with s(e) = s(e′),
t(e) = t(e′)) are allowed. For I ∈ V (G), we write EI(G) = s−1(I) for the set of outgoing edges from I.
We write F (I) = t(EI(G)) for the set of follower states of I, and we write EIJ(G) = s−1(I) ∩ t−1(J)
for the set of edges from I to J . We write L(G) for the language of G, i.e. the set of finite edge
paths in G, i.e. e1e2 . . . en where t(ei) = s(ei+1), 1 ≤ i ≤ n− 1. We also refer to elements of L(G) as
words. The maps s, t extend to s, t : L(G) → V (G) by s(e1 . . . en) = s(e1), t(e1 . . . en) = t(en). We
define LI(G) = {u ∈ L(G) | s(u) = I}, and LIJ(G) = {u ∈ LI(G) | t(u) = J}. A cycle in G is a path
u ∈ L(G) with s(u) = t(u), i.e. an element of LII(G) for some I ∈ V (G).

A graph homomorphism Φ : G → H is a pair of maps Φ : E(G) → E(H), ∂Φ : V (G) → V (H)
such that s ◦ Φ = ∂Φ ◦ s and t ◦ Φ = ∂Φ ◦ t. If there is a surjective homomorphism from G to H,
then we say that H is a factor of G, and that G is an extension of H. Observe that every factor of a
strongly connected graph is strongly connected. A graph homomorphism Φ : G → H induces a map
L(G) → L(H) (also written Φ) in the obvious way.

A graph isomorphism is a homomorphism that is injective and surjective (i.e. on both edges and
states), and an automorphism of a graph G is an isomorphism from G to itself. We denote the group
of automorphisms of G by Aut(G), and by P (G) the (normal) subgroup of Aut(G) which acts trivially
on states and permutes parallel edges. We generally identify isomorphic graphs, and use the symbol
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= to denote isomorphism, except when discussing algorithms for deciding isomorphism, or confirming
that the automorphism group of a given graph is trivial.

We now introduce the class of homomorphisms with which we are concerned.

Definition 4.2.1 (right-resolver). Let G,H be graphs. Let Φ : G → H be a surjective graph ho-
momorphism. We say that Φ is right-resolving, or is a right-resolver, if, for each I ∈ V (G), the
restriction Φ|EI(G) : EI(G) → E∂Φ(I)(H) is a bijection. We denote the set of right-resolvers G → H
by homR(G,H), and we write H ≤R G if homR(G,H) ̸= ∅.

Remark 4.2.1. The term “right-resolving” comes from symbolic dynamics, where the words are of
primary importance and the actual graph is secondary. A graph homomorphism Φ : G → H is
right-resolving if and only if the associated map Φ : L(G) → L(H) satisfies a certain condition on
the symbols (edges) appearing to the right of a given symbol in a word. See [6], §8.2 for details if
interested.

Remark 4.2.2. The class of right-resolving graph homomorphisms is closed under composition. This
reduces to the fact, applied to the outgoing edges from each state, that a composition of bijections is
a bijection. This means that the relation ≤R is transitive, and since the graphs are finite, it is clearly
antisymmetric, so it is indeed a partial order on the set of all graphs (really on the set of equivalence
classes of graphs up to isomorphism).

The following lemma is evident but we state it explicitly for future reference.

Lemma 4.2.3. The image of a right-resolver is determined up to graph isomorphism by the partition
of the domain into fibers. That is, if H1, H2 ≤R G via Φi ∈ homR(G,Hi), and for any I1, I2 ∈ V (G)
we have ∂Φ1(I1) = ∂Φ1(I2) if and only if ∂Φ2(I1) = ∂Φ2(I2), then in fact the Hi are isomorphic.

Note that the converse is not true: for a given G,H with H ≤R G, there may exist Φ,Φ′ ∈
homR(G,H) with distinct partitions {(∂Φ)−1(I) | I ∈ V (H)}, {(∂Φ′)−1(I) | I ∈ V (H)} of V (G). How-
ever, this cannot occur when H is ≤R-minimal:

Theorem 4.2.4 ([6], Theorem 3.2 and Corollary 3.3(a)). For any graph G, there exist a unique ≤R-
minimal graph M(G) ≤R G and a unique map ΣG : V (G) → V (M(G)) such that ∂Φ = ΣG for any
Φ ∈ homR(G,M(G)).

The construction of M(G) was first given in [25], though not in this notation. We discuss the proof
of Theorem 4.2.4 in §4.8.1. The notion of M(G), for a graph G, provides context for road colourings:

Definition 4.2.2 (MD and road colourings). For D ≥ 1, let MD be the graph with a single state
and D self-loops. For a graph G of constant out-degree D, a road colouring of G is a right-resolver
G→MD.

Note that each MD is ≤R-minimal, and that homR(G,MD) is nonempty if and only if G has
constant out-degree D, in which case M(G) =MD.

4.2.2 Subgraphs and connectedness

A sink in a graph G is a state I ∈ V (G) is a state with no outgoing edges, i.e. F (I) = ∅. We
assume throughout that all graphs are sink-free; this is purely for convenience, as all of the results
that do not require strong connectedness can be proved for graphs with sinks, with routine but tedious
modifications to the proofs. We say that a graph G is strongly connected, or irreducible, if for any
ordered pair I, J ∈ V (G), there is a (directed) edge path in G from I to J , i.e. LIJ(G) ̸= ∅. Note that
strongly connected graphs are sink-free. The period per(G) of a strongly connected graph G is the gcd
of its cycle lengths.

A graph H is a subgraph of a graph G if E(H) ⊆ E(G), V (H) ⊆ V (G), and the maps s, t with
respect to H agree with their counterparts on G, restricted to H. An induced subgraph of a graph G
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is a subgraph H such that EIJ(H) = EIJ(G) for every I, J ∈ V (H). A strong component of a graph
is a maximal strongly connected subgraph, i.e. a strongly connected subgraph that is not a proper
subgraph of another strongly connected graph.

A principal subgraph of a graph G is a subgraph H such that EI(H) = EI(G) for every I ∈ V (H).
Note that every principal subgraph is induced. Note also that if H is a principal subgraph of G, and
K is a principal subgraph of H, then K is a principal subgraph of G. A principal component is a
strongly connected principal subgraph; note that the principal components are precisely the minimal
principal subgraphs. In particular, any two principal components of a given graph have disjoint sets
of states. The principal components of G correspond to the sink states in the condensation of G,
which is the directed acyclic graph in which the states are the strong components, or maximal strongly
connected subgraphs, of G, and with an edge C1 → C2 in the condensation if there is an edge I1 → I2
for Ii ∈ V (Ci) in G.

Let G,H be graphs with H ≤R G, and let Φ ∈ homR(G,H). Let K be a subgraph of G. Note,
by the right-resolving property, that in order for Φ|K : K → H to be surjective, it is necessary and
sufficient that ∂Φ|V (K) : V (K) → V (H) be surjective and that K be a principal subgraph of G.

Remark 4.2.5. The road problem and the O(G) problem were both originally raised for strongly
connected graphs, which is a natural restriction given the origins of both problems in the ergodic
theory of stationary Markov chains. Moreover, strong connectedness is used in an important way in
a lemma used to prove both the road colouring theorem and the almost bunchy case of the bunchy
factor conjecture. This is why the O(G) conjecture and the bunchy factor conjecture are stated only
for strongly connected graphs.

However, it is quite natural from an automata-theoretic perspective, especially concerning compu-
tational complexity, to consider graphs that are not strongly connected. For instance, Eppstein [29]
shows that it is NP-complete to determine whether the minimum length of a synchronizing word for a
given synchronizing DFA is at most some given value. Eppstein’s examples are not strongly connected.

4.3 Stability and synchronization

4.3.1 Transitions, stability, and synchronization

A right-resolver on a graph G induces transition maps on V (G) in the standard way:

Definition 4.3.1 (transition map). Let G,H be graphs with H ≤R G. Let Φ ∈ homR(G,H). For
I ∈ V (G) and u ∈ L∂Φ(I)(H), we write I · u for the terminal state t(γ) of the unique γ ∈ LI(G) with
Φ(γ) = u. That is, I · u = t((Φ|LI(G))

−1(u)). We denote by SΦ the set of maps of the form I 7→ I · u
with respect to Φ.

We now introduce the notion of a congruence (see [14], Chapter 1, or [39], §3), of which we will
see two important examples. The main example will be the stability relation, but we will also use a
congruence in Proposition 4.8.7 to construct the maximal bunchy factor B(G) of a given graph G.

Definition 4.3.2 (congruences and quotients). LetG,H be graphs withH ≤R G, let Φ ∈ homR(G,H),
and let ∼ be an equivalence relation on V (G). We say that ∼ is a congruence with respect to Φ if
it is invariant under transitions, i.e. for all I ∈ V (H), all u ∈ LI(H), and all I1, I2 ∈ (∂Φ)−1(I)
with I1 ∼ I2, we have I1 · u ∼ I2 · u. We “overload” a congruence ∼ by defining it also on paths (in
particular, edges), by saying that γ1 ∼ γ2, for γ1, γ2 ∈ L(G), if Φ(γ1) = Φ(γ2) and s(γ1) ∼ s(γ2).
Define the quotient graph G/ ∼ by V (G/ ∼) = V (G)/ ∼, E(G/ ∼) = E(G)/ ∼, s([e]∼) = [s(e)]∼, and
t([e]∼) = [t(e)]∼.

Remark 4.3.1. Let G,H be graphs with H ≤R G, let Φ ∈ homR(G,H), and let ∼ be a congruence on
G with respect to Φ. Observe that there are right-resolvers G→ G/ ∼, G/ ∼→ H which compose to
Φ, where the right-resolver G → G/ ∼ is the quotient map, and the right-resolver G/ ∼→ H takes a
∼ class to the image in H of any of its representatives.
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Remark 4.3.2. The coarsest congruence, with respect to a right-resolver Φ ∈ homR(G,H), is the total
relation on the fibers, i.e. the relation

⊔
I∈V (H)((∂Φ)

−1(I))2. The quotient of G by this relation is
simply H, with Φ as the quotient map.

Definition 4.3.3 (stability relation for a right-resolver). Let G,H be graphs with H ≤R G and let
Φ ∈ homR(G,H). The stability relation for Φ, written ∼Φ, is the equivalence relation on V (G) defined
as follows: for I ∈ V (H) and I1, I2 ∈ (∂Φ)−1(I), I1 ∼Φ I2 if and only if for all u ∈ LI(H), there exists
v ∈ Lt(u)(H) such that I1 · uv = I2 · uv.

Lemma 4.3.3. Let G,H be graphs with H ≤R G and let Φ ∈ homR(G,H). The stability relation ∼Φ

is a congruence with respect to Φ.

Proof. Let I ∈ V (H) and I1, I2 ∈ (∂Φ)−1(I) with I1 ∼Φ I2. Let u ∈ LI(H) and let v ∈ Lt(u)(H).
Since I1 ∼Φ I2, there exists w ∈ Lt(v)(H) such that I1 · uvw = I2 · uvw. Therefore I1 · u ∼Φ I2 · u, so
∼Φ is indeed a congruence.

We now define synchronizing right-resolvers in terms of the stability relation, then show in Propo-
sition 4.3.4 that, at least in the strongly connected case, this definition is equivalent to a more obvious
notion of synchronization for a right-resolver.

Definition 4.3.4 (synchronizer). Let G,H be graphs with H ≤R G and let Φ ∈ homR(G,H). We
say that Φ is synchronizing, or is a synchronizer, if each fiber (∂Φ)−1(I), I ∈ V (H), is a ∼Φ class. We
denote the set of synchronizers G→ H by homS(G,H), and we write H ≤S G if homS(G,H) ̸= ∅.

Note that ∼Φ depends on Φ only through SΦ. That is, if Φ,Φ′ are such that SΦ = SΦ′ , then
∼Φ=∼Φ′ .

Proposition 4.3.4. Let G,H be graphs with H ≤R G and let Φ ∈ homR(G,H). Then Φ is synchro-
nizing if and only if for every I ∈ V (H), there exists u ∈ LI(H) with |(∂Φ)−1(I) · u| = 1.

Proof. First, suppose that Φ is synchronizing and let I ∈ V (H). If |(∂Φ)−1(I)| = 1, then we are done.
Otherwise, there exist at least two distinct states I1, I2 ∈ (∂Φ)−1(I), and I1 ∼Φ I2 since (∂Φ)−1(I) is
a ∼Φ class by assumption. Therefore, there exists u1 ∈ LI(H) with I1 · u1 = I2 · u1. In particular,
|(∂Φ)−1(I) ·u1| < |(∂Φ)−1(I)|. Continuing inductively, we can produce a sequence of words u1, . . . , un
such that t(ui) = s(ui+1) and |(∂Φ)−1(I) · u1 · · ·un| = 1. This proves the first claim.

For the converse, let I ∈ V (H) and I1, I2 ∈ (∂Φ)−1(I). We will show that I1 ∼Φ I2. Let v ∈ LI(H)
be arbitrary. By the assumption that each fiber can be collapsed to a single state, let w ∈ Lt(v)(H) be
such that |(∂Φ)−1(t(v)) ·w| = 1. Then |(∂Φ)−1(I) ·vw| = 1; in particular, I1 ·vw ∼Φ I2 ·vw. Therefore
(∂Φ)−1(I) is a ∼Φ class, and Φ is synchronizing.

We now summarize the structure of stability, in the sense of its behaviour with respect to compo-
sition of right-resolvers. For the proof of Theorem 4.3.5, see §4.8.2.

Theorem 4.3.5. Let G,K,H be graphs with H ≤R K ≤R G. Let Ψ ∈ homR(G,K), ∆ ∈ homR(K,H),
and let Φ = ∆ ◦Ψ.

1. The ∼Ψ classes in V (G) are the intersections of ∼Φ classes with ∂Ψ fibers. In particular, Ψ is
synchronizing if and only if every ∂Ψ fiber is contained in a ∼Φ class.

2. If K = G/ ∼Φ and Ψ is the quotient map for ∼Φ, then Ψ is synchronizing and ∼∆ is trivial.

3. If ∼∆ is trivial, then ∼Φ=∼Ψ.

4. Φ is synchronizing if and only if both Ψ and ∆ are synchronizing.

The following observation follows immediately from Theorem 4.3.5(4).
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Corollary 4.3.6. The relation ≤S is transitive, and is thus a partial order on the class of graphs
(again, really isomorphism classes of graphs), refining the partial order ≤R.

Conjecture (O(G) conjecture, Question 4.6 in [6]). Let G be a strongly connected graph. Then the
set of graphs H with H ≤S G has a unique ≤S-minimal element O(G).

Remark 4.3.7. This remark is intended for readers interested in algebraic or categorical perspectives
on automata theory. Recall that for a complete DFA, or road colouring Φ ∈ homR(G,MD), where G
is a graph of constant out-degree D, the set SΦ of transition maps forms a transformation semigroup
under composition. Indeed, a complete DFA is essentially a finite transformation semigroup together
with a choice of generators; this perspective is taken explicitly in [5, 21] and mentioned in [61], the
first paper on the road problem after [2].

For a general right-resolver Φ ∈ homR(G,H), one could see SΦ as the semigroup of transitions of
a partial finite automaton (PFA), where a given transition is defined only on a single fiber. However,
it is more helpful to see SΦ as a semigroupoid (equivalently, if the empty word is included, a small
category). One reason is that, as we show in §4.7, it can be decided in polynomial time whether Φ
is synchronizing, and the length of a word synchronizing a given fiber is bounded by a polynomial
in |V (G)|. This is in contrast to the high level of complexity typical of related problems in subset
synchronization and synchronization of PFAs [13, 75].

The reader may verify as an exercise, generalizing Cayley’s theorem or specializing the Yoneda
lemma, that every finite semigroupoid is isomorphic to SΦ for some graphs G,H (although possibly
with sinks) and some Φ ∈ homR(G,H), with appropriate generalizations to the infinite case. Moreover,
just as every group is a quotient of a free group, SΦ is a quotient of the free semigroupoid L(H).

4.3.2 Sufficient conditions for stability

We now give a pair of sufficient conditions for nontrivial stability, both of which are used in the proof
of the road colouring theorem and one of which is also used in §4.5 to obtain a right-resolver with
nontrivial stability on an almost bunchy graph.

The first condition involves a special case of the operation known as in-amalgamation ([49], §2.4):

Lemma 4.3.8. Let G,H be graphs with H ≤R G and let Φ ∈ homR(G,H) be a right-resolver. Let
I ∈ V (H). Suppose that there exist I1, I2 ∈ (∂Φ)−1(I) such that |EI1J(G)| = |EI2J(G)| for all
J ∈ V (G). Then there exists Φ′ ∈ homR(G,H) such that I1 ∼Φ′ I2.

Proof. We first claim that F (I1) = F (I2), where we recall from §4.2 the notation F (·) for the set of
follower states of a given state. Indeed, the assumption that |EI1J(G)| = |EI2J(G)| for all J ∈ V (G)
implies in particular that, for any V (G), we have |EI1J(G)| > 0, equivalently J ∈ F (I1), if and only
|EI2J(G)| > 0, equivalently J ∈ F (I2).

Let F = F (I1) = F (I2). For each J ∈ F , choose a bijection ΘJ : EI2J(G) → EI1J(G). Define Φ′ as
follows: ∂Φ′ = ∂Φ, Φ′|E(G)\EI2

(G) = Φ|E(G)\EI2
(G), and, for each J ∈ F , Φ′|EI2J (G) = Φ|EI1J (G) ◦ΘJ .

That is, Φ′ agrees with Φ on states and on all edges with initial state other than I2, but may disagree
with Φ on the outgoing edges from I2, specifically by permutations of parallel edges. Since Φ′|EI2

(G) :
EI2(G) → EI(G) is a bijection (being a composition of bijections), Φ′ is indeed right-resolving.

By the construction of Φ′, for any a ∈ EI(G), we have I1 ·a = I2 ·a. Any w ∈ LI(H) is of the form
w = au with a ∈ EI(G), so I1 · w = I2 · w. Therefore I1 ∼Φ′ I2.

In Lemma 4.3.8, the states I1, I2 are said to be in-amalgamated by the operation G→ G/ ∼Φ′ ; the
inverse operation is known as in-splitting. The lemma shows in particular that no fiber of a ≤S-minimal
graph G over M(G) has two states that can be in-amalgamated. Trahtman applies a special case of
this fact to graphs of constant out-degree, and we follow his line of application; see the first paragraph
of the proof of Theorem 4.4.3, found in §4.9.2.

The second sufficient condition, given in Proposition 4.3.12, concerns minimal images:
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Definition 4.3.5 (minimal image). Let G,H be graphs with H ≤R G, and let Φ ∈ homR(G,H). A
minimal image is a set of the form U = (∂Φ)−1(I) · u for some I ∈ V (H) and u ∈ LI(H), such that
|U · v| = |U | for any v ∈ Lt(u)(H).

Remark 4.3.9. Let G,H be graphs with H ≤R G, and let Φ ∈ homR(G,H). For any I ∈ V (H), any
u ∈ LI(H), and any v ∈ Lt(u)(H), if U = (∂Φ)−1(I) · u, we clearly have |U · v| ≤ |U |. If there exists
v ∈ Lt(u)(H) such that this inequality is strict, then |U | is not minimal, i.e. U is not a minimal image.
This is the reason for the term.

For a right-resolver Φ on a strongly connected graph, all minimal images have the same size, which
is called the degree of Φ, and a word with minimal image is called a magic word. See [6], §9.1 for a
treatment of degrees, using symbolic dynamics. In this chapter, we only need a small fragment of the
theory of degree, which we establish in a self-contained way with no connectedness assumptions, using
the properties of stability.

We use minimal images to give a criterion for stability that can be seen as a pairwise version of
Proposition 4.3.4.

Lemma 4.3.10. Let G,H be graphs with H ≤R G, and let Φ ∈ homR(G,H). For I ∈ V (H) and
I1, I2 ∈ (∂Φ)−1(I), we have I1 ∼Φ I2 if and only if I1 · u = I2 · u for every word u ∈ LI(H) such that
(∂Φ)−1(I) · u is a minimal image.

Proof. Let I ∈ V (H) and let I1, I2 ∈ (∂Φ)−1(I). First suppose that I1 ∼Φ I2, and let u ∈ LI(H). If
I1 ·u ̸= I2 ·u, then let v ∈ Lt(u)(H) be such that I1 ·uv = I2 ·uv. Then |(∂Φ)−1(I) ·uv| < |(∂Φ)−1(I) ·u|,
so (∂Φ)−1(I) · u is not a minimal image. Contrapositively, if (∂Φ)−1(I) · u is a minimal image, then
I1 · u = I2 · u.

Conversely, suppose that I1 · u = I2 · u for every word u ∈ LI(H) such that (∂Φ)−1(I) · u is a
minimal image. Let r = minu∈LI(H) |(∂Φ)−1(I) · u| and let u ∈ LI(H). We claim that there exists
w ∈ Lt(u)(H) with I1 ·uw = I2 ·uw. Indeed, if I1 ·u ̸= I2 ·u, then (∂Φ)−1(I) ·u is not a minimal image,
so there exists v ∈ Lt(u)(H) such that |(∂Φ)−1(I) · uv| < |(∂Φ)−1(I) · u|. We can thus inductively
extend v to obtain the desired w, so indeed I1 ∼Φ I2.

The following easy observation about minimal images is the main reason that our results toward
the bunchy factor conjecture (the generalized road colouring theorem and the related result for almost
bunchy graphs) require strong connectedness.

Lemma 4.3.11. Let G,H be strongly connected graphs with H ≤R G, and let Φ ∈ homR(G,H). Every
minimal image for Φ has the same cardinality, and for every I ′ ∈ V (G), there exists a minimal image
U with I ′ ∈ U .

In the proof of the generalized road colouring theorem, we apply Lemma 4.3.11 both directly and
via Proposition 4.3.12. The proof of Proposition 4.3.12 is adapted from the proof of Lemma 10.4.4 in
[14].

Proposition 4.3.12. Let G,H be strongly connected graphs with H ≤R G and let Φ ∈ homR(G,H).
Let I, J ∈ V (H) and let u1, u2 ∈ LIJ(H) be such that Ui = (∂Φ)−1(I) · ui are minimal images. If
|U1∆U2| = 2, say U1∆U2 = {J1, J2} (where ∆ denotes the symmetric difference), then J1 ∼Φ J2.

Proof. Let r = |U1| = |U2|. Suppose without loss of generality that Ji ∈ Ui, and let U0 = U1 ∩ U2, so
that Ui = U0 ∪{Ji}. For any v ∈ LJ(H), we have (U1 ∪U2) · v = (U0 · v)∪ ({J1, J2} · v). We must have
|U0 · v| = |U0| = r− 1 and Ji · v /∈ U0 · v, since otherwise we would have |(∂Φ)−1(I) · uiv| = |Ui · v| < r,
contradicting the minimality assumption. Therefore r − 1 + |{J1, J2} · v| = |(U1 ∪ U2) · v|. Note that
|(U1 ∪ U2) · v| ∈ {r, r + 1}.

Let v ∈ LJ(H) be such that (∂Φ)−1(J) · v is a minimal image. By Lemma 4.3.10, to show that
J1 ∼Φ J2, we need to show that |{J1, J2} · v| = 1, or equivalently |(U1 ∪ U2) · v| ≤ r. By strong
connectedness and Lemma 4.3.11, we have |(∂Φ)−1(J) · v| = r. But (U1 ∪ U2) · v ⊆ (∂Φ)−1(J) · v, so
indeed |(U1 ∪ U2) · v| ≤ r.
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4.4 The O(G) conjecture and the road problem

4.4.1 Generalization of the road colouring theorem

We first introduce the class of graphs involved in the theorem. A bunch in a graph G is a state I ∈ V (G)
with |F (I)| = 1. (This terminology, introduced in [74] and used also in [14], is the origin of our term
bunchy, introduced in §4.5.) A strongly connected graph in which every state is a bunch is a cycle of
bunches. Let M be a cycle of bunches with V (M) = {I0, . . . , Ip−1}, where F (Ii) = {Ii+1} (subscripts
indexing states in a cycle of length p should be read modulo p throughout), and let Di = |EIi(M)|.
Note that M is ≤R-minimal if and only if the sequence of out-degrees D0, . . . , Dp−1 is not a cyclic
shift of a sequence obtained by concatenating a strictly shorter sequence with itself more than once.

Let M be a ≤R-minimal cycle of bunches. Let OM,q be the cycle of bunches in which the sequence
of out-degrees consists of q cyclic repetitions of D0, . . . , Dp−1. Note that OM,1 =M . Observe that, for
a strongly connected graph G with M = M(G) a cycle of bunches, if q = per(G)/per(M) and H is a
cycle of bunches with H ≤S G, then H = OM,q. Let OD,p = OMD,p be the cycle of bunches of period
p and constant out-degree D. Note that OD,1 = MD. For a strongly connected, aperiodic graph G
of constant out-degree D, a synchronizer G → MD is precisely a synchronizing road colouring of G
(recall Definition 4.2.2).

The road problem, posed in [2], was the problem of showing, in the notation and conceptual frame-
work of this chapter, that MD ≤S G for every strongly connected, aperiodic graph of constant out-
degree D. The problem was solved by Trahtman, and the statement of the solution is known as the
road colouring theorem:

Theorem 4.4.1 (Trahtman, [74]). Let G be a strongly connected, aperiodic graph of constant out-
degree D. Then MD ≤S G.

Theorem 4.4.2 (Béal-Perrin [10], Budzban-Feinsilver [21]). Let G be a strongly connected graph of
constant out-degree D and period p. Then OD,p ≤S G.

We prove the following generalization:

Theorem 4.4.3. Let G be a strongly connected graph such that M(G) is a cycle of bunches. Let
q = per(G)/per(M(G)). Then OM(G),q ≤S G.

The proof (see §4.9) follows that of Theorems 4.4.1 and 4.4.2. The strategy is to show that if
G is not itself a cycle of bunches, then there exists Φ ∈ homR(G,M(G)) with ∼Φ nontrivial, by
constructing two minimal images that differ by a pair and applying Proposition 4.3.12. A very similar
strategy is used to prove the bunchy factor conjecture for almost bunchy graphs (Corollary 4.5.8),
the (substantial) difference being the different techniques used to obtain the requisite pair of minimal
images.

4.4.2 The O(G) conjecture implies the road colouring theorem

We now recall the sense in which theO(G) conjecture was first understood to relate to the road problem.
Although the road colouring theorem clearly implies the O(G) conjecture for strongly connected,
aperiodic graphs of constant out-degree, the converse implication may not be apparent. Indeed, the
O(G) conjecture asserts that O(G) is well-defined for every strongly connected graph, but does not
immediately say how to compute O(G), whereas the road colouring theorem explicitly specifies the
form of O(G) for the graphs G to which it applies. However, the O(G) conjecture does imply the road
colouring theorem, via a key result from [2], for which we require a definition.

Definition 4.4.1 (higher edge graph). Let G be a graph. For k ≥ 2, the k-th higher edge graph of
G is the graph G[k] with edge set consisting of edge paths e1e2 · · · ek−1ek of length k in G, and states
given by s(e1e2 · · · ek−1ek) = e1e2 · · · ek−1, t(e1e2 · · · ek−1ek) = e2 · · · ek−1ek. We define G[1] = G.
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It is a standard result ([49], Chapter 2) that G ≤S G[k] for any strongly connected graph G and
any k ≥ 1. In our terminology, Adler-Goodwyn-Weiss showed the following:

Lemma 4.4.4 ([2], Lemma 4). Let G be a strongly connected, aperiodic graph of constant out-degree
D. Then for all sufficiently large k, we have MD ≤S G[k].

Together with an easy observation about partially ordered sets, the Adler-Goodwyn-Weiss result
shows that the O(G) conjecture implies the road colouring theorem.

Lemma 4.4.5. Let (P,⪯) be a partially ordered set such that, for any y ∈ P, there exists a unique
⪯-minimal element O(y) ⪯ y. If x ⪯ y, then O(x) = O(y).

Proposition 4.4.6 ([6]). Suppose that the O(G) conjecture is true. Let G be a strongly connected,
aperiodic graph of constant out-degree D. Then MD ≤S G.

Proof. Let k be large enough that MD ≤S G[k], by Lemma 4.4.4. Then in fact MD = O(G[k]). Since
G ≤S G[k] as well, the result follows by Lemma 4.4.5.

4.5 Bunchiness

In this section, we define and characterize the classes of bunchy and almost bunchy graphs, and
demonstrate the importance of bunchy graphs to the structural properties of right-resolvers.

4.5.1 Bunchy and almost bunchy graphs

We recall from Theorem 4.2.4, for a graph G, the notation ΣG : V (G) → V (M(G)) for the unique
state map among right-resolvers G→M(G).

Definition 4.5.1 (bunchy states and graphs). Let G be a graph. We say that a state I ∈ V (G) is
bunchy if ΣG|F (I) : F (I) → F (ΣG(I)) ⊆ V (M(G)) is a bijection. We say that G is bunchy if every
I ∈ V (G) is bunchy. We say that G is almost bunchy if for each I, J ∈ V (M), there exists at most one
I ′ ∈ Σ−1

G (I) such that |F (I ′) ∩ Σ−1
G (J)| ≥ 2.

Remark 4.5.1. The definition of almost bunchiness means that for every ordered pair of ΣG fibers in
G, say the fibers of states I, J ∈ V (M), there is at most one state in the fiber of I that does not “look
bunchy”, in the sense that it has non-parallel outgoing edges into the fiber of J . In other words, an
almost bunchy graph almost satisfies the conditions for bunchiness, but an exception is allowed for
each ordered pair of fibers.

The following is evident but we state it explicitly for reference:

Lemma 4.5.2. The classes of bunchy and almost bunchy graphs are closed under right-resolvers.
Moreover, if G is a bunchy graph and C is a principal subgraph of G with M(C) = M(G), then C is
also bunchy.

Remark 4.5.3. We briefly discuss examples of bunchy and almost bunchy graphs. The only strongly
connected bunchy graphs of constant out-degree are the cycles of bunches. For a given ≤R-minimal
cycle of bunches M with sequence of out-degrees D0, . . . , Dp−1, the only strongly connected bunchy
graphs G with M(G) =M are the graphs OM,q introduced in the previous section.

A strongly connected almost bunchy (but not bunchy) graph of constant out-degree is a graph with
a unique non-bunchy state, i.e. a state I with |F (I)| ≥ 2, together with a path from each element of
F (I) back to I. One example that has been considered in the literature is the graph Wn studied in
[4], first discussed in [77], and of interest due to its slow synchronization.

An almost bunchy graph G can have at most |V (M(G))|2 non-bunchy states, one for each ordered
pair of ΣG fibers. One way to obtain an almost bunchy graph is to start with a bunchy graph and
perform a sequence of in-splittings (recall Lemma 4.3.8, and see also [49], §2.4), but not all in-splittings
will preserve almost bunchiness, and not all almost bunchy graphs arise this way.
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Bunchy and almost bunchy graphs are characterized in terms of automorphisms, with an important
uniqueness consequence for the sets of transition maps induced on them by right-resolvers:

Proposition 4.5.4. A graph G is almost bunchy if and only if there is a unique right-resolver G →
M(G) up to permutations of parallel edges: that is, if and only if, for any Φ1,Φ2 ∈ homR(G,M(G)),
there exist σ ∈ P (G), τ ∈ P (M(G)) such that Φ1 = τ ◦ Φ2 ◦ σ. Moreover, G is bunchy if and only if
we can take τ = id regardless of Φ1,Φ2.

Proposition 4.5.5. Let G be an almost bunchy graph. Let Φ1,Φ2 ∈ homR(G,M(G)). Then SΦ1 =
SΦ2 . In particular, ∼Φ1 =∼Φ2 .

For the proofs of Propositions 4.5.4 and 4.5.5, see §4.8.3. The following definition is now justified.

Definition 4.5.2. Let G be an almost bunchy graph. We denote by ∼G the unique relation on V (G)
with ∼G=∼Φ for any Φ ∈ homR(G,M(G)).

4.5.2 Proof of the O(G) conjecture in the bunchy case

We now resolve the O(G) conjecture in the almost bunchy case (which includes the bunchy case). This
extends Corollary 4.3 in [6], which resolves the conjecture for graphs G such thatM(G) has no parallel
edges (so G is trivially bunchy). The proof here is quite different from the proof in the no-parallel-edges
case, and yields a polynomial-time algorithm (Algorithm 4.7.2) for constructing O(G).

Theorem 4.5.6. Let G be an almost bunchy graph and let H ≤S G. If H is ≤S-minimal, then
H = G/ ∼G. In particular, the set {K |K ≤S G} has a unique ≤S-minimal element O = G/ ∼G.

Proof. Let Ψ ∈ homS(G,H) and ∆ ∈ homR(H,M). We can naturally identify V (H) = V (G)/ ∼Ψ

by Lemma 4.2.3. The hypothesis that H is ≤S-minimal implies that ∼∆ is trivial, so ∼Ψ =∼∆◦Ψ
by Theorem 4.3.5(3). By Proposition 4.5.5, we have ∼∆◦Ψ =∼G. We can thus identify V (H) with
V (G)/ ∼G= V (G/ ∼G). Thus H = G/ ∼G by a second application of Lemma 4.2.3.

In the strongly connected case, we can apply Proposition 4.3.12, which is also used in the proof of
the road colouring theorem, to say more.

Proposition 4.5.7. Let G be a strongly connected almost bunchy graph. If G is not bunchy, then ∼G
is nontrivial.

Proof. Let I, J ∈ V (M(G)) and I ′ ∈ Σ−1
G (I) with |F (I ′) ∩ Σ−1

G (J)| ≥ 2. Let J1, J2 ∈ F (I ′) ∩ Σ−1
G (J),

J1 ̸= J2, and let ei ∈ EI′Ji(G). Let Φ ∈ homR(G,M(G)) and let ai = Φ(ei). By strong connectedness
and Lemma 4.3.11, there exists a minimal image U ⊆ Σ−1

G (I) with I ′ ∈ U . Let U0 = U \ {I ′}. Then
U0 ·a1 = U0 ·a2 since G is almost bunchy. Moreover, Ji = I ′ ·ai /∈ U0 ·ai (otherwise, minimality would
be contradicted). Thus (U · a1)∆(U · a2) = {J1, J2}. By Proposition 4.3.12, J1 ∼Φ J2.

Corollary 4.5.8. Let G be a strongly connected almost bunchy graph. Then O(G) is bunchy.

Proof. If |V (G)| = 1 then the claim is clearly true. Suppose that the conclusion is true for all almost
bunchy G with |V (G)| ≤R N , and let G be almost bunchy with |V (G)| = N + 1. If G is bunchy, then
O(G) is clearly bunchy by Lemma 4.5.2. If G is not bunchy, then ∼G is nontrivial by Proposition 4.5.7,
so |V (G/ ∼G)| ≤R N . Moreover, since G/ ∼G≤S G, it follows that O(G) = O(G/ ∼G) is bunchy by
the inductive hypothesis and Lemma 4.5.2.

4.5.3 Universal property of the fiber product

We recall a standard construction known as the fiber product, and derive several new properties. Chief
among these is the one exhibited in Theorem 4.5.12, which is an analogue of the universal property
often enjoyed by the fiber product, or pullback, in other categories (see e.g. [65], Definition 3.1.15 and
subsequent discussion).
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Definition 4.5.3 (fiber product). Let H1, H2,K be graphs and let Ψi : Hi → K be graph homomor-
phisms. The fiber product of Ψ1,Ψ2 is the graph P = H1 ×Ψ1,Ψ2

H2 where

V (P ) =
⊔

I∈V (K)

(∂Ψ1)
−1(I)× (∂Ψ2)

−1(I)

E(P ) = {(e1, e2) | ei ∈ E(Hi), Ψ1(e1) = Ψ2(e2)}

together with the coordinate projections Ψ̂i : P → Hi. We write ΨP = Ψi ◦ Ψ̂i : P → K.

Remark 4.5.9. To see that Ψ1 ◦ Ψ̂1 = Ψ2 ◦ Ψ̂2 and thus that ΦP is well-defined, note that for every
(I1, I2) ∈ V (P ) and every (e1, e2) ∈ E(I1,I2)(P ), we have, by the definition of P ,

Ψ1 ◦ Ψ̂1(e1, e2) = Ψ1(e1) = Ψ2(e2) = Ψ2 ◦ Ψ̂2(e1, e2)

Remark 4.5.10. Observe that the Ψ̂i are surjective (respectively, right-resolving) when the Ψi are surjec-
tive (respectively, right-resolving). Moreover, if C is a principal subgraph of P such that the restricted
state maps ∂Ψ̂i|V (C) : V (C) → V (Hi) are surjective, then Hi ≤R C, indeed Ψ̂i|C ∈ homR(C,Hi). In
particular, this condition is satisfied if the Hi are strongly connected and C is a principal component
of P .

Remark 4.5.11. Often the convention is taken that V (P ) = V (H1) × V (H2). However, all of the
elements of the full Cartesian product that are not elements of V (P ), as we have defined it, would be
isolated states, and in particular would be sinks. Our definition has the feature that the fiber product
of two sink-free graphs (or rather, of two right-resolvers defined on such graphs) is also sink-free.

We now state the universal property of the fiber product. Compare with a similar diagram in [6]
(p. 289). See §4.8.4 for the proof.

Theorem 4.5.12. Let H1, H2 be bunchy graphs with M(H1) =M(H2) =M . Let Ψi ∈ homR(Hi,M)
be right-resolvers, and let P = H1×Ψ1,Ψ2

H2. Let G be a common right-resolving extension of H1, H2 via
Φi ∈ homR(G,Hi). Then there exist a principal subgraph C of P and right-resolvers ∆i ∈ homR(G,C)
such that Φi = Ψ̂i ◦∆i and ∂∆1 = ∂∆2. In particular, Hi ≤R C ≤R G, with Ψ̂i|C ∈ homR(C,Hi).

Remark 4.5.13. The bunchiness hypothesis on the Hi cannot be dropped, as the following construction
illustrates. Let G be a graph and let Φ1,Φ2 ∈ Aut(G). In the notation of the the theorem, we will
take H1 = H2 = G. (Recall that any automorphism is right-resolving.) Let M = M(G). Let
Ψi ∈ homR(G,M) and P = G×Ψ1,Ψ2

G. Let C be a principal subgraph of P with Ψ̂i|V (C) surjective,
and let ∆i ∈ homR(G,C) with Φi = Ψ̂i|C ◦ ∆i. Then Ψ̂i|C and ∆i are isomorphisms, since they
compose to an isomorphism. In particular, since Ψ1 ◦ Ψ̂1|C = Ψ2 ◦ Ψ̂2|C , we have Ψ1 = Ψ2 ◦ τ where

τ = Ψ̂2|C ◦
(
Ψ̂1|C

)−1

is an isomorphism. In other words, any two elements of homR(G,M) agree up

to an automorphism of G. That condition always holds when G is bunchy (see Proposition 4.5.4), but
fails in general.

We now give two applications of the universal property. The first, Proposition 4.5.15, is applied in
Proposition 4.6.2, which is the main motivation for the bunchy factor conjecture. See §4.8.5 for the
proof of Lemma 4.5.14.

Lemma 4.5.14. Let H1, H2 be bunchy graphs with M(H1) = M(H2) = M . Let Ψi ∈ homR(Hi,M),
and let P = H1 ×Ψ1,Ψ2

H2. Then P is bunchy. In particular, if C is a principal subgraph of P such

that the restrictions ∂Ψ̂i|V (C) : V (C) → V (Hi) are surjective, then C is bunchy.

Proposition 4.5.15. Let G be a graph. Let H1, H2 ≤S G be bunchy. Then O(H1) = O(H2), i.e. G
has at most one ≤S-minimal bunchy synchronizing factor.
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Proof. Let M = M(G), let Φi ∈ homS(G,Hi), and let Ψi ∈ homR(Hi,M). Let P = H1 ×Ψ1,Ψ2
H2.

By Theorem 4.5.12, there is a principal subgraph C of P admitting ∆i ∈ homR(G,C) such that
Φi = Ψ̂i|C ◦ ∆i. Since each Φi is synchronizing, each restriction Ψ̂i|C is synchronizing as well, so
Hi ≤S C. Since C is bunchy by Lemma 4.5.14, we know that O(C) is well-defined, and thus, by
Lemma 4.4.5, we have O(H1) = O(C) = O(H2) as claimed.

For the second application of the universal property, recall that the only strongly connected bunchy
graphs of constant out-degree are the cycles of bunches. In particular, by the periodic road colouring
theorem, for any strongly connected graph G of constant out-degree D and period p, the unique
maximal bunchy right-resolving factor of G, namely OD,p, is a synchronizing factor of G (and is indeed
equal to O(G)). We now show that every graph G has a unique maximal bunchy right-resolving factor
B(G). The construction is similar to that of the auxiliary graph G̃ in [6], §5. See §4.8.5 for the proof,
as well as an explicit construction of B(G) yielding a polynomial-time algorithm (Algorithm 4.7.3).

Proposition 4.5.16. Let G be a graph.

(1) The set {H ≤R G |H is bunchy} has a unique ≤R-maximal element B = B(G).

(2) Let H ≤R G be bunchy and Φ ∈ homR(G,H). Then Φ factors through B, i.e. there exist
∆ ∈ homR(G,B), Θ ∈ homR(B,H) such that Φ = Θ ◦∆.

4.6 The O(G) conjecture and bunchy synchronizing factors

As we have seen, the O(G) conjecture holds for strongly connected graphs G such that M(G) is
a cycle of bunches, and for almost bunchy graphs (including the bunchy graphs) by Theorem 4.5.6.
Moreover, for strongly connected almost bunchy graphs, and strongly connected graphs that factor onto
cycles of bunches, we know that there is a bunchy synchronizing factor, which we show inductively
by assuming non-bunchiness and obtaining a right-resolver with a nontrivial stability relation. It
seems plausible that, if the O(G) conjecture is true, then it can be proven by a similar approach:
assume non-bunchiness, find a right-resolver with nontrivial stability relation, recursively find a bunchy
synchronizing factor, and apply Proposition 4.5.15. The next proposition gives several equivalent
formulations of the hypothesis that this approach can be made to work. See §4.8.6 for the proof.

Proposition 4.6.1. The following statements are equivalent.

(1) Any strongly connected ≤S-minimal graph is bunchy.

(2) For any strongly connected graph G, there exists some bunchy H ≤S G.

(3) For any non-bunchy strongly connected graph G, there exists some Φ ∈ homR(G,M(G)) with ∼Φ

nontrivial.

(4) For any strongly connected graph G, B(G) ≤S G.

Conjecture (bunchy factor conjecture). The assertions in Proposition 4.6.1 are true.

Proposition 4.6.2. The bunchy factor conjecture implies the O(G) conjecture.

Proof. Let G be a strongly connected graph and let A = {H |H ≤S G, H is ≤S-minimal}. Clearly
|A| ≥ 1. By hypothesis, every element of A is bunchy. By Proposition 4.5.15, |A| ≤ 1, so A has a
single element, namely O(G).

Observe that the bunchy factor conjecture is a straightforward generalization of the road problem.
As discussed above, the O(G) conjecture was already known to imply the road colouring theorem, via
the higher-edge result from [2]. By contrast, the bunchy factor conjecture implies the road colouring
theorem more directly, without reference to [2].
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4.7 Computing with right-resolvers

We now discuss the computational problems of constructing O(G1), O(G2), for input graphs G1, G2

such that the O(Gi) are known to exist, and deciding whether the O(Gi) are isomorphic. Although
one could apply generic graph isomorphism algorithms, which are efficient in practice (Theorem 1 in
[57] gives a polynomial-time reduction from directed to undirected graph isomorphism, and see [7] for
a survey of the state of the art), it is desirable to have a polynomial-time algorithm, in particular one
that only uses constructions involved in the theory of right-resolvers and synchronization. We do not
attempt detailed complexity analyses, noting only that all of the procedures we give can be easily seen
to run in polynomial time.

4.7.1 Basic routines

In [6], a polynomial-time algorithm is given for computing M(G), along with ΣG and a total order-
ing of V (M(G)) such that any graph isomorphism M(G) → M(H) must preserve the order of the
states. Deciding whether M(G), M(H) are isomorphic is therefore no harder than constructing them.
Moreover, we can use ΣG to construct right-resolvers, as follows.

Algorithm 4.7.1. Construct a right-resolver from a graph to its minimal right-resolving factor.

1. Input: a graph G.

2. Construct M(G) and ΣG.

3. For each I, J ∈ V (M(G)):

1. Choose a total ordering on EIJ(M).

2. For each I ′ ∈ Σ−1
G (I):

1. Choose a total ordering on
⋃
J′∈Σ−1

G (J)EI′J′(G), i.e. the edges e ∈ EI′(G) with

ΣG(t(e)) = J .

2. For each e ∈ EI′(G) with ΣG(t(e)) = J , record as Φ(e) the edge in EIJ(M) with the
same position in the total ordering of EIJ(M) as e has in

⋃
J′∈Σ−1

G (J)EI′J′(G).

4. Return: Φ.

There are also obvious polynomial-time procedures for constructing the fiber product of two right-
resolvers, and for determining whether there is a path from one given state to another (in a graph that
may not be strongly connected). With these basic routines, we can construct the stability relation of
a right-resolver in polynomial time, as follows.

Algorithm 4.7.2. Construct the stability relation of a right-resolver.

1. Input: graphs G,H, and Φ ∈ homR(G,H).

2. Construct P = G×Φ,Φ G.

3. Populate the set U of states (I1, I2) ∈ V (P ) with no outgoing path to the diagonal in V (P ).

4. Populate and output: the set ∼Φ of states (I1, I2) ∈ V (P ) with no outgoing path to U .

Recall that, by definition, Φ ∈ homS(G,H) if and only if H = G/ ∼Φ, i.e. the ∂Φ-fibers are
precisely the ∼Φ classes. Since this is easy to check, Algorithm 4.7.2 can be used to decide whether Φ
is synchronizing.

A similar procedure can be used to construct the maximum bunchy factor B(G), following the
construction in Proposition 4.8.7:
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Algorithm 4.7.3. Construct the maximum bunchy right-resolving factor of a graph.

1. Input: a graph G.

2. Construct M(G), along with the quotient map ΣG : V (G) → V (M).

3. Construct a graph H with the following data:

V (H) = V (G)× V (G)

|E(I1,I2)(J1,J2)(H)| =

{
1, ΣG(I1) = ΣG(I2),ΣG(J1) = ΣG(J2), and Ji ∈ F (Ii)

0, otherwise

4. Populate the set ≈0 of pairs (I1, I2) with a path in H from the diagonal to (I1, I2).

5. Construct and output: the transitive closure ≈ of the relation ≈0.

Regarding step 4: referring to the description of ≈0 in Proposition 4.8.7, a path in H from the
diagonal to (I1, I2) corresponds to a pair of paths γ, δ ∈ L(G) witnessing I1 ≈0 I2.

4.7.2 Decision procedures for common synchronizing factors and exten-
sions

See §4.8.6 for the proof of the following Proposition, which collects several similar statements relating
common synchronizing factors and common synchronizing extensions. These results allow us to use
fiber products of two graphs to decide questions about common factors of the graphs.

Proposition 4.7.1. Let G1, G2 be strongly connected graphs with M(G1) =M(G2) =M .

1. If G1, G2 have a common synchronizing factor, then there exist Φi ∈ homR(Gi,M) and a prin-
cipal component C of Q = G1 ×Φ1,Φ2 G2 such that Φ̂i|C ∈ homS(C,Gi).

2. Assume the O(G) conjecture. Then the converse holds in (1). That is, suppose that there exist
Φi ∈ homR(Gi,M) and a principal component C of Q = G1 ×Φ1,Φ2

G2, such that Φ̂i|C ∈
homS(C,Gi). Then G1, G2 have a common synchronizing factor, specifically O(G1) = O(C) =
O(G2).

3. If the Gi are bunchy, then the equivalence described in (1) and (2) holds unconditionally (i.e.
without assuming any unproven conjectures).

4. Assume the bunchy factor conjecture. Then we have O(G1) = O(G2) if and only if, for the
essentially unique Φi ∈ homR(B(Gi),M), there is a principal component C of P = B(G1)×Φ1,Φ2

B(G2) such that Φ̂i|C ∈ homS(C,B(Gi)).

Ashley-Marcus-Tuncel give a polynomial-time algorithm for deciding whether two strongly con-
nected graphs have a common strongly connected synchronizing extension. Their algorithm relies on
the construction of a graph that they call G̃, from an input graph G; see Theorem 5.2 and Remark
5.10 in [6]. If the O(G) conjecture is true, then by Proposition 4.7.1(2), the Ashley-Marcus-Tuncel
algorithm also decides whether O(G1) = O(G2) for G1, G2 strongly connected. Without assuming any
unproven conjectures, a negative result from the algorithm shows, by Proposition 4.7.1(1), that G1, G2

have no common synchronizing factor, while a positive result is inconclusive.
For bunchy G1, G2, however, Theorem 4.5.6 and Proposition 4.7.1(3) show that it can be decided in

polynomial time whether O(G1), O(G2) are isomorphic without the Ashley-Marcus-Tuncel algorithm:

Algorithm 4.7.4. Decide whether O(G1), O(G2) are isomorphic for G1, G2 strongly connected and
bunchy.
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1. Input: strongly connected bunchy graphs G1, G2 such that M(G1) =M(G2) =M .

2. Choose Φi ∈ homR(Gi,M), using Algorithm 4.7.1.

3. Construct Q = G1 ×Φ1,Φ2 G2.

4. For each principal component C, decide whether Φ̂i|C ∈ homS(C,Gi), using Algorithm 4.7.2. If
so, halt, and return the result that O(G1) = O(G2).

5. If no affirmative result is returned in step 4, then halt and return the result that O(G1) ̸= O(G2).

Regarding steps 4–5: Proposition 4.7.1(3) shows that we have O(G1) = O(G2) if and only if
Φ̂i|C ∈ homS(C,Gi) for some principal component C of Q. The same algorithm would work even
if G1, G2 are not strongly connected but only bunchy, with “principal component C” replaced by
“principal subgraph C such that each ∂Φ̂i|V (C) is surjective”, but it is not clear that the number of
such subgraphs is bounded by a polynomial in |V (G)|.

Furthermore, if the bunchy factor conjecture is true, then isomorphism of O(G1), O(G2) is equiva-
lent, by Proposition 4.6.1, to isomorphism of O(B(G1)), O(B(G2)), which can be decided without the
use of the Ashley-Marcus-Tuncel G̃ algorithm, using the following procedure. Note that this works
even if we do not have an efficient way to find an element of homS(Gi, B(Gi)).

Algorithm 4.7.5. Decide isomorphism of O(G1), O(G2) (assuming the bunchy factor conjecture).

1. Input: strongly connected graphs G1, G2.

2. Construct B(G1) and B(G2), using Algorithm 4.7.3.

3. Decide whether O(B(G1)) = O(B(G2)), using Algorithm 4.7.4.

4. Output: the Boolean value of “O(B(G1)) = O(B(G2))”.

Observe that the procedure of Algorithm 4.7.5 is essentially what is described in Proposition 4.7.1(4).

4.8 Proofs of structural results and additional details

4.8.1 Remarks on the proof of Theorem 4.2.4

In this subsection, we revisit the first proof of Theorem 4.2.4 given in [6]. The proof of the uniqueness
of M(G), for a given graph G, is without issue, but the proof of the uniqueness of ΣG is not quite
complete. That proof seems to assume that, for graphs G,H with H ≤R G, two right-resolvers G→ H
with distinct state maps must partition V (G) differently. In general, this is false: per Lemma 4.8.3
below, counterexamples arise precisely when Aut(H) acts nontrivially on V (H).

The second proof given in [6], constructing V (M(G)) by successive refinements of an initial state
partition, can be made complete by observing that all of the state maps corresponding to the successive
refinements are invariant under Aut(G).

Proposition 4.8.1 (Lemma 3.1 in [6]). Let G,H1, H2 be graphs with Hi ≤R G via Ψi ∈ homR(G,Hi),
with partitions αi = V (Hi) of V (G). Then there is a graph K ≤R H1, H2, with V (K) equal to the
finest common coarsening of α1, α2.

Corollary 4.8.2 (Theorem 3.2 in [6]). Let G be a graph. Then there exists a unique ≤R-minimal
graph M(G) ≤R G, with V (M(G)) given by the finest common coarsening of the partitions α = V (H)
of V (G), where H ≤R G.
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We will show further that for any Φ1,Φ2 ∈ homR(G,M(G)), we have ∂Φ1 = ∂Φ2. Note that
∂Φ1, ∂Φ2 at least have the same sets of fibers, since, if they did not, then by Proposition 4.8.1, we
could take their finest common coarsening, contradicting the minimality of M(G). It is therefore
enough to show that Aut(M(G)) acts trivially on M(G). For this, we need a lemma.

Lemma 4.8.3. Let G,H be graphs with H ≤R G, and let Φ1,Φ2 ∈ homR(G,H). Suppose that the
∂Φi have the same fibers, i.e. for any I1, I2 ∈ V (G), we have ∂Φ1(I1) = ∂Φ1(I2) if and only if
∂Φ2(I1) = ∂Φ2(I2). Then there exists an automorphism τ ∈ Aut(H) such that ∂Φ2 = ∂(τ ◦ Φ1).

Proof. By the assumption of equal fibers, there exists a (unique) bijection T : V (H) → V (H) with
∂Φ2 = T ◦ ∂Φ1. We need to find τ ∈ Aut(H) with ∂τ = T . Let I ∈ V (H). For J ∈ F (I), note,
by the right-resolving hypothesis on the Φi and the choice of T , that |EIJ(H)| = |ET (I)T (J)(H)|.
Letting τ |EIJ (H) : EIJ(H) → ET (I)T (J)(H) be any bijection, we have τ ∈ Aut(H) with T = ∂τ and
∂Φ2 = ∂(τ ◦ Φ1).

We now discuss the quotient of a graph by its automorphism group. Let G be a graph. We
will construct a graph K = G/Aut(G) ≤R G as follows. Let V (K) consist of the orbits in V (G)
under Aut(G). Let I, J ∈ V (K) and I1, I2 ∈ I. We need to specify |EIJ(K)|. We claim that∑
J′∈J |EI1J′(G)| =

∑
J′∈J |EI2J′(G)|. Indeed, let τ ∈ Aut(G) such that I2 = ∂τ(I1). Then

∂τ(F (I1)) = ∂τ(F (I2)), and τ(J) = J , so for any J ′ ∈ J ∩ F (I1), we have ∂τ(J ′) ∈ J ∩ F (I2).
Therefore

∑
J′∈J |EI1J′(G)| ≤R

∑
J′∈J |EI2J′(G)|. Replacing τ with τ−1, we obtain equality. Define

K by specifying that |EIJ(K)| =
∑
J′∈J |EIiJ′(G)|. This edge count ensures that K ≤R G.

In particular, if Aut(G) acts nontrivially on V (G), then K ̸= G, so G is not ≤R-minimal. It follows
that, for a ≤R-minimal graph M , Aut(M) acts trivially on V (M). This observation, together with
Lemma 4.8.3, shows that for any Φ1,Φ2 ∈ homR(G,M(G)), we have ∂Φ1 = ∂Φ2.

4.8.2 Proof of Theorem 4.3.5

We prove Theorem 4.3.5 in several stages. First, in Lemma 4.8.4, we determine how stability classes
intersect with fibers in compositions of right-resolvers.

Lemma 4.8.4. Let G,K,H be graphs with H ≤R K ≤R G. Let Ψ ∈ homR(G,K), ∆ ∈ homR(K,H),
and let Φ = ∆ ◦ Ψ. Then ∼Ψ-classes are intersections of ∼Φ-classes with ∂Ψ-fibers. That is, for
I1, I2 ∈ V (G), if I1 ∼Ψ I2, then I1 ∼Φ I2; conversely, if I1 ∼Φ I2 and moreover ∂Ψ(I1) = ∂Ψ(I2),
then I1 ∼Ψ I2.

Proof. First suppose that I1 ∼Ψ I2. Then in particular ∂Ψ(I1) = ∂Ψ(I2) = Î. Let I = ∂∆(Î) and
u ∈ LI(H), and consider the unique λ ∈ LÎ(K) such that ∆(λ) = u. Since I1 ∼Ψ I2, there exists
µ ∈ Lt(λ)(K) such that I1 · λµ = I2 · λµ. Letting v = ∆(µ), we have I1 · uv = I2 · uv, so I1 ∼Φ I2.

For the converse, suppose that I1 ∼Φ I2 and ∂Ψ(I1) = ∂Ψ(I2) = Î. Let I = ∆(Î), let λ ∈ LÎ(K),
let u = ∆(λ), and let v ∈ Lt(u)(H) be such that I1 · uv = I2 · uv. Consider the unique µ ∈ Lt(λ)(K)
such that ∆(µ) = v. Then I1 · λµ = I2 · λµ, so indeed I1 ∼Ψ I2.

Corollary 4.8.5 follows immediately from Lemma 4.8.4, and together they comprise Theorem 4.3.5(1).

Corollary 4.8.5. If Φ = ∆◦Ψ is a composition of right-resolvers, then Ψ is synchronizing if and only
if every ∂Ψ-fiber is contained in a ∼Φ-class.

Proof of Theorem 4.3.5(2). By assumption, the∼Φ classes are precisely the ∂Ψ-fibers, so by Lemma 4.8.4,
they are also the ∼Ψ classes. Thus indeed Ψ ∈ homS(G,K).

Moreover, let I ∈ V (H), let I ′1, I
′
2 ∈ (∂∆)−1(I), and suppose that I ′1 ∼∆ I ′2. We claim that I ′1 = I ′2.

Toward this end, we claim that (∂Ψ)−1({I ′1, I ′2}) is a subset of a ∼Φ class. Indeed, let u ∈ LI(H),
and let Ii ∈ (∂Ψ)−1(I ′i). Let v ∈ Lt(u)(H) be such that I ′1 · uv = I ′2 · uv = J ′. Let Ji = Ii · uv.
Then J1, J2 ∈ (∂Ψ)−1(J ′). Since Ψ is synchronizing, there exists γ ∈ LJ′(K) with J1 · γ = J2 · γ. Let
w = ∆(γ). Then I1 · uvw = I2 · uvw. Since u ∈ LI(H) was arbitrary, it follows that I1 ∼Φ I2 as
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claimed. Since, by assumption, a ∼Φ class is precisely a ∂Ψ-fiber of a single state of K, we must have
I ′1 = I ′2 as claimed. Therefore ∼∆ is indeed trivial.

Lemma 4.8.6. Let G,K,H be graphs with H ≤R K ≤R G. Let Ψ ∈ homR(G,K), ∆ ∈ homR(K,H),
and let Φ = ∆ ◦ Ψ. Let I ∈ V (H), let I ′1, I

′
1 ∈ (∂∆)−1(I), and let Ii ∈ (∂Ψ)−1(I ′i). If I1 ∼Φ I2, then

I ′1 ∼∆ I ′2.

Proof. Suppose that I1 ∼Φ I2. Let u ∈ LI(H). Let v ∈ Lt(u)(H) be such that I1 · uv = I2 · uv. Then,
since I ′i · uv = ∂Φ(Ii · uv), we have I ′1 · uv = I ′2 · uv. Therefore I ′1 ∼∆ I ′2.

Proof of Theorem 4.3.5(3). Suppose that ∼∆ is trivial. Let I ∈ V (H), let I ′1, I
′
2 ∈ (∂∆)−1(I) with

I ′1 ̸= I ′2, and let Ii ∈ (∂Ψ)−1(I ′i). Since ∼∆ is trivial, there exists u ∈ LI(H) such that, for every
v ∈ Lt(u)(H), we have I ′1 · uv ̸= I ′2 · uv. This implies that I1 · uv ̸= I2 · uv, so I1 ̸∼Φ I2. It follows that
each ∼Φ class is contained inside a ∂Ψ fiber. By Lemma 4.8.4, this shows that ∼Φ=∼Ψ.

The final part of Theorem 4.3.5 can be proved in the strongly connected case using symbolic dy-
namics, via the multiplicativity of degree under composition of right-resolvers; see [49], §9.1. Using the
theory developed so far, we give a self-contained proof without the assumption of strong connectedness.

Proof of Theorem 4.3.5(4). Suppose that Ψ,∆ are synchronizing. Let I ∈ V (H). Let I1, I2 ∈
(∂Φ)−1(I). We need to show that I1 ∼Φ I2. Let u ∈ LI(K). We need to find v ∈ Lt(u)(H) such
that I1 · uv = I2 · uv. Let I ′i = ∂Ψ(Ii). Then ∂∆(I ′1) = ∂∆(I ′2), so I

′
1 ∼∆ I ′2 since ∆ is synchronizing.

Let v1 ∈ Lt(u)(H) be such that I ′1 · uv1 = I ′2 · uv1. Note that I ′i · uv1 = ∂Ψ(Ii · uv1). Let J ′ = I ′i · uv1
and Ji = Ii · uv1. Then ∂Ψ(J1) = J ′ = ∂Ψ(J2), so J1 ∼Ψ J2 since Ψ is synchronizing. Let γ ∈ LJ′(K)
be such that J1 · γ = J2 · γ. Let v2 = ∆(γ). Then Ii · uv1v2 = Ji · γ, so taking v = v1v2, we have
I1 · uv = I2 · uv. Thus I1 ∼Φ I2, so Φ is indeed synchronizing.

We prove the converse by the contrapositive. Suppose that ∆ is not synchronizing. Then there exist
I ∈ V (H) and I ′1, I

′
2 ∈ (∂∆)−1(I) such that I ′1 ̸∼∆ I ′2. By Lemma 4.8.6, there exist Ii ∈ (∂Ψ)−1(I ′i)

such that I1 ̸∼Φ I2. Thus Φ is not synchronizing. Similarly, suppose that Ψ is not synchronizing.
Then there exist I ′ ∈ V (K) and I1, I2 ∈ (∂Ψ)−1(I ′) such that I1 ̸∼Ψ I2. By Lemma 4.8.4, I1 ̸∼Φ I2,
so Φ is not synchronizing.

4.8.3 Proofs of Propositions 4.5.4 and 4.5.5

Proof of Proposition 4.5.4. Let M = M(G). First, suppose that G is almost bunchy. Let Φ1,Φ2 ∈
homR(G,M). For each I, J ∈ V (M), and each I ′ ∈ Σ−1

G (I), let AI′,J = {e ∈ EI′(G) |ΣG(t(e)) = J}.
If there exists I ′ ∈ Σ−1

G (I) with |F (I ′)∩Σ−1
G (J)| ≥ 2 (by almost bunchiness, there is at most one such

I ′ for any given I, J), then let τIJ ∈ P (M) be the permutation of parallel edges in M given by

τIJ |E(M)\EIJ (M) = id|E(M)\EIJ (M)

τIJ |EIJ (M) = Φ1|AI′,J ◦ (Φ2|AI′,J )
−1

If there is no I ′ ∈ Σ−1
G (I) with |F (I ′)∩Σ−1

G (J)| ≥ 2, then let τIJ = id. Distinct τIJ are permutations of
disjoint sets and therefore commute. Let τ =

∏
I,J∈V (M) τIJ . Note that if G is bunchy, then τIJ = id

for all I, J , so τ = id.
Now, for each I, J ∈ V (M) and each I ′ ∈ Σ−1

G (I), let σIJ,I′ ∈ P (G) be given by

σIJ,I′ |E(G)\AI′,J
= id|E(G)\AI′,J

σIJ,I′ |AI′,J = Φ2|−1
AI′,J

◦ τ−1 ◦ Φ1|AI′,J

All of the σIJ,I′ commute. Let σ =
∏
I,J∈V (M), I′∈Σ−1

G (I) σIJ,I′ . Then for I ∈ V (M), J ∈ F (I), and

I ′ ∈ Σ−1
G (I),

τ ◦ Φ2 ◦ σ|AI′,J = τ ◦ Φ2 ◦ (Φ2|−1
AI′,J

◦ τ−1 ◦ Φ1|AI′,J ) = Φ1|AI′,J
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This concludes the proof in the “only if” direction.
For the “if” direction, which we prove in the contrapositive, suppose that G is not almost bunchy.

Let I, J ∈ V (M) and I1, I2 ∈ Σ−1
G (I) such that |F (Ii) ∩ Σ−1

G (J)| ≥ 2 for i = 1, 2. Let ei,1, ei,2 ∈ AIi,J
be such that t(ei,1) ̸= t(ei,2). Let a1, a2 ∈ EIJ(M), and let Φ1,Φ2 ∈ homR(G,M) be such that
Φ1(e1,j) = aj but Φ2(e2,1) = a2 and Φ2(e2,2) = a1. (The behaviour of Φi on E(G) \ {ei,j}i,j=1,2 is
irrelevant.) Then there do not exist σ ∈ P (G), τ ∈ P (M) such that Φ1 = τ ◦ Φ2 ◦ σ.

Finally, suppose that G is almost bunchy, but not bunchy. Let I, J ∈ V (M) and I ′ ∈ Σ−1
G (I) such

that |F (I ′) ∩Σ−1
G (J)| ≥ 2. Let e1, e2 ∈ AI′,J be such that t(e1) ̸= t(e2). Let a1, a2 ∈ EIJ(M), and let

Φ1,Φ2 ∈ homR(G,M) be such that Φ1(ei) = ai, Φ2(e1) = a2, and Φ2(e2) = a1. Then there does not
exist σ ∈ P (G) such that Φ1 = Φ2 ◦ σ.

Proof of Proposition 4.5.5. Let M =M(G). It is enough to show that SΦ1
, SΦ2

share a generating set
T , which we now construct and examine. For I, J ∈ V (M), if J /∈ F (I), let TI,J,1 = TI,J,2 = ∅. If
J ∈ F (I), then let TI,J,i be the set of maps fa,i : Σ

−1
G (I) → Σ−1

G (J) of the form I ′ 7→ t ◦ (Φi|EI′ )
−1(a),

i.e. I ′ · fa,i = I ′ · a with respect to Φi, where a ∈ EIJ(M). Clearly TI,J,i generates SΦi
, in the sense

that SΦi is the smallest collection of maps closed under composition and containing the TI,J,i as I, J
range over V (M).

We claim that TI,J,1 = TI,J,2. Indeed, let a ∈ EIJ(M) and let I ′ ∈ Σ−1
G (I) such that |F (I ′) ∩

Σ−1
G (J)| ≥ 2. It is enough to show that fa,1 ∈ TI,J,2, as this will show that TI,J,1 ⊆ TI,J,2, from

which equality follows by symmetry. By almost bunchiness, there is at most one state I ′ ∈ Σ−1
G (I)

with |F (I ′) ∩ Σ−1
G (J)| ≥ 2. If there is no such state, then clearly fa,1 = fa,2, so assume that such a

state I ′ exists. Observe that I ′ · fb,2 = I ′ · fa,1 where b = Φ2 ◦ (Φ1|EI′(G)
)−1(a). Moreover, for every

I ′′ ∈ Σ−1
G (I) with I ′′ ̸= I ′, we also have, by almost bunchiness, that I ′′ · fb,2 = I ′′ · fa,1. Therefore

fa,1 = fb,2 ∈ TI,J,2, so indeed TI,J,1 = TI,J,2 as claimed. Let TI,J = TI,J,i and let T =
⋃
I,J TI,J . Then

T generates both SΦ1
, SΦ2

, so indeed SΦ1
= SΦ2

.

4.8.4 Proof of Theorem 4.5.12

Proof of Theorem 4.5.12. Define T : V (G) → V (P ) as follows: for I ′ ∈ V (G), let T (I ′) = (∂Φ1(I
′), ∂Φ2(I

′)).
Note that ∂ΨP ◦ T = ∂(Ψi ◦ Φi) = ΣG for each i. Let C be the subgraph of P induced by T (V (G)).
Let I ′ ∈ V (G) and J ′ ∈ F (I ′); I = ΣG(I

′) and J = ΣG(J
′); and Ii = ∂Φi(I

′) and Ji = ∂Φi(J
′).

Observe that (I1, I2) = T (I ′) and (J1, J2) = T (J ′).
As in the proof of Proposition 4.5.4, let AI′,J = {e ∈ EI′(G) |ΣG(t(e)) = J}. Since Hi is bunchy,

we have F (Ii) ∩ Σ−1
Hi

(J) = {Ji}, so Φi(AI′,J) = EIiJi(Hi). It therefore makes sense to define

∆i|AI′,J = (Ψ̂i|E(I1,I2)(J1,J2)(P ))
−1 ◦ Φi|AI′,J : AI′,J → E(I1,I2)(J1,J2)(P )

Gluing these together, we obtain maps ∆i : E(G) → E(P ). For e ∈ AI′,J , we have s(∆i(e)) = T (s(e))
and t(∆i(e)) = T (t(e)), so the ∆i : G→ P are graph homomorphisms with ∂∆i = T .

We now claim that ∆i(E(G)) = E(C). Enumerate EIJ(M) = {a(1), . . . , a(k)}, and let e
(j)
i =

(Ψi|EIiJi
(Hi))

−1(a(j)). Then

(e
(j)
1 , e

(j)
2 ) ∈ E(I1,I2)(J1,J2)(P ) = E(I1,I2)(J1,J2)(C)

where equality holds because (I1, I2), (J1, J2) ∈ V (C) and C is an induced subgraph of P . Fix-
ing (I1, I2) and varying J ′, thus varying (J1, J2), the sets E(I1,I2)(J1,J2)(P ) exhaust E(I1,I2)(P ), so
E(I1,I2)(C) = E(I1,I2)(P ). Since ∆i|EI′ (G) : EI′(G) → E(I1,I2)(P ) is surjective, we have E(I1,I2)(C) =
∆i(EI′(G)). Thus indeed E(C) = ∆i(E(G)).

Since we already know that E(I1,I2)(C) = E(I1,I2)(P ) for each (I1, I2) ∈ V (C), it follows that C is
indeed a principal subgraph of P . Finally, we have

Ψ̂i ◦∆i|AI′,J = Ψ̂i ◦ (Ψ̂i|E(I1,I2)(J1,J2)(P ))
−1 ◦ Φi|AI′,J = Φi|AI′,J

as claimed. This shows that Ψ̂i|C : C → Hi is surjective, so Hi ≤R C.
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4.8.5 Proofs of Lemma 4.5.14 and Proposition 4.5.16, and construction of
B(G)

Proof of Lemma 4.5.14. Let (I1, I2) ∈ V (P ) with Ii ∈ V (Hi). Let e = (e1, e2), e
′ = (e′1, e

′
2) ∈

E(I1,I2)(P ) such that t(∂ΨP (e)) = t(∂ΨP (e
′)). We must show that t(e) = t(e′). Toward that goal,

note that for each i = 1, 2, we have

t(∂ΨP (e)) = ∂ΨP (t(e)) = ∂Ψi(t(ei))

t(∂ΨP (e
′)) = ∂ΨP (t(e

′)) = ∂Ψi(t(e
′
i))

Therefore ∂Ψi(t(ei)) = ∂Ψi(t(e
′
i)) for each i, since t(∂ΨP (e)) = t(∂ΨP (e

′)) by hypothesis. But since
the Hi are bunchy, we in fact have t(ei) = t(e′i) for each i, so indeed t(e) = t(e′) as required. This
shows that ∂ΨP |F ((I1,I2)) is a bijection, so P is bunchy.

Let C be a principal subgraph of P such that ∂Ψ̂i|V (C) : V (C) → V (Hi) are surjective. Then

M(C) =M . For each J ∈ V (M), we have Σ−1
C (J) = Σ−1

P (J) ∩ V (C). Thus C is bunchy.

Proof of Proposition 4.5.16. To prove (1), let H1, H2 ≤R G be ≤R-maximal among the bunchy right-
resolving factors of G. Let Φi ∈ homR(G,Hi) and Ψi ∈ homR(Hi,M). Let P = H1 ×Ψ1,Ψ2 H2. By
Theorem 4.5.12, there exist a principal subgraph C of P , and ∆i ∈ homR(G,C), such that Φi =
Ψ̂i|C ◦ ∆i, so Hi ≤R C. By Lemma 4.5.14, C is bunchy, so by the maximality of the Hi, we have
H1 = C = H2. This proves uniqueness, so we can take B = Hi = C.

To prove (2), let H ≤R G be bunchy and let Φ ∈ homR(G,H). Let Φ′ ∈ hom(G,B), Ψ ∈
homR(H,M), Ψ′ ∈ hom(B,M). Let P = H ×Φ,Φ′ B. By the universal property (Theorem 4.5.12),

there exist a principal subgraph C of P and ∆,∆′ ∈ homR(G,C) with Φ = Ψ̂ ◦∆ and Φ′ = Ψ̂′ ◦∆′.
Again by Lemma 4.5.14, C is bunchy, so by (1) and the fact that B ≤R C, we have B = C. This
proves (2) with Θ = Ψ̂′|C .

We now present the construction of B(G) described in Algorithm 4.7.3.

Proposition 4.8.7. Let G be a graph. For J1, J2 ∈ V (G) with ΣG(J1) = ΣG(J2), write J1 ≈0 J2
if there exist paths γ = γ1 · · · γn, δ = δ1 · · · δn ∈ L(G) where γi, δi ∈ E(G), such that s(γ1) = s(δ1),
t(γn) = J1, t(δn) = J2, and ΣG(t(γi)) = ΣG(t(δi)) for each i. Let ≈ denote the transitive closure of
≈0 and let Φ ∈ homR(G,M(G)). Then ≈ is a congruence with respect to Φ, and B(G) = G/ ≈.

Proof. Let M = M(G). Let I ∈ V (M), I1, I2 ∈ Σ−1
G (I), and J ∈ F (I). Suppose that I1 ≈ I2. Let

Ji ∈ F (Ii) ∩ Σ−1
G (J). We need to show that J1 ≈ J2. Let I1 = I(0), I(1), . . . , I(n) = I2 ∈ Σ−1

G (I) with
I(j) ≈0 I

(j+1). Let γ(j), δ(j) ∈ L(G) witness the relation I(j) ≈0 I
(j+1). Choose J (j) ∈ F (I(j))∩Σ−1

G (J),
with J (0) = J1 and J (n) = J2. Let e

(j) ∈ EI(j)J(j)(G). Then γ(j)e(j), δ(j)e(j+1) witness J (j) ≈0 J
(j+1).

This shows that J1 ≈ J2.
Let Φ ∈ homR(G,M(G)). As in the previous paragraph, let I ∈ V (M), let J ∈ F (I), and let

I1, I2 ∈ Σ−1
G (I). Suppose that I1 ≈ I2. Let a ∈ EIJ(M), let Ji = Ii · a, and let ei = (Φ|EIi

(G))
−1(a).

Then t(ei) = Ji, so J1 ≈ J2. Therefore ≈ is indeed a congruence for Φ. It follows that F ([Ii]≈) ∩
Σ−1
G/≈(J) = {[Ji]≈}, so indeed G/ ≈ is bunchy.

To see that G/ ≈ is ≤R-maximal among the bunchy factors of G, let H ≤R G be bunchy and
Ψ ∈ homR(G,H). If I1 ≈0 I2 and H is bunchy, then we must have ∂Ψ(I1) = ∂Ψ(I2). Therefore the
partition into ∂Ψ-fibers corresponds to an equivalence relation that coarsens the symmetric, reflexive
relation ≈0, and thus also coarsens the transitive closure ≈. Considering V (H) as a partition of V (G),
we must therefore have V (H) ⪯ V (G)/ ≈, so (G/ ≈) = B(G) by the maximality of B(G).

4.8.6 Proofs of Propositions 4.6.1 and 4.7.1

Lemma 4.8.8. Let G1, G2, H,K be graphs with K ≤R H ≤R Gi. Let ∆ ∈ homR(H,K). Let
Ψi ∈ homR(Gi, H) and P = G1×Ψ1,Ψ2

G2. Let Φi = ∆◦Ψi and Q = G1×Φ1,Φ2
G2. Then, noting that

46



V (P ) = V (Q) and E(P ) ⊆ E(Q), we have Φ̂i|P = Ψ̂i, and every principal subgraph of P is a principal
subgraph of Q.

Proof. Let C be a principal subgraph of P . By the definition of the fiber product, we have V (P ) =
V (Q) = V (G1) × V (G2). Let I ∈ V (H) and let Ii ∈ (∂Ψi)

−1(I). Suppose that (I1, I2) ∈ V (C). We
need to show that E(I1,I2)(C) = E(I1,I2)(Q).

Since E(I1,I2)(C) = E(I1,I2)(P ) by the definition of a principal subgraph, it is enough to show that
E(I1,I2)(P ) = E(I1,I2)(Q) for any (I1, I2) ∈ V (P ). Clearly E(I1,I2)(P ) ⊆ E(I1,I2)(Q), so it is enough to
show that |E(I1,I2)(P )| = |E(I1,I2)(Q)|. To see this equality, note that since ∆ ◦ΨP = ΦQ, we have

|E(I1,I2)(P )| = |E∂ΨP (I1,I2)(H)| = |E∂ΦQ(I1,I2)(K)| = |E(I1,I2)(Q)|

where the equalities follow from the facts that ΨP , ∆, and ΦQ respectively are right-resolving. There-
fore E(I1,I2)(P ) = E(I1,I2)(Q). This shows that C is indeed a principal subgraph of Q. Moreover, for

e = (e1, e2) ∈ E(P ), we have Φ̂i(e) = ei = Ψ̂i(e), so indeed Φ̂i|P = Ψ̂i.

Lemma 4.8.9. Let G1, G2,K be graphs with K ≤S Gi via Φi ∈ homS(Gi,K). Let C be a principal
subgraph of P = G1 ×Φ1,Φ2 G2 such that the ∂Φ̂i|V (C) : V (C) → V (Gi) are surjective. Then Φ̂i|C ∈
homS(C,Gi). In particular, C is a common synchronizing extension of the Gi.

Proof. Let I ∈ V (K) and let Ii, I
′
i ∈ V (Gi) with ∂Φi(Ii) = ∂Φi(I

′
i) = I. Since the Φi are synchronizing,

we have Ii ∼Φi
I ′i. Suppose that (I1, I2), (I

′
1, I

′
2) ∈ V (C). In order to show that Φ̂i|C ∈ homS(C,Gi),

we claim that (I1, I2) ∼ΦP
(I ′1, I

′
2). This will show that ΦP |C ∈ homS(C,K). Since ΦP |C = Φi ◦ Φ̂i|C ,

it will then follow that Φ̂i|C ∈ homS(C,Gi) by Theorem 4.3.5(4).
To prove this claim, let u ∈ LI(K). Since I1 ∼Φ1 I

′
1, there exists v1 ∈ Lt(u)(K) such that I1 ·uv1 =

I ′1 ·uv1. Similarly, since I2 ∼Φ2 I
′
2, there exists v2 ∈ Lt(v1)(K) such that I2 ·uv1v2 = I ′2 ·uv1v2. Then in

particular (I1, I2) ·uv1v2 = (I ′1, I
′
2) ·uv1v2. Since u ∈ LI(K) was arbitrary, we have (I1, I2) ∼ΦP

(I ′1, I
′
2)

as claimed.

Proof of Proposition 4.7.1(1). Let K ≤S Gi and Ψi ∈ homS(Gi,K). Let P = G1 ×Ψ1,Ψ2
G2 and let C

be a principal subgraph of P such that ∂Ψ̂i|V (C) : V (C) → V (Gi) are surjective. By Lemma 4.8.9, we

have Ψ̂i|C ∈ homS(C,Gi). Let ∆ ∈ homR(K,M), let Φi = ∆◦Ψi, and let Q = G1×Φ1,Φ2G2. Then, by

Lemma 4.8.8, C is a principal subgraph ofQ, with Φ̂i|C = Ψ̂i|C . In particular, Φ̂i|C ∈ homS(C,Gi).

We now give an equivalent form of the O(G) conjecture. Fragments of this result appear in Propo-
sition 4.7.1. The logical structure of Proposition 4.8.10 (one statement is equivalent to the equivalence
of four other statements) is unusual.

Proposition 4.8.10. Let F be a family of graphs satisfying the following conditions:

(i) If G ∈ F and H ≤R G, then H ∈ F .

(ii) Let G1, G2,K ∈ F with K ≤R Gi. Let Φi ∈ homR(Gi,K), let P = G1 ×Φ1,Φ2 G2, and let C be

a principal subgraph of P such that the ∂Φ̂i|V (C) are surjective. Then C ∈ F .

Then the following assertions are equivalent.

(1) For any G ∈ F , there exists a unique ≤S-minimal graph O(G) ≤S G.

(2) For any G1, G2 ∈ F , the following assertions are equivalent.

(a) O(G1), O(G2) exist and are equal.

(b) G1, G2 have a common synchronizing factor.

(c) M(G1) = M(G2) = M and there exist Φi ∈ homR(Gi,M) such that Φ̂i ∈ homS(C,Gi) for
some principal subgraph C of Q = G1 ×Φ1,Φ2 G2.
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(d) G1, G2 have a common synchronizing extension K ∈ F .

Remark 4.8.11. The proof of Proposition 4.8.10 in fact shows that both (1) and (2) are equivalent to
the assertion that (d) implies (b). Note that for G1 = G2 = G, (a) states that O(G) is well-defined,
while (b)–(d) are trivial.

Remark 4.8.12. The O(G) conjecture states that the equivalent statements (1) and (2) in Proposi-
tion 4.8.10 hold with F equal to the class of all strongly connected graphs.

Proof of Proposition 4.8.10. First, assume (2). Let G be a graph and let H1, H2 ≤S G be ≤S-minimal.
Since H1, H2 have the common synchronizing extension G, they satisfy condition (d), so they also
satisfy condition (b), i.e. there exists a common synchronizing factor K ≤S Hi. But since the Hi were
assumed minimal, we must have H1 = K = H2 = O(G).

Now, assume (1) and deduce (2) as follows. Trivially, (a) implies (b) and (c) implies (d). Moreover,
(b) implies (c) by Proposition 4.7.1(1). Finally, assume (d). Suppose that G1, G2 have a common
synchronizing extension K. Then O(G1) = O(K) = O(G2), so (d) implies (a).

Proof of Proposition 4.7.1(2). This is immediate from Proposition 4.8.10, specifically, the equivalence
of 2(b) and 2(c), with F taken to be the class of all strongly connected graphs.

Proof of Proposition 4.7.1(3). By Theorem 4.5.6, this is immediate from Proposition 4.8.10, again via
the equivalence of 2(b) and 2(c), but with F taken to be the class of strongly connected almost bunchy
graphs.

Proposition 4.8.13. Let F be a family of graphs such that, if G ∈ F and H ≤R G, then H ∈ F .
Then the following assertions are equivalent.

(1) Any ≤S-minimal graph H ∈ F is bunchy.

(2) For any G ∈ F , there exists some bunchy H ≤S G.

(3) For any non-bunchy G ∈ F , there exists some Φ ∈ homR(G,M(G)) with ∼Φ nontrivial.

(4) For any G ∈ F , B(G) ≤S G.

Remark 4.8.14. Note that Proposition 4.8.13 is a more detailed version of Proposition 4.6.1.

Proof. To see that (1) implies (2), let G ∈ F and consider the set {H |H ≤S G}. Being a finite
partially ordered set, this set must have at least one minimal element. If (1) holds, then this minimal
element is bunchy. Thus (2) holds.

To see that (2) implies (3), let G ∈ F be non-bunchy. There exists at least one ≤S-minimal graph
H ≤S G. If (2) holds, then G is not ≤S-minimal, so H ̸= G. Let Ψ ∈ homS(G,H). The ∂Ψ-fibers are
precisely the ∼Ψ-classes. Since H ̸= G, the ∂Ψ-fibers are not merely singletons, so ∼Ψ is nontrivial.
LetM =M(G) and ∆ ∈ homR(H,M), and let Φ = ∆◦Ψ. By Lemma 4.8.4, the ∼Φ-classes are unions
of ∼Ψ-classes, so in particular, ∼Φ is nontrivial.

To see that (3) implies (1), let G ∈ F be non-bunchy. If (3) holds, then there exists Φ ∈
homR(G,M(G)) with ∼Φ nontrivial. Then G/ ∼Φ≤S G and G/ ∼Φ ̸= G; in particular, G is not
≤S-minimal. This proves (1) in the contrapositive.

Finally, we show that (2) and (4) are equivalent. If (4) holds, then (2) holds since B(G) is bunchy.
Conversely, assume (2) and let G ∈ F . Then there exists H ≤S G bunchy. Let Φ ∈ homS(G,H)
and let B = B(G). By Proposition 4.5.16(2) and Theorem 4.3.5(4), we have Φ = ∆ ◦ Θ for some
Θ ∈ homS(G,B), ∆ ∈ homS(B,H). Therefore (4) holds.

Corollary 4.8.15. Let F be a family of graphs such that, if G ∈ F and H ≤R G, then H ∈ F .
Suppose that any ≤S-minimal element of F is bunchy. Then O(G) exists for any G ∈ F .

The proof of Corollary 4.8.15 is a trivial adaptation of the proof of Proposition 4.6.2.
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Proof of Proposition 4.7.1(4). Assuming the bunchy factor conjecture, the O(Gi) are well-defined. By
the equivalence of conditions (a),(c) in Proposition 4.8.13, the hypothesis on the B(Gi) is equivalent
to the equality O(B(G1)) = O(B(G2)), which in turn is equivalent to the equality O(G1) = O(G2) by
Proposition 4.8.13.

4.9 Proof of Theorem 4.4.3, following Trahtman

In this section, we recall Trahtman’s proof of the road colouring theorem and reformulate it in a form
applicable to Theorem 4.4.3.

4.9.1 Systems of maps with unique tallest trees

The central idea in Trahtman’s proof is an idea well known in the literature on the combinatorics of
transformations of finite sets—namely, that, the graph of a transformation f of a set V is a directed
graph of constant out-degree 1 with V (G)‘V , where, for each state I ∈ V , the unique edge with
source I has target I · f . When V is finite, the graph consists of a set of state-disjoint directed cycles
together with trees rooted on the cycles, directed toward their roots. Trahtman’s proof is based on the
construction of a transformation with a unique tallest tree (the height of a tree being the maximum
distance from the root to a leaf). We need a few definitions in order to extend the notion of a unique
tallest tree to a system of maps taking one set to another, cyclically, as opposed to a transformation
of a single set.

Let p ∈ N and let {Vi}0≤i≤p−1 be disjoint finite sets. Let ai : Vi → Vi+1 be maps, with subscripts
read modulo p. For k ≥ 0, let bk = akak+1 · · · ap−1a0 · · · ak−1 : Vk → Vk. As noted above in the
general discussion of graphs of transformations, since each bk is a transformation of a finite set, it is
eventually periodic—that is, for each k, there exist m ≥ 0, z ≥ 1 such that bm+z

k = bmk . Moreover,
the orbits of individual elements I ∈ Vk may vary in their eventually periodic behaviour. Specifically,
for a given I ∈ Vk, consider the lexicographically minimal (ℓ,m, z) with 0 ≤ ℓ ≤ p− 1, m ≥ 0, z ≥ 1,
such that I · ak · · · ak+ℓ−1b

m+z
k+ℓ = I · ak · · · ak+ℓ−1b

m
k+ℓ. Define the height h(I) = mp + ℓ and the root

ρ(I) = I · ak · · · ak+ℓ−1b
m+z
k+ℓ . The idea is that h(I) is the number of steps required until the orbit of I

reaches the root ρ(I) and becomes periodic, with z(I) = z being the period as a multiple of p.
To talk about unique tallest trees, let hmax,k = max{h(I) | I ∈ Vk}, and let hk(J) = max{h(I) | I ∈

Vk, ρ(I) = J}. Let zk = lcm{z(I) | I ∈ Vk}. We say that the system (Vi, ai)0≤i≤p−1 has a unique
tallest tree at Vk if there is a unique J with hk(J) = hmax,k. Note that the terms we have defined
here still make sense even if the Vi are not all pairwise disjoint, as long as any two are either equal or
disjoint, since we can make them disjoint by replacing Vi with Vi × {i}.

We now present our interpretation of a key step in Trahtman’s proof, applying Proposition 4.3.12
and closely following [14].

Lemma 4.9.1. Let G,H be strongly connected graphs with H ≤R G. Let Φ ∈ homR(G,H). Let
I0, . . . Ip−1 ∈ V (H), not necessarily distinct, be such that Ii+1 ∈ F (Ii) ̸= ∅, and let ai ∈ EIiIi+1(H)
(with subscripts read modulo p). Suppose that the system ((∂Φ)−1(Ii), ai)0≤i≤p−1 has a unique tallest
tree, where we write ai for the map I 7→ I · ai, I ∈ (∂Φ)−1(Ii). Then ∼Φ is nontrivial.

Proof. For 0 ≤ i ≤ p − 1, let Vi = (∂Φ)−1(Ii). Suppose without loss of generality that the system
has a unique tallest tree at V0. Let I ∈ V0 be a state of maximal height h(I) = hmax,0. Let m ≥ 0,
0 ≤ p− 1 be such that hmax,0 = mp+ ℓ, and let z = z(I) and let R = ρ(I). Note that R ∈ Vℓ. That is,
upon cyclic application of the maps ai, I is eventually mapped to R, then returns to R every z cycles
around the graph.

By strong connectedness and Lemma 4.3.11, let U ⊆ I0 be a minimal image such that I ∈ U . We
claim that there is no other state I ′ ∈ U with ρ(I ′) = R and I ′ ̸= I. Indeed, suppose that there is such
a state I ′. Then I · a0 · · · aℓ−1b

m
ℓ = I ′ · a0 · · · aℓ−1b

m
ℓ = R, so |U · a0 · · · aℓ−1b

m
ℓ | < |U |, contradicting
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the minimality of U . This proves the claim. Let U0 = U \ {I}. Then every element of U0 has height
strictly less than hmax,0.

Let u1 = a0 · · · aℓ−1b
m−1
ℓ aℓ · · · aℓ−2 : V0 → Vℓ−1, where the tail aℓ · · · aℓ−2 includes each ai exactly

once, other than aℓ−1, and the subscripts are read modulo p. The effect of applying u1 to V0 is to bring
I to one step before its first encounter its root R; since I has maximal height, every other I ′ ∈ V0 has
already reached its root and is in the periodic part of its orbit after application of u1.

Let u2 = u1b
zℓ
ℓ−1 = a0 · · · aℓ−1b

m+zk
ℓ−1 aℓ · · · aℓ−2 : V0 → Vℓ−1. Let Ji = I · ui and Ui = U · ui. As

observed in the previous paragraph, after application of u1, I is not yet in the periodic part of its orbit
(i.e. the orbit under cyclic application of the maps ai), but every other element of

Observe that J1 ̸= J2 by the assumed value of h(I).
However, since I is the unique element of U with this maximal height, we have U1∆U2 = {J1, J2}.

Since the Ui are minimal images, we have J1 ∼Φ J2 by Proposition 4.3.12.

4.9.2 Obtaining a right-resolver with a unique tallest tree

Let G be a graph. We define a total order colouring to be a total ordering of each edge set EI(H), i.e.
a labeling of the edges of G such that, if |EI(G)| = k, then the edges in EI(G) are labeled bijectively
by {0, . . . , k − 1}. Suppose that M =M(G) is a cycle of bunches. Then, once a total order colouring
of M is fixed, total order colourings of G correspond bijectively with right-resolvers Φ ∈ homR(G,M).

Letting V (M) = {I0, . . . , Ip−1}, there is exactly one edge ai ∈ EIi(H) labeled 0 for each i. This
yields a subgraph W of G consisting of edges labeled 0, which is a spanning subgraph of G of constant
out-degree 1. Every graph of constant out-degree 1 consists of a set of state-disjoint cycles, together
with trees rooted on the cycles, directed toward their roots. The height of a tree is the maximum path
length from a state in the tree to its root. Observe that the system ((∂Φ)−1(Ii), ai)

p−1
i=0 has a unique

tallest tree, in the sense of mappings, if and only if there is a unique tallest tree in W .
We now present our interpretation of the main technical lemma in the proof of the road colouring

theorem (Lemma 10.4.6 in [14]). The following is not how the lemma is stated in [14], but one can
follow the proof and observe that it is equivalent.

Lemma 4.9.2 (Trahtman). Let G be a strongly connected graph such that M(G) is a cycle of bunches.
At least one of the following is true:

1. G is itself a cycle of bunches.

2. G has two distinct bunches whose outgoing edges have the same target.

3. G admits a total order colouring with a unique tallest tree.

With this result, we can prove our generalization of the road colouring theorem.

Proof of Theorem 4.4.3. Let M = M(G). The claim is trivially true if |V (G)| = |V (M)|, in which
case G = M . Suppose that it is true for all H with |V (H)| ≤R N and M(H) = M . Suppose that
|V (G)| = N + 1. If G is bunchy, then we are done. If G is not bunchy, but has two states that can be
in-amalgamated, then they are stable for some Φ ∈ homR(G,M) by Lemma 4.3.8. Let G′ = G/ ∼Φ.
Then |V (G/ ∼Φ)| < |V (G)|, so by the inductive hypothesis, there is some bunchy H ≤S G/ ∼Φ ≤S G.

Now, suppose that G does not have two states that can be in-amalgamated—in particular, G does
not have two distinct bunches whose outgoing edges have the same target. Since G is not bunchy,
it is in particular not a cycle of bunches, so by Lemma 4.9.2, it admits a total order colouring with
unique tallest tree. As remarked above, this total order colouring corresponds to some right-resolver
Φ ∈ homR(G,M), which has ∼Φ nontrivial by Lemma 4.9.1. Then once more G/ ∼Φ is strictly smaller
than G. We can then apply Proposition 4.8.13 to conclude that any ≤S-minimal O with M = M(O)
is a cycle of bunches. If O ≤S G, then O = OM,p for p = per(G)/per(M).
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Chapter 5

Encoding subshifts through sliding block codes

5.1 Introduction

As indicated in the introduction to the dissertation, this chapter proves the following theorem.

Theorem 5.1.1. Let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y a factor code. Let Z
be a subshift with topological entropy strictly less than that of Y . Then there exists a subshift Z ′ of X
conjugate to Z such that π|Z′ is injective, if and only if for every n ≥ 1, the number of periodic points
of least period n in Z is at most the number of periodic points of least period n in Y with a π-preimage
of equal least period.

Theorem 5.1.1 is a generalization of the following theorem of Krieger in the case of unequal entropy;
in particular, Theorem 5.1.1 reduces to Theorem 5.1.2 in the case that Y = X and π is the identity.

Theorem 5.1.2 (Theorem 2 in [48]). Let Y be a mixing shift of finite type and Z a subshift. Then
there is a subshift Z ′ ⊆ Y conjugate to Z if and only if Z and Y are conjugate or the (topological)
entropy of Z is less than that of Y and, for every n ≥ 1, the number of periodic points of least period
n in Z is at most the corresponding number in Y .

We note that with X,Y, Z, π as in the statement of Theorem 5.1.1, clearly there exists a subshift
Z ′ of X conjugate to Z such that π|Z′ is injective if and only if there exists a sliding block code
ψ : Z → X such that π ◦ ψ is injective, in which case Z ′ = ψ(Z) ⊂ X. To verify the “only if”
statement in Theorem 5.1.1, suppose that there is a subshift Z ′ of X conjugate to Z such that π|Z′ is
injective. Let y ∈ π(Z ′) be periodic. Let x = π|−1

Z′ (y) be the unique preimage of y in Z ′. Then the orbit
of x is in bijection with the orbit of y; otherwise, π would fail to be injective on the orbit of x, which
is contained in Z ′. In particular, x has finite orbit, so x is periodic, moreover with per(x) = per(y).
Thus, every periodic point in π(Z ′) ⊂ Y has a periodic preimage in Z ′ ⊂ X of equal least period,
which shows the necessity of the stated condition.

Both Theorem 5.1.1 and Theorem 5.1.2 give conditions for the existence of an embedding in terms
of entropy and a periodic point condition. The following corollary, which we prove in Section 5.5,
shows that the periodic point condition can be removed in exchange for a small loss of injectivity.

Corollary 5.1.3. Let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y a factor code. Let
Z be a subshift with topological entropy strictly less than that of Y . Then there exist a subshift Z ′, a
finite-to-one factor code χ : Z ′ → Z, and a sliding block code ψ : Z ′ → X such that π ◦ ψ is injective.
Moreover, if Z is mixing sofic with positive entropy (i.e. not a single fixed point), then Z ′ can be taken
to be a mixing SFT and χ can be taken to be almost invertible.

The code χ is in fact injective except on points in Z ′ whose images in Z are backward-asymptotic
to one of finitely many periodic points in Z. See Lemma 5.2.2 and Remark 5.2.3. From Corollary 5.1.3,
we can immediately conclude the following, with h denoting the topological entropy of a subshift.
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Corollary 5.1.4. Let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y a factor code. For
any ε > 0, there exists a mixing SFT Z ⊂ X with h(Z) > h(Y )− ε such that π|Z is injective.

The proof of Theorem 5.1.1 adapts the strategy used to prove Theorem 5.1.2 in [48, 49] and
related results in [18]. The outline of the proof is as follows. We use a marker set, as in the proof
of Theorem 5.1.2, to break points in Z into moderate blocks and long periodic blocks, separated by
marker coordinates. We code these separately using certain “data blocks” in Y , some of moderate
length and some long and periodic, where the long periodic data blocks come from periodic points
with π-preimages of equal least period in X. A block in Z between marker coordinates is coded to
a data block in Y which is shorter by an additive constant, so that there are gaps between the data
blocks, filled with repetitions of a “blank” symbol. We then lift the data blocks from Y to data blocks
from X, then replace the blanks with a “stamp” block from X to form a valid point in X. The stamp
block is chosen to ensure that once the point in X is coded into Y by π, the locations of the stamp,
and thus of the marker coordinates, can be recognized. These manipulations of markers, blanks, and
stamps are presented in detail in Section 5.3, while the quantitative arguments required to construct
the data blocks and stamps are given in Section 5.4.

The statement of Theorem 5.1.2 is false for X merely mixing sofic, and to date there is no known
characterization of the subshifts that embed into a given mixing sofic shift, though some sufficient
conditions are known [18, 73]. Theorem 5.1.1 sheds some light on this problem, without resolving it.
Salo-Törmä have answered [67] the following related question: let Y be a mixing sofic shift and Z ⊂ Y
a mixing SFT. For which such Y, Z do there exist a mixing SFT extension π : X → Y and a (mixing
SFT) Z ′ ⊂ X such that π|Z′ : Z ′ → Z is a conjugacy? However, it is unclear how the conditions given
in that answer compare to those in Theorem 5.1.1, or to the results given in [73]. As a final related
question, when Y is an SFT and Z is conjugate to Y , the existence of an SFT Z ′ ⊂ X conjugate to Z
such that π|Z′ : Z ′ → Y is a conjugacy, i.e. is surjective as well as injective, has been studied in [33],
continuing work from [54].

5.2 Conventions, definitions, and background

5.2.1 Subshifts and sliding block codes

We recall the definition, from earlier in the paper, of a subshift over Z with alphabet A. A subshift
X ⊂ AZ is characterized by the set B(X) of blocks w ∈ A∗ such that X∩[w] ̸= ∅, called the language of
X. When the intended subshift X is clear, we write [w]i for X ∩ [w]i. We write Bn(X) = B(X) ∩An.
We can equivalently characterize a subshift by a set of forbidden words F ⊂ A∗, writing XF :=
AZ \

⋃
w∈F

⋃
i∈Z[w]i. Note that in general F ⊊ A∗ \ B(XF ). For a given subshift X ⊂ AZ, there may

be several different sets of forbidden words F ⊂ A∗ such that X = XF . A shift of finite type (SFT)
is a subshift X such that X = XF for some finite set F . A k-step SFT over A is an SFT of the form
X = XF for some set F ⊂ Ak+1.

We recall from Chapter 3 that, for subshifts X,Y , a function ϕ : X → Y is continuous and
shift-equivariant if and only if it is a sliding block code, which means that there exist m,n ≥ 0 and
Φ : Bm+n+1(X) → B1(Y ) such that for every x ∈ X and every i ∈ Z, ϕ(x)i = Φ(x[i−m,i+n]). We say
that ϕ is a k-block code if m + n + 1 = k. A factor code is a surjective sliding block code, and for a
sliding block code ϕ defined on a subshift X, we say that the image ϕ(X) is a factor of X, and that X,
or more properly ϕ : X → ϕ(X), is an extension of ϕ(X). We recall also that a sofic shift is any factor
of a shift of finite type. An injective sliding block code is called an embedding, and a bijective sliding
block code is called a conjugacy. The properties of being sofic and of finite type are both invariant
under conjugacy.

As in Chapter 3, a subshift X is said to be irreducible if for all u,w ∈ B(X), there exists v ∈ B(X)
such that uvw ∈ B(X), and strongly irreducible with gap g ≥ 1 if, for any u,w, we can take always
take v ∈ Bg(X). Any factor of an irreducible (resp. strongly irreducible) subshift is irreducible (resp.
strongly irreducible). A periodic point in a subshift X is a point x ∈ X with x = σnx for some
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n ≥ 1—we say that x has period n. The least period per(x) of a periodic point x is the least n such
that σnx = x. Note that |{σnx |n ∈ Z}| = per(x). We write P (X) for the set of periodic points in a
subshift X, Qn(X) for the set of periodic points of least period n, and qn(X) = |Qn(X)|. The number
of periodic points of a given least period is a conjugacy invariant.

It is a theorem that periodic points are dense in any irreducible shift of finite type. As in Chapter
3, the period per(X) of an irreducible shift of finite type X is the gcd of the periods of the periodic
points of X. An irreducible SFT with period 1 is said to be aperiodic. An irreducible SFT is strongly
irreducible if and only if it is aperiodic, if and only if has periodic points of all sufficiently high periods.
For irreducible sofic shifts, strong irreducibility is equivalent to having periodic points of all sufficiently
high periods, which clearly implies that the periods have gcd 1, but the reverse implication fails. For
example, consider the odd shift over {0, 1}, in which the block 10n1 is permitted only for odd n.
This is an irreducible sofic shift which contains the fixed point 0∞, so the periods of periodic points
trivially have gcd 1. However, the odd shift has no other periodic points of odd period. We follow
the convention of the literature in referring to strongly irreducible sofic shifts (in particular SFTs) as
mixing sofic shifts (mixing SFTs), because they are also characterized by a topological mixing property,
but we will not use that property explicitly, so we do not define it here.

The following definition is new, and we use it extensively.

Definition 5.2.1. Let X and Y be subshifts and let π : X → Y be a factor code. We write Rn(π) for
the set of periodic points y ∈ Y such that y = π(x) for some periodic point x ∈ X with per(x) = per(y).
We write rn(π) = |Rn(π)|.

For a subshift X, the (topological) entropy of X is the value h(X) = infn≥1
1
n log |Bn(X)|; in fact,

the limit limn→∞
1
n log |Bn(X)| exists and is equal to h(X). For a mixing sofic shift (in particular, a

mixing SFT) X, we also have h(X) = limn→∞
1
n log qn(X). Entropy is non-increasing under factor

codes and is thus a conjugacy invariant, though certainly not a complete invariant. For any irreducible
sofic shift X, and any proper subshift V ⊂ X, we have h(V ) < h(X). In Section 5.4, we use the
following lemma of Marcus, which allows us to approximate a sofic shift from the inside by SFTs in
terms of entropy.

Lemma 5.2.1 (Proposition 3 in [52]). Let Y be a sofic shift. For every ε > 0, there exists an irreducible
SFT U ⊆ Y with h(U) > h(Y )− ε.

For any subshift X and any k ≥ 1, we can form the kth higher block shift X [k] with alphabet
Bk(X), where

w = (a1,1a1,2 . . . a1,k)(a2,1a2,2 . . . a2,k) . . . (aℓ,1aℓ,2 . . . aℓ,k) ∈ B(X [k])

if any only if for each i, j we have ai,j = ai+1,j−1, so that

w = (a1a2 . . . ak)(a2a3 . . . ak+1) . . . (aℓ+1aℓ+2 . . . aℓ+k),

and a1a2 . . . ak+ℓ ∈ B(X). Observe that X and X [k] are conjugate for any subshift X and any k ≥ 1.
Moreover, if X is an m-step SFT and k ≤ m − 1, then X [k] is an (m − k)-step SFT. In particular,
every SFT is conjugate to a 1-step SFT, and every sliding block code on an SFT can be written as
a composition of a conjugacy and a 1-block code. We will therefore frequently assume WLOG that a
given sliding block code on an SFT is a 1-block code on a 1-step SFT.

For a sliding block code on an irreducible shift of finite type, either every fiber is a finite set (indeed,
of bounded cardinality), in which case the code is said to be finite-to-one and the entropy of the image
is equal to that of the domain, or almost every fiber is uncountable, and the entropy of the image
is strictly less than that of the domain. In the finite-to-one case, the minimum fiber cardinality is
generic and is known as the degree. In particular, a code (on an irreducible SFT) with degree 1 is said
to be almost invertible. It is a theorem that every irreducible (resp. mixing) sofic shift is an almost
invertible factor of an irreducible (resp. mixing) SFT. We use the following construction of almost
invertible codes, known as the “blowing-up lemma”, in the proof of Corollary 5.1.3 in Section 5.5.

53



Lemma 5.2.2 (Lemma 10.3.2, [49]). Let Z be a mixing SFT and let z ∈ Z be a periodic point with
least period p. Let M ≥ 1. Then there exist a mixing SFT Z ′ and an almost invertible factor code
χ : Z ′ → Z such that the preimage of the orbit of z under χ is a single orbit of length Mp. Moreover,
every periodic point in Z not in the orbit of z has unique preimage under χ.

Remark 5.2.3. Note that in [49], the extension χ in Lemma 5.2.2 is only stated to be finite-to-one, but
the existence of periodic points having unique preimage already implies almost invertibility. Indeed,
the construction in [49], based on work in [18], in fact shows that χ is injective except on the points
that are backward-asymptotic to points in the preimage of the orbit of z, where we say that two points
z, z′ are backward-asymptotic if d(σnz, σnz′) → 0 as n→ −∞.

5.2.2 Markers and Markov approximations

We now recall the constructions with markers and long periodic blocks that are at the heart of the
proof of Theorem 5.1.1. For an alphabet A, we say that a block w = w1 . . . wn ∈ An is k-periodic, or
has self-overlap of n− k, if for 1 ≤ i ≤ n− k we have wi = wi+k. A given block may be k-periodic for
several different k.

Lemma 5.2.4 (Lemma 2.3 in [18]). Let Z be a subshift, let N ≥ 1, and a, b ∈ Z with b− a ≥ 2N . Let
z ∈ Z. If for every i ∈ [a +N, b −N ] there exists p ≤ N − 1 such that z[i−N,i+N ] is p-periodic, then
there is at most one periodic point ζ ∈ Z with per(ζ) ≤ N − 1 and ζ[a,b] = z[a,b]. If Z is a 1-step SFT,
then such a ζ exists.

Lemma 5.2.5 (Lemma 2 in [48]). Let Z be a subshift. For any N ≥ 1, there exists a subset F ⊂ Z,
which can be taken to be a finite union of cylinders, such that:

1. the sets σiF , 0 ≤ i ≤ N − 1, are all disjoint, and

2. if z /∈ σiF for all −(N − 1) ≤ i ≤ (N − 1), then z[−N,N ] is p-periodic for some p ≤ N − 1.

Definition 5.2.2 (marker set). With Z, N , and F as in Lemma 5.2.5, we refer to F as a marker set
for Z with parameter N .

For any subshift X and any n ≥ 1, we can form the nth Markov approximation Xn, which is the
SFT defined by allowing precisely the blocks of length n which appear in X. Clearly Xn+1 ⊂ Xn. It is
an exercise to show that for any ε > 0 and anyN ≥ 1, there existsN ′ ≥ N such that h(XN ′) < h(X)+ε
and qn(XN ′) = qn(X) for all n ≤ N . In Lemma 5.2.6, we use the Markov approximation, together
with higher block shifts, to show that in the proof of Theorem 5.1.1, we can assume WLOG that Z is
a 1-step SFT, which allows us to apply Lemma 5.2.4.

We remark that there are versions of Lemma 5.2.5 which obviate the need for Lemma 5.2.4. How-
ever, for our purposes in this paper, embedding Z into an SFT has the additional benefit that the rate
of convergence of 1

n log qn(Z) to h(Z) can be easily estimated when Z is an SFT (see e.g. [49], pp.
349-351), which gives a procedure for deciding whether a given X,Y, π, Z satisfy the periodic point
condition in Theorem 5.1.1, assuming that h(Z) < h(Y ) (namely, compute N ≥ 1 such that for all
n ≥ N , qn(Z) < rn(π), then check all n ≤ N to determine whether qn(Z) ≤ rn(π)).

Lemma 5.2.6. Let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y a factor code. Let Z
be a subshift with h(Z) < h(Y ) and qn(Z) ≤ rn(π) for all n ≥ 1. Then there exists a 1-step SFT Z ′

such that Z embeds into Z ′, h(Z ′) < h(Y ), and qn(Z
′) ≤ rn(π) for all n ≥ 1.

We defer the proof of Lemma 5.2.6 to Section 5.5.
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5.3 Coding

In Section 5.3.1, we introduce two coding constructions, namely subshifts with blanks adjoined, Defi-
nition 5.3.1, and stamps, Definition 5.3.2, then use them to create one side of an interface between Z
on the one hand and π : X → Y on the other. In Section 5.3.2, we use markers in Z to construct the
other side of this interface. In Section 5.3.3, we use stamps to give a construction of SFTs analogous
to S-gap shifts. We use this construction in Section 5.4.2 to construct the shifts that are used in
Section 5.3.1 and Section 5.3.2.

5.3.1 Blanks and stamps

As outlined in Section 5.1, the proof of Theorem 5.1.1 involves coding Z into X via certain intermediate
subshifts which consist of long “data” blocks separated by blanks. We now define this construction
precisely.

Definition 5.3.1 (subshift with blanks adjoined). Let W be a subshift and let N, ℓ ≥ 1 with ℓ < N .

Let ∗ be a symbol not appearing in the alphabet of W . Let M ⊂
⋃2N
n=1 Bn(W ) be a set of blocks

and let Q ⊂ ∪2N−1
n=1 Qn(W ) be a set of periodic points. Denote by Blanks(M,Q,N, ∗, ℓ) the subshift in

which each point is of the form . . . w−1 ∗ℓ w0 ∗ℓ w1 . . . where either wi ∈ M or wi = yT where y ∈ Q
and T = (−∞, 0], [0,+∞), (−∞,∞), or [0,m] with m ≥ 2N .

The purpose of the Blanks construction is to provide an interface between the channel π : X → Y
and the subshift Z to be embedded. One side of this interface, namely the embedding of a Blanks
subshift into X, is specified in Proposition 5.3.4. The construction involves particular blocks, which
we call stamps, that can be unambiguously recognized in the following sense:

Definition 5.3.2 (stamp). Let Y be a subshift, W ⊂ Y a proper subshift, and k ≥ 1. We say that
µ ∈ B(Y ) \ B(W ) is a (Y,W, k) stamp if for all u1, u2 ∈ B(W ) and v1, v2 ∈ Bk(Y ), µ appears exactly
once in u1v1µv2u2.

Remark 5.3.1. In Definition 5.3.2, continuing with the notation there, we do not explicitly require
u1v1µv2u2 to be legal in Y . Doing so would neither affect the results nor simplify the proofs. In all of
the examples we consider, such blocks will in fact be legal in Y .

Proposition 5.3.2. Let Y be a strongly irreducible subshift with gap g and W ⊂ Y a proper subshift.
For every k ≥ g and every sufficiently large n, there exists a (Y,W, k) stamp of length n.

We defer the proof of Proposition 5.3.2 to Section 5.4.1, but before applying stamps in Proposi-
tion 5.3.4, we prove a lemma that expresses how stamps are actually used in our constructions.

Lemma 5.3.3. Let Y be a subshift, W ⊂ Y a proper subshift, k ≥ 1, and µ ∈ B(Y )\B(W ) a (Y,W, k)
stamp. Let N ≥ |µ|. Then for any γ± ∈ Bk(Y ), and any w ∈ B(W ) with |w| ≥ N , the stamp µ
appears exactly twice in the block µγ−wγ+µ.

Proof. By the hypotheses on µ, γ±, and w, and Definition 5.3.2, µ appears exactly once in each
subblock µγ−w, wγ+µ. An appearance of µ other than at the positions explicitly indicated must
therefore overlap both of these subblocks. Since |w| ≥ |µ|, µ must therefore be a subblock of w,
contradicting the hypothesis that w ∈ B(W ) and µ ∈ B(Y ) \ B(W ).

We now give one of the main coding constructions (Proposition 5.3.4), embedding a subshift with
blanks adjoined, and with blocks from a subshift V ⊂ X, into X via a sliding block code γ, such that
π ◦ γ is injective. The large amount of data in the statement is representative of the complexity of the
construction and the modular nature of the proof.
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Proposition 5.3.4. Let X be a mixing SFT with gap g, let Y be a mixing sofic shift, and let π : X → Y
be a 1-block factor code.

Let V ⊂ X, W = π(V ) ⊂ Y be proper subshifts. Let ∗ be a symbol not appearing in the alphabets

of X,Y . Let N ≥ 1. Let M ⊂
⋃2N−1
n=1 Bn(W ) be a collection of blocks, and let R ⊂

⋃N−1
n=1 Rn(π|V ) be a

union of finite (i.e. periodic) orbits inW with π-preimages of equal cardinality in V . Let κ :M → B(V )
be an injection such that π◦κ(w) = w for each w ∈M , and let M̂ = κ(M). Similarly, let λ : R→ P (V )
be a shift-commuting injection such that π ◦ λ(y) = y for each y ∈ R, and let R̂ = λ(R). Then for any
ℓ ≥ 1, Blanks(M,R,N, ∗, ℓ) and Blanks(M̂, R̂,N, ∗, ℓ) are conjugate.

Moreover, let µ ∈ B(Y ) \ B(W ) be a (Y,W, g) stamp such that |µ| ≤ N , and suppose that M ⊂⋃2N−1
n=N Bn(W ), i.e. M contains no blocks of length less than N . Then there exists a sliding block code

γ : Blanks(M̂, R̂,N, ∗, |µ|+ 2g) → X such that π ◦ γ is injective.

Proof. First, the conjugacy. Let W [∗] = Blanks(M,R,N, ∗, ℓ) and V [∗] = Blanks(M̂, R̂,N, ∗, ℓ). Con-
sider the 1-block code π[∗] defined on V [∗] by the block map π[∗](a) = π(a) for a in the alphabet of V
and π[∗](∗) = ∗. We claim that W [∗] = π[∗](V [∗]) and that π[∗] : V [∗] → W [∗] is a conjugacy. To see
that W [∗] ⊆ π[∗](V [∗]), note that any ξ ∈ V [∗] is of the form

ξ = . . . w−1 ∗ℓ w0 ∗ℓ w1 . . .

where either wi ∈ M̂ or wi = xT for some x ∈ R̂ and T an interval with 2N + 1 ≤ |T |. If wi ∈ M̂ ,
then π(wi) ∈M ; if wi = xT for some x ∈ R̂, then π(wi) = π(x)T , and π(x) ∈ R. Therefore

π[∗](ξ) = . . . π(w−1) ∗ℓ π(w0) ∗ℓ π(w1) · · · ∈W [∗]

This shows that indeed W [∗] ⊂ π[∗](V [∗]). Similarly, any η ∈W [∗] is of the form

η = . . . w−1 ∗ℓ w0 ∗ℓ w1 . . .

where either wi ∈ M or wi = yT for some y ∈ R and T an interval with 2N + 1 ≤ |T | ≤ ∞. For η
of this form, using Lemma 5.2.4, we can use the injections κ, λ to reconstruct a unique ξ ∈ V [∗] such
that π[∗](ξ) = η.

We now suppose that each block in M has length at least N and that we have a (Y,W, g) stamp
µ ∈ B(Y ) \ B(W ) such that |µ| ≤ N . Under these assumptions, we construct a sliding block code
γ : V [∗] → X and show that π ◦ γ is injective. Fix a π-preimage µ̂ of µ, and let ℓ = |µ| + 2g.
Using the hypothesis that X is a mixing 1-step SFT, define maps γ± : B1(V ) → Bg(X) such that, for
a, b ∈ B1(V ), we have µ̂γ−(a)a, bγ+(b)µ̂ ∈ B(X). We then have a sliding block code γ : V [∗] → X,
given by replacing each block b ∗ℓ a by bγ+(b)µ̂γ−(a)a, and leaving the non-blank symbols unchanged.

Let
ξ = · · · ∗ℓ v−1 ∗ℓ v0 ∗ℓ v1 ∗ℓ · · · ∈ V [∗]

Then
γ(ξ) = . . . µ̂γ−(a0)v0γ

+(b0)µ̂ . . .

where ai, bi are, respectively, the initial and terminal symbols of vi. In turn, we have

π ◦ γ(ξ) = . . . µ(π ◦ γ−(a0))π(v0)(π ◦ γ+(b0))µ . . .

Moreover, by Lemma 5.3.3 and the lower bound on lengths of blocks in M , it follows that µ appears in
π◦γ(ξ) only where µ̂ appears at the same position in γ(ξ). By replacing, in π◦γ(ξ), each appearance of
µ, and the blocks of length k to the left and right of µ, with ∗ℓ, we obtain the point · · · ∗ℓ π(v0)∗ℓ · · · =
π[∗](ξ) ∈ Blanks(M,R,N, ∗, ℓ), from which ξ can be recovered since π[∗] is a conjugacy.
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5.3.2 Blanks and markers

We now prove a lemma that encapsulates the use of marker constructions in our proof of Theorem 5.1.1.

Lemma 5.3.5. Let Z,W be subshifts with Z a 1-step SFT. Let N, ℓ ≥ 1 be such that qn(Z) ≤ qn(W )

for n ≤ N − 1 and |Bn(Z)| ≤ |Bn−ℓ(W )| for N + ℓ ≤ n ≤ 2N + ℓ − 1. Let M ⊂
⋃2N−1
n=N Bn(W )

and Q ⊂
⋃N−1
n=1 Qn(W ) be a union of finite (i.e. periodic) orbits such that |Bn(Z)| ≤ |M ∩ Bn−ℓ(W )|

for N + ℓ ≤ n ≤ 2N + ℓ − 1, and qn(Z) ≤ |Q ∩ Qn(W )| for n ≤ N − 1. Then Z embeds into
Blanks(M,Q,N, ∗, ℓ).

Remark 5.3.6. The lower bound on the length of blocks in M is not in fact needed for Lemma 5.3.5,
but it is needed in order to apply Lemma 5.3.5 in conjunction with Proposition 5.3.4 in the proof of
Theorem 5.1.1 below.

Proof. Let F be a marker set for Z with parameter N . For z ∈ Z, let A(z) = {i ∈ Z |σiz ∈ F}.
Enumerate each A(z) as {aj(z)}j∈J(z) where the index set J(z) may be the empty set, or a finite set,
or the integers, or the positive or negative natural numbers, and where aj(z) < aj+1(z) for each j.
We refer to the elements of A(z) as marker coordinates for z. Say that T is a marker interval for z if:
T = [aj(z), aj+1(z)) where aj(z), aj+1(z) are both defined; or T = [a0(z),∞) if a0(z) = maxA(z) <∞;
or T = (−∞, a0(z)] if a0(z) = minA(z) > −∞; or T = (−∞,∞) if A(z) = ∅.

We construct an embedding of Z into Blanks(M,Q,N, ∗, ℓ) by constructing a function Φ that maps a
block occurring between marker coordinates to a data block padded with ∗ℓ. Let cn : Qn(Z) → Qn(W )
be shift-commuting injections for n ≤ N − 1. Let dn : Bn(Z) → Bn−ℓ(W ) ∩ M be injections for
N + ℓ ≤ n ≤ 2N + ℓ − 1. (This is despite the fact that the parameter for the marker set F is N .
We need the extra space in order to pad data blocks with blanks.) For a block w ∈ Bn(Z) with
N + ℓ ≤ n ≤ 2N + ℓ − 1, let Φ(w) = ∗ℓdn(w). For z ∈ Z periodic with n = per(z) ≤ N − 1,
if m ≥ 2N + ℓ, let Φ(z[0,m]) = ∗ℓcn(z)[ℓ,m]. Similarly, let Φ(z[0,∞)) = ∗ℓcn(z)[ℓ,∞). Finally, let
Φ(z(−∞,0]) = cn(z)(−∞,0] and let Φ(z) = cn(z). Observe that Φ is injective, by Lemma 5.2.4.

Define ϕ : Z → W by declaring that ϕ(z)T = Φ(zT ) whenever T is a marker interval for z. We
need to show that ϕ is an embedding. Certainly ϕ is shift-commuting, since, if T is a marker interval
for z, then T − 1 is a marker interval for σz, so

ϕ(σz)T−1 = Φ((σz)T−1) = Φ(zT ) = ϕ(z)T = (σϕ(z))T−1

Thus indeed ϕ(σz) = σϕ(z). Moreover, ϕ is injective because the appearances of ∗ℓ in ϕ(z) allow us to
reconstruct the marker coordinates, and then the injectivity of Φ allows us to reconstruct zT for each
marker interval T for z.

We need to show finally that ϕ is continuous, i.e. that for z ∈ Z, ϕ(z)0 depends only on z[−L,L] for
some finite L independent of z. To see this, let L′ be such that F is a union of cylinders on [−L′, L′].
Let L = L′ + 2N . By examining z[−L,L], we can determine whether there are marker coordinates for
z in [−2N, 0) and/or [0, 2N ]. If each of these intervals contains a marker coordinate, then ϕ(z)0 is
determined by zT where T ⊂ [−2N, 2N ] is the unique marker interval for z containing 0. If at least
one of [−2N, 0), [0, 2N ] has no marker coordinates, then 0 is in a long marker interval for z. If there
is a marker coordinate in (−ℓ, 0], then ϕ(z)0 = ∗. Otherwise, by Lemma 5.2.4, ϕ(z)0 is determined by
any subblock z[a,b] where a < 0 ≤ b, b− a ≥ 2N , and [a, b] contains no marker coordinate for z. This
concludes the proof that ϕ is continuous.

The remainder of the proof of Theorem 5.1.1 follows from the following proposition, the proof of
which is taken up in Section 5.4.

Proposition 5.3.7. Let X be a mixing SFT with gap g, Y a mixing sofic shift, and π : X → Y a
factor code. Let Z be a subshift with h(Z) < h(Y ) and qn(Z) ≤ rn(π) for every n ≥ 1. Then there
exist: N ≥ 1, subshifts V ⊂ X, W = π(V ) ⊂ Y , and a (Y,W, g) stamp µ ∈ B(Y ) \ B(W ), such that
|µ| ≤ N , qn(Z) ≤ rn(π|V ) for n ≤ N − 1 and |Bn(Z)| ≤ |Bn−ℓ(W )| for N + ℓ ≤ n ≤ 2N + ℓ− 1, where
ℓ = |µ|+ 2g.
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Proof of Theorem 5.1.1. By Lemma 5.2.6, assume WLOG that Z is a 1-step SFT. Let N , ℓ, V ⊂ X,
W = π(V ) ⊂ Y , and µ be as in Proposition 5.3.7. Let M ⊂

⋃2N−1
n=N Bn(W ) be as in Lemma 5.3.5, and

let R ⊂
⋃N−1
n=1 Rn(π|V ) be a union of finite orbits, such that qn(Z) ≤ |R ∩ Rn(π|V )| for n ≤ N − 1.

Each of which the orbits in R is, by the definition of Rn, necessarily the image of an orbit with equal
cardinality in V . Here, R takes the role that Q plays in Lemma 5.3.5, but in Lemma 5.3.5, there was
no channel π, and thus no preimage requirement, hence the change in notation. By Lemma 5.3.5, let
ϕ : Z → Blanks(M,R,N, ∗, ℓ) be an embedding.

Let M̂ , R̂ be as in Proposition 5.3.4, let π[∗] : Blanks(M̂, R̂,N, ∗, ℓ) → Blanks(M,R,N, ∗, ℓ) be
a conjugacy, and let γ : Blanks(M̂, R̂,N, ∗, ℓ) → X be an embedding such that π ◦ γ is injective (by
Proposition 5.3.4, using µ). Then ψ = γ ◦ (π[∗])−1 ◦ ϕ : Z → X is a sliding block code such that π ◦ ψ
is injective.

5.3.3 Stamps and SFTs

In this subsection, we prove Lemma 5.3.10, which, in conjunction with Lemma 5.2.1, allows us, in
Proposition 5.4.4, to construct a mixing SFT V ⊂ X such that the image π(V ) ⊂ Y is a proper
subshift of Y but has entropy at least h(Y ) − ε for a given ε > 0. It may be possible to give a more
efficient construction of such a V , but we have not found one. We first prove Lemma 5.3.8, which is
related to the characterization of SFTs among S-gap shifts (Theorem 3.3 in [26]).

Lemma 5.3.8. Let X be a mixing SFT with gap g and let V0 ⊂ X be an SFT. Let k ≥ g and let
µ ∈ B(X) \ B(V0) be an (X,V0, k) stamp. Let N ≥ |µ| and let V1 ⊂ X be the closure of the set of
points of the form

. . . v−1γ
+
−1µγ

−
0 v0γ

+
0 µγ

−
1 v1 · · · ∈ X

where, for each i, γ±i ∈ Bk(X) and vi ∈ B(V0) with |vi| ≥ N . Then V1 is a mixing SFT.

Remark 5.3.9. Note that V1, as defined in the statement of Lemma 5.3.8, clearly contains V0.

Proof. Assume without loss of generality that X is a 1-step SFT. We first perform a small recoding
for convenience, specifically to make it easier to recognize stamps, by replacing X by a conjugate shift
X̂. For each x ∈ X, define x̂ as follows: if x[i,i+|µ|) = µ, then for each i ∈ [−k, |µ|+ k), let a = xi and

let x̂i = â, where for symbols a, b in the alphabet of X, we have â = b̂ if and only if a = b, and the set
of symbols with hats is disjoint from the alphabet of X. If there is no j ∈ (i − (|µ| + k), i + k] with
x[j,j+|µ|) = µ, then let x̂i = xi. Clearly the map x 7→ x̂ is a sliding block code, and it is just as clearly

injective, since we recover x from x̂ by dropping hats. Therefore X̂ = {x̂ |x ∈ X} is a mixing SFT,
conjugate to X.

Denote by V̂1 ⊂ X̂ the image of V1 under the map x 7→ x̂. Let ℓ = |µ|+2k. Since µ is an (X,V0, k)
stamp, and N ≥ |µ|, blocks of the form γ+i µγ

−
i+1 do not overlap in any point in V by Lemma 5.3.3,

so symbols with hats occur in V̂1 in blocks of length exactly ℓ. The blocks of symbols with hats are
separated by blocks from V0. Since V̂1 is the image of V under a conjugacy X → X̂, V1 is an SFT if
and only if V̂1 is an SFT.

Let m ≥ N be such that X̂ and V0 are m-step SFTs. We claim that if x̂ ∈ X̂ is such that
x[i,i+m] ∈ Bm+1(V̂1) for all i ∈ Z, then x̂ ∈ V̂1, which means precisely that V is an m-step SFT. To
prove this claim, let F ⊂ Bm+1(X) be the set of blocks of length m+ 1 which contain at least one of
the following: a block of length greater than ℓ in which all symbols have hats; a block without hats
that is not in B(V0); or a block of symbols without hats, of length less than N , bounded on both sides
by symbols with hats. Note that F is disjoint from Bm+1(V̂1). Suppose that x̂[i,i+m] /∈ F for all i ∈ Z.
Then any block of symbols with hats in x̂ has length exactly ℓ, and is thus of the form γ+µγ−, where
γ± ∈ Bg(X) (with hats added). Furthermore, the blocks separating the blocks with hats must have
length at least N and must be in B(V0), since every subblock of length m+ 1 is in B(V0) and V0 is an
m-step SFT. Thus indeed x̂ ∈ V̂1, so V̂1 is indeed an SFT.
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To see that V1 is irreducible, let u−, u+ ∈ B(V1). We need to construct u0 ∈ B(V ) such that
u−u0u+ ∈ B(V1). We do so as follows. Extend u− on the right to form a block v− ∈ B(V1), which begins
with u− and ends with γ+−1µγ

−
0 where γ+−1, γ

−
0 ∈ Bk(V1). (It is possible that u− overlaps γ+−1µγ

−
0 .) Let

v0 ∈ BN (V0) be such that v−v0 ∈ B(X). Similarly, extend u+ on the left to form a block v+ ∈ B(V1)
which ends with u+ and begins with γ+0 µγ

−
1 , where γ+0 , γ

−
1 ∈ Bk(V1) and v0γ+0 ∈ B(X). Let x± ∈ B(V1)

be such that x−[0,∞) begins with v− and x+(−∞,−1] ends with v
+. Let x = x−(−∞,−1]v−v0v+x

+
[0,∞). Then

x ∈ X since X is a 1-step SFT. Moreover, x ∈ V1, since the tails x−(−∞,−1]v− and v+x
+
[0,∞) appear in

V1 and are joined together in a way that creates no violations of the restrictions defining V1. Letting
u0 be the block appearing between u−, u+, such that v−v0v+ = u−u0u+ ∈ B(V ), the construction is
complete, showing that V1 is indeed irreducible.

To see that V1 is mixing, let u1, u2 ∈ B(V0) with |u1| > m, where m is as above, and |u2| = |u1|+1.
Let γ±i ∈ B(X), i = 1, 2, be such that uiγ

+
i µγ

−
i ui ∈ B(X). Then xi = (uiγ

+
i µγ

−
i )

∞ ∈ V1 for both
i = 1, 2. Indeed, certainly xi ∈ X, since uiγ

+
i µγ

−
i ui ∈ B(X) and X is a 1-step SFT. Moreover, per(xi)

divides ℓ+ |ui|, and gcd(ℓ+ |u1|, ℓ+ |u2|) = gcd(ℓ+ |u1|, ℓ+ |u1|+1) = 1, so gcd(per(x1),per(x2)) = 1.
Since V1 is an irreducible SFT with periodic points of coprime periods, V1 is mixing.

As advertised, we now use Lemma 5.3.8 to prove the following lemma, which is applied in the proof
of Proposition 5.4.4, which in turn is the main input to the proof of Proposition 5.3.7.

Lemma 5.3.10. Let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y a factor code. Let
W0 ⊊ Y be an SFT. Then there exists a mixing SFT V1 ⊂ X with W0 ⊂ π(V1) ⊊ Y .

Proof. Let V0 = π−1(W0) ⊂ X. Note that V0 is an SFT since W0 is an SFT. Let g be the mixing gap
of X. Let y ∈ Y \W0 be a periodic point with least period k ≥ g. Such a y certainly exists because
periodic points are dense in Y and W0 is a proper subshift. Let k′ be such that y[0,k′) /∈ Bk′(W0). Let
ℓ = k + k′. Then every ℓ-block in y is forbidden in W0. In particular, for any x ∈ π−1({y}) and any
i ∈ Z, we have x[i,i+ℓ) /∈ B(V0).

By Proposition 5.3.2, let µ be an (X,V0, g) stamp. Let V1 consist of the closure of the set of points of
the form . . . v−1γ

+
−1µγ

−
0 v0γ

+
0 µγ

−
1 v1 · · · ∈ X where each vi ∈ B(V0) with |vi| ≥ ℓ and each γ±i ∈ Bg(X).

By Lemma 5.3.8, V1 is indeed a mixing SFT. Note that every point in V1 contains ℓ-blocks permitted
in V0, so V1 is disjoint from π−1({y}), and therefore π(V1) ⊊ Y .

5.4 Counting

In this section, we prove Proposition 5.3.2 and Proposition 5.3.7, which state the existence and prop-
erties respectively of the stamps and the shifts V ⊂ X,W ⊂ Y used in Section 5.3. Section 5.4.1
contains two results required for the proof of Proposition 5.3.2, one (Lemma 5.4.1) showing that most
blocks in a subshift with positive entropy have little self-overlap, and the other (Lemma 5.4.2) showing
that one can assume, at the cost of a small loss of entropy, that a given sufficiently long block appears
syndetically in a mixing sofic shift. Section 5.4.2 then gives a crucial asymptotic result on the num-
ber of periodic points in Y with a preimage of equal least period in X, and applies the results from
Section 5.3.3 to construct the shifts V and W .

5.4.1 Self-overlap and stamps

We begin by showing that most blocks have very little self-overlap, which we use both to construct
stamps and to determine the asymptotic number of periodic points in Y with a π-preimage of equal
least period.

Lemma 5.4.1. Let Y be a subshift with h(Y ) > 0. For every α ∈ (0, 1), there exist N ≥ 1 and b > 0
such that for every n ≥ N , there are at least (1 − exp(−bn)) exp(nh(Y )) blocks w ∈ Bn(Y ) with no
self-overlap of more than αn.
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Proof. Let ε = 1
2 (α

−1−1)h(Y ), so that α(h(Y )+ε) < h(Y ). Let r = exp(h(Y )) and s = exp(h(Y )+ε).
Note that sα < r < s and that rn ≤ |Bn(Y )| for every n. Let N0 be large enough that for all n ≥ N0,

we have |Bn(Y )| ≤ sn. Let C1 =
∑N0−1
k=1 |Bk(Y )|. Then the number of blocks in X of length n with

self-overlap of more than αn is at most

⌈αn⌉∑
k=1

|Bk(Y )| ≤
N0−1∑
k=1

|Bk(Y )|+
⌈αn⌉∑
k=N0

|Bk(Y )|

≤ C1 +

⌈αn⌉∑
k=N0

sk

≤ C1 +
sαn+2 − sN0

s− 1

≤ C2s
αn

where

C2 = C1 +
s2

s− 1

Let N > (1−α)h(Y )−αε
logC2

. Then, for n ≥ N , the number of blocks in Y of length n with no self-overlap
by more than αn is at least

|Bn(Y )| −
⌈αn⌉∑
k=1

|Bk(Y )| ≥ rn − C2s
αn

= rn
(
1− C2

(
sα

r

)n)
> (1− exp(−bn)) exp(nh(Y ))

where we can take

b =
1

2
log

(
C2

( r

sα

)N)
= (1− α)h(Y )− αε− 1

N
logC2

which is positive by the choice of N .

We now control the entropy loss incurred by requiring a given long block to appear syndetically.

Lemma 5.4.2. Let Y be a strongly irreducible subshift with h(Y ) > 0. For every ε > 0, there exist
β ∈ (0, 1) and N ≥ 1 such that for every n ≥ N and every θ ∈ B⌊βn⌋(Y ), the subshift S ⊂ Y consisting
of points y ∈ Y in which θ appears at least once in y[i,i+n) for every i ∈ Z has entropy at least h(Y )−ε.

Proof. Let g be the gap for Y . Let β = min{ε/(4h(Y )), 1/2} and let N = ⌈4(2g − 1)h(Y )/ε⌉. Let
n ≥ N and fix θ ∈ B⌊βn⌋(Y ). For m ≥ n, and for all u1, . . . , uk ∈ Bn−⌊βn⌋−2g(Y ), where k = ⌊m/n⌋,
there exist v±1 , . . . , v

±
k ∈ Bg(Y ) and v0 ∈ Bm−kn(Y ) such that

v0θv
−
1 u1v

+
1 θv

−
2 u2v

+
2 . . . θv

−
k ukv

+
k ∈ Bm(Y )
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Therefore, by manipulation of logarithms and the fact that h(Y ) = infℓ≥1
1
ℓ log |Bℓ(Y )| by definition,

|Bm(S)| ≥ |Bn−⌊βn⌋−2g(Y )|⌊m/n⌋

1

m
log |Bm(S)| ≥ 1

m
log

(
|Bn−⌊βn⌋−2g(Y )|(m−1)/n

)
=

(
1− 1

m

)
1

n
log |B⌊(1−2β)n⌋−2g(Y )|

≥
(
1− 1

m

)
1

n
(n− ⌊βn⌋ − 2g)h(Y )

> h(Y )− ε/2

for large enough m, where the final inequality follows from the choices of β and N . We conclude that
h(S) = lim infm→∞

1
m |Bn(S)| > h(Y )− ε.

Proof of Proposition 5.3.2. It is clearly enough to prove the result for u1, u2 sufficiently long, since
we can then pass to subwords of u1, u2. By Lemma 5.4.2, let β ∈ (0, 1), m sufficiently large, and
θ ∈ Bβm(Y ) \ B(W ) be such that the subshift S ⊂ Y defined by requiring at least one appearance of
θ in any block of length m has h(S) > 0. Let α ∈ (0, 1) be arbitrary, and let n > (m+ k)/(1− α) be
large enough that, by Lemma 5.4.1, there exists µ ∈ Bn(S) such that µ has no self-overlap by more
than αn, in particular by more than n− (m+ k).

Let u1 ∈ Bk1(S), u2 ∈ Bk2(S) with k1, k2 ≥ m and let v1, v2 ∈ Bk(Y ). Then µ cannot appear in
u1v2µv2u2 except at the position explicitly indicated. Indeed, µ cannot appear at a position shifted
by at most m+ k—otherwise, µ would overlap itself by too much—and it cannot appear at a position
shifted by more than m + k, as it would then overlap with u1 or u2 in a block of length at least m,
contradicting the fact that µ ∈ B(S), and thus has θ as a subword.

5.4.2 Entropy and periodic points

We first show that at least a positive fraction of periodic points in Y of sufficient least period have a
preimage of equal least period, and in particular that their growth is exponential with rate h(Y ).

Proposition 5.4.3. Let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y a factor code.
Then limn→∞

1
n log rn(π) = h(Y ).

Proof. Let g be the mixing gap of X. By Lemma 5.4.1, let b > 0 and N > 3g be such that, for
all n ≥ N , the number of blocks in Y of length n − g with no self-overlap by more than n/3 is
at least c exp(nh(Y )), where we may take c = 1

2 exp(−gh(X)). For each block v ∈ Bn−g(Y ), there
exists a periodic point x ∈ X with π(x)[0,n−g) = v such that per(x) divides n. Thus π(x) is also
periodic with least period dividing n. Moreover, if v has no self-overlap by more than n/3, then in
fact per(π(x)) = n. Therefore rn(π) ≥ c exp(nh(Y )), so lim infn→∞

1
n log rn(π) ≥ h(Y ), matching

lim supn→∞
1
n log rn(π) ≤ limn→∞

1
n log qn(Y ) = h(Y ).

We now assemble the quantitative results proven so far.

Proposition 5.4.4. Let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y a factor code. Let
ε > 0 and N0 ≥ 1. Then there exist N1 ≥ N0 and proper subshifts W ⊊ Y , V = π−1(W ) ⊂ X, such
that: h(W ) > h(Y )− ε; for n ≤ N1, rn(π|V ) = rn(π); and for n ≥ N1, rn(π|V ) > exp(n(h(Y )− ε)).

Proof. By Lemma 5.2.1 and Lemma 5.3.10, let V1 ⊂ X be a mixing SFT such that h(Y ) − ε/2 <
h(π(V1)) < h(Y ). Let W1 = π(V1). By Proposition 5.4.3, let N1 ≥ N0 be such that for any n ≥ N1,

we have 1
n log rn(π|V1

) > h(W1) − ε/2 > h(Y ) − ε. Let W = W1 ∪
⋃N1

n=1Rn(π) and V = π−1(W ).
Then rn(π|V ) = rn(π) for all n ≤ N1.

To see that W ̸= Y , observe that the only n-blocks in W that may not be in W1 are those in
the low-order periodic points that have been adjoined, which are bounded in number by a constant.
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That is, |Bn(W )| ≤ |Bn(W1)| + C for all n ≥ N1, where we can take C =
∑N1

k=1 k|Rk(π)|. Thus
h(W ) = h(W1) < h(Y ).

Proposition 5.4.4 is the final input to the proof of Proposition 5.3.7, and thus of Theorem 5.1.1.

Proof of Proposition 5.3.7. Let ε = h(Y )− h(Z). Let N0 ≥ 1 be large enough that for all n ≥ N0,

1

n
logmax{qn(Z), |Bn(Z)|} < h(Z) +

ε

4

By Proposition 5.4.4, let W ⊂ Y , V = π−1(W ) ⊂ X, and N1 ≥ N0 be such that h(W ) > h(Y ) − ε
4 ,

rn(π|V ) = rn(π) for all n ≤ N1, and
1
n log rn(π|V ) > h(Y ) − ε

4 for all n ≥ N1. Note that h(W ) >
h(Z) + ε

2 and that qn(Z) ≤ rn(π|V ) for all n ≥ 1.
Let g be the mixing gap of X. By Proposition 5.3.2, let µ ∈ B(Y ) \ B(W ) be a (Y,W, g) stamp.

Let ℓ = |µ| + 2g. Then since h(Z) < h(W ), there exists N sufficiently large so that for all n ≥ N , in
particular for N + ℓ ≤ n ≤ 2N + ℓ− 1, we have |Bn(Z)| < |Bn−ℓ(W )|.

5.5 Proofs of Lemma 5.2.6 and Corollary 5.1.3

We first use Proposition 5.4.3, along with facts about Markov approximations in Section 5.2.2, to prove
Lemma 5.2.6, which reduces Theorem 5.1.1 to the case where Z is a 1-step SFT.

Proof of Lemma 5.2.6. We use the properties of Markov approximations mentioned in Section 5.2.
Let ε = h(Y ) − h(Z). Let m0 be such that h(Zm0

) < h(Z) + ε/3, where Zm0
is the m0th Markov

approximation to Z, and such that, by Proposition 5.4.3, for all n ≥ m0,
1
n log rn(π) > h(Y ) − ε/3.

Let m1 ≥ m0 be such that 1
n log qn(Zm0

) < h(Zm0
) + ε/3 for all n ≥ m1. Let m2 ≥ m1 be such that

for all periodic points z ∈ P (Zm1) \Z (under the natural embedding Z ↪→ Zm1) with per(z) ≤ m1, we
have z[0,m2) /∈ Bm2(Z). Then Zm2 satisfies qn(Zm2) = qn(Z) ≤ rn(π) for all n ≤ m1. Moreover, since

Zm2
⊂ Zm0

, 1
n log qn(Zm2

) ≤ 1
n log qn(Zm0

) for all n; in particular,

1

n
log qn(Zm2) < h(Zm0) + ε/3

< h(Z) + 2ε/3

< h(Y )− ε/3

<
1

n
log rn(π)

for all n ≥ m1. Taking Z
′ = Z

[m2]
m2 to be the m2th higher block shift, the lemma is proved.

To prove Corollary 5.1.3, in the mixing sofic case, we use Lemma 5.2.2 to handle low-order periodic
point obstructions, with periodic points of sufficiently high order controlled by Proposition 5.4.3. To
handle the arbitrary case, we first give an improved Markov approximation (Lemma 5.5.2), embedding
an arbitrary subshift into a mixing SFT with only slightly greater entropy. The construction uses
Lemma 5.3.8; in Lemma 5.5.1 we estimate the entropy of the mixing SFT constructed in Lemma 5.3.8.

Lemma 5.5.1. Let X be a mixing SFT with gap g and let V0 ⊂ X be an SFT. Let k ≥ g and let µ ∈
B(X) \ B(V0) be an (X,V0, k) stamp. For any ε > 0, there exists N ≥ |µ| such that h(V1) < h(V0) + ε,
where V1 (depending on N) is as in Lemma 5.3.8.

Proof. Let N0 ≥ 1 be such that for all n ≥ N0 we have 1
n log |Bn(V0)| + ε/4. Let N > 2N0 be such

that
1

N
max{logN, log |Bk(X)|2, log |BN0(V0)|} <

ε

4
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We will show that 1
N log |BN (V1)| < h(V0) + ε. Consider a block of length N in V1. Such a block

can contain at most one full or partial block of the form γ+µγ− where γ± ∈ Bk(X). The µ, if present,
can begin at any of the N positions. The rest of the block of length N , outside the block γ+µγ−,
consists of one or two blocks from V0, with length totalling at most N . We thus have

|BN (V1)| ≤ N |Bk(X)|2 max
0≤ℓ≤N/2

|Bℓ(V0)||BN−ℓ(V0)|

If 0 ≤ ℓ ≤ N0, then |Bℓ(V0)||BN−ℓ(V0)| ≤ |BN0(V0)||BN (V0)|, so

1

N
log (|Bℓ(V0)||BN−ℓ(V0)|) ≤

1

N
log |BN0(V0)|+

1

N
log |BN (V0)|

< h(V0) +
ε

2

If N0 ≤ ℓ ≤ N/2, then

1

N
log (|Bℓ(V0)||BN−ℓ(V0)|) =

ℓ

N

1

ℓ
log |Bℓ(V0)|+

N − ℓ

N

1

N − ℓ
log |BN−ℓ(V0)|

<
ℓ

N

(
h(V0) +

ε

4

)
+
N − ℓ

N

(
h(V0) +

ε

4

)
= h(V0) +

ε

4

Therefore

1

N
log |BN (V1)| <

1

N
logN +

1

N
log |Bk(X)|2 + h(V0) +

ε

2
< h(V0) + ε

by the above choice of N .

We also use the following standard lemma improving the construction of the Markov approximation.
For completeness, we include a proof using Lemma 5.3.8.

Lemma 5.5.2. Let Z be a subshift and let ε > 0. Then there exists a mixing SFT V containing Z
with h(V ) < h(Z) + ε.

Proof. Let m be large enough that h(Zm) < h(Z) + ε/2, where Zm is the mth Markov approximation
to Z. Let X be the full shift on the alphabet of Z. Certainly Zm ⊆ X. If Zm = X, then we can
take V = X. If Zm ̸= X, then by Proposition 5.3.2, let µ be an (X,Zm, k) stamp for some k ≥ 0.
Let V0 = Zm and V = V1 as in Lemma 5.3.8 where N is large enough that, by Lemma 5.5.1, we have
h(V ) < ε/2. Thus V is indeed a mixing SFT containing Z with h(V ) < h(Z) + ε.

Proof of Corollary 5.1.3. We first consider the case in which Z is mixing sofic. Let Z̃ be a mixing SFT
and χ0 : Z̃ → Z an almost invertible factor code. If already qn(Z̃) ≤ rn(π) for all n ≥ 1, then we can
take Z ′ = Z̃ and apply Theorem 5.1.1 immediately to construct the claimed embedding ψ : Z ′ → X.
However, if qn(Z̃) > rn(π) for some n, so that X,Y, π, Z̃ violate the hypotheses of Theorem 5.1.1, then
we need to construct a further extension of Z̃ which satisfies the hypotheses of Theorem 5.1.1. The
construction, consisting a tower of extensions via Lemma 5.2.2, is as follows.

By Proposition 5.4.3, since h(Z̃) = h(Z) < h(Y ), there are at most finitely many n such that

qn(Z̃) > rn(π). Let N denote the greatest such n. Let C =
∑N
k=1 max{0, qk(Z̃) − rk(π)}. That

is, C is the number of periodic points by which X,Y, π, Z̃ violate the hypotheses of Theorem 5.1.1.
For 1 ≤ k ≤ N and 1 ≤ ℓ ≤ k−1 max{0, qk(Z̃) − rk(π)}, let zk,ℓ be periodic points with pairwise
disjoint orbits, such that per(zk,ℓ) = k. For a given k, the union of the orbits of the points zk,ℓ has

cardinality max{0, qk(Z̃)− rk(π)}. Let C ′ =
∑N
k=1 k

−1 max{0, qk(Z̃)− rk(π)} (counting orbits, rather

than points), and let {z(j)}C′

j=1 = {zk,ℓ}k,ℓ be an enumeration of the points zk,ℓ.
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Again by Proposition 5.4.3, let M > N be large enough that for all n ≥M , we have qn(Z̃)+Cn ≤
rn(π). We now repeatedly apply Lemma 5.2.2. Let Z(0) = Z̃. For 1 ≤ j ≤ C ′, let Z(j) be a mixing
SFT and χ(j) : Z(j) → Z(j−1) an almost invertible factor code such that the preimage of the orbit of zj
under χ(j) is a single orbit of length Mper(zj), and such that every periodic point in Z(j−1) not in the

orbit of zj has a unique preimage under χ(j). Let η(1) = χ(1) and η(j+1) = η(j) ◦χ(j+1). Let Z ′ = Z(C′)

and η = η(C
′) : Z ′ → Z̃. Certainly η is almost invertible, so h(Z ′) = h(Z̃) < h(Y ). We claim that

qn(Z
′) ≤ rn(π) for all n ≥ 1. Indeed, for each j, if per(zj) = k, then we have qk(Z

(j)) = qk(Z
(j−1))−k,

qMk(Z
(j)) = qMk(Z

(j−1)) +Mk, and qn(Z
(j)) = qn(Z

(j−1)) for all n /∈ {k,Mk}. Therefore qk(Z
′) =

rk(π), and

qMk(Z
′) = qMk(Z̃) +M max{0, qk(Z̃)− rk(π)}
≤ qMk(Z̃) + CM

≤ rMk(π)

where the last inequality follows from the choice of M . Therefore X,Y, π, Z ′ satisfy the hypotheses
of Theorem 5.1.1, so there exists a sliding block code ψ : Z ′ → X such that π ◦ ψ is injective. This
concludes the proof in the case that Z is mixing sofic.

We now handle the general case, where Z is an arbitrary subshift with h(Z) < h(Y ). By
Lemma 5.5.2, let V be a mixing SFT containing Z with h(V ) < h(Y ). By the mixing sofic case, let
V ′ be a mixing SFT such that X,Y, π, V ′ satisfy the hypotheses of Theorem 5.1.1, and let χ : V ′ → V
be an almost invertible factor code. Let Z ′ = χ−1(Z). Then χ|Z′ is still finite-to-one, which concludes
the proof.
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[37] K. Culik II, J. Karhumäki, and J. Kari. “A note on synchronized automata and road coloring
problem”. In: DLT 2001. Ed. by W. Kuich, G. Rozenberg, and A. Salomaa. Vol. 2295. Lect.
Notes Comput. Sci. Springer-Verlag Berlin Heidelberg, 2002, pp. 175–185.

[38] O.E. Lanford III and D. Ruelle. “Observables at infinity and states with short range correlations
in statistical mechanics”. In: Comm. Math. Phys. 13.3 (1969), pp. 194–215.

66

https://arxiv.org/abs/2210.12251


[39] J. Kari. “Synchronizing finite automata on Eulerian digraphs”. In: Theor. Comput. Sci. 295
(2003), pp. 223–232.

[40] A.S. Kechris. Classical descriptive set theory. Springer, 1995.

[41] A.S. Kechris. The theory of countable Borel equivalence relations. Preprint. http://www.math.
caltech.edu/~kechris/. 2019.

[42] G. Keller. Equilibrium states in ergodic theory. London Mathematical Society Student Texts 42.
Cambridge University Press, 1998.

[43] J.C. Kieffer. “Zero-error stationary coding over stationary channels”. In: Prob. Th. Rel. Fields
56 (1981), pp. 113–126.

[44] B. Kimura. “Gibbs measures on subshifts”. MA thesis. University of São Paulo, 2015.

[45] B. Kitchens and S. Tuncel. Finitary measures for subshifts of finite type and sofic systems. Vol. 58.
Mem. Amer. Math. Soc. 338. 1985.

[46] A.N. Kolmogorov. “Entropy per unit time as a metric invariant of automorphisms”. In: Doklady
Akad. Nauk SSSR 124 (1959). (Russian), pp. 754–755.

[47] A.N. Kolmogorov. “On certain asymptotic characteristics of completely bounded metric spaces”.
In: Doklady Akad. Nauk SSSR 108 (1956). (Russian), pp. 385–388.

[48] W. Krieger. “On the subsystems of topological Markov chains”. In: Ergod. Th. Dynam. Syst. 2.2
(1982), pp. 195–203.

[49] D. Lind and B. Marcus. An introduction to symbolic dynamics and coding. Cambridge University
Press, 1995.

[50] Sophie MacDonald. Encoding subshifts through sliding block codes. Preprint, arXiv:2210.08150.
2022.

[51] Sophie MacDonald. The road problem and homomorphisms of directed graphs. Preprint, arXiv:2201.12942.
2022.

[52] B. Marcus. “Sofic systems and encoding data”. In: IEEE Trans. Info. Th. IT-31.3 (1985), pp. 366–
377.

[53] B. Marcus and R. Pavlov. “Approximating entropy for a class of Z2 Markov random fields and
pressure for a class of functions on Z2 shifts of finite type”. In: Ergod. Th. Dynam. Syst. 33.1
(2013), pp. 186–220.

[54] B. Marcus, K. Petersen, and S. Williams. “Transmission rates and factors of Markov chains”.
In: Conference in modern analysis and probability: Yale University, New Haven CT, June 8–11,
1982. Ed. by R. Beals et al. Vol. 26. Contemp. Math. Amer. Math. Soc., 1984, pp. 279–293.

[55] R. Meester and J.E. Steif. “Higher-dimensional subshifts of finite type, factor maps and measures
of maximal entropy”. In: Pacific J. Math. 200.2 (2001), pp. 497–510.

[56] T. Meyerovitch. “Gibbs and equilibrium measures for some families of subshifts”. In: Ergod. Th.
Dynam. Syst. 33.3 (2013), pp. 934–953.

[57] G.L. Miller. “Graph isomorphism, general remarks”. In: J. Comput. Syst. Sci. 18 (1979), pp. 128–
142.

[58] S.R. Muir. “A new characterization of Gibbs measures on NZd

”. In: Nonlinearity 24 (2011),
pp. 2933–2952.

[59] S.R. Muir. “Gibbs/equilibrium measures for functions of multidimensional shifts with countable
alphabets”. PhD thesis. University of North Texas, 2011.

[60] J. von Neumann. “Zur Operatorenmethode in der klassiche Mechanik”. In: Ann. of Math. 33.3
(1932). German, pp. 587–642.

[61] G.L. O’Brien. “The road-colouring problem”. In: Isr. J. Math. 39.1–2 (1981), pp. 145–154.

67

http://www.math.caltech.edu/~kechris/
http://www.math.caltech.edu/~kechris/


[62] S.J. Patterson. “The limit set of a Fuchsian group”. In: Acta Math. 136 (1976), pp. 241–273.

[63] K. Petersen and K. Schmidt. “Symmetric Gibbs measures”. In: Trans. Amer. Math. Soc. 349.7
(1997), pp. 2775–2811.

[64] M. Pollicott and T.M.W. Kempton. “Factors of Gibbs measures for full shifts”. In: Entropy of
hidden Markov processes and connections to dynamical systems. Ed. by B. Marcus, K. Petersen,
and T. Weissman. Cambridge University Press, 2011. Chap. 8, pp. 246–257.

[65] E. Riehl. Category Theory in Context. Aurora. Dover, 2017.

[66] D. Ruelle. Thermodynamic formalism: the mathematical structures of equilibrium statistical me-
chanics. 2nd. Cambridge, 2004.

[67] V. Salo. Cohomology for extension problems in symbolic/topological dynamics? MathOverflow.
url: https://mathoverflow.net/q/424145.

[68] O.M. Sarig. “Lecture notes on thermodynamic formalism for countable Markov shifts”. Unpub-
lished lecture notes available from the author’s webpage. 2009.

[69] C. Shannon. “A mathematical theory of communication”. In: Bell Syst. Tech. J. 27 (1948),
pp. 379–423, 623–656.

[70] B. Simon. Convexity: an analytic viewpoint. Vol. 187. Cambridge Tracts in Mathematics. Cam-
bridge University Press, 2011.

[71] Ya. Sinai. “On the concept of entropy for a dynamic system. (Russian)”. In: Dolk. Akad. Nauk
SSSR 124 (1959), pp. 768–771.

[72] M. Stoll. “On the asymptotics of 2-step nilpotent groups”. In: J. London. Math. Soc. 58.1 (1998),
pp. 38–48.

[73] K. Thomsen. “On the structure of a sofic shift space”. In: Trans. Amer. Math. Soc. 356.9 (2004),
pp. 3557–3619.

[74] A.N. Trahtman. “The road coloring problem”. In: Isr. J. Math. 172.1 (2009), pp. 51–60.

[75] V. Vorel. “Subset synchronization and careful synchronization of binary finite automata”. In:
Intern. J. Found. Comput. Sci. 27.5 (2016), pp. 557–577.

[76] P. Walters. An introduction to ergodic theory. Springer, 1982.

[77] H.W. Wielandt. “Unzerlegbare, nicht negative Matrizen”. In: Math. Z. 52 (1950). (German),
pp. 642–648.

[78] J. Yoo. “Decomposition of infinite-to-one factor codes and uniqueness of relative equilibrium
states.” In: J. Mod. Dyn. 13 (2018), pp. 271–284.

68

https://mathoverflow.net/q/424145

	Abstract
	Lay Summary
	Preface
	Contents
	Acknowledgments
	Introduction
	Symbolic dynamics and entropy
	Symbolic dynamics
	Entropy

	Chapter 2
	Chapter 3
	Chapter 4
	Background: from toral automorphisms to finite automata
	Main ideas and contributions

	Chapter 5

	Conformal measures and the Dobrushin-Lanford-Ruelle equations
	Introduction
	Cocycles and the Gibbs relation 
	Equivalence of the conformal and DLR properties
	Interactions
	Potentials
	Potentials induced by interactions, and vice versa

	A Dobrushin-Lanford-Ruelle theorem for irreducible sofic shifts
	Introduction
	Definitions, notations, and conventions
	Symbolic dynamics
	The Gibbs relation, cocycles, and Gibbs measures

	Preservation of Gibbsianness
	Equilibrium measures

	The road problem and homomorphisms of directed graphs
	Introduction
	Graphs and graph homomorphisms
	Basic definitions
	Subgraphs and connectedness

	Stability and synchronization
	Transitions, stability, and synchronization
	Sufficient conditions for stability

	The O(G) conjecture and the road problem
	Generalization of the road colouring theorem
	The O(G) conjecture implies the road colouring theorem

	Bunchiness
	Bunchy and almost bunchy graphs
	Proof of the O(G) conjecture in the bunchy case
	Universal property of the fiber product

	The O(G) conjecture and bunchy synchronizing factors
	Computing with right-resolvers
	Basic routines
	Decision procedures for common synchronizing factors and extensions

	Proofs of structural results and additional details
	Remarks on the proof of thm-mg-sigma
	Proof of thm-struct-sync-comp
	Proofs of Propositions 4.5.4 and 4.5.5
	Proof of thm-univ-prop
	Proofs of lemma-fiber-bunchy and prop-bg-exists, and construction of B(G)
	Proofs of Propositions 4.6.1 and 4.7.1

	Proof of thm-bfc-cyc-bunch, following Trahtman
	Systems of maps with unique tallest trees
	Obtaining a right-resolver with a unique tallest tree


	Encoding subshifts through sliding block codes
	Introduction
	Conventions, definitions, and background
	Subshifts and sliding block codes
	Markers and Markov approximations

	Coding
	Blanks and stamps
	Blanks and markers
	Stamps and SFTs

	Counting
	Self-overlap and stamps
	Entropy and periodic points

	Proofs of wlog-sft and mmb-cor

	Bibliography

