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Abstract  

This dissertation demonstrates the development of a novel printing platform with integrated 

mixing and dispensing capabilities for patterning compositionally graded thin film sample libraries 

of fluid material blends. The modular nature of the combinatorial print head enables the reusability 

of the mixing and dispensing modules while the elastomeric base structure may be replaced as 

desired due to its ease of handling and integration. Such a combinatorial print head is shown to 

consume smaller functional material volumes along with faster fabrication of thin films using such 

materials. The key advantage of these print heads is their ability to rapidly homogenize multiple 

fluid inputs which results in highly efficient multi-material thin film prototyping. 

An economical fabrication process for the disposable elastomeric base structure through a simple 

casting process using 3D printed molds is utilized. The requisite combinatorial functions of fluid 

proportioning and mixing are validated through extensive direct and indirect characterization. A 

sample preparation methodology is proposed and the combinatorial printing platform is assembled 

to validate operational performance electronic solution processable polymers that are typically 

used for fabricating sensor components. The intrinsically conductive electronic polymers are also 

tested for their microfluidic processability and inkjet printability. 

A statistical hypothesis testing framework is established for analyzing the characterization data 

which is then used for inferencing and validation. Case studies on multiple hypotheses involving 

the two types of intrinsically conductive polymers are performed which illustrates the utility of the 

combinatorial printing platform as a rapid thin film sample patterning tool with minimal material 

wastage. Analyses of the characterization data of such sample ensembles demonstrate the 

importance of the availability of a large number of functionally graded samples in the context of 

high throughput material screening. In addition, these tests are also used as an indirect performance 

evaluation of the combinatorial printing system when compared with benchmark processing of 

material blends. Conclusions regarding application-specific advantages and disadvantages of the 

two polymers are inferred in the context of standalone and temperature-dependent electrical 

conductivity performance as sensor materials and blending tests are used to determine the ideal 

operational niche of each material. 
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Lay Summary  

This dissertation presents a novel printing method that can create blends of electronically active 

polymer materials in fluid dispersions at different proportions and dispense them for testing. The 

method can enable rapid preparation of electronically active thin films for testing and optimization. 

As a platform methodology, it can be customized for application in any domain that requires 

material development and evaluation. The work presented in this dissertation has three primary 

contributions: (i) development of custom print heads capable of additional preprocessing prior to 

printing, (ii) definition of an evaluation framework for the printed samples and (iii) using the 

custom print head and the evaluation framework to determine both the utility of the printing 

method and the performance of the test materials being printed. Such an approach is expected to 

be beneficial for the rapidly developing field of additive manufacturing, especially in the field of 

printed electronics. 
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Chapter 1: Introduction 

1.1 Motivation: Towards combinatorial evaluation of thin films 

1.1.1. The evolution of thin films 

“Thin films” can be defined as single or multiple layers of any material ranging in thickness 

between a few angstroms (~10-10 m) to a few tens of micrometers (~10-5 m) [1]. Milton Ohring 

describes thin film technology as “one of the oldest arts and one of the newest sciences” [5] given 

that the ancient crafts of gold beating and gilding dates back millennia, often achieving sub-

micrometer leaf/film thicknesses. Besides mechanical modification of malleable materials such as 

metals into thin sheets and films, there was another method of significant importance in the field 

of coatings which used completely different starting materials and was even older than the 

aforementioned method. Dry and wet pigments have existed as part of human society for many 

millennia and although their mode of application differed, they could both be rendered into thin 

films and coatings. Since then, thin film preparation has come a long way with new materials and 

methods being identified and implemented in various coating applications as the centuries passed. 

Over the 19th century and especially after the turn of the 20th century, thin films no longer remained 

an art form to be only admired in sculptures and architecture. Scientific advancements such as the 

refinement of vacuum processing technology [6] [7] [8] and a deeper understanding of matter at 

the atomic level unlocked the immense potential of thin films and accelerated research and 

development for industrial and commercial applications. 

Besides functional coatings [9] [10], the semiconductor processing industry has been one 

of the major drivers of growth in thin film research, especially since the invention of the solid-

state transistor [11] [12] [13] by William B. Shockley Jr. along with his colleagues John Bardeen 

and Walter H. Brattain in 1947. As a consequence of such high levels of regular requirement, thin 

film deposition methods have been and are still being consistently refined to deliver high 

performance while simultaneously being resource economical. With rapid increase in demand, the 

variety of thin film processable materials has exploded over the past few decades. In addition to 

conventional solid-state electronic materials used in the microelectronics, many unconventional 

materials such as polymers, biomaterials, carbon allotropes, quantum dots and other such exotic 

material systems have come to the fore. These materials have found applications in chemical and 

biological sensors [14] [15] [16] [17] [18], actuators [19] [20] [21] [22], photovoltaics [23] [24] 
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[25], thermoelectrics [26] [27], ferroelectrics [28] [29] [30] and printable electronics [31] [32] to 

name a few. Fig. 1.1 illustrates the gamut of applications of thin films that are typically in use 

today. In each of these applications, achieving optimal performance of pristine [33] and/or 

composite [34] material layers in the final structure is essential. While the physical combination 

of individual components in multi-material systems may be conceptually simple, possible 

complexities in intra/inter-layer interactions and unpredictability of hidden factors can make the 

process of evaluating cause-effect relationships analytically very challenging [35]. Consequently, 

new techniques as well as modifications to existing methods for addressing the above problem are 

being continually developed. 

 

Fig. 1.1: Applications of thin films in diverse fields of commercial and academic research and development. 

1.1.2. Combinatorial screening as a thin film evaluation methodology 

One of the most widely used empirical solutions to the problem of property investigation 

of multi-material systems is the method of combinatorial evaluation and/or screening [36] [37] 

[38] [39]. Combinatorial evaluation can usually be thought of as the interrogation of multi-material 

systems comprising varying proportions of individual components in order to understand the effect 

of composition on the specific property being studied. This method may be iterative which 

involves examining progressively finer resolution coverage of increasingly narrower composition 

ranges of interest as the property optimum is approached [40]. However, non-iterative methods 

may be used when the scope of investigation is limited to available predefined options which then 
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effectively becomes a selection problem [41]. While the latter method may be applicable to many 

screening problems, the former method is explored in this work to test the limitations of sample 

preparation. Fig. 1.2 schematically illustrates the overall flow of logic for a typical iterative 

combinatorial evaluation cycle. As a methodology, it involves multiple steps starting from the 

design of the experimental evaluation protocol for the system (Step 1) based on the behavior of 

appropriate response variables across a set of samples referenced against prior literature. Response 

variables are generally chosen to be explicitly measurable or computable quantities which can be 

used to characterize the property under test. The response variable is often a function of multiple 

factors that may be classified in accordance with the stage at which they affect the system, as we 

shall see subsequently. 

 

Fig. 1.2: The cycle of combinatorially evaluating and screening multimaterial systems on the basis of the 

specific properties being investigated for deployment in targeted applications through iterative processing. 

The experimental design step is followed by the rendering of the multi-material system into 

test samples for property characterization (Step 2). This step may involve different manufacturing 

techniques where factors such as the manufacturing conditions and sample composition determine 

the nominal behaviour of the response variable when tested under standard conditions. The 

experimental protocol laid out in Step 1 paves the way for combinatorial sample library preparation 

based on the premise of rapidly generating multiple replicates of multiple compositions for 

statistically significant conclusions to be obtained from the testing step. By its very definition, any 
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combinatorial sample library seeks to increase its sample count, often by leveraging the advantages 

of process automation and library size minimization up to the hardware limit in order to improve 

the accuracy of inferred information in Step 3 where the prepared sample library is tested. This 

increase in sample count can be achieved in a two-fold manner: (i) through an increase in sample 

resolution and (ii) through an increase in sample replicates. Here, sample resolution refers to the 

difference in processing conditions used to generate a set of samples with different operational 

performance within the overall sample library. Sample replicates, on the other hand, are simply 

copies of a library component generated under identical processing conditions. It can be intuitively 

understood that the former tracks the average behaviour of the response variable across the entire 

compositional range being investigated while the latter probes the variability of the response at 

each individual processing condition within that spectrum. During Step 3, these sample library 

components are characterized using different methods (electrical, optical, morphological etc.) and 

are used to obtain a clearer idea of the expected behaviour of the property being interrogated. Step 

4 is the final step in the cycle where the inferences drawn from the data generated in Step 3 are 

coherently reconciled with the existing general framework of similar material classes to validate 

new hypotheses or update existing ones, both theoretical and empirical. 

Research on combinatorial evaluation of multi-material systems expanded rapidly during 

the 1990s as a sample formulation protocol for the preparation of peptide libraries [42] with the 

method being later used extensively for pharmaceutical exploration [43] [44] [45]. With advances 

in material formulation and synthesis techniques over the years, the method has branched out into 

other fields [46] [47] [48] [49] [50] involving some form of material development. The scale and 

scope of the implementation of combinatorial evaluation methodologies has varied widely [51] 

[52] [53] depending upon specific applications with different process variants used. Their 

favourable impact on materials research and development can be attributed to the ability of the 

process to reveal underlying interaction mechanisms due to complex dependence of multi-material 

system performance on component proportions which requires evaluating the different subsets of 

the overall composition range at different resolutions. Fabricated combinatorial libraries are 

subjected to various characterization methods demanded by the particulars of the application, 

allowing optimal material compositions to be selected for further development. One such 

application of the technique in recent years has been in the domain of thin film processing [54] 

[55], which has seen widespread usage for a diverse range of research applications. Among some 



 

5 

 

of the most commonly implemented combinatorial methods, the contribution of automation and 

miniaturization to the success of the overall process deserves specific mention. Custom 

modifications in the implementation of these strategies have been at the forefront of combinatorial 

material evaluation with different groups focusing their research efforts on either library 

formulation or library testing process or both. For convergence with the scope of this work, the 

relevant background on combinatorial thin film formulation and fabrication is discussed in the 

paragraphs below which illustrates the advantages and limitations of the different methods used 

and where the current work fits in. 

Physical [56] [57] [58] and chemical [59] [60] [61] [62] vapor deposition of thin films have 

been the mainstay of the general process of fabricating micro/nanoscale devices. Physical methods 

involve no chemical interactions among the species in the vapor while chemical methods utilize 

the reaction of precursor materials in the vapor phase, both under specific processing conditions 

to deposit compositionally tailored thin films on substrates. Fukumura et. al. [63] demonstrated 

the utility of modifying one such physical vapor deposition method by using automated moving 

shutters in a pulsed laser deposition (PLD) system to realize continually graded thin film sample 

libraries for the evaluation of Mott insulators. While functionally similar to laser-assisted material 

vaporization methods, sputtering is another physical vapor deposition technique where energetic 

ions are used to bombard some material target(s), resulting in material ejection and deposition on 

appropriately placed substrates. This technique was employed by Siol et. al. [64] to fabricate 

indium sulphide (InxS1-x) libraries with variable stoichiometry achieved by controlling the partial 

pressure of sulphur in the process chamber. Apart from deposition processes, vacuum-enabled thin 

film growth methods are also equivalent techniques for fabricating combinatorial sample libraries 

as demonstrated by Mao [65]. In this case, a pulsed laser-assisted epitaxial growth process was 

used in conjunction with sequential masking to obtain 256-sample libraries on single substrate. 

Smith et. al. [61] modified an LPCVD reactor by controlling its precursor flow dynamics and 

deposition kinetics to create compositional spread in metal dioxide (TiO2, SnO2 and HfO2) thin 

films, a technique that was later adapted for an APCVD reactor by Kafizas et. al. [62] through 

specific spatial distributions of reagents to combinatorially dope anatase TiO2 with W. While 

vacuum-based physical and chemical vapor deposition and growth processes are capable of 

accurately controlling film composition and thickness, they mostly deal with traditional inorganic 

materials and always must be patterned to their final geometry in an additional processing step. In 
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addition, their operational regimes often require extremes of temperature and thus, are unsuitable 

for most organic polymer materials that are being increasingly adopted for economical and 

massively scalable applications such as flexible and wearable electronics, sensors and textiles. 

Consequently, as combinatorial formulation involving automated sub-systems within conventional 

thin film growth and deposition tools was being explored, solution-based processing of thin films 

was making inroads due to key advantages such as reduced processing costs, higher versatility in 

handling organic polymer materials and processability over different substrate areas and material 

volumes to name a few methods. To this end, Sanchez-Diaz et. al. [66] demonstrated an automated 

blade coating technique for fabricating polymer thin films using PCDTBT, PTB7-Th and 

PffBT4T-2OD with PCBM(70) to evaluate their photovoltaic potential while Teichler et. al. [67] 

illustrated the benefits of robotics in thin film printing, making use of a pipetting arm to rapidly 

formulate large sets of PCPDTBT and PCBM polymer blend samples at different compositions 

which were then fed to inkjet cartridges for dispensing. These methods were improved upon 

significantly by Macleod et. al. [68] by expanding the utility of an automated robotic arm from a 

simple pipetting tool to one used for sample manipulation at various stages of their spin coating-

based material discovery process. Despite these techniques being highly effective for organic thin 

film material screening by virtue of being amenable to room temperature processing under 

atmospheric pressure conditions, their material volume requirements can limit their utility in 

processing low-yield novel materials that are often expensive to synthesize. Therefore, there is 

scope for further contribution in organic sample formulation and patterning systems towards 

improving their economy of volume requirements while enabling processing under standard 

ambient conditions. 

Besides automation, which broadly aims for time efficiency, process precision and 

repeatability, miniaturization has also been used as a strategy to material economy besides the 

obvious reduction in spatial dimensions. It is to be noted that automated systems may use 

miniaturization techniques as well to incorporate the benefits of spatial compactness and material 

economy along with their aforementioned qualities. Miniaturization can be achieved by the 

reduction in sample dimensions, inter-sample spacings as well as individual sample volumes. 

Sample library miniaturization along these lines was shown to be time effective during the 

evaluation of electrocatalysts by Reddington et. al. [69] based on processed materials printed as 

16-sample array units (1 cm2 per array unit) to create quaternary performance maps. In a 
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comparable manner, Woodhouse et. al. [70] printed spatially dense ternary oxide droplet arrays to 

identify new oxide blends for the photoelectrolysis of water. Process automation and sample 

miniaturization have significant impact on the statistical analysis of response variables for data 

inferencing and performance quantification. Greater degrees of precision and repeatability 

afforded by process automation may be useful in discerning sensitive phenomena that may 

otherwise remain shrouded by sample-to-sample fabrication variability. The increased sample 

replicate count due to sample miniaturization can complement this by reducing metrics like the 

standard error which may further lower the probability of missing critical effects quantified by the 

response variable(s). 

Typical statistical inferencing of combinatorial test data on organic polymers and polymer 

blends is performed using t-tests [71] [72], chi-square tests [73] [74] and ANOVA [75] [76], both 

of which rely heavily on sample replication as they seek to detect significant differences among 

combinatorially prepared samples. Irrespective of the method used, Malo et. al. [77] argue that 

replication is central to improving inferencing reliability through increased sensitivity of the 

statistical analyses. It is evident that characterization schemes need to be chosen based on the 

sample preparation approach adopted and what works for a point sample may not necessarily work 

for an extended sample. Conversely, not all characterization techniques have similar sample size 

requirements and while this may seem thematically akin to the previous statement, it actually 

brings out the fact that the choice of both the formulation and testing method play vital roles in the 

seamless development of any combinatorial evaluation protocol. These examples, while by no 

means exhaustive, do help to illustrate the advantages of implementing process automation [78] 

and sample miniaturization [79] in the field of materials research. Most combinatorial screening 

methods, be they targeted towards sample library formulation or sample library testing, utilize 

some variation or combination of the above in order to achieve resource efficiency. The aim of 

this work has been to incorporate both aspects of automation and miniaturization, to a certain 

degree, in order to reap the benefits of an overall resource economical process which is general 

enough to have potential avenues of modular feature modification and performance enhancement 

in the future. The sample preparation approach adopted in this work does not require any extremes 

of ambient conditions which makes the method compatible with a vast array of thin film materials 

that cannot be processed using the conventional vacuum-assisted thin film growth and deposition 

methods covered earlier. Additionally, its economical material volume requirement helps 
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circumvent the material wastage issues faced by the solution processing methods. Finally, this 

method has the ability to formulate homogenized material blends using minimal material volumes, 

something achievable neither by the vapor-phase or by the solution-phase processes developed in 

prior literature. 

Table 1.1: Some standard strategies used for combinatorial screening of materials. 

Classification Typical strategies 
Remarks 

Array strategies 

Gradient arrays [80] 
Rapid sample generation for 

sample performance 

evaluation 

Masked arrays [81] 

High-speed conventional arrays [82] 

Parallel strategies 

Representational approach [83] 
Selective evaluation of 

subsets from very large 

sample pools 

Indexed library approach [84] 

n-way combinations approach [85] 

Data-driven strategies 

Randomized runs [86] 

Unknown sample chemistry 

and/or process parameters 
Metaheuristic approaches [87] 

Software/ML methods [88] 

Combinatorial methods in the field of material development are generally used to search 

for optimal materials and/or material systems from an extensive sample set based on a relatively 

limited understanding of such material systems and their interactions. Any standard combinatorial 

screening strategy employs rapid formulation or rapid testing or a combination of both. This work 

primarily deals with the rapid sample library preparation aspect of the screening process. As with 

any process, there are certain trade-offs that are introduced with the combinatorial evaluation of 

materials, namely the iterative nature of the process and the need for integrated sample fabrication 

and testing. The former is useful in obtaining first impressions of the materials being interrogated 

but intensive characterization of the material is not really viable due to the time economy which is 

a key motivator for combinatorial methods in the first place. With increase in the understanding of 

variably formulated multi-material systems using hierarchically iterative testing, the number of 

potentially relevant factors and their ranges decrease based on the research problem at hand. This 

allows more involved experiments to be conducted on smaller sample sizes to obtain deeper 
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insights into the relevant factors and their direct and indirect effects. The latter addresses the time 

economy by integrating the fabrication and testing processes on a single platform. While this 

enables rapid sample preparation and characterization, integrated platforms have their fair share 

of limitations regarding the type of fabrication method and the diversity and fidelity of the 

characterization methods that can be synergistically combined to facilitate the level of intensive 

evaluation possible using stand-alone fabrication and testing systems. 

Table 1 lists some of the different methodologies used for combinatorially evaluating novel 

multi-material systems. Proper sample formulation plays a central role in the development and 

optimization process of any material or multi-material blends and all of these listed strategies 

generally begin with the preparation of a large sample set as determined by the relevant process 

parameters and the required granularity of observation. For example, array-based strategies [80] 

[81] [82] typically deal with functionally graded samples that are designed to represent the grading 

granularity or compositional resolution in the form of a matrix which can then be directly probed 

for optima. These methods are generally used to study material systems whose functional response 

is often not simply a proportional sum of its components but also involves complex interactions 

between them. Parallel strategies are employed in situations where the functional response of the 

material system is usually a proportional sum of its components [83] [84] [85]. However, the sheer 

number of combinations of material components and factor variables results in extremely large 

sample sets if considered exhaustively. Despite the fact that these methods make meticulous use 

of prior experimental data on similar material systems to optimize the output of the response 

variable, it is not possible to know exactly how a new material or a multi-material blend will 

respond when probed with different characterization tools at different levels of factor variable 

resolution. Consequently, the compositional variation between any two samples has to be minimal 

to begin with in order to cover the relevant spectrum of compositions without missing key aspects 

of the response variable and such high factor variable resolution makes the size of the sample set 

unavoidably large. In case of entirely new material systems, however, data-driven combinatorial 

strategies are applied with certain bounds that are usually set at the outset of such a developmental 

initiative. This is because novel material systems that apparently have no predecessors can run into 

a compounded problem where the requisite granularity of resolution of a factor variable is high 

and the functional response is not linearly proportional to the factor variable. As a result, the 

sample sets can quickly become almost unmanageable at larger processing scales. Thus, some 
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commonly established bounds on combinatorial experimental design include, and are not limited 

to, minimization of the number of experimental runs within a randomized test framework [86], 

capping of component fractions in mixtures, constraints related to process equipment and others. 

Implementation of these bounds involve methods like nuisance factor blocking, machine learning 

(ML) tools for enhanced designs [87] and software-assisted generation of sample compositions, 

process parameters and sample sizes and replicates necessary to draw meaningful conclusions [88]. 

In essence, these bounds are imposed to limit the total sample pool from exploding which is 

impractical in terms of resource investment and in that sense, are quite similar to some of the more 

conventionally parallel strategies. While the typical strategies listed for each classification type 

can be thought of as a general template to go about a particular evaluation and screening process, 

it would indeed be erroneous to limit ourselves by the assumption that individual aspects of the 

different strategies cannot be combined to construct optimized protocols with improved outcomes. 

1.1.3. Utility of thin film solution processing 

The manufacturing of low-cost organic electroactive devices has seen major advancements 

with the assimilation of solution processing methods [89] [90] [91] within the diverse spectrum of 

thin film deposition techniques. These methods, while not very new themselves [92], were 

confined exclusively to certain fields and were not used very extensively for thin film deposition 

due to limitations in the choice of solution-processable materials. However, with the emergence 

of interdisciplinary research and accelerated development of novel materials, the accessibility and 

acceptance of a wide range of solution processable materials have increased manifold within a few 

decades. This was especially true for those materials which were incompatible with traditional thin 

film deposition processes which often required extreme conditions such as very low pressures and 

high temperatures. Hence, thin film deposition of such sensitive materials is performed with 

relative ease using solution processing techniques. Solution processing techniques are thin and 

thick film fabrication methods where the materials are deposited from a solution on to the 

fabrication surface. This is achieved by distributing the solution (or dispersion) on to the substrate 

is a specific manner and drying the solvent or the dispersing liquid phase, often through exposure 

to elevated temperatures [93] or by curing the deposited pattern with electromagnetic radiation 

such as UV light [94]. Standard solution processing comprises methods such as spin coating, slot-

die coating and doctor blading. Each of these techniques require the solution phase of the material 

to have specific physical properties such as viscosity, surface tension and fluid inertia. Generally, 
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a number of different standard solution processing methods are required to fabricate a multi-

material multi-layer device, and this not only incorporates different solutions, but also different 

equipment to fabricate different layers of the device. Therefore, while the methods themselves may 

be cost-effective, the process complexity of integrating different approaches are quite high. 

Specialized techniques implementing the holistic definition of solution processing are also 

included within the methodological framework without any loss of generality. These consist of 

printing techniques where the solution volume is tailored prior to deposition on to the fabrication 

surface resulting in greater control of the quantity of material being deposited. Perhaps the most 

popular of these printing techniques is inkjet printing which can create pre-programmed patterns 

comprising small droplets of ink. Due to its additive nature and the ability to dispense almost any 

material provided it meets certain physical criteria such as bounds on viscosity and surface tension; 

it can be a valuable tool for fabricating multi-material multi-layered electroactive devices. This 

method bypasses the need for integrating different solution processing methods, thereby reducing 

process complexity and enhancing time efficiency. It is precisely this niche that can be addressed 

by customized implementations of inkjet printing [95] [96]. As a highly versatile method, inkjet 

printing holds immense potential for the synergistic integration of microscopic and macroscopic 

domains. This is because of its ability to handle materials at the droplet level while printing large-

area structures comprising these droplets as their building blocks. Scalability of such a process is 

critical and multi-dispenser inkjet printing systems have been central to the realization of multi-

material deposition systems [97]. The customizability of inkjet printing is subject to the specific 

application being explored and factors of interest such as range of inks, ink composition, print 

throughput etc. determine which aspect needs to be prioritized. Standard and customizable facets 

of inkjet printing along with some of its applications relevant to this work is discussed in the 

following subsections. 

1.1.4. Inkjet printing for specialized applications 

The most widespread use of inkjet printing technology is in the field of textual and/or 

graphical document printing. Economical inkjet printing of fluids is accomplished by using either 

thermally or piezoelectrically actuated dispensers capable of ejecting droplets on demand unlike 

continuous inkjet printing. Thermal dispensers incorporate electrically heated elements that are 

coupled with the inks to create expanding vapor bubbles which act as pressure pulses to form ink 
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droplets. Piezoelectric dispensers utilize the deformation of piezoelectric elements to generate the 

pressure pulses for ink droplet formation similar to thermal inkjet but without the added 

temperature effects on the inks. Therefore, piezoelectric dispensing is compatible with a wider 

range of materials and is slowly replacing thermal dispensing in inkjet systems. Many unique 

features of inkjet printing technology make it attractive for other applications too, such as scientific 

and industrial research and development. Its capacity to generate picoliter-sized droplets on 

demand at high dispensing rates with micro/nanoliter-level dead volumes along with its ability to 

print on diverse substrates in a contactless manner are the key features which have sparked interest 

in its applicability to experimental research problems. Upon integration with motorized stages, it 

can be used to generate programmable patterns of functional materials which complements the 

field of conventional solution processing of thin and thick films and coatings. The inherent volume 

efficiency of inkjet printing has advantages in domains requiring manipulation of minimal volumes 

of low-yield and expensive materials with minimal waste. High droplet dispensing rates facilitate 

the enhancement of printing resolution while non-contact patterning reduces the risk of dispenser 

contamination besides preserving the integrity of the printed features during operation. 

Consequently, inkjet dispensers have been used to print a variety of materials to enable and 

improve applications ranging from functional coatings to integrated sensors and actuators. In direct 

pertinence to the theme of the work presented here, inkjet printing has played a major role in the 

advancement of electroactive thin film solution processing. Sirringhaus et. al. demonstrated the 

first implementation of inkjet printed polymer thin film transistors (TFTs) and functional materials 

in general [98] [99] which laid the groundwork for the development of printed electroactive 

displays. Photovoltaic applications were soon illustrated by Hoth et. al. [100] who used inkjet 

printed polymer-fullerene blends comprising regioregular poly(3-hexylthiophene) (P3HT) mixed 

with fullerene [6,6]-phenyl C61 butyric acid methyl ester (PCBM) to develop solar cells with 

appreciable efficiencies. Torrisi et. al. [101] followed up soon after by demonstrating the inkjet 

printability of graphene-based inks for TFTs and proposed its use on other electroactive materials 

such as transition metal compounds. Beyer et al. [102] controlled the alignment and orientation of 

carbon nanotubes (CNTs) facilitated by inkjet printing of CNT dispersions which was shown to 

result in high performance electroactive channels. A promising customization of inkjet printing is 

reactive inkjet (RIJ) printing where droplets are deposited at predefined sites on the substrate for 

chemical reactions to occur. This method is primarily used as a chemical synthesis tool which 



 

13 

 

allows functional materials to be synthesized in situ at the same time as their final device 

geometries are patterned. Lemmo et. al. [103] pioneered the use of inkjet dispensed droplets as 

individual chemical reactors for synthesizing combinatorial libraries on substrates. Since then, 

droplet mixing has been studied extensively and utilized for RIJ printing of functional 2D and 3D 

structures. Often, the substrate too plays a part in the chemical process other than simply providing 

a surface for the reaction to occur within the droplet. As examples of this method, Grimaldi et. al. 

[104] used the technique to etch polyimide and polystyrene thin films to create microlens arrays 

while Yoshioka et. al. [105] printed H2O2 on to a poly(3,4-ethylenedioxythiophene) poly(styrene 

sulfonate) (PEDOT:PSS)-modified substrate to control the PEDOT:PSS oxidation state thus 

allowing digital patterns to be converted into electroluminescent patterns. Thus, the inkjet printing 

process by itself may also be used in different modes of operation to achieve combinatorial 

functionality. 

1.1.5. Microfluidic compatibility with inkjet printing 

While RIJ printing is an elegant concept for tuning droplet compositions on substrates, it 

is heavily dependent on the droplet evaporation rate as well as intra-droplet mixing dynamics. This 

intuitively implies that the time scale of the mixing process should be greater than the time scale 

of the evaporation process for any degree of homogenization to occur. Additionally, such a method 

of homogenizing droplet components is viable only on substrates which are impervious to fluids 

which immediately restricts its application to a certain class of substrates only. It is therefore 

preferable of the mixing process to happen before or within (upstream) the print head rather than 

beyond it (downstream) where there are competing factors which can often impede proper 

homogenization. 

Most of the work done on on-chip microfluidic mixing has been stand-alone applications 

such as generating mixed samples for static deposition on to substrates for point-by-point analyses. 

Various passive and active mixing methods have been employed but most of these have been 

targeted towards lab-on-chip systems and consequently, there had been no requirement of 

integration with dynamic patterned dispensing capabilities. Mohebi et. al. [106] implemented an 

active mixing module upstream to an inkjet dispenser module for printing ceramic dispersions 

using off-the-shelf components and a mixing chamber volume of ~250 µl which empirically 

demonstrates the economy of material usage afforded by such integration. However, the volume 
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waste was at least an order of magnitude greater than what microfluidic processing can achieve. 

Later, Bsoul et. al. [107] demonstrated an inkjet dispenser capable of being integrated with 

upstream microfluidic mixing for printing biochemical materials but it was a passive mixer 

implementation whose inputs lacked quantitative proportioning and was incapable of rapid 

processing. The successes and limitations of these studies reinforce the motivation for this work 

to develop a microfluidic-enabled inkjet printing platform which is capable of rapid mixing of 

accurately proportioned multi-material fluid inputs upstream that is followed by patterned inkjet 

dispensing downstream. As a result, the serial operation of microfluidic preprocessing and inkjet 

printing forms the core of this work as will be seen in subsequent chapters. 

1.2 Electroactive organic polymer thin films 

1.2.1 Polymers and electrical conductivity 

Polymers are a class of large molecules that are often termed as “macromolecules” due to 

their relatively large sizes in terms of the number of constituent atoms. The key feature of such 

macromolecules is that from a structural perspective, they are composed of smaller repeating units 

called “monomers”, chemically bonded to form long chains. If the entire molecule comprises a 

single type of repeating unit or monomer, the polymer is classified as a “homopolymer” while the 

presence of more than a single monomeric unit results in the polymer being classified as a 

“copolymer”. Generally, the term “polymer” encompasses both polymers and oligomers. While 

the structural idea of both stems from the fundamental concept of multiple repeat units (monomers) 

covalently bonded to each other, oligomers differ from polymers in the degree of polymerization 

which is on the lower side for the former and on the higher side for the latter. Henceforth, the term 

“polymer” will be used as an umbrella term to denote both types of macromolecules. 

 

Fig. 1.3: Examples of conjugated conductive polymers include (clockwise from top left) (i) polyacetylene 

(ii) polyphenylene vinylene (iii) polypyrrole and polythiophene and (iv) polyaniline/polyphenylene sulfide. 
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Conjugated polymers are a subclass of homo/hetero-atomic organic compounds that are 

typically identified by their alternating single bond-double bond structure and can range from 

simple linear chains like polyacetylene to heterocyclic rings like polythiophenes [108] [109]. The 

occurrence of this conjugation along the macromolecular backbone serves to make the chemical 

structure rigid towards rotation about double bonds while also giving rise to π-bands which enable 

charge transport that can lead to electrical conductivity. Intrinsic or neutral conjugated polymers 

are typically insulating or at most, semiconducting in nature. Some common conjugated polymer 

structures including polyacetylene and polythiophenes are shown in Fig. 1.3. The idea of “doping” 

in conductive polymers, while considered an analogue to the doping process of semiconductors, is 

simply a well-intentioned misnomer for an oxidative or a reductive chemical reaction. The use of 

an oxidizing agent corresponds to p-type doping and the use of a reducing agent corresponds to n-

type doping [110]. It is this charge generated on the conjugated backbone due to the chemical 

reaction process that is transported through delocalization of π-electrons when the polymer is 

subjected to an externally applied electric field. 

1.2.2 The need for polymer electronics 

With rapid adoption of the technology known as the internet of things (IoT), a dense 

distribution of sensors and circuits networked among themselves for seamless flow of information 

is becoming increasingly imperative [111]. This means a significant fraction of these devices have 

to be simple, low-cost sensor-circuit assemblies built on lightweight, flexible insulating polymer 

substrates by printing electroactive inks. Given that large-scale deployment of these devices is 

targeted towards improving the quality of life, it is expected that such printed sensor assemblies 

will transform traditional consumer products such into “smart” products that are “aware” of their 

surroundings through tracking and monitoring of the ambient status (temperature, humidity, 

orientation etc.). An example of this is smart packaging which, by its very nature, is an extremely 

pervasive entity literally enveloping almost all consumer products. By its very definition, it should 

be capable of detecting effects such as temperature [112] and humidity [113] variations and 

mechanical shocks [114] and indicate when corrective action is needed to prevent irreparable 

damage to the packaged product. Low-cost manufacturing is essential to this vision of the IoT to 

enable the fabrication of devices inexpensive enough to be disposable, particularly for consumer 

packaging.  
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Scalable printing technologies are therefore ideal for the cost-effective fabrication of such 

smart components. However, the sheer number of connected devices forecast [115] for the IoT 

also makes it essential that both the fabrication processes and end-of-life disposal of devices leave 

minimally adverse environmental footprint. Electroactive components that are currently made 

from inorganic conductors and semiconductors are both expensive and poorly recyclable. As 

potential alternatives, solution processable electroactive polymers are particularly promising 

because they combine material processability and mechanical compliance with conducting and 

semiconducting properties that can be integrated into robust components during their lifetime and 

readily degradable for their end-of-life processing. The use of these organic materials to replace 

components of electronic devices such as electrodes and insulating layers or utilize them for their 

sensing and actuation capabilities would allow for the production of greener low-cost devices. 

Most research on printable electronics, academic or industrial, is driven almost exclusively by 

device performance with limited regard for the critical factors of sustainability and environmental 

impact. To become a viable manufacturing technology, a general shift needs to be made towards 

environmentally benign materials and processing methods and organic electronics can play a key 

role in that regard. 

1.2.3 High conductivity ICPs 

Table 1.2: Typical applications of the commercial-grade ICP poly(3,4-ethylenedioxythiophene) 

poly(styrene sulfonate) (PEDOT:PSS). 

Application Functionality Processing Material forms 

Solid electrolyte 

capacitors, OSCs, OLEDs 

and other printed displays. 

Cathodes, transparent 

electrodes, hole 

injection/transport layers. 

Chemical 

polymerization, 

printing. 

PEDOT:PSS, 

PEDOT:polymer. 

Photographic films, 

packaging films and 

touchscreens. 

Anti-static layers. 
Coating, 

printing. 
PEDOT:PSS 

Thin film sensors and 

actuators. 

Multifunctional 

responsive layers 

(temperature, light, stress, 

moisture etc.). 

Coating, 

printing. 
PEDOT:PSS 

Smart windows and 

glasses. 
Electrochromic layer. 

Coating, 

printing. 
PEDOT:PSS 
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Part of the above niche can be addressed many solution processable and intrinsically 

conductive polymers (ICPs). ICPs are conjugated polymers which have an inherent electrical 

conductivity within the range of 10-8 to 103 S/cm. These are different from extrinsically conductive 

polymers (ECPs) because ECPs can be more accurately defined as conductive polymer composites 

where highly conductive fillers like carbon allotropes (graphite, CNTs, carbon black etc.) and 

metallic nanostructures (silver nanowires, gold nanoparticles etc.) are dispersed within a matrix of 

an insulating polymer. Since their discovery in the 1970s, ICPs have been the subject of much in 

research in many domains of science and technology owing to their multifunctional nature. ICPs 

are a fascinating class of macromolecules holding much promise for solution processable 

applications such as organic solar cells (OSCs), organic light emitting diodes (OLEDs), printed 

electronic circuits, electroactive chemical/biological sensors and others [116]. Environmentally 

friendly ICPs need to be processable using non-toxic or at least the very least, low toxicity solvents 

and the ICPs themselves should be either easily degradable or at the very least, recyclable. 

Conductors are an integral component of all printed electronic devices allowing the 

transport of electrical charge from source to sink to complete the circuit. Printable metallic 

conductors such as silver inks have been widely studied [117] [118] and are commercially 

available [119] [120], but high costs and the need to be recycled set a demand for creating new 

conductors that can be mass produced and is environmentally benign.  In this regard, the domain 

of commercial-grade organic conductors [121] [122] [123] is almost completely dominated by the 

popular polythiophene poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) (PEDOT:PSS) 

and its variants. Table 1.2 outlines the general applications of PEDOT:PSS and it can be seen that 

this organic polymer conductor is primarily used in both academia and industry as a “metallic” 

replacement due to its high achievable conductivity (~10-3 to ~103 S/cm). In addition, properties 

such as transparency of its thin films, electrochromism and sensitivity to physical quantities such 

as heat, moisture etc. make it an attractive option for multifunctional usage. While not immediately 

apparent from Table 1.2, PEDOT:PSS can only be inkjet printed in certain applications while in 

the remaining ones, it is either screen printed or coated using methods such as spraying. Inkjet 

printable applications of PEDOT:PSS include fabrication of conductive layers, electrodes and 

traces in thin film sensors and actuators. It is therefore a perfect fit for replacing toxic inorganic 

conductor materials such as silver inks which are expensive and indium tin oxide (ITO) [124] 

which has been the primary conductive material for the fabrication of thin film transparent 
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electrodes but is brittle. Besides PEDOT:PSS, there have been reports of a few self-doped PEDOT 

variants which have reported up to ~1000 S/cm conductivity [125] and are not hindered by the loss 

of original conductivity like in PEDOT:PSS due to the insulating PSS counterions shielding 

conductive domains. These are often self-doped and have good solution processability. However, 

only having solution processability does not guarantee inkjet processability and much work is 

being conducted to develop newer polythiophene derivatives on the lines of PEDOT. The objective 

is to develop stable dispersions like PEDOT:PSS but with higher conductivities and greater 

diversity in the ease of processing. 

1.3 Scope and outline of the work 

1.3.1 Contributions of the work 

The objective of this dissertation is to demonstrate thin film library preparation capability of a 

combinatorial printing platform integrating microfluidic mixing and inkjet dispensing which is 

then used to evaluate electrical properties of pristine and blended conductive polymers. In this 

context, the contributions of this dissertation can therefore be outlined as follows: 

(i) Proposed hypothesis of integrating microfluidic processing and inkjet dispensing for the 

reduction of material volume and fabrication time requirements during thin film sample 

library preparation. 

(ii) Assembly and functional validation of combinatorial print head (CPH) prototypes 

comprising microfluidic mixing and inkjet dispensing capabilities. 

(iii) Development of a general multi-material multi-resolution thin film library preparation 

protocol using the combinatorial formulation and patterning platform. 

(iv) Development of an experimental outcome evaluation protocol for the data sets generated 

by characterizing the libraries in (ii) based on the principles of statistical inferencing. 

(v) Preparation and evaluation of multi-resolution thin film libraries with binary blends of 

commercial and novel ICPs with additives and among themselves using the protocols 

developed in (ii) and (iii) respectively. 

(vi) Preparation and evaluation of multi-resolution conductive thin film libraries with binary 

blends of two research-grade ICPs using the protocols developed in (ii) and (iii) 

respectively. 
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1.3.2 Organization of the dissertation 

The underlying theme of this work is the study of inkjet printable and high conductivity 

intrinsically conductive polymers (ICPs) using combinatorial library formulation methods. To this 

end, the organization of the dissertation chapters are as follows: 

(i) Chapter 1 introduces the general domain of thin films with a focus on their combinatorial 

evaluation using electroactive polymers as the thin film materials. The rationale behind the 

combinatorial evaluation of such thin films is presented based on their solution 

processability. Invoking solution processability enables the discussion of the broad goals 

of an integrated inkjet patterning platform capable of combinatorially formulating 

functionally graded multi-material inks through microfluidic manipulation of the ink 

components. 

(ii) Chapter 2 describes the combinatorial printing platform in terms of its different 

components and functionality. Each functional block and its role in the system is described 

for clarity. In addition, qualitative and quantitative validation of some of the key processes 

such as fluid proportioning and fluid mixing and combinatorial printing is also included to 

cover overall system operation. 

(iii) Chapter 3 deals mainly with the statistical evaluation methodology adopted and its 

implications in the analysis of the primary characterization data sets covered in Chapter 4. 

The premise of these methods is established with discussions on the assumptions and 

expected outcomes and how they can be used for experimental inferencing. Besides data 

analysis protocols, sample characterization techniques are also introduced for future 

reference. 

(iv) Chapter 4 focuses on quantitative validation of the combinatorial printing platform using 

commercial-grade and laboratory-grade ICPs and additives using blending experiments. 

Experimental methods and rationale for sample library preparation are described and all 

characterization data is analyzed using the statistical framework described in Chapter 3. 

(v) Chapter 5 provides the conclusion to the topics presented in Chapter 2, Chapter 3 and 

Chapter 4 while also briefly discussing possible improvements and potential avenues of 

future research based on the work presented in this dissertation. 
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Chapter 2: Combinatorial thin film processing: Materials and 

Methods 

Chapter overview 

This chapter introduces the concept of combinatorial print heads and argues its necessity in the 

context of functional material printing. A prototype of the overall printing platform into which 

these print heads can be integrated in general is described along with the fabrication process of 

such print heads. Initial qualitative and quantitative validation of key functionalities of these print 

heads is performed for materials with fluid properties similar to those used in this work while also 

introducing the sample preparation methodology targeted towards combinatorial evaluation based 

on characterization data. 

2.1 Combinatorial print heads (CPHs) 

2.1.1 The need for integrated microfluidic inkjet processing 

Besides the general reduction in the spatial footprint and energy requirements of typical 

devices, functionality integration has been the cornerstone of massive strides made in the field of 

microsystems and nanotechnology. The ease of integration is a subjective concept and is governed 

by factors pertaining to the qualitative and quantitative nature of the differences between the 

systems being integrated. For two systems S1 and S2, it can be intuitively inferred that the lower 

the difference between the range of possible outputs of S1 (or S2) being fed to S2 (or S1) and the 

range of possible inputs for S2 (or S1), the higher the probability of facile integration. This is due 

to reduced signal (mechanical, electrical, optical etc.) conditioning requirements at the physical 

interface between S1 and S2 and has been extensively demonstrated for sensor-actuator platforms 

such as MEMS-CMOS [126] [127] and microfluidic lab-on-a-chip systems [128] [129] [130]. 

Microfluidics encompasses the study of fluid behaviour and fluid control at sub-millimeter 

length scales of geometric confinement where the effect of surface forces dominates those of 

volume forces. Depending upon the application, microfluidic devices can handle fluid volumes 

ranging from microliters (~10-6 l, long microchannels) to picoliters (~10-12 l, individual droplets). 

Due to their ability to manipulate small fluid volumes, microfluidic devices can be deployed in 

applications requiring economical consumption and wastage of materials. This feature of 
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microfluidics is exploited in this work as a supply system for the dispenser. Drop-on-demand 

(DoD) inkjet printing dispenses droplets in the range of picoliters (~10-12 l, larger droplets) to 

femtoliters (~10-15 l, smaller droplets) but their supply systems are generally constrained to large, 

fixed-volume passive cartridges of only a certain material type. This prevents any pre-processing 

of the printable materials such as mixing which can be used to dynamically manipulate multiple 

materials in a controlled manner. By integrating the two fluid handling methodologies within a 

single modular device, it is expected that the advantages of microfluidic processing of minimal 

volumes of accurately proportioned fluid inputs can be actively conducted on the inkjet print head 

resulting in the ability of such a platform to be capable of directly patterning compositionally 

programmed multi-material thin film samples. Facile integration of complementary functionalities 

does impose some bounds on the range of processable materials in terms of ink flow properties. 

However, they are not functionally crippling, and the benefits accorded to the range of processable 

materials are numerous. Through different customizable implementations of the broader functional 

combination of techniques, facilitated by the modular nature of the integrating platform, high-

throughput multi-material patterning can be achieved. 

Unlike color printing, which is the predominant use of inkjet printing today, the additive 

printing of multi-layered multi-material thin film devices has quite a few fundamental 

phenomenological bounds. For example, colors are blended in inkjet-printed graphics and text 

through halftoning [131] rather than physical mixing of pigments. Halftoning uses dots of different 

sizes (equivalent to pulse-width modulation) and different spacings (equivalent to frequency 

modulation) to create gradients and blends of subtractive colors. However, that technique exploits 

the inability of the human eye to resolve individual objects closer than a minimum separating 

distance and is therefore phenomenologically incompatible with functional inks which require 

additive homogenization of their blend constituents to be able to print structures with tailored 

properties. This requires an active mixer capable of rapidly homogenizing the accurately 

proportioned constituents with a compact modular structure that is easily integrable within a 

customizable inkjet print head. 

Another significant difference between the inkjet printing of color pigmented inks and 

functional multi-phase blends is that of ink composition. For printing multi-material thin functional 

films consistently, there need to be stable proportioning and efficient processing of the different 

constituents of the inks prior to droplet deposition. This can be achieved through flow-controlled 
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fluid driving through a microfluidic platform integrated with the mixing and dispensing modules. 

Such a processing platform can be used as a combinatorial print head to pattern multi-resolution 

multi-material thin film libraries for the combinatorial evaluation and optimization of material 

blends. System development aspects, along with the fabrication and validation of the integrated 

microfluidic drop-on-demand inkjet print head, are discussed in the next section. 

2.1.2 Design and fabrication of the combinatorial print head 

The combinatorial printhead (CPH) is at the heart of the combinatorial ink formulation and 

thin film patterning platform developed and tested in this work. It consists of an integrated 

microfluidic mixer and inkjet dispenser capable of combining and printing  controlled proportions 

of multiple input fluids. The dispensing platform is capable of printing user-defined patterns and 

compositions of droplets and/or extended thin films of a range of functional and solution-

processable materials. As discussed later in this section, 3D printing of casting molds can be an 

economical and reusable option to fabricate relatively high-resolution features on elastomeric 

microfluidic printing platforms due to their mechanical durability and thermal stability. Multi-

material thin film library preparation is achieved using these CPHs through the coherent operation 

of different blocks in the system as will be discussed in a later section. The block-level schematic 

top view of a generalized elastomeric CPH structure is shown in Fig. 2.1 below. 

 

Fig. 2.1: Top view of a generalized combinatorial print head (CPH) structure comprising fluid inlets (Fi) 

which supply the fluids to the on-chip preprocessing module W from which, the processed blend is fed to 

the on-chip dispensing module V. for deposition and patterning. The dotted arrows indicate the channels 

defining the fluid flow path and the general fluid flow direction. 
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The fluid inlets are denoted by Fi and these inputs are fed to the on-chip preprocessing 

(mixing in this case) module W from where it is driven to the on-chip dispensing (inkjet in this 

case) module V. Dotted arrows define the general direction of fluid flow from one processing node 

to the other. Naturally, the compactness of this platform structure will vary widely and thereby 

impose bounds on the number of fluid inlets and individual module footprints based on processing 

feasibility and application-specific requirements. Material selection for the fabrication of such 

platforms is also very subjective and will depend upon the compatibility with the fluids being 

handled as well as the ease of synergistically incorporating multiple fluid processing modules. 

Microfluidic device fabrication has traditionally involved materials such as glass, silicon, SU-8 

[132] [133] [134] being used as casting molds or “masters”. These have been used to create fluid 

flow paths of varying pattern complexity depending upon requirements using different cross-

linkable elastomers that are cast using these molds. The advantage of elastomer-based microfluidic 

devices is their ability to incorporate flexible structures which provides an added benefit of 

friction-fitted seals capable of withstanding typical operational pressures without fluid leakage. 

Besides structural compliance, elastomers also exhibit a certain degree of chemical inertness, 

especially for fluids and solvents used in biocompatible applications which provides them with 

operational durability over multiple operational cycles. 

The most commonly used elastomers for microfluidic applications are a class of materials 

called silicones. These are generally available commercially as two-part liquids: one part 

comprising the elastomer and the other part being the cross-linker. Prevalence of such elastomers 

is due to the factors mentioned above as well as the tunable nature of their mechanical compliance 

which can be controlled by the weight ratio of the elastomer to the cross-linker. Poly(dimethyl 

siloxane) (PDMS) is probably the most extensively used silicone for microfluidics [135] [136] and 

there are quite a few variants with differently tailored physical and chemical properties. However, 

one of the biggest problems with using materials like glass, SU-8 and silicon as casting molds and 

stamps for elastomer-based microfluidics is their fragile nature, especially when casting high 

aspect ratio structures. The other problem is the intrinsic process cost and complexity associated 

with multi-step patterning of these materials using methods such as photolithography, waterjet and 

laser cutting. So while the principles of photolithography enable the creation of precise 

microchannels of dimensions as low as a few tens of microns, these materials have relatively short 

lifespans due to the cyclic process of casting/de-casting which exerts significant thermal and 
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mechanical stresses. Moreover, there is a progressive increase in the build-up of difficult-to-clean 

elastomer debris on the finer features at high production volumes over time. These drawbacks 

further underline the need for other alternate cost-effective and time-efficient techniques for 

fabrication of structurally robust and extensively reusable casting molds for microfluidic devices. 

 

Fig. 2.2: (a) Bottom half of the two-part interlocking 3D printed mold for casting elastomeric layer 1 

comprising structural definitions for the fluid inlets and the microfluidic channels. (b) Top half of the two-

part interlocking 3D printed mold for casting elastomeric layer 1 comprising structural definitions for the 

check valves and the mixer module insert. (c) 3D printed mold for casting elastomeric layer 2 comprising 

structural definition for the inkjet module insert (inkjet module shown in the inset). (d) Plasma bonded casts 

of elastomeric layers 1 and 2 forming the bilayer combinatorial print head (CPH). 

With the advent of additive manufacturing and the advancements made to enhance the 

structural durability of 3D printed materials, an economically viable method for fabricating robust 

and reusable casting molds for elastomer-based microfluidics has rapidly come to the fore. While 

not yet capable of fabricating features that are only a few microns in their characteristic physical 

dimensions unlike photolithographically processed silicon or SU-8, the additive nature of the 3D 

printing process enables single-step mold fabrication with feature size and feature resolution 

currently in the high tens to hundreds of microns range. Other factors such as casting compatibility 

1 cm 
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with common elastomers, surface finish of the cast, accurate reproducibility of feature sizes and 

resolution, sharpness of feature edges and dimensional tolerance in general are being continually 

improved upon and are also seen to vary greatly depending upon the 3D printing technique 

employed. Nevertheless, 3D printed molds provide the requisite flexibility in terms of feature 

sizes, feature resolution and material durability to be a practicable solution for implementing 

integrated microfluidic platforms.  

 

Fig. 2.3: (a) Fully integrated and mounted combinatorial print head (CPH) in operation. (b) Optical 

micrograph of the cross-section of the CPH showing the mixer module insertion cavity (blue dashed 

outline), the plasma bonded elastomeric bilayer interface, the coupling membrane between the mixing 

actuator and the fluid in the mixing channel (blue solid box). 

Fig. 2.2 shows the 3D printed molds used in this work for casting the bilayer base structure 

of the CPH which contains structural components on both layers and also the bonded elastomeric 

CPH. In this work, an O2-plasma bonded (Harrick Plasma PDC-001) elastomer (RTV-615, 

Momentive Performance Materials) base structure is used which is cast in reusable 3D printed 

(Stratasys Objet 30 Prime) molds [107] to house the different CPH parts. For the system being 

demonstrated, two fluid inputs are housed in elastomeric layer 1 with these inputs feeding 

microchannels of ~500 μm width and ~200 μm height which converge at the mixing channel 

coupled to the mixer module (encapsulated eccentric rotating mass motor, Digi-Key #1670-1023-

ND) shown in Fig. 2.4. The mode of mixing actuation is chosen to be vibratory based on its 

efficacy as seen in prior literature where both low [137] and high [138] frequency vibrations are 

used. In this work, low frequency actuation using a commonly available ERM haptic motor was 

chosen to simplify the fabrication process without the need for multi-step microfabrication. In 

addition to being capable of producing strong vibrations, its also allows for easy integration 

without directly contacting the fluid components unlike other active mechanical components like 

1 mm 
(a) (b) 
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impellers. This mixing module, also housed in elastomeric layer 1, provides vibratory agitation to 

the material inputs through elastomeric coupling with the mixing channel of ~1 mm width. 

Coupling membrane thickness is ~500 μm with thinner membrane thicknesses possible but with 

the disadvantage of fragility, especially during the de-molding and mixer module insertion 

processes. The mixing channel width is kept twice that of the feeder microchannels to keep the 

total flow rate theoretically constant during the filling and mixing process. Another reason for 

keeping the mixing channel wider than standard microfluidic channels is to allow the active mixer 

module enough time to influence the continuously passing fluid volume elements since at constant 

flow rates, narrower channels will cause the fluid to move faster. 

This particular aspect has not been optimized in this work due the broader aim of 

developing a technology demonstrator for the process of combinatorial ink formulation and 

patterning of solution-processable thin films. Consequently, there is much scope for the structural 

modification of such CPH platforms tailored towards similar goals. Elastomeric layer 2 houses a 

drop-on-demand piezoelectric inkjet dispenser (MicroFab MJ-ABP-01-080) with ~80 μm orifice 

diameter which is fed by the mixing channel directly. It will be seen later that the inkjet dispenser 

serves as a storage unit for the mixed ink but also constrains the amount of mixed ink volume as a 

consequence. This is not an issue for the printed ink volumes used in this work due to library size 

miniaturization but needs to be optimized (either through simultaneous mixing and printing or 

incorporating a larger ink storage chamber) for future work pertaining to large area printing where 

mixed volume requirements are proportionally larger. The mixing and dispensing modules are 

implemented as readily modifiable components that can be friction-fitted on to the elastomeric 

CPH platform and driven according to requirements. 

2.1.3 Microfluidic mixing and prior mixer implementations 

Before delving into the integration of the CPH with other components for realizing the 

printing platform, it may be useful to understand why active mixing methods are superior to 

passive mixing methods. Mixing of multiple fluids is generally done to enhance the homogeneity 

of components so that gradients in composition and consequent fluid mixture properties are 

minimized. In an application like combinatorial printing, the goal is to homogenize multiple fluids 

on-demand while minimizing the fluid volumes consumed. Microfluidic processing can directly 

achieve the latter but mixing within microchannels is limited by low flow rate resulting in a strictly 
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laminar flow regime. The reduction in length scales afforded by microfluidics also introduces 

challenges like the one above as surface forces on such small fluid quantities begin to dominate 

volume forces acting on them. The differences in time scales and force magnitudes of the different 

processes within a microchannel are captured using dimensionless numbers which are basically 

the ratio of these time scales. The three dimensionless numbers of importance in this work are: (i) 

Reynolds number (Re) which relates inertial and viscous forces, (ii) Péclet number (Pe) which 

relates diffusive and advective time scales and (iii) Ohnesorge number (Oh) which relates viscous 

and inertial and cohesive forces. 

 

Fig. 2.4: Schematic configuration of (a) a staggered herringbone mixer, (b) a peristaltic mixer and (c) a 

vibratory mixer. Magnified view of the mixing channel illustrating the expected interdigitation due to 

chaotic advection by passive or active mechanisms is shown below the three implementations. 

While the typical dimensionless numbers applicable for this work are discussed more 

specifically in a later section, having an intuitive appreciation of how they are invoked in the 

problem at hand is an important part of any microfluidic mixer implementation. Re and Pe are the 

most important quantities as far as mixing is concerned as they respectively define the fluid flow 

regime and how diffusive and advective effects compete in a particular regime. In microchannels, 

Re is typically less than 1 which means viscous forces dominate inertial forces and in such laminar 

flow regimes, homogenization of different fluids is a very slow process. Passive mixers of different 

(a) (b) (c) 
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types have been implemented in literature [139] [140] although not all of them were attempted 

during the process of finalizing the mixing methodology in this work. The first mixer iteration was 

a passive implementation with a staggered herringbone design chosen for its structural simplicity. 

Such a structure can split the input fluids at each section with the staggered orientation helping to 

create interdigitation. However, the minimum achievable feature size of the 3D printer used for 

making the molds was insufficient for realizing the grooved structure that was required for such 

an implementation. In addition, despite the onset of chaotic advection, the length of the mixing 

channel required for even reasonably good mixing was estimated to be ~101 m which would have 

resulted in excessively large mixed, and consequently, waste volumes. Large values of Pe are 

characteristic of such scenarios. Given the significant speed of mixing advantage of active mixing 

methods [141] [142] [143] over passive ones, subsequent iterations were focused on active 

methods instead. Hence, the second mixer iteration was an active implementation with a peristaltic 

design chosen, once again for its simplicity. In this case, the three valves on the circular mixing 

channel act as fluid actuation structures by serially blocking and unblocking the flow. In this case 

however, the minimum valve-to-valve spacing defined by the feature resolution of the 3D printer 

was the primary limitation. This resulted in weak flows generated by serially activating the valves 

which resulted in slow interdigitation although it was faster than the first attempt. The third and 

final mixer iteration was also an active implementation using a haptic motor whose vibrations were 

coupled to the mixing channel through the elastomeric top wall of the structure. This iteration 

proved to be the fastest among all three while having the least design complexity and its operation 

is described in further detail in a later section. All three mixer attempts are shown in Fig. 2.4 which 

schematically illustrates how the input fluid streams become interdigitated, thereby reducing 

diffusion length which is ultimately the main driver of homogenization. The impact of Oh is more 

relevant for the droplet generation aspect of the print head and is discussed in a later section. 

2.2 Integrated processing platform 

2.2.1 Platform implementation 

The overall block diagram of the combinatorial ink formulation and thin film patterning 

platform is shown in Fig. 2.5. The schematic is color-coded to categorize the different blocks 

according to their broad functionality. The peripheral components color-coded in blue comprise 

the fluid processing block, those color-coded in red form the substrate and combinatorial print 
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head (CPH) positioning block and finally, those color-coded in yellow comprise the software 

control block. The green color-coded block is the CPH block which has already been touched upon 

in the previous section and more details of the CPH block and each of the other blocks will be 

outlined. The fluid flow control block (blue) comprises two sub-blocks which, although shown to 

be spatially separate in the schematic, belong to the same functional block. One has a flow control 

unit (Chemyx Fusion 4000 syringe pump) for driving the input fluids in the reservoirs with 

programmable proportion into the CPH block. The other has a programmed microcontroller board 

(Arduino MEGA) which actuates the vibratory mixer module and triggers the waveform generator 

(Agilent 33120A) and signal amplifier (Trek 2200) for actuating the inkjet dispenser module. 

 

Fig. 2.5: Color-coded schematic block diagram [3] of the combinatorial ink formulation and thin film 

patterning platform showing the combinatorial print head (CPH) block (green), the fluid control block 

(blue), the substrate and CPH positioning block (red) and the software control block (yellow). 

The substrate and print head positioning block (red) is primarily a 3-axis translational stage 

with the combinatorial print head (CPH) mounted using a 3D printed housing on the z-axis 

movable arm and the substrate mounted on an xy-movable plexiglass stage. This allows for 

variation in the speed of stage translation to enable different printing rates as well as print gap 

between the CPH and the substrate. Used in conjunction with the CPH and fluid control blocks, 
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the positioning and spacing of droplets becomes highly controllable. Motorized linear actuators 

(Misumi LX45) are used to move (minimum stepping distance = 0.5 μm) both the sample mounting 

stage as well as the CPH mount. This block is programmed to pattern linear structures along the 

X-axis (left-right) which can be combined with motion along the Y-axis (forward-backward) to 

create user-defined patterns. The software control block (yellow) logically envelopes the hardware 

blocks described above and comprises a custom-coded Python user interface (UI) for 

communication control among and operation control of the individual hardware blocks. The UI 

also provides independent control of multiple process parameters such as 3-axis stage motion 

control, fluid blend component flow proportion control and mixing module activation time to 

enable combinatorial printing of thin films features. As described in the previous section, the CPH 

platform consists of a bilayer elastomer with different components friction-fitted in a modular 

manner. The mode of CPH operation is explained using binary fluid systems used as case studies 

in this work but the theory can be easily extended to more than two fluid blend systems. Being 

structurally symmetric, the fluid inputs 1 and 2 can be used interchangeably. Immediately after the 

plasma bonding of the elastomer bilayer, the CPH is treated with 1% aqueous polyvinyl alcohol 

(PVA) solution to enhance the wetting properties of the elastomer. This is done by feeding PVA 

into the microchannels through the fluid inputs using a regular syringe and letting it adsorb on the 

surfaces for 10 min at 20oC. The channels are evacuated by blowing air through them using another 

syringe and dried in an oven at 60oC for 30 min to remove any traces of moisture. After mounting, 

the appropriate fluid inputs are connected and fed into the feeder microchannels at equal flow rates. 

Once the fluids are at the entrance of the mixing channel, they are supplied to the mixing channel 

proportionally using the fluid flow control block. At this point, the active mixer module is activated 

to agitate the proportioned but unmixed liquids as they traverse the length of the mixing channel 

(~1.5 cm) and arrive at the inkjet dispenser orifice in a fully mixed state. This ensures that the 

entire column of liquid from the entrance of the mixing channel to the exit of the inkjet orifice has 

been mixed thoroughly. 

A schematic representation of the CPH operation is shown in Fig. 2.6 starting with the fluid 

filling of the mixing channel, agitation of the fluids leading to mixing followed by the inception 

of inkjet dispensing droplets of the mixed fluid blends. The mixing module has a compact eccentric 

rotating mass (ERM) mounted on a shaft which induce complex vibrations in the body of the CPH 

and it was expected that this would translate into a compact but powerful mixing tool when coupled 
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with elastomeric microfluidic chips. ERM motors, mounted on the CPH as shown in Fig 2.6, 

induce vibrations on the motor casing due to the rotary motion which are transmitted to the fluid 

in the mixing channel through the top wall. It is this wall motion that causes the fluid in the mixing 

channel to be homogenized by inducing chaotic motion through mechanisms hypothesized to be 

similar to a variation of Stokes’ 2nd problem. 

 

 

 

 

Fig. 2.6: (top left) Schematic representation of the modular CPH setup showing the configuration of the 

mixing channel and the structure of the enclosed ERM motor whose casing is tightly coupled with the 

elastomer structure, (top right) general operation of the mixing module including its advective effect on the 

binary fluid system within the mixing channel due to wall vibration and (bottom) motion of motor casing 

(blue) with respect to insert hole (black dashed outline) for 1 cycle of ERM rotation (tPERIOD) between 

starting (tON) and stopping (tOFF) of the haptic motor where the mixing channel is shown in purple as a 

consequence of mixing red and blue fluids as in the schematic above. 

The rapid nature of this vibratory fluid mixing can be observed in snapshots of the mixing 

process using red and blue dyed aqueous solutions with a high-speed camera (Phantom VEO-E 

310L) as seen in Fig. 2.7. The mixer is turned on at t = 0.0 s and homogenizes the color of the dyed 

solution by t = 1.0s. The total volume of mixed fluid after the mixing module is energized is ~23 

µl (~20 µl inkjet dispenser volume + ~3 µl mixing channel volume) which can be used to print 

patterned replicates from a given fluid blend proportion that has been mixed on-chip. In contrast, 

for premixed fluid blends, a minimum of a few milliliters of fluid needs to be processed for feeding 

into any standardized inkjet dispensing unit. Therefore, while the actual amount used for printing 

the thin film patterns may be equal for both conventional inkjet printing and inkjet printing using 

Circular wall motion induced by the haptic 

motor casing’s periodic forcing due to the ERM 

t = tON t = tON + tPERIOD/4 t = tON + tPERIOD/2 t = tON + 3tPERIOD/4 t = tON + tPERIOD t = tOFF 
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a CPH-based platform, the unused waste volumes are at least an order of magnitude smaller for 

CPH-based processing. Additionally, for conventional inkjet printing of functional materials, the 

loading step of these prepared fluid blends becomes a time limiting step which is bypassed in the 

CPH-based platform due to the mixing step and the loading step occurring serially in an 

uninterrupted manner. As an estimate of efficiency, the time required to generate a typical printed 

thin film library comprising 5 different blend compositions with 15 replicates (total 75 samples) 

for each is ~15 min (~12 s per sample) while the material volume requirement per sample is ~250 

nl which is about an order of magnitude smaller than what has been typically reported in literature 

[66] [67] [68]. It is perhaps not reasonable to assume the per sample volume used by the CPH to 

be absolute for different characterization methods but it does estimate the lower end of volume 

consumption efficiency. Automated processes involving robotic handling of specialized tools may 

be time-efficient and volume-efficient but not both simultaneously, especially during the mixing 

of fluids at small volume scales. 

 

 

Fig. 2.7: (top left to right) Fluid inputs 1 and 2 being fed (1:1 proportioning) into the mixing channel of the 

combinatorial print head (CPH) followed by mixing and printing of the proportioned fluid blend. (bottom 

left to right) Rapid mixing effect of the haptic mixer (eccentric rotating mass or ERM motor) module on 

the unmixed 1:1 proportioned fluid in the mixing channel. The elastomer-coupled haptic mixer module is 

seen in the background (blue package surface painted white to provide colour contrast). 
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2.2.2      Analytical and empirical considerations for the CPH 

Dimensionless numbers are ubiquitous in the study of fluid mechanics at different size 

scales and serve as valuable behavioural indicators of practical fluidic systems. The critical regions 

of the CPH that need to be considered include the input channels, the mixing channel and the 

jetting orifice. Driving flow rates are typically around ~0.01 ml/min during the on-chip mixing 

phase from which the flow velocity can be calculated for evaluating the characteristic 

dimensionless numbers for each of these regions. In general, the flow regime is strictly laminar in 

both the input channels as well as the mixing channel of the CPH with flow velocities of the order 

of ~1 mm/s and the corresponding Reynolds number (Re) (𝜌𝑈𝛿/µ) in the range of ~15 to ~0.75 

based on the specified allowable dynamic fluid viscosity range for the MicroFab® inkjet dispenser 

(< 20 mPa.s) downstream. The fluid density is ρ, U is the flow velocity (~1 mm/s), δ is the 

hydraulic diameter of the mixing channel (~333 µm) and µ is the dynamic viscosity where ρ is 

estimated to be ~1000 kg/m3 for the blends owing to the dilute nature of the aqueous ICP 

dispersions and the additive being around ~1100 kg/m3. Based on these values, laminar flow 

regime is assumed up to the inkjet orifice which has a diameter of 80 µm given that Re is the ratio 

of inertial forces to viscous forces acting on the fluid being investigated. Fluid inputs into the CPH 

exhibit approximately Newtonian behaviour despite some of them being polymer dispersions and 

this can be attributed to their relatively high degree of dilution. In addition, surface tension values 

of these fluids are measured to be within the specified allowable range (~20 to 70 mN/m). 

For jettability of fluids as individual droplets, it is common to use the Ohnesorge number 

(Oh) (𝜇/√𝜌𝜎𝑑) as a reference where σ is the surface tension and d is the orifice diameter. It 

describes the tendency for a drop to either stay together or fly apart by comparing viscous forces 

with inertia and surface tension forces. Typical values of the quantities used in Oh that are pertinent 

to this work result in its value being within 0.1 and 0.3 while the condition for jettability is given 

by (~0.05 to 0.1) < Oh < 0.5 which implies that the fluid blends used in this work are printable. 

For Oh < (~0.05 to 0.1), the formation of satellite droplets dominates while for Oh > (~0.5 to 1), 

the viscous forces are too great for droplet ejection. Often, the reciprocal of the Oh is also used as 

a reference and is called the “Z number”, denoted by Z whose range then varies from (1 to 2) < Z 

< (~10 to 20) and is sometimes more convenient to remember. Traditionally, the higher (lower) 

numerical bounds were used for the Oh (Z) numbers but recent research [144] has shown that the 
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lower (higher) numerical bounds for the respective dimensionless quantities capture the operation 

of droplet-on-demand inkjet dispensers more accurately. 

The condition for efficient mixing is where the ratio of the length l and hydraulic diameter 

d of the mixing channel is greater than the Péclet number (Pe) where Pe is the ratio of advective 

and diffusive mass transport (𝑈𝛿/𝐷) where D is the diffusion coefficient of the diffusing species. 

The diffusion coefficient D is approximated using the Stokes-Einstein equation to be of the order 

of ~10-12 to 10-14 m2/s using measured aggregate sizes of the ICPs from dynamic light scattering 

(DLS) experiments and discussed in Chapter 4. Differences in measured size from the ICP particle 

size observed in printed films is simply due to the fact that in aqueous dispersion, multiple ICP 

particles are agglomerated. This implies that the residence time of a fluid element in the mixing 

channel must exceed the time required for the diffusing species to diffuse across the mixing length 

which is the characteristic length dimension defining the mixing channel. In this work, l/δ ~ 36 (l 

~3.5 cm including the dispenser length) while the Péclet number is in the order of ~106 which 

implies that diffusive transport rate is about three orders of magnitude smaller than advective 

transport rate which shows the need of active mixing methods to reduce the mixing length. It was 

shown in Fig. 2.5 that the haptic motor being used as the mixer module can mix the input fluids 

very rapidly with the qualitative end point being the spatial homogeneity of the purple color when 

red and blue dyed aqueous dispersions are subjected to the motor vibrations. 

To qualitatively investigate the mechanism behind this rapid mixing process, high speed 

imaging was performed using similar dyed aqueous solutions as well as an ICP-additive 

(PEDOT:PSS-DMSO) pair and the dynamics of the fluids in mixing channel was observed both 

with and without the haptic motor being activated. When flowing, the streams interact at their 

boundaries to form a weak interface diffusion layer which does not visibly broaden significantly 

with time within the imaging window at the flow rate used during typical CPH operation in the 

mixing mode. The width of this interface diffusion layer is inversely proportional to the flow rate 

within the mixing channel and therefore the need for active mixing in short channels. Fig. 2.6 

compares the vibratory action of the haptic motor at different driving currents to locate the regime 

where the homogenization effect of the agitation is almost instantaneous without exceeding rated 

current limits of the motor, leading to a driving current of ~150 mA being used. Fig. 2.7 shows the 

fluid behavior observed when haptic motor is turned on and a region of the mixing channel further 

downstream is imaged. Rapid stretching and folding of fluid filaments are observed when the 
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motor is activated which seem to indicate the formation of eddies. These eddies are seen to form 

closer to the motor periphery but the alignment along the length of the channel of the stretching 

and folding filaments exerts vibrational influence extending beyond the region of the mixing 

channel directly covered by the motor as seen in Fig. 2.7. This results in rapid thinning of the 

filaments of both fluids leading to reduced mixing lengths which assists diffusion which is 

ultimately how the chaotically agitated species are mixed.  

 

Fig. 2.8: Effect of haptic ERM motor vibrations on the speed of homogenization of ICP-additive fluid inputs 

as a function of driving current from time t = 0.0 s to t = 2.0 s in time steps of 400 ms and current steps of 

25 mA. The background is the whitened motor face seen through the elastomeric coupling membrane with 

the brown feature being part of a circular depression in the motor packaging. Black vertical lines indicate 

channel bounds and yellow scale bars represent 0.5 mm. 
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Fig. 2.9: High speed imaging (25 frames/s from t = 0 s to t = 1.28 s) of the CPH mixing channel showing 

the ICP-additive pair of PEDOT:PSS (dark) and DMSO (light) being agitated by the haptic motor. The 

curved contour enclosing a dark surface in each frame is the outline of the haptic motor (dotted yellow line 

on first panel at t = 0.00 s) embedded within the CPH body and the length of the mixing channel segment 

imaged is ~1.5 mm. Scale bars in yellow represent 0.5 mm. 

 

Fig. 2.10: Diffusive mixing as observed for 240 s at intervals of 30 s for the ICP-additive (PEDOT:PSS-

DMSO) pair to illustrate the mixing time scale estimates obtained from Pe calculations. Also observed in 

the ICP-additive images is the outline of a stray bubble in the mixing channel near the periphery of the 

haptic motor which remains static throughout. Scale bars in yellow represent 0.5 mm. 

The generation and stretching of the eddies along the length of the mixing channel happens 

within ~1 s with the ICP color being homogenized across the width of the channel within 10 s 

when the motor is stopped. As mentioned previously, the haptic motor is run for the entire time 

starting from the input fluids being proportioned into the mixing channel until the binary fluid 
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blend is at the dispenser orifice to ensure that the fluids are not undermixed but it is not 

unreasonable to assume that homogeneity may be achieved earlier. Fig. 2.9 shows the diffusion of 

the ICP-additive fluid pair when the flow is stopped which results in the broadening of the interface 

diffusion layer until the color gradient visually disappears. However, this may not be an ideal 

indicator of the homogenization endpoint and often needs to be corroborated by imaging the cross-

section of the mixing channel. 

As seen, the time scale for diffusive mixing is much longer in comparison to the chaotic 

mixing and is one of the primary reasons to opt for active mixing. It is intuitive that longer diffusive 

mixing time will also require longer mixing channel lengths for a given fluid flow rate and will 

result in larger processed volumes, thereby simultaneously increasing wasted volumes. For 

context, actively mixed fluid volume is ~40 µl considering priming and overmixing while 

passively mixed volume, based on Fig. 2.8, is at least double of that. Assuming identical volume 

requirement per sample replicate, the wastage would be double or more. Given that there is no 

specific method for directly estimating the degree of mixing other than what can be gathered from 

the imaging experiments and calculations performed using the dimensionless quantities like Re 

and Pe, further quantification is done indirectly by comparing the variability of printed thin film 

performance between pre-mixed, on-chip mixed and unmixed fluids. Despite diffusion playing a 

role in homogenizing the input fluids as it traverses the length of the mixing channel and the inkjet 

dispenser in all cases, the added effect of the haptic motor vibrations is expected to result in lower 

sample-to-sample variability. It needs to be mentioned here that while there are factors other than 

the degree of mixing which may introduce performance variability, the printing process can be 

thought of as a black box with fluid blends as inputs and printed features as outputs and in general, 

it may be sufficient to recognize such multi-factor dependence and draw inferences on a case-by-

case basis. 

2.2.3 Operational verification 

Functional validation of CPH processing using commercial-grade and laboratory-grade 

ICP fluid blends is discussed in greater detail in Chapter 4 where thin film electrical conductivity 

tuning is studied as a function of ink composition using CPH-processed fluid blends and 

comparing them with premixed and unmixed fluid blends. Qualitative verification of the platform 

operation is done using a colorimetric test method whereby arrays of red and blue dots are printed 
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on a white paper (216 gsm) substrate. Binary blends of red (x) and blue (y) aqueous dyed 

dispersions are mixed at different proportions x/y using the on-chip mixing module and multiple 

replicates of each blend composition are dispensed as dots in a row-by-row manner. Each row 

consists of five replicates of the same blend composition with each replicated drop comprising 

~100 individually dispensed droplets to ensure color uniformity of each drop. A resolution step 

size of 25% is used such that 100x0y means all red and no blue while 75x25y implies 75% red and 

25% blue in the blend. The drops are oven dried at 60oC for 1 min and the process repeated for all 

compositions.  

  

Fig. 2.11: (a) Printed array of droplets comprising on-chip proportioned and mixed red (x) and blue (y) dyed 

aqueous dispersions showing corresponding compositions of rows. (b) Channel contribution from 3 sample 

positions (green shape) to obtain the average for a printed dot (yellow shape). 

The row-by-row printed array is illustrated in Fig. 2.10 along with how red and blue 

channel intensity is averaged over a printed dot. It is to be noted that the printed dots are not exactly 

circular due to the randomness of the in-plane wicking and therefore, 3 points were chosen by 

visual estimation as shown in Fig. 2.9 and averaged for the red and the blue channels. The longer 

dimension of the roughly elliptical was chosen to be the direction along which the 3 points were 

chosen as the spread in intensity was expected to be maximum along that direction. Variation in 

the values of the red (R) and blue (B) channels of the RGB color scheme as a function of R(x)/B(y) 

color proportion is shown in Fig. 2.11. This was done by analyzing a JPEG-formatted image of 

the individual printed dots for their red and blue channel contents using MATLAB. These channels 

have a color intensity range varying from 0 to 255 which is mapped by the color bar adjacent to 

both heat maps. While the range of values seen in the scale bar are not fitted to a percentage scale, 

their complementarity is clearly observed in the heat maps as expected from changing proportions 

of each color. This is due to the fact that for the eye or any imaging device to perceive a certain 

(a) (b) 
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color in a binary pigment blend, the constituent pigment particles need to be very homogeneously 

distributed and in physical proximity to each other such that it is impossible to spatially resolve 

the two different pigment particles and thus, an average of the two colors is perceived. The 

difference in scale bar limits for the R-channel and the B-channel can be attributed to the 

imperfection of the pigment colors on the 0 to 255 scale as well as the inherent tinting of the image 

captured by the camera. The latter can be attributed to the dual effect of the image sensor as well 

as the encoding of a particular color used by the corresponding file type. However, qualitative 

confirmation of the physical mixing process can be obtained from the information illustrated by 

the row-wise variation of the pristine color components shown in Fig. 2.10. 

 

Fig. 2.12: Row-by-row printed array of droplets comprising on-chip proportioned and mixed red (x) and 

blue (y) dyed aqueous solutions showing corresponding compositions of rows. 

Quantitative comparisons between specified input volume flow rates and output material 

weight were made to evaluate the proportioning accuracy. The materials used in this experiment 

were the red dyed aqueous dispersion from the previous qualitative study (η = ~1 mPa.s), the 

commercial-grade ICP PEDOT:PSS (η = ~5 mPa.s) and ethylene glycol (η = ~16 mPa.s) whose 

viscosity is near the upper limit of the inkjet dispenser. Each syringe pump was driven for 10 min 

at different flow rates and step sizes corresponding to those used later in order to cover the entire 

range of each input. The fluid driven by each pump was collected in a glass vial and weighed 

individually for all the different flow rate fractions used, thus mapping the specified input fraction 

to its corresponding output fraction. Fig. 2.12 illustrates these comparisons when conducted at 

specified input flow rate steps of 10 vol.% and 2 vol.% flow rate ranges used subsequently in this 

work. For the 10 vol.% step size comparison, flow rates were varied from 0.01 ml/min (100 vol.%) 
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to 0.001 ml/min (10 vol.%) while for the 2 vol.% step size, flow rates were varied from 0.001 

ml/min (10 vol.%) to 0.0002 ml/min (2 vol.%). While the variation in the output fluid weight when 

compared to the input flow rate proportion does not appear to be very significant, assessing the 

absolute and relative proportioning errors is important to understand the resolution limits of the 

pumping system. To be noted here is that the elastomer RTV-615 is typically used for moisture 

shielding applications and does not undergo large volume changes due to solvent absorption [145]. 

 

Fig. 2.13: Comparison of pump output as a function of input flow rate proportion for each syringe pump 

over (a) larger flow rate range at 10 vol.% steps and (b) smaller flow rate range at 2 vol.% steps. 

 

Fig. 2.14: Variation of absolute (a) and relative (b) proportioning error in either pump as a function of fluid 

input proportioning. 

The absolute and relative error in proportion is given by (2.1a and 2.1b) and (2.2a and 2.2b) 

and capture the uncertainty in proportioning step size for the individual pumps. The ε’s denotes 

the error and the M’s denotes the output mass for each pump labeled as “pump 1” and “pump 2”. 

From Fig. 2.13, it can be stated that the maximum error for 10 vol.% and 2 vol.% step sizes are 

less than half of the respective step sizes. This implies that a change in the input (syringe pump 

settings) proportion by that such a step size can be expected to show up at the output (inkjet 

dispenser orifice) assuming equal uncertainty on either side of the specified proportion. It is also 

observed that the relative proportioning error for pump 1 is somewhat higher than pump 2 in the 

10 vol.% to 20 vol.% range and is therefore used accordingly. Thus, however small it may be, the 

proportioning error will definitely play a role in the operational performance of the CPH platform 

(a) (b) 

(a) (b) 
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and needs to be considered when drawing inferences from the characterization data of printed 

sample libraries. The proportioning error, expected to influence binary blends at their extreme 

proportions, is plotted in Fig 2.15. Considering the argument of an acceptable error being less than 

half the step size from the context of Fig. 2.13, it is clear that the two independent syringe pumps 

fall well within that range. 

 
Fig. 2.15: Proportioning error of  (left)  higher extreme of pump 1 and lower extreme of pump 2 and (right) 

lower extreme of pump 1 and higher extreme of pump 2 estimated from the position of the blue-red interface 

of the bar graphs with respect to the targeted proportion. Pump 1 is represented in blue and pump 2 is 

represented in red. 

εAbsolute-pump 1= |(
MActual-pump 1

MActual-pump 1+ MActual-pump 2

) − (
MIdeal-pump 1

MIdeal-pump 1+MIdeal-pump 2

)| . (2.1a) 

εAbsolute-pump 2= |(
MActual-pump 2

MActual-pump 1+ MActual-pump 2

) − (
MIdeal-pump 2

MIdeal-pump 1+MIdeal-pump 2

)| . (2.1b) 

εRelative-pump 1= ||
(

MActual-pump 1

MActual-pump 1+ MActual-pump 2
) − (
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MIdeal-pump 1+MIdeal-pump 2
)

(
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MActual-pump 1+MActual-pump 2
)

|| . (2.2a) 

εRelative-pump 2= ||
(

MActual-pump 2

MActual-pump 1+ MActual-pump 2
) − (

MIdeal-pump 2

MIdeal-pump 1+MIdeal-pump 2
)

(
MActual-pump 2

MActual-pump 1+MActual-pump 2
)

|| . (2.2b) 

2.3 Combinatorial thin film library preparation 

When considering a certain material A that is under development for a thin film application, 

its characteristic performance indicator can be assigned the quantity Q. This quantity Q can be 

anything ranging from viscosity to UV absorbance to a film roughness, among many others. It is 

also given that material A is solution (water or otherwise) processable and can be easily rendered 

into thin functional films but the ideal formulation and its consequences on Q are unknown a 

priori. In typical commercial materials, solution processable or otherwise, the pristine material is 
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rarely used and there is always at least one additive B which is used to tune Q through a chemical 

or a physical transformation of A. Examples include surfactants that improve thin film adhesion 

on certain classes of substrates by regulating interfacial tension [146], additive-induced tuning of 

the thin film morphology through increased material solubility [147] or additive-induced electrical 

conductivity tuning of thin films [148] . Based on the specific requirements from the material under 

development, it may be necessary to explore its properties at different resolutions depending upon 

the location (along the factor variable axis) of feature in the response variable that is being studied. 

The experimental endpoint in such cases is typically identified from literature concerning materials 

that have been developed for similar applications or from relevant simulation studies, both of 

which may provide a known extremum or optimum in the response. 

 

Fig. 2.16: An iterative screening strategy using CPH processing of a binary fluid blend (A/B) at increasingly 

smaller compositional ranges and increasingly finer compositional resolution until targeted observations 

are made or hardware limits are reached. The outcome of each iterative step is illustrated graphically by the 

corresponding behavioral response quantified by Q as a function of composition. 

As seen in Fig. 2.14, an iteratively “magnifiable” approach to evaluating the A/B blend 

response behavior of Q is adopted by directly fabricating patterned thin films using the 

combinatorial print head (CPH) that integrates microfluidic mixing and inkjet dispensing on-chip 

as a compact printing device. Using this system, it is possible to explore the effects of composition 

variations on Q in a multi-resolution manner using variable composition steps. The type of thin 

film libraries printable using the CPH can be thought of as a variant of the family of array-based 

strategies outlined in Table 1 in Chapter 1. These libraries take the form of a discretized-gradient 

array accommodating multiple replicates for each blend composition level. This allows for the 

possibility of statistically significant observations leading to inferencing clarity of thin film 
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performance across the array. Fig. 2.13 illustrates the adopted approach for an N-component 

(primary material A, secondary material B etc.) system where N = 2 (primary material A and 

secondary material B) and can be logically expanded for N > 2 up to the physical limit of CPH 

processability. 

The screening protocol begins with the preparation of pristine formulations of material A 

and material B and the two are CPH-processed (1st iteration) over a broad compositional range of 

interest to generate coarsely resolved but identically patterned thin film samples. Upon 

characterizing Q for the compositional range (RA1 for A and RB1 for B), a sharp transition between 

two distinct behavioral regimes can be observed. This initial choice of the range of proportions for 

the materials may be informed by typical ranges used for such materials in similar applications. It 

is noteworthy that the independent variable shown in Fig. 2.7 need not be only composition for the 

CPH-based platform but can also be geometric parameters such as the chosen print pattern, the 

film thickness, as well as combinations of various factors. It is purely a matter of the scope of this 

work that the focus is on the aspect of material composition. Additionally, this brings to the fore a 

key advantage of being able to fabricate functionally graded end-use patterns as this also allows 

for the simultaneous investigation of geometric parameters if required. Thus, the screening of such 

multi-material thin films can be performed directly at the next level of device hierarchy. The 

general rule of thumb is to consider standard observable features, their multiplicity and their 

average statistical spread in similar systems. In the end, however, what really matters is the 

importance of a particular feature to the application at hand. Refining the ranges to RA2 and RB2, 

another set of CPH-processed (2nd iteration) thin films are generated, this time with a finer 

compositional resolution. It is seen that the transition which was assumed to be very sharp after 

the 1st iteration is actually much smoother but slightly kinked. A 3rd iteration of CPH-processing 

over the ranges RA3 and RB3 and subsequent analysis of Q at a higher resolution yields a much 

clearer picture of the transition which can be probed further to reach a well-informed conclusion. 

The magnifiable nature of the proposed screening methodology enables the usage of the 

ink formulation and patterning platform as a "combinatorial microscope”, implying that any 

interesting behavioral artifact observed for Q can be analyzed further by redefining a narrower 

composition range over the next iteration. This methodology needs to be qualified by asserting 

that not all solution processable thin film material development roadmaps may require multiple 

hierarchical levels and often, one or two levels are sufficient to evaluate and/or optimize the 
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corresponding Q under investigation. While the general methodology adopted for sample 

fabrication using the CPH platform in this work is described in the last section, overall 

experimental protocols including statistical analyses of data is covered in greater detail in the next 

chapter. The framework presented there is used in conjunction with the system described in this 

chapter to prepare and characterize ICP thin film samples from which, inferences are drawn 

regarding the tested materials. Additionally, referencing against prior literature on such materials 

also enables the functional validation of the CPH platform. Statistical inferencing and system and 

material validation is described in Chapter 4. 

Summary 

The principles of combinatorial sample formulation introduced in the previous chapter is 

explored here in greater detail. A general introduction to the concept of a combinatorial print head 

(CPH) is provided, following which, thin film sample formulation and fabrication is presented. 

The CPH operation is discussed in the context of proportioning and mixing with the performance 

of its corresponding elements validated using gravimetric and flow imaging methods. It is found 

that the proportioning functionality of the CPH is purely limited by hardware capabilities with the 

current configuration introducing errors within acceptable limits. The mixing functionality of the 

CPH is achieved by inducing chaotic advection in the fluid through the elastomeric coupling wall 

of the mixing channel and is corroborated by high-speed imaging. Finally, a hierarchical method 

for the combinatorial screening of binary fluid blends is proposed for use in experiments described 

in Chapter 4. 
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Chapter 3: Experimental evaluation protocols 

Chapter overview 

The motivation behind this chapter is to provide a detailed outline of the general design of the 

experiments covered in Chapter 4 concerning case studies using commercial-grade and laboratory-

grade intrinsically conductive polymers. A discussion on the usage and limitations of summary 

statistics leads to the requirement for invoking inferential statistical methods. A particular method 

of statistical inferencing is chosen and described based on its applicability to the current work. The 

outcomes and limitations of the method are considered and further analyses introduced to ensure 

completeness of the protocol. Lastly, the different methods of sample preparation and subsequent 

characterization are listed in preparation for the analyses in the following chapter. 

3.1 Factor and response variables 

Before delving into the mathematical framework, it is essential to consider the different 

constituents of the experiments which are going to be quantified as factors and responses. Given 

that the combinatorial printing platform is the central tool for creating the thin film libraries used 

in this work, processing type, blend composition and operating temperature are the independent 

variables or factors being studied in relation to their corresponding thin film response, which can 

take multiple forms in multiple domains. Of these different forms, the key dependent or response 

variable considered is the electrical conductivity of the printed polymer thin films. The choice of 

this response variable was based on the growing attractiveness of intrinsically conductive polymers 

(ICPs) for IoT-oriented applications such as multi-functional sensors and actuators for purposes 

such as healthcare monitoring, body sensor networks and conformable electronics to name a few. 

In general, the degree of temperature dependence of the measured or response variable is often the 

determining factor for the utility of any material towards sensor applications. For example, 

temperature-dependence of electrical conductivity behavior of interconnect materials plays a 

limiting role with respect to sensor noise and output drift while the requirement for the same 

temperature-dependent electrical conductivity behavior of sensing materials is quite the opposite. 

To this end, printing experiments are performed using the CPH-based platform to fabricate 

multi-material and sometimes, multi-resolution thin film libraries. These libraries are used not only 

for the evaluation of the electrical conductivity response of different polymer-additive and 
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polymer-polymer blend compositions at different temperatures but also to assess the efficacy of 

the CPH-based platform itself in formulating blends using premixed and unmixed fluids as 

reference. The latter is an indirect but practically useful method of functional assessment which 

was initially explored in Chapter 2 for operational validation of the system. The materials used as 

inks for functional validation include dilute aqueous dispersions of commercial-grade 

(PEDOT:PSS) and laboratory-grade (PSEDOT) polythiophene-based ICPs and their respective 

blends. In addition to functional validation, the CPH-based platform is also used to evaluate the 

electrical conductivity performance of the PSEDOT synthesized by collaborators at Université 

Laval to replace and/or complement PEDOT:PSS which is currently the most extensively used 

solution-processable commercial-grade ICP. The need for replacing and/or complementing 

PEDOT:PSS arises from: (i) its poor water processability without additives; (ii) its poor intrinsic 

electrical conductivity and (iii) its weak intrinsic temperature-dependent electrical conductivity. 

As a sensing material, PEDOT:PSS typically needs to always be blended with other non-polymer 

materials in order to exhibit appreciable change in electrical conductivity and newer ICPs like 

PSEDOT can potentially be useful in filling this critical niche. Investigation of these aspects, along 

with the need for assessing platform performance, are what drive the protocols adopted and 

described here. 

3.2 Design and analysis of experiments 

3.2.1    General analysis using summary statistics 

Most experimental data can be adequately analyzed using observed mean (µ) and standard 

deviation (σ) values which are measures of central tendency and dispersion respectively. For any 

response variable being studied as a function of a factor variable, these quantities are reasonably 

good indicators of variability in the system being investigated with the variability arising from 

either the position of the mean value or from the variability about the mean value which is indicated 

by the standard deviation. These measures are typically used to graphically plot response variable 

trends as functions of the factor variable and provide visual insights into system behavior [149]. 

In cases where the absolute positions of the mean values are not critical (e.g., means are close to 

each other for different data sets being compared), a standardized measure of dispersion such as 

the coefficient of variation (CV), also known as the “relative standard deviation”) is used [150]. 

CV is the ratio between the standard deviation and the mean of a sample data set and is a 
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dimensionless number which serves as a useful indicator of repeatability of system response when 

subjected to the same treatment or factor level. Dispersion in data sets with similar or different 

means can also be analyzed using CV but the drawback of this metric becomes apparent when 

comparing the mean response at different levels of the factor variables. For significantly different 

mean responses, the standard deviation about those means may be quite similar. In such cases, the 

CV varies significantly even though the absolute dispersion about a particular mean may not be 

significant and this gives rise to misleading inferences from the data sets. Besides its 

underestimation or overestimation of dispersion, CV is also invariant [151] to the number of 

samples in a data set (n) while the deviation of the sample mean from the population mean is 

dependent on the sample size. In such cases, standard error or the ratio of the standard deviation σ 

and the square root of the number of samples in the data set (√𝑛), becomes a more reliable measure 

of dispersion. These scenarios are precisely where inferential statistics, discussed in the next 

subsection, provides tools to resolve such confusion and is often used in conjunction with the 

visualizing power of the summary statistics discussed above to draw conclusions about the system 

being studied. 

3.2.2 Single-factor experimental design (one-way ANOVA) 

Table 3.1: Data representation for a typical single-factor experiment 

Factor levels Observations Totals Means 

Level 1 y11 y12 … … … y1n Y1 Y’1 

Level 2 y21 y22 … … … y2n Y2 Y’2 

… … … … … … … … … 

… … … … … … … … … 

Level m ym1 ym2 … … … ymn Ym Y’m 

Overall totals Y Y’ 

For a single factor experiment involving a particular material, there can be multiple factor 

levels that are studied for their corresponding response. Levels of an input factor or independent 

variable correspond to its different magnitudes or gradations which in turn affect the output 

response or the dependent variable. Each of these factor levels are generally replicated to 
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understand statistical variability in the response for that particular factor level. This information 

can be represented in a tabular manner as shown above. Considering m different factor levels and 

n replicates for a single factor experiment, it is useful to empirically model the response variable 

y as a function of the factor variable. It may be trivial but also useful to mention here that the factor 

variable need not always be numerical as even categorical variables can have levels too. 

One way of doing this is by defining the response variable y as: 

y
ij
= μ + τi + εij {

𝑖 𝜖 1, 2, … , 𝑚
𝑗 𝜖 1, 2, … , 𝑛

.       (3.1) 

This is often referred to as the “effects model” [152] where µ is the overall mean of the 

data values shown in Table 2.1, τi is the ith factor level effect and εij is the random error. The indices 

i and j represent the factor level and the replicate number. The random error component 

encompasses contributions from the measurement variability arising from uncontrolled and/or 

insurmountable factors which form the general background noise of the experimental process. This 

model is intuitively appealing due to the fact that µ is a constant and the τi can therefore be thought 

of as deviations from µ as the different factor levels are implemented. In this context, εij can then 

be thought of as the deviations from each τi for each factor level i and replicate j. The yij represent 

the different responses (electrical conductivity in this work) to the different factor levels 

(processing type, blend composition and temperature in this work) with the Yi and Y’i (equivalent 

to µi) representing the total and mean of the measurements made for the ith factor level. Y and Y’ 

(equivalent to µ) are the overall total and the overall mean of all the measurements and the total 

number of measurements is N = mn. 

As is apparent from (3.1), the effects model is a linear statistical model and is used in one 

of the most powerful analysis techniques for studying the process of experimentation. This 

technique is called the analysis of variance, more commonly known as ANOVA (ANalysis Of 

VAriance) [153]. Fig. 3.1 visually summarizes the principle behind the ANOVA method described 

above for a more intuitive illustration of its workings. A key requirement for the ANOVA method 

to be valid is that the experiments be performed in random order to ensure uniformity in the 

experimental environment and adherence to the principles of what is called a “completely 

randomized design”. The objective of any ANOVA study is to test certain hypotheses about the 

experiments being undertaken and conclude if they are valid or invalid. Since the m factor levels 
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are chosen by the experimenter in this work, the broad goal of a corresponding ANOVA study is 

to test hypotheses about the factor level means. For testing of hypotheses, it is generally assumed 

that the errors are normally and independently (NID) distributed with zero mean and non-zero 

variance. Typical hypothesis testing considers two options: (i) a null hypothesis H0 and (ii) an 

alternative hypothesis H1. Validation of the null hypothesis H0 implies that the quantities being 

compared are equal to each other while the alternative hypothesis H1 is representative of the fact 

that at least one of the quantities being compared is not equal to the others. 

 

Fig. 3.1: Schematic representation of the ANOVA method of using sampling distributions as estimators of 

the population distribution in order to accept or reject the null hypothesis. The population mean µpop and 

sample means µ1, µ2 and µ3 are denoted by the orange and the yellow dashed lines respectively. 
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This can be written for m factor levels in terms of their corresponding factor level means µi as: 

H0: μ
1
 = μ

2
 = μ

3
 = … = μ

m
, (3.2a) 

H1: μ
i
 ≠ μ

j
  for at least one pair of i and j.     (3.2b) 

Given that in the effects model, the ith factor level mean µi (equivalent to Yi’) can be expanded as 

µ + τi with µ (equivalent to Y’) being the overall mean shown in (3.1) and τi being the effect for 

the ith factor level, the two hypotheses in (3.2a) and (3.2b) can be reformulated as: 

H0: τ1 = τ2 = τ3 = … = τm = 0,     (3.3a) 

  H1: τi ≠ 0  for at least one i.      (3.3b) 

It can therefore be stated that ANOVA tests for either the equality of m factor level means for the 

corresponding factor levels or that the m factor level effects for the corresponding factor levels are 

zero. The ANOVA method attempts to study the above by partitioning the total variability of the 

N = mn measurements about Y’ into its component parts attributable to the factor levels and the 

errors. The measure of overall data variability can be defined by the total sum of squares which 

can be partitioned into two components: 

SSTotal= ∑ ∑ (y
ij
 - Y')

2
n
j=1

m
i=1 = n ∑ (Y'i - Y')2m

i=1 + ∑ ∑ (y
ij 

- Y'i)
2

.n
j=1

m
i=1          (3.4) 

The first term on the right-hand side is an estimate of the mean variability of response between 

each factor level from the mean overall response. The second term is an estimate of the effect of 

variability across all replicates within each factor level. These terms are called SSFactor Levels (sum 

of squares of the response at different factor levels) and SSErrors (corrected sum of squares of the 

response at different factor levels for all replicates) and are central to the principle of the ANOVA 

method as will become apparent shortly. In a more qualitative manner as shown in Fig. 3.1, it can 

be said that both terms on the right-hand side are estimates of the response variance; one 

(SSFactor Levels) based on the inherent response variability between factor levels and the other 

(SSErrors) based on the response variability within each factor level. SSFactor Levels has a caveat 

associated with it which is that the null hypothesis of (3.2a) or (3.3a) is valid. If so, then the 

estimates of sample response variance provided by either of the two sums of squares is expected 

to be experimentally similar and theoretically identical. If not, then the observed difference can be 

attributed to the differences in mean response between factor levels. Building on this intuitive 
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concept, it can be stated that SSTotal has N-1 degrees of freedom which means that for m factor 

levels, SSFactor Levels has m - 1 degrees of freedom and SSErrors has N - m degrees of freedom. 

Consequently, MSTotal = SSTotal  N - 1⁄  is called the total mean square of the response and 

represents the mean sample response variance which can again be partitioned into MSFactor Levels 

and MSErrors components. MSFactor Levels= SSFactor Levels  m - 1⁄  is called the mean square of the 

mean response variable magnitude at different factor levels and MSErrors= SSErrors  N - m⁄  is called 

the mean square of the random errors within each factor level comprising multiple replicates. 

Quantitatively, the expectation values of these two quantities [148] shown in (3.5a) and (3.5b) 

makes it quite apparent that these are estimates of the sample response variance based on the mean 

response differences between factor levels and the mean response differences within each factor 

level. 

   E(MSFactor Levels) = E (
SSFactor Levels

m - 1
) = σ2+ 

n ∑ τi
2m

i=1

m - 1
,                    (3.5a) 

    E(MSErrors) = E (
SSErrors

N - m
) = σ2.       (3.5b) 

It is clear from the above that if there are significant mean sample response differences between 

factor levels, the quantity in (3.5a) will always be greater than the variance of random error σ2, 

assumed to be normally and independently distributed. Otherwise, the sample response variance 

for each factor level is expected to be exactly equivalent to the random error variance σ2 with the 

variation in factor levels having no effect on the mean sample response, the premise of the null 

hypothesis.  This fundamental observation in measurement data, collected and tabulated in the 

form of Table 3.1, is exploited by the ANOVA method and forms the basis of the test statistic used 

for evaluating the effect of a factor on the mean sample response at different factor levels. By 

definition, a test statistic is the summary of a data set which reduces the data set to a single 

numerical quantity for the purposes of testing hypotheses. In general, any test statistic is defined 

in a manner such that it is capable of quantifying data behaviour so as to distinguish between the 

null and the alternative hypotheses. 

In (3.1), it has been assumed that the random errors εij are normally and independently 

distributed with zero mean and some non-zero variance. Therefore, it can be inductively stated that 

the individual sample responses yij are also normally and independently distributed with mean µ + 

τi and variance σ2. The implication of this statement is that (SSTotal / σ
2) follows a chi-squared 
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distribution with N – 1 degrees of freedom since SSTotal is a sum of squares of normally distributed 

random variables [153]. Under the premise (H0: τi = 0) of the null hypothesis, it can be shown that 

(SSFactor Levels / σ2) and (SSErrors / σ2) follow chi-squared distributions too with m - 1 and N – m 

degrees of freedom respectively. Using a modification of Cochran’s theorem, it can be inferred 

that (SSFactor Levels / σ2) and (SSErrors / σ
2) are both independent of each other despite the fact that 

SSTotal = SSFactor Levels + SSErrors. It is this independence of the two constituent sums of squares that 

enables the usage of the ratio of MSFactor Levels and MSErrors as a test statistic for the ANOVA 

method. Otherwise, it would not be possible to separate the two quantities because of their 

interdependence which would result in a biased ratio. From the definition of chi-squared [153] 

distributions, it can also be shown that both MSFactor Levels and MSErrors follow chi-squared 

distributions too (scaled by the inverse of their respective degrees of freedom) and their ratio 

follows an F-distribution (named after R. A. Fisher) with m - 1 and N - m degrees of freedom. 

This test statistic is called the Fisher statistic and is denoted by F0. Based on this conjecture, 

it can be inferred that for a factor to have any significant effect on the response in comparison to 

the random error, the value of the test statistic F0 must be at least greater than one. The significance 

of the value of F0 where F0 > 1 is generally inferred from estimating the associated p-value. This 

p-value is defined as the probability of obtaining a test statistic value (F0 in this case) which is at 

least as extreme as the observed value of the same statistic given that the null hypothesis is valid 

and it quantifies whether the specified significance level of the test is met [154]. Significance level 

[155], also known as Type 1 error probability and usually denoted by α, is the probability of 

rejecting the null hypothesis given that it is true and is an indicator of “false positive” responses. 

Table 3.2: General structure of a one-way ANOVA table. 

Sources of variation Sum of squares DOF Mean squares F0 

Factor SSFactor Levels m - 1 MSFactor Levels 

MSFactor Levels

MSErrors

 Error SSErrors N - m MSErrors 

Total SSTotal N - 1  

While these calculations are theoretically simple enough to perform by hand, they are also tedious 

and notoriously susceptible to errors as the data sets become larger. As a result, all of these 
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calculations pertaining to the ANOVA method are generally performed using software after the 

fabricated sample library has been characterized and all the relevant data collected. In this work, 

IBM SPSS Statistics® has been used to perform the ANOVA and post-hoc studies on data acquired 

from the multi-material thin film sample libraries that were prepared using the combinatorial 

printing platform. A typical ANOVA response table generated either through manual calculations 

or software is illustrated in Table 3.2 along with the p-values corresponding to F0. All the relevant 

quantities discussed up to this point are tabulated for ease of inferencing. The key takeaways from 

such a table include the sum of squares between factor levels and the value of F0 and its 

corresponding p-value. The former essentially proposes a model fit while the latter validates its 

significance. In this work, the corresponding p-value calculated by the software will be included 

as an added column along with the F0 statistic column to establish the statistical significance or 

insignificance of the analysis results, thus paving the way for further evaluation. In addition to the 

F0 value and its corresponding p-value, a couple of other metrics called the effect size (denoted by 

η2
partial) and statistical power (denoted by 1 ‒ β) will be discussed later and included in the ANOVA 

tables of Appendix A. 

3.2.3 Multi-factor experimental design (two-way ANOVA) 

Table 3.3: Data representation for a typical multi-factor experiment. 

Factors Factor B 

Factor A 

Levels 1 2 … b 

1 
y111, y112, … , 

y11n 

y121, y122, … , 

y12n 
… 

y1b1, y1b2, … , 

y1bn 

2 
y211, y212, … , 

y21n 

y221, y222, … , 

y22n 
…  

… … … … … 

a 
ya11, ya12, … , 

ya1n 

ya21, ya22, … , 

ya2n 
… 

yab1, yab2, … , 

yabn 

In experiments with multiple factors or treatments, the data representation is similar to single-

factor experiments in that each factor has multiple levels and there are multiple replicates for each 
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factor level as shown in Table 3.3. Multi-factor experiments are also referred to as factorial 

experiments among which, the two-factor variant is the fundamental design. In such a design, there 

are two factors A and B with a and b factor levels respectively with n replicates overall. Similar to 

the one-way ANOVA effects model defined previously, the two-way ANOVA effects model [153] 

is defined as: 

y
ij
= μ + τi + 𝜔j+ τ𝜔ij + εikj {

i ϵ 1, 2, …, a

j ϵ 1, 2, …, b

k ϵ 1, 2, …, n

 , (3.6) 

where µ is the overall mean, τi is the ith level effect of the row factor A, ωj is the jth level effect of 

the column factor B , τβij is the interaction effect of τi and βj and εijk is the random error. In case of 

two-way ANOVA, hypothesis testing can be independently done for either the row factor, the 

column factor or both depending upon the evaluation criteria. In addition, one can also perform 

hypothesis testing for the interaction between the row and the column factor. The following are 

the null and alternative hypotheses for each of the above. 

Row factor A: 

H0: τ1 = τ2 = τ3 = … = 𝜏𝑎 = 0,     (3.7a) 

  H1: τi ≠ 0  for at least one i.      (3.7b) 

Column factor B: 

H0: 𝜔1 = 𝜔2 = 𝜔3 = … = 𝜔b = 0,     (3.8a) 

  H1: 𝜔j ≠ 0  for at least one j.      (3.8b) 

Interaction factor AB: 

H0: τ𝜔1 = τ𝜔2 = τ𝜔3 = … = τ𝜔ab = 0,    (3.9a) 

  H1: τ𝜔ij ≠ 0  for at least one ij.                (3.9b) 

If Yi00 denotes the total of all observations at the ith level of the row factor A, Y0j0 denotes the total 

of all observations at the jth level of the column factor B, Yij0 denotes the total of all observations 

in the ijth cell, and Y000 denotes the grand total of all, we have 

  Y'i00 = 
Yi00

bn
; Y'0j0 = 

Y0j0

an
; Y'ij0 = 

Yij0

n
; Y'000 = 

Y000

abn
 (3.10) 
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where Y’i00, Y’0j0, Y’ij0 and Y’000 are the corresponding means and i and j vary from 1 to a and 1 to 

b respectively. Thus, the total sum of squares for the two-factor experiment described above can 

then be written as:  

SSTotal= bn ∑ (Y'i00 - Y'000)
2
+ an ∑ (Y'0j0 - Y'000)

2
 + n ∑ ∑ (Y'ij0 - Y'i00 - b

j=1
a
i=1

b
j=1

a
i=1

Y'0j0 - Y'000)
2
+  ∑ ∑ ∑ (𝑦ijk - Y'ij0)

2.n
k=1

b
j=1

a
i=1                   (3.11) 

Table 3.4: General structure of a two-way ANOVA table. 

Sources of variation Sum of squares DOF Mean squares F0 

Factor A SSA a - 1 MSA 

MSFactor Levels

MSErrors

 

 

for each factor 

Factor B SSB b - 1 MSB 

Factor AB SSAB (a - 1)(b - 1) MSAB 

Within factor levels SSErrors ab(n – 1) MSErrors 

Total SSTotal abn - 1  

The first three summation terms on the right-hand side of (3.11) denote the estimates of response 

variability between each factor level of factors A, B and AB from the mean overall response while 

the fourth term is an estimate of the effect of variability across all replicates within each factor 

level such that the total number of data points is abn. Therefore, the total sum of squares SSTotal 

can be partitioned into sum of squares due to factor A (SSA), sum of squares due to factor B (SSB), 

sum of squares due to the interaction factor AB (SSAB) and the sum of squares due to random error 

(SSError) where, as before, the sum of squares represents the dispersion of the mean values of the 

respective factor levels around the overall mean value of the data set under consideration. As 

before with one-way ANOVA, the sum of squares of each factor divided by its corresponding 

degree of freedom results in the corresponding mean square (MSA, MSB, MSAB, MSError) which, 

under the null hypotheses, results in the familiar statistic F0 being defined as MSA/MSError, 

MSB/MSError and MSAB/MSError for all three factors. For the null hypothesis to be violated, the 

numerator of F0 must be greater than the denominator and its statistical significance is once again 

established by the corresponding p-value evaluating to a value lower than the Type 1 error rate or 

significance level α (generally 0.05 or 5%) of the experiment. Table 3.4 illustrates a typical two-

way ANOVA table which looks quite similar to a one-way ANOVA table except for the added 
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rows representing the multiplicity of factors involved. In this work, one-way ANOVA is performed 

on pristine and blended ICPs as a function of blend composition at different composition ranges 

while two-way ANOVA is performed for electrical conductivity response of pristine and blended 

ICPs as a function of blend composition and ambient temperature. Also, α has been chosen to be 

0.05 (or 5%) throughout in keeping with its generally accepted value [148] with a higher value 

implying that a higher false positive rate is acceptable. Choice of α is dependent on the overall aim 

of the experiment being conducted and the associated practical tolerance thresholds for hypothesis 

errors. 

3.2.4   ANOVA assumptions, effect size and statistical power 

Hypothesis testing using methods like ANOVA is useful in commenting on the likelihood 

of the observed results given certain assumptions such as independence of observations, normality 

of experimental errors (or residuals) and equality of variances of data sets being compared [148]. 

Before further discussion, it is essential to establish that the above assumptions hold true for the 

data sets used in this work. The independence of observations is perhaps the easiest to establish 

given that each data point in each data set is obtained from an individually printed polymer channel 

with no dependencies on other channels. The Shapiro-Wilk test [156] is generally the test used for 

confirming normality of errors (or residuals). This test is similar to an ANOVA test where the null 

hypothesis H0 is that the errors (or residuals) are distributed normally with an associated 

significance level similar to that described for ANOVA. The normality assumption can also be 

assessed graphically using normal quantile-quantile (Q-Q) plots of the observations which can be 

fitted to straight lines when plotted against the corresponding quantiles from a standard normal 

distribution if the assumption is true. A quick method of establishing normality of data sets is to 

compare the standard error for skewness and kurtosis with their respective estimates (~√6 n⁄  for 

skewness and ~√24 n⁄  for kurtosis where n is the sample size) and rejecting the normality 

hypothesis if either or both are greater than twice those estimates. Homoscedasticity or equality of 

variances of the data sets used is most commonly evaluated using Levene’s test [157] which is 

another test that is similar to ANOVA where the null hypothesis H0 is that the variances are equal 

and this too has an associated significance level similar to ANOVA.  

It is important to remember that these assumptions may not always hold perfectly true 

given the existence of outlier data points owing to uncontrollable intrinsic effects which may 
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introduce skewness in the sampling data distribution. The ANOVA methodology is quite robust 

against some deviations from the normality and homoscedasticity, especially when the sampling 

data sets are of equal size. In this work, two levels of statistical analyses are performed: (i) equal 

sample size and (ii) marginally unequal sample size for different factor level data sets where 

outliers are not included in level (ii). Criteria for exclusion of outliers is subjective but also 

stringent and are laid out explicitly for the different case studies covered in the next chapter. Also 

noteworthy is the fact that there are some deviations from the normality and homoscedasticity 

assumption in certain data sets and are accounted for by appropriate selection of post-hoc tests as 

discussed in the next section. 

While hypothesis tests do provide valuable information regarding the statistical 

significance of experimental observations, they cannot comment on the effect size if the null 

hypothesis H0 is rejected. This essentially means that the results of an experiment could be 

significant but the effect itself might be inconsequentially small. Therefore, the conclusions drawn 

from hypothesis testing remain incomplete unless supplemented by the evaluation of effect sizes 

[158]. In this work, partial eta squared (η
partial
2 ) is the metric used to measure the effect size of the 

factor variables in ANOVA models and is defined as the ratio between the quantities SSFactor Levels 

and (SSFactor Levels + SSError) as illustrated in (3.11). 

                                                    η
partial
2 =

SSFactor Levels

SSFactor Levels+SSError
.                            (3.12) 

Despite hypothesis testing primarily concerning itself with significance levels or Type 1 error 

probabilities (α), the Type 2 error probability (β) also needs to be accounted for [159]. The quantity 

β is defined as the probability of failing to reject the null hypothesis when it is actually false or 

simply put, a “false negative”. Statistical power is quantified as (1 − 𝛽) and represents the 

probability that the test correctly rejects the null hypothesis H0 when it is false. This quantity thus 

becomes important when the ANOVA rejects the null hypothesis and is related to the effect size 

and the variation within data sets, whereby changing one of these quantities results in a change in 

the statistical power of an experiment.  

Fig. 3.2 illustrates this graphically for two processes corresponding to a control process 

data set (blue) and a test process data set (red). It becomes intuitively apparent that greater overlap 

between the sampling data distributions due to either the proximity of means (small effect size) or 
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greater scatter within data sets (large variance) result in loss of statistical power or the ability to 

distinguish between the effect of the two processes under investigation. This can generally be 

remedied by taking larger sample sizes based on power calculations performed on initial data sets 

using software (like IBM SPSS Statistics®). However, it is also important to remember that in 

order to detect extremely small effects in an experimental paradigm where inherent sample-to-

sample variability is high, sometimes a prohibitively large number of samples may be required 

based on the estimates provided by power analyses. Hence, it is at these junctures that practicality 

of such an endeavor needs to be examined from a cost-benefit perspective. With this consideration 

in mind, the next subsection discusses post-hoc tests for evaluating key contributors to statistically 

significant ANOVA results where the concept of statistical power is touched upon again. 

 

Fig. 3.2: Sampling data distribution of two processes (“control” process shown in blue and “test” process 

shown in red) illustrating large (a) and small (b) effect sizes at identical distribution variance or small (c) 

and large (d) variance within individual data sets at identical effect sizes respectively. 

3.2.5   ANOVA post-hoc validation 

In general, ANOVA F-tests are used to search for significant differences within means of 

a group of data sets. Such tests provide overall results for the data sets being analyzed as a 

collective based on the F-value and corresponding p-value of the test in comparison to the chosen 

Type 1 error probability or the α value. As described earlier, a p-value less than the α-value implies 

that at least one (if not more) of the mean values being compared in the ANOVA F-test are 
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different from the others and therefore, the null hypothesis H0 can be rejected. However, the 

ANOVA F-test does not provide any explicit information regarding which data sets are 

significantly different from the others and often, this information is critical for drawing any 

conclusive inference. This is where the utility of post-hoc validation becomes apparent in the 

context of evaluating pairs of data sets through multiple comparisons. 

For example, analyzing a group of 3 data sets will imply 3 post-hoc pairwise comparisons 

to be made while a group of 4 data sets will require 6 post-hoc pairwise comparisons and so on. 

Typically, for an ANOVA F-test, post-hoc validation is required only when H0 is rejected and not 

otherwise as in that case, the F-test sufficiently establishes the lack of any statistically significant 

overall differences among the group of data sets being analyzed. Post-hoc tests need to control the 

overall Type 1 error probability or the α-value as with increasing number of pairwise comparisons 

beyond 2 data sets, the overall α value increases drastically and can result in doubtful inferencing. 

This control is usually achieved by specifying the overall α-value and adjusting the significance 

level of the pairwise comparisons to ultimately match the specified α value. These procedures are 

trivially managed by the statistical software being used (IBM SPSS Statistics®) and the results are 

presented using either the adjusted p-value method or the simultaneous confidence interval 

method. 

There are multiple different post-hoc validation methods available with each method 

having its own advantages and trade-offs. One of the major trade-offs involves choosing a post-

hoc test which is conservative in its significance level estimates versus one which is not. This, in 

turn, affects statistical power which decreases as the number of pairwise comparisons increases. 

To compare the effect of control of the significance level on conclusions from pairwise 

comparisons, the post-hoc validation methods chosen for this work are (i) the Tukey-Kramer test 

[160] and (ii) the Games-Howell test [161]. Both are conservative in the preservation of Type 1 

error rates with the Games-Howell test being preferred over the Tukey-Kramer test for 

heteroscedastic data sets (unequal variances). In the experiments conducted in this work, the 

occurrence of Type 1 errors (rejection of the H0 when it is true) needs greater control compared to 

Type 2 errors (failure to reject H0 when it is false) due to variability issues as will be illustrated in 

the following chapter. However, Type 2 errors are not completely inconsequential as they have a 

direct effect on statistical power. Statistical software can be used for power analysis of 
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experimental data sets which can also be used as a tool to estimate the sample size required to 

detect an effect through an experiment and can provide validation for chosen sample sizes. 

3.3 Materials and methods 

3.3.1  Library types: Thin films and printable inks 

Pristine and blended ICPs are the key materials used for testing different hypotheses 

regarding platform performance as well as material behavior. These include both a commercial-

grade and a laboratory grade ICP. PEDOT:PSS (commercial-grade) and PSEDOT (laboratory-

grade) are the two ICPs, distilled water is used as the primary ICP dispersing and diluting solvent 

while DMSO is used as an additive. The ICPs are discussed in further detail in Chapter 4 along 

with the roles played by the solvent and the additive. 

Hypothesis testing based on the methods outlined in previous sections are carried out on 

CPH-processed thin film libraries of polymer/additive and polymer/polymer blends of the metallic 

ICPs using different characterization methods. Based on the characterization method used, 

different combinatorial library types are prepared using the platform. These are generally in the 

form of replicated arrays with only the geometric nature of the array element varying. Fluid mixing 

was demonstrated using imaging tests to compare diffusive and advective . Other characterization 

methods such as electrical probing and contact profiling require the printed thin film channel arrays 

to have  a more definite geometric shape to assist with post-measurement calculations. In such 

cases, it is a necessity to have printed features of specific dimensions on a substrate of choice. 

Printable inks comprise another class of libraries that are used only in a few cases in this work. 

For such libraries, CPH processing is bypassed as the output volume and volume flow rate 

requirements are much larger than that of printed thin films. Proportioning using syringe pump as 

well as manual syringe extraction is used for the pristine ink precursors which are then mixed using 

magnetic stirring as well as in an ultrasonic bath respectively for homogenization. 

3.3.2 Characterization methods 

Multiple testing methods are employed to characterize the ICP dispersions in liquid ink 

phase and as thin solid films. Analysis of the response variables electrical conductivity and 

temperature coefficient of resistance is carried out as a function of the factor variable blend 

composition. In addition, the electrical conductivity of the printed channels is also analyzed as a 
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function of temperature for different blend compositions to determine temperature sensitivity and 

stability. Quantitative and qualitative characterization methods used and the corresponding 

information generated by them to provide the framework for drawing inferences about the 

combinatorially formulated ICP blends are discussed below. 

 

Fig. 3.3: Sample probing (a) for printed channel resistance measurement with Keithley 2410 unit (b) 

followed by stylus-based cross-sectional profile measurement using Bruker Dektak XT (c) for evaluating 

electrical conductivity. 

 

Fig. 3.4: (a) Bruker Dimension Icon atomic force microscope and its key components and (b) tapping mode 

measurement schematic methodology for topography and phase imaging [158]. 

(a) Electrical characterization: This was the primary mode of testing employed given that the 

materials of interest are conductive polymers. The combinatorial thin film libraries were subjected 

(a) (b) 
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to resistance measurements by probing the individual library components and measuring the cross-

sectional profile to obtain the conductivity. Resistance measurements were also performed across 

a range of temperatures relevant for wearable sensors, point-of-care diagnostics etc. within the IoT 

framework. Temperature dependence of conductivity of the printed thin films (channels) as a 

function of ink composition is a key requirement for conductive polymers to be useful in such 

applications. Resistance measurements were done using a Keithley 2410 source-measurement unit 

and printed thin film channel cross-sectional profiles [162] were measured using a Bruker Dektak 

XT stylus profilometer in order to evaluate the electrical conductivity (= lchannel RAchannel⁄ ) of the 

printed channels where R is the measured resistance,  lchannel is the length of the printed channel 

and Achannel is the cross-sectional area of the channel averaged over three sections as shown in 

Chapter 4. Temperature variation was achieved using a hot plate (Fisher Scientific Isotemp) whose 

surface temperature was calibrated using a k-type kapton-encapsulated thermocouple wire probe 

(Extech Instruments). Fig. 3.3 shows the characterization equipment discussed here. 

 

Fig. 3.5: (from left to right) Malvern Zetasizer Nano ZS for dynamic light scattering measurements, Bruker 

D8 Advance x-ray diffractometer, Anton-Paar Physica MCR 301 rheometer and Biolin Scientific Attension 

Theta tensiometer. 

(b) Morphological characterization: It is well established that charge transport properties of 

inherently disordered systems such as conductive polymer thin films are strongly dependent on 

film morphology [163]. Enhanced connectivity between conductive domains within polymer thin 

films and improved alignment of these regions can lead to the formation of a larger conducting 

network through which charge transport is maximized. Atomic force microscopy (AFM) is an 

extensively used tool for imaging thin films for correlation of morphological observations with 

other characterization results. Over time, many advancements have been made to the basic AFM 
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platform to add specialized functionalities targeted towards specific sample types in what is known 

today as the field of scanning probe microscopy (SPM). Printed thin film surface imaging has been 

primarily conducted using the AFM in different tapping mode variations. Bruker Dimension Icon 

has been the used for the AFM imaging of the printed thin film libraries. The morphology and 

phase imaging have been done using the standard tapping mode with aluminum (Al)-coated silicon 

(Si) probes with non-conductive tips. The force constant and resonance frequency of the probes 

are ~40 N/m (20 N/m to 75 N/m typical range) and ~300 kHz (200 kHz to 400 kHz typical range) 

respectively with a tip radius ~10 nm. Tunneling current imaging has been done using the peak 

force tapping mode with platinum (Pt)/iridium (Ir)-coated silicon nitride (SixNy) probes with 

conductive tips. The force constant and resonance frequency of the probes are ~0.4 N/m (0.2 N/m 

to 0.8 N/m typical range) and ~70 kHz (45 kHz to 95 kHz typical range) respectively with a tip 

radius ~25 nm. For both the imaging modes, a 1 µm × 1 µm surface area of the sample has been 

chosen to maintain consistency of features across images. Fig. 3.4 shows the characterization 

equipment discussed here. 

(c) Miscellaneous characterization: Apart from electrical and morphological characterization 

of printed thin films, other modes of evaluation used range from optical microscopy of printed 

features to highly sensitive spectroscopic methods that were used to understand the molecular 

structure of these polymers. Multiple techniques have been used to study the ICPs in their liquid 

(printable inks) and solid (thin films) states. Dynamic light scattering (DLS) [164] is a liquid phase 

technique and is useful for determining particle size distribution in suspensions and dispersions. 

DLS measurements have been conducted using a Malvern Zetasizer Nano to obtain aggregate size 

estimates in the ICP dispersions used as inks for the printing. This also enables the approximation 

of their corresponding diffusion coefficients which play an important role during the process of 

mixing the precursors for homogenization of the fluid blends. 

Conjugated polymers are generally disordered by nature although there are various 

methods to improve ordering and connectivity which also results in conductivity enhancement. 

Studies on the effect of additives and blending on thin film crystallinity are conducted with x-ray 

diffraction (XRD) [165] of printed thin films using a Bruker D8-Advance x-ray diffractometer. 

These studies are meant to provide qualitative insights into the material itself rather than CPH 

processing. In addition, viscosity [166] and surface tension measurements [167] were performed 

on the ICP dispersions using an Anton-Paar Physica MCR 301 rheometer and a Biolin Scientific 
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Attension Theta tensiometer respectively. The above is a general overview of the typical methods 

used to study ICP dispersions and printed thin films based on the approach adopted and outlined 

throughout this chapter. Fig. 3.5 shows the characterization equipment discussed here. In addition, 

optical microscopy of the CPH mixing channel is performed using a Nikon Eclipse Ti-2 inverted 

microscope with high-speed flow imaging carried out using a Phantom Ametek VEO-E 310L 

camera. Case-specific details of the experimental processes including sample fabrication will be 

discussed in the following chapter. 

Summary 

Besides introducing the different factor variables and the response variable of interest in 

this work, this chapter provides the framework for the statistical analyses conducted on the data 

sets from the case studies in the following chapter. Specifically, the pros and cons of summary 

statistics and their usage in graphical plotting is briefly discussed which leads to the need for using 

inferential statistical methods of analysis. The workings of the ANOVA method are presented in 

detail to justify its usage in the case studies conducted in Chapter 4. In addition, the fallacies of 

using the method by itself are considered and subsequent analyses methods suitable for completion 

of the inferencing process are explored. These primary and secondary analyses on the case studies’ 

data sets are defined for different scenarios to enable accurate inferencing from measurement data. 

Finally, a brief overview of the sample library characterization methods is provided. 

 

  



 

65 

 

Chapter 4: Investigating Conductive Polymer Blends 

Chapter overview 

This chapter discusses the combinatorial printing experiments conducted using the printing and 

characterization methods described in Chapter 2 and summarizes the statistical analyses done on 

those data sets based on the protocols described in Chapter 3. A commercial-grade and a laboratory 

research-grade intrinsically conductive polymers of similar chemical type are used to perform 

these experiments. The generally established electrical conductivity behavior of the commercial-

grade polymer when treated with a certain additive over a certain composition range is used to 

assess the performance of the combinatorial printing platform against two reference methods. 

Subsequently, the platform is used to assess the electrical conductivity behavior of the commercial-

grade polymer-additive blends over different composition ranges. Lastly, blends of the laboratory-

grade polymer and the commercial-grade polymer are explored under different paradigms to assess 

the viability of their usage as components in temperature sensing applications.  

4.1 Intrinsically conductive polymers 

4.1.1 Emergence of PEDOT:PSS 

 Polymerized 3,4-ethylenedioxythiophene (EDOT), abbreviated as PEDOT, has been the 

subject of extensive research ever since it was first successfully synthesized [116] at Bayer AG’s 

Central Research Department in the late 1980s. After nearly a decade of experimenting with 

different monomeric thiophene structures which resulted in quite a few promising but mostly 

unsuccessful trial runs, the breakthrough came by transforming the fundamental thiophene 

structure into a bi-cyclic system through ring closure of its alkoxy substituents. A few patents and 

collaborations later, the application of PEDOT as an antistatic agent on photographic films was 

being investigated by Agfa-Gevaert AG which was also a Bayer subsidiary at the time. The need 

for a new antistatic agent stemmed from the deficiencies of the existing antistatic agents as 

vanadium pentoxide (V2O5, used by Kodak) suffered from toxicological hazards and associated 

environmental issues while the conductivity of sodium poly(styrenesulfonate) (PSS-Na, used by 

Agfa) was heavily influenced by humidity. In the quest to formulate a humidity-independent 

environmentally friendly antistatic agent, it was found that the ionic forms of PEDOT and PSS 

could combine non-stoichiometrically into a stable aqueous polyelectrolyte complex (PEC) 



 

66 

 

PEDOT:PSS, where the PSS polyanion serves as the counterion for the doped PEDOT polycation. 

However, PSS is not an oxidizing agent to PEDOT but is simply used as a counterion and a 

solubility enhancing agent while the oxidation is carried out in the presence of metallic persulfates. 

Owing to the non-stoichiometric excess PSS in aqueous PEDOT dispersions, the resulting PEC is 

distributed as gel particles [116] with the PSS acting as the host polyelectrolyte (HPE) and PEDOT 

as the guest polyelectrolyte (GPE). These gel particles vary in hydrophobicity across their volume 

with the interior regions being more hydrophobic due to more HPE-GPE charge neutralization in 

comparison to the exterior regions which have a higher proportion of the HPE forming a charged 

shell-like structure which becomes the bounding surface of the gel particles. The existence of 

excess HPE (PSS) thus enables the electrostatic stabilization of the dispersion. But while PSS 

improves the aqueous dispersion stability of the PEC (PEDOT:PSS), it does so at the expense of 

its electrical conductivity by forming the cross-linked solvent-rich gel network with and around 

the insoluble but conductive PEDOT as described above. This leads to greater spatial and energetic 

separation of conductive PEDOT-rich domains in the gel particles when thin films are formed from 

such dispersions due to the lowering of charge carrier hopping probability which is the primary 

charge transport mechanism in disordered systems like polymers. Fig. 4.1 illustrates the chemical 

structure of PEDOT:PSS and its morphology in dilute dispersions and thin films. 

 

Fig. 4.1: (left) Structural formula of individual 3,4-ethylenedioxythiophene (EDOT) and styrenesulfonate 

(SS) monomers which form the PEDOT:PSS polyelectrolyte complex, (middle) schematic representation 

of a PEDOT:PSS gel particle in dilute aqueous dispersions where the inner PEDOT-rich polycationic core 

(orange) is countered by the PSS polyanions (green) with the non-stoichiometric excess forming a highly 

solvated shell with water molecules (blue) distributed both within and around it, and (right) schematic 

morphological representation of dried PEDOT:PSS thin films deposited using solution processing methods 

and showing how the PEDOT-rich domains (orange) are shrouded by the excess PSS (green) which reduces 

the electrical conductivity of the film. 
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Since its emergence as a material of commercial value, poly(3,4-ethylenedioxythiophene) 

polystyrene sulfonate, commonly known as PEDOT:PSS, has been the intrinsically conductive 

polymer of choice for solution processable applications in multiple domains of thin film research. 

It has seen extensive usage in different forms of processing such as aqueous dispersions for 

spin/slot-die/dip coating and droplet-based dispensing/printing (thinner sub-micrometer layers), 

paste-like viscous compositions for doctor blading and screen/3D printability (thicker sub-

millimeter layers) as well as in the form of hydrogels and free-standing films. 

4.1.2 Drawbacks and the need for novel ICPs 

While PEDOT:PSS has enjoyed commercial success over the past decades as the ICP of 

choice for a wide array of applications ranging from self-healing electrode layers in solid 

electrolytic capacitors to hole-injection layers in organic light emitting devices (OLEDs) to printed 

“smart” electronics, there are a few drawbacks associated with the material with its patterned 

deposition as well as its stoichiometric composition. Patterned additive deposition methods 

typically rely on droplet dispensing techniques such as inkjet and aerosol jet printing among others 

which requires the dispensing orifices to remain consistently unobstructed throughout the 

deposition process which often includes time gaps where the dispersion remains idle at the orifice 

without droplet jetting such as during substrate positioning or in between consecutive printing 

runs. One of the primary difficulties associated with printing PEDOT:PSS dispersions is its 

tendency to form agglomerates within the dispensers and solute deposits at dispenser orifices, 

progressively choking it off until fully clogged. While the use of filtering, dilution and surfactants 

can alleviate this to a certain degree, it is never completely resolved. In addition, the process of 

filtering or dilution reduces the solute fraction in the dispersion significantly, leading to the 

requirement of greater dispersion quantity to achieve the same electrical conductivity response as 

that of unfiltered or undiluted dispersions. The use of surfactant additives does ensure lower levels 

of agglomeration within the dispersion inside the dispenser but it does not do much to prevent the 

growth of solute deposits at the dispenser orifice. Clogging is driven by solvent evaporation at the 

meniscus but is particularly problematic for PEDOT:PSS due to the inherent aqueous insolubility 

of PEDOT. The addition of PSS to the dispersion counters this to a certain degree but at the 

dispenser orifice, the tendency to form agglomerates is greater due to volume confinement which 

leads to increased interaction of PEDOT:PSS gel particles shown in Fig. 4.1 and is worsened by 

solvent evaporation. The other key deficiency of PEDOT:PSS is the presence of the solubility 
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enhancer but electrical insulator PSS which drastically reduces the electrical conductivity of the 

deposited feature when used in its pristine form. Certain additives help to overcome this but at the 

cost of compromising on some other performance metric as will be seen later in this chapter. 

The above issues have led to research on novel ICPs which do not require solubility 

enhancement components like PSS which also suppresses the electrical conductivity of ICPs like 

PEDOT. Functionalizing polymers with branched and unbranched side chains are known to 

increase their water solubility. Indeed, this solubility enhancement extends not only to water but 

also other polar solvents and solvent blends such as poly(ethylene glycol), dimethyl sulfoxide and 

water-alcohol mixtures. As a result, increased processability using environmentally friendly and 

relatively low toxicity solvents is possible. This principle gave rise to the idea that it may also be 

possible to create highly processable aqueous dispersions of ICPs with branched side chains 

without the need for additives. The answer to the problem of charge balance, as in the case of 

positive PEDOT being balanced using negative PSS as the counterion, was found by a process 

called “self-doping” where branched side chains were terminated using sulfonic acid (‒SO3H) such 

that the counterions were provided within the ICP molecule. The key structural difference between 

a polyelectrolyte complex (PEC) like PEDOT:PSS and a self-doped version of PEDOT is seen in 

Fig. 4.2. It is important to remember that the concept of “self-doping” using sulfonic acid-

terminated branched side chains is concerned more with charge stabilization rather that doping in 

the true chemical or electrochemical sense. True or primary doping is brought about by the 

processes of oxidation or reduction depending upon the macromolecule in question and is 

governed by the synthesis process which determines its HOMO-LUMO levels. Having a HOMO 

value higher than a threshold value causes the self-doped ICP to have a partially oxidized state 

even in its pristine form due to spontaneous reaction with atmospheric oxygen. 

 

Fig. 4.2: Structural formula of the regiorandom alkoxy sulfonic acid side chain-doped monomer unit of the 

PSEDOT macromolecule. 
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The self-doped regiorandom poly(3,4-alkylenedioxythiophene) (PSEDOT) variant evaluated in 

this chapter was synthesized by the Leclerc group [168] who are our research collaborators at the 

Université Laval. For the ease of nomenclature correlation with the literature reported from the 

Leclerc group, the PSEDOT variant will be called P2 while PEDOT:PSS is referred to as P1 in all 

text, figures and tables henceforth. The chemical structure of the P2 monomer unit is illustrated in 

Fig. 4.3 with ball-and-stick representation relaxed using the DFT-based molecular structure 

visualization software CrystalMaker 10.6. The difference with P1 is shown through the solid blue 

line as P1 contains the polymer PSS as its counterion rather than the sulfonic acid-terminated 

alkoxy side chain while the remaining planar thiophene structure is identical for both ICPs. 

 

Fig. 4.3: Ball-and-stick representation of the P2 monomer structure with the part on the left of the solid 

blue line representing the P1 (conductive component) monomer. 

4.2 Material characterization 

4.2.1 Aggregate sizing in ICP dispersions 

ICP nanoparticles (or any other nanoparticles for that matter) are rarely unaggregated when 

dispersed in a suitable solvent due to their high surface energy resulting from high surface area to 

volume ratios. A certain degree of agglomeration occurs in pristine dispersions to reduce this high 

surface energy through physical adhesion of multiple nanoparticles by weak forces like van der 

Waals and hydrogen bonding which results in the reduction of the surface area to volume ratio of 

the aggregate. It is these aggregates and not the individual nanoparticles themselves that diffuse 

over reduced length scales after being subjected to vibratory actuation within the mixing channel 
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of the CPH. Dynamic light scattering (DLS) measurements of the aqueous P1 and P2 dispersions 

at 0.65 wt.% yield the aggregate sizes (diameters) and under the spherical aggregate 

approximation, the Stokes-Einstein relation can be used to estimate the diffusion constant in each 

case. Fig. 4.4 illustrates the aggregate size distribution in P1 and P2 dispersions which also reveals 

a tendency of these dispersions to form progressively larger aggregates with time. The time gap t 

= 120 s is chosen in accordance with the approximate time required for a fluid element to move 

from the entrance of the mixing channel to the inkjet dispenser orifice as mentioned in Chapter 2. 

P1 shows a bimodal aggregate size distribution even at the initial measurement which conforms 

with its observed tendency to form aggregates. The coincidence of the aggregate size peaks (~1.2 

µm and ~5.6 µm) is definitely interesting and may be due to the identical polythiophene backbone 

and solubility enhancing sulfonic acid group (on the polystyrene matrix in P1 and on the alkoxy 

side chains in P2) which can lead to similar polymer chain coiling effects in their respective 

dispersions. These aggregate size estimates are on the higher side of those reported in literature 

[163] and reflect the characteristics of the as-received dispersion. Unfiltered dispersions are known 

to have larger aggregates that are unsuitable for consistent inkjet dispensing due to nozzle clogging 

issues. Individual aggregates are much smaller as evidenced later in morphological studies of thin 

films printed using filtered ink (0.45 µm syringe filter) which correlate well with the lower end of 

those reported in literature.  From the above estimates, the diffusion coefficients for either 

aggregate size in either case can be approximated to be around ~10-12 to ~10-14 m2/s respectively. 

This further corroborates the assertion made in Chapter 2 about the purely diffusive mixing time 

and the consequent mixing channel length being greater in comparison to the vibration-assisted 

diffusive mixing time which reduces the effective mixing channel length due to chaotic advection. 

4.2.2 Viscosity and surface tension of ICP dispersions 

The inkjet dispenser used in this work is capable of printing fluids of viscosities ranging 

from that of water (η = ~0.89 mPa.s at 25oC) up to a specified upper limit of ~20 mPa.s. For surface 

tension, the upper limit of the dispenser is quite similar to that of water (γ = ~72 mN/m at 25oC) 

with a specified value of ~70 mN/m. The measured dynamic viscosity (ηP1 = ~ 5 mPa.s and ηP2 = 

~ 2 mPa.s) and surface tension (γP1 = ~68 mN/m and γP2 = ~59 mN/m at 25oC) for P1 and P2 are 

well within the specified range of jettability as also evidenced by their printability. The shear stress 

and dynamic viscosity behavior of P1 and P2 is shown in Fig. 4.5 as a function if shear strain rates 

whose nature has led to the assumption of approximately Newtonian behavior in this work. 
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4.2.3 Crystallinity  

X-ray diffraction analysis of printed films of both P1 and P2 were conducted to evaluate 

structural crystallinity in printed thin films. Both appear to have very similar structures as seen in 

Fig. 4.6. The broad peak centered around ~25o is representative of the π-π stacking of the thiophene 

rings with the broadening attributable to the lack of long-range π-stacking (~3.4 Å for P1 and ~3.6 

Å for P2) order due to the random coiling of either polymer.  

 

Fig. 4.4: Aggregate sizing of (left) P1 and (right) P2 0.65 wt.% aqueous dispersions showing a primary 

peak (t = 0 s) at ~1.2 µm and a secondary peak (t = 120 s) at ~5.6 µm for both ICPs using dynamic light 

scattering (DLS) measurements. 

 

Fig. 4.5: Shear stress (left) and dynamic viscosity (right) of P1 and P2 measured as a function of the shear 

strain rate. 

 

Fig. 4.6: Measured x-ray diffraction intensities of P1 (blue) and P2 (red) illustrating limited crystallinity. 
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This corresponds to the (020) plane of the orthorhombic unit cell. While P2 exhibits a peak at ~10o 

corresponding to a plane separation of ~9 Å, it is absent in P1 and is likely due to suppression from 

PSS. This corresponds to the (200) plane of the orthorhombic unit cell. The peak at ~5o similarly 

corresponds to the (100) plane of the orthorhombic unit cell with a plane separation of ~17 Å. 

While these observations agree with reported literature [169], no significant degree of long range 

crystallinity has been found in either pristine or secondary doped PEDOT:PSS (P1) or self-doped 

PEDOT (P2) macromolecules thus far. However, there is formation of typically orthorhombic 

crystallites with crystal planes corresponding directly to the intensity peaks seen in both polymers. 

4.3 Case studies 

4.3.1 Case 1: Electrical conductivity dependence on printed layer count 

Pristine PEDOT:PSS (Sigma-Aldrich, #483095, 1.3 wt.% dispersion in H2O) (P1) and 

PSEDOT (Université Laval, 0.65 wt.% dispersion in H2O) (P2) were used as the test materials and 

the purpose was to investigate the existence of any electrical conductivity dependence on the 

printed material quantity. Subsequent printing runs are to be conducted based on the conclusions 

from this case study. Clean 2" × 3" glass slides (Ted Pella Inc., #26005) with screen printed silver 

(Ag) electrodes were used as substrates for this and all other case studies. In this and all other case 

studies, a 1:1 aqueous (distilled water) dilution of P1 was used as the pristine reference (0.65 wt.% 

dispersion) to reduce the probability of P1 clog formation at the dispenser orifice and an identical 

concentration of P2 was used for comparison equivalence. Parameters governing material 

printability are its dynamic viscosity (η) and surface tension (γ). Pristine dispersions were used in 

both cases to print channels with layer count varying from 5 layers to 20 layers of ~70 to ~80 µm 

diameter droplets in steps of 5 layers at 250 Hz ejection frequency and 20 mm/s substrate stage 

speed resulting in ~40 µm droplet spacing (center-to-center). Each layer count comprises 15 

replicates to ensure the sufficiency in the capture of any statistically significant effects.  

 

Fig. 4.7: Examples of printed thin film features comprising 20 layers showing the cross-sectional profile 

measurements (along the dashed yellow lines) leading to feature approximation (by dotted red lines). 
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All layers were printed at the same time to reduce the probability of dispenser orifice 

clogging, resulting in bulging instabilities in the printed lines as shown in Fig. 4.7 which were 

accounted for geometrically prior to calculating the electrical conductivity. This was done by 

taking stylus-based cross-sectional profile measurements along the sections denoted by the dashed 

yellow lines, making linearized approximations of the feature boundaries as denoted by the dotted 

red lines and using these measurements to approximate the cross-sectional area for electrical 

conductivity calculations. The separation between the probing Ag electrodes is ~1 mm with an 

error of ±0.1 mm. 

 

Fig. 4.8: Electrical conductivity variation of printed channels with printed layer count for (left) P1 and 

(right) P2 while accounting for the effect of outliers. 

Fig. 4.8 shows the variation of electrical conductivities of P1 and P2 as a function of layer count 

for cases including (w/) and excluding (w/o) extreme outliers. A data point is considered to be an 

extreme outlier when the measured resistance indicates poor or no connection with the electrodes 

and are referenced against measurements on electrode pairs with no printed channel between them. 

Such data points are designated as outliers because they do not contribute meaningfully to the 

actual effect of layer count variability but rather, are artifacts originating from the interaction of 

the printed material with the substrate and the electrode. 

There is a visible dependence of layer count on the electrical conductivity of P1 but there 

also seems to be significant measurement scatter around the plotted mean values. In contrast, the 

electrical conductivity of P2 does not appear to vary too much with layer count and has lower 

measurement scatter as well, in comparison to P1. One-way ANOVA was performed for both P1 

and P2 data sets (tables in Appendix A) to see if the graphical observations were at all significant. 

F0@α values of 2.849@0.046 (w/ outliers) and 1.943@0.137 (w/o outliers) are calculated for a 

Type 1 error probability of 5% (α = 0.05). Interestingly, significant evidence against the null 

hypothesis for P1 is observed only when outliers are included while no such significance is seen 
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when outliers are excluded. Tukey-Kramer analysis on the P1 data set with outliers suggests 

significant difference in electrical conductivity between 5 layers and 20 layers which indicates that 

the extreme outliers for 5 layers can inflate the electrical conductivity difference. The effect size 

of the different layer counts as estimated by the η2
partial is ~0.132 (w/ outliers) and ~0.122 (w/o 

outliers) which are relatively small, thereby requiring a much larger sample size to eliminate the 

effect of outliers. However, prudence must be exercised given that 6 of the 15 replicates for the 5-

layer printing run in comparison to 2 of the 15 replicates for the 20-layer printing run are 

electrically disconnected. For the 5-layer printing run to achieve the same probability of electrical 

disconnection as the 20-layer printing run, 45 samples must be printed based on what has been 

observed. While this may improve the statistical power which is relatively low at 65% (w/ outliers) 

and 47% (w/o outliers), the ANOVA w/ outliers indicates that the differences observed are only 

between the 5-layer and the 20-layer printing runs. Thus, trying to isolate such a tiny effect size 

may not be a worthwhile cost-benefit decision and instead, the conventional wisdom of using 

higher layer counts to reduce electrical disconnection events for P1 may suffice. 

From the shape of the printed channels shown in Fig. 4.7, it may be postulated  that any 

differences in solvent evaporation rates between droplets at glass-electrode junctions and droplets 

on glass and electrode surfaces affect the profile of the dry channel. Channel thicknesses are seen 

to increase with increasing layer count which reduces the pinch-off effect happening at the glass-

electrode junction, thereby ensuring better physical connectivity. Increasing channel thickness due 

to increasing layer counts is not reflected similarly for P1 and P2 electrical conductivities, as seen 

in Fig. 4.8. Analyzing such effects is therefore critical to establish the veracity of the observations. 

Coupled with the effects of disparity in electrode and printed layer thicknesses, surface energy 

transition at glass-electrode junctions can sometimes also lead to imperfect (minimal or non-

existent) physical contact between the printed channels and electrodes as illustrated schematically 

in Fig. 4.9. Droplet sparsity at lower layer counts and high surface tension of P1 is the primary 

driving cause behind the printed channel-electrode connectivity problems through the multiple 

mechanisms described above, each playing a role in the overall effect. The typical order of 

magnitude (~1010 Ω) of open-circuit resistance between the pairs of silver electrodes were 

measured and used as a threshold value for inclusion in the statistical analyses above. Besides the 

physical connectivity effect on measured channel resistance, P1 also has an insulating component 

(PSS) in stoichiometric excess which may reduce electrical contact at lower layer counts. 
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Fig. 4.9: (a) Schematic representation of contact angle differences on silver and glass surfaces along with 

the problem areas highlighted (red dashed boxes). (b) Comparative thickness mapping of electrodes and 

printed channels showing the large height change at the glass-electrode junction. (c) Variation of printed 

channel thicknesses of P1 and P2 as a function of layer count. 

 

Fig. 4.10: AFM tapping mode phase imaging of (a, b, c, d)pristine  P1 at 5, 10, 15 and 20 layers and (e, f, 

g, h) pristine P2 at 5, 10, 15 and 20 layers showing differences in polymer grain sizes, homogeneity of 

distribution and aggregate formation tendencies. 

For the P2 case, the ANOVA conclusions are comparatively straightforward. For both w/ 

and w/o outliers, there is no statistically significant difference between electrical conductivities at 

any of the different layer counts. The low power of 19% (w/ outliers) and 16% (w/o outliers) here 

merely indicates that the effect size is so small (as seen by the η2
partial values of 0.04 and 0.03 for 

w/ and w/o outliers respectively) that to discern between different layer counts, an unnecessarily 

large number of replicates would be required with any observed difference likely being random 

rather than systematic. This too can be explained physically by the fact that P2 does not have any 

insulating component unlike P1 and any outliers are solely due to local energetic effects of the 

substrate interacting with the P2 dispersion, resulting in bad electrical contact with the electrodes. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(a) 

(b) (c) 
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Overall, it is to be expected that once the percolation threshold has been crossed for printed 

channels of a heterogeneous (P1) or homogeneous material (P2) in its pristine form, the electrical 

conductivity will saturate quite rapidly unless impeded by artifacts such as the aforementioned 

droplet-substrate interactions and poor contacts with probing electrodes. 

AFM phase imaging of pristine P1 and P2 sheds some light on these observations by 

looking at the morphology of the printed films in Fig. 4.10. It is evident that P1 has larger particle 

sizes (~35 nm) in comparison to P2 (~15 nm) but in either case, the film morphology does not 

change much as layer count increases although P1 seems to tend to form lumpier films as opposed 

to the much flatter P2 films. Given that electrical conductivity in amorphous films like ICPs 

depends greatly on film morphology, it is expected that they will exhibit similar electrical 

conductivities if the print has sufficiently connected particles. Here, even 5 layers seems to be 

populated enough for both P1 and P2 at the solute fractions used but as a precaution, 20 layers has 

been used for subsequent case studies to ensure better connectivity with probing electrodes. 

 

Fig. 4.11: Printed thin film sample library comprising multiple blend compositions (rows) with multiple 

replicates (columns) for each. Magnified view of set of 3 replicates shown enclosed by the red dashed box. 

4.3.2 Case 2: Electrical conductivity dependence on cosolvent additive 

Blending experiments are the cornerstone of CPH processing and this case study is critical 

in terms of its two-fold ramifications: (i) validating the functionality of the CPH and (ii) 

determining optima in blended material properties. Once again, a 1:1 aqueous dilution of 

PEDOT:PSS (Sigma-Aldrich, #483095, 1.3 wt.% dispersion in H2O) was used as the primary ink 

component (P1) while dimethyl sulfoxide (Sigma-Aldrich, #472301, ~99%) was chosen to be the 
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secondary ink component (D) due to its known conductivity enhancing effect on PEDOT:PSS 

[170]. Thus, P1-D blends were chosen for this printing run to evaluate the electrical conductivity 

behavior of P1 as a function of P1-D blend composition, validating CPH operation in the process. 

The blend composition on the CPH is denoted as x/y (x + y = 100) where x and y are the 

percentage volume fractions of the ink components P1 and D for a certain composition. As an 

example of this notation, a blend composition comprising 60% pristine (0.65 wt.%) P1 dispersion 

and 40% pristine (99%) D is denoted as 60/40 while another blend composition comprising 80% 

pristine (0.65 wt.%) P1 dispersion and 20% pristine (99%) D is denoted as 80/20. These tests were 

performed iteratively to demonstrate the multi-resolution ink formulation capability of the CPH 

using binary mixtures for combinatorial evaluation of printed multi-material thin films. In the first 

broader iteration, x decreased from 100% (pristine PEDOT:PSS) to 50% (y was increased from 

0% to 50%) in steps of 10% and while in the second narrower iteration, x decreased from 100% 

(pristine PEDOT:PSS) to 90% (y was increased from 0% to 10%) in steps of 2%. The range was 

chosen up to the point where P1 was equal in proportion to the cosolvent D thereby ensuring that 

P1 was the primary conductive component as is the case with any functional binary blends. The 

blends were fed to the inkjet dispenser module of the CPH as described in Chapter 2. The 

programmed print sequence was then activated and multiple thin film channels with identical 

composition were patterned for 20 layers. The printed channels were then dried in an oven at 60oC 

for 5 min and then cooled to room temperature (~25oC) before being individually characterized. 

This protocol was used to print 15 replicate channels for each of the 5 and 4 compositions tested 

for each binary mixture to account for statistical variation, which gave us 75 and 60 printed 

channels for each iteration respectively. An example of the printed libraries is shown in Fig. 4.11 

with distinct compositions and replicates along individual rows and columns. 

For referencing, identical arrays of premixed (components proportioned manually and 

mixed in an ultrasonic bath for 10 min) and unmixed (components proportioned on the CPH but 

the mixer module is not activated) P1 and D are printed. Here, PM denotes premixed, UM denotes 

unmixed and OM denotes on-chip mixed. Iteration 1 of the blending experiments was performed 

to observe broad trends in the electrical conductivity response of the printed P1-D channels while 

iteration 2 was conducted to further evaluate regions of interest. It is to be noted that the UM 

process is not strictly “unmixed” as it includes any homogenization that occurs at the nozzle orifice 

during droplet generation as well as the delay between printing the channels and drying them. 
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Fig. 4.12: Electrical resistance heat maps of resistive thin film channels printed using P1-D binary blends 

in (a, c, e) iteration 1 (10 vol.% resolution) and (b, d, f) iteration 2 (2 vol.% resolution) respectively. Scale 

bar in Ω. 

Literature suggests a manifold increase in the electrical conductivity of P1-D blends when 

secondary doped with high boiling point cosolvents such as D. While there is no specific volume 

fraction of D which seems to be a clear optimum, it can be established from density considerations 

of the dispersions and additives that the increase occurs within 0% to 10% volume fraction of the 

cosolvents [171]. Thus, the region of interest studied in iteration 2 is between 0% and 10% of the 

cosolvent volume fraction. Measured electrical resistances of the printed channels for PM, UM 

and OM processing are shown as heat maps at both broad (iteration 1) and magnified (iteration 2) 

resolutions in Fig 4.12. Heat maps of the respective cross-sectional areas of the printed channels 

and the calculated electrical conductivity for all three processing methods are also shown in Fig. 

4.13 and 4.14 for completeness. The color tone of the heat maps has been chosen such that the 

lightest (iteration 1) and darkest (iteration 2) array elements correspond to the extreme outliers and 

are readily captured visually. 

(a) 

(c) 

(e) 

(b) 

(d) 

(f) 
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Fig. 4.13: Cross-sectional area heat maps of resistive thin film channels printed using P1-D binary blends 

in (a, c, e) iteration 1 (10 vol.% resolution) and (b, d, f) iteration 2 (2 vol.% resolution) respectively. Scale 

bar in m2. 

An immediate observation that can be made from Fig. 4.12 and 4.14 is that there are outliers 

here too which show up as lighter shades in a darker field (electrical resistance) and darker shades 

in a lighter field (electrical conductivity) respectively and these will be addressed later during 

statistical analyses. Comparing these two heat maps for any particular processing type, it is noted 

that the brighter areas in Fig. 4.12 directly correspond to the darker areas in Fig. 4.14, thus 

demonstrating the minimal effect any geometric variations in cross-sectional area has on electrical 

conductivity variations. This is further corroborated by Fig. 4.12 where the cross-sectional area 

typically falls within the range ~10-11 m2 to ~10-10 m2, indicating relatively consistent material 

quantity in each printed channel in the library. Fig. 4.15 shows the variation in electrical 

conductivity across PM, UM and OM processing as a function of blend composition with a 1σ 

scatter plotted about each composition. In addition, the CV values are plotted below the electrical 

conductivity characteristics to indicate the relative differences among the three methods. 

(a) 

(c) 

(e) 

(b) 

(d) 

(f) 
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Fig. 4.14: Electrical conductivity heat maps of resistive thin film channels printed using P1-D binary blends 

in (a, c, e) iteration 1 (10 vol.% resolution) and (b, d, f) iteration 2 (2 vol.% resolution) respectively. Scale 

bar in S/cm. 

The CV estimates suggest that OM processing results in marginally lower scatter compared 

to both PM and UM processing except for the 70/30 composition in iteration 1 and the 98/02 

composition in iteration 2. Due to the large data scatter, it is difficult to conclusively comment on 

the differences and/or similarities among (i) different processing types and (ii) different 

compositions. Therefore, the ANOVA method is invoked once again to provide a degree of 

concreteness to these observations. The first part of this case study compares PM, UM and OM 

processing for each composition in iterations 1 and 2 in order to shed more light on the similarities 

and differences among these methods. PM processing is taken to be the reference against which 

OM and UM processing are evaluated. However, as seen in the prior subsection, extreme outliers 

often tend to artificially inflate or suppress any differences or similarities and therefore, ANOVA 

is performed for both with (w/) and without (w/o) extreme outliers for fairness of comparison to 

eliminate non-existent spurious effects. As before, data points designated as extreme outliers had 

(a) 

(c) 

(e) 

(b) 

(d) 

(f) 
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a measured resistance value equivalent to an open circuit condition and there were none in 

compositions 60/40 and 50/50.Table 4.1 and 4.2 lists the F0 statistic and the p-value calculated 

using the ANOVA method for iterations 1 and 2 respectively. To determine which processing type 

was significantly different for each composition, the Tukey-Kramer (for homoscedastic data sets) 

and the Games-Howell (for heteroscedastic data sets) tests were conducted, and the results are 

shown in color-coded matrix form in Fig. 4.16 and 4.17. Since the matrices are symmetric, the 

upper halves have been removed to reduce redundancy with green indicating “not significantly 

different” and red indicating “significantly different”. To quantify the differences between pairs 

of PM, UM and OM, values of ΔGlass [172] have been used as entries in the matrix in units of σ. 

For UM-PM and OM-PM pairs, the σ for the corresponding PM data set has been used and for the 

UM-OM pairs, the σ for the corresponding OM data set has been used and the change in formula 

has been denoted by underlining. This is done to conform with the assumption that PM is the 

reference (theoretically best mixing) for UM-PM and OM-PM pairs while OM is the reference 

(theoretically better mixing) for the UM-OM pair. However, the error due to manual proportioning 

in PM has not been considered and may be a contributing factor to the variations between PM and 

OM as well as between PM and UM respectively. 

Based on the trends in differences in pairwise observations made in iteration 1 irrespective 

of extreme outliers being included or excluded as in Fig. 4.16, it appears that UM and OM 

processing are somewhat similar when compared against PM processing. However, it is also seen 

that OM processing is consistently better than UM processing except for the 60/40 and 50/50 

compositions where the difference with PM processing reverses. This is likely to be more due to 

chance rather than anything systemic given that the volume fraction of D approaching that of P1 

results in an inherently greater probability of the D component to synergistically affect the P1 

component. More importantly, OM processing seems to be able to capture the region of interest 

(peak conductivity at the 90/10 composition) better than UM processing, especially since the 

region of interest seems to have an offset of ~20 vol.% fraction (peak conductivity at the 70/30 

composition). In case of iteration 2, no significant differences are observed among UM, OM and 

PM processing but here too, OM processing appears to be better than UM processing irrespective 

of whether extreme outliers are included or excluded as seen in Fig. 4.16. This region is of interest 

as the P1 transitions from a poor conductor in its pristine form to a good conductor in its doped 

form which is captured later using AFM imaging. 
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Fig. 4.15: Electrical conductivity and its coefficient of variation with blend composition for (a, c) iteration 

1 and (b, d) iteration 2 for PM, UM and OM processing types. 

Table 4.1: ANOVA evaluation of the different processing types using the different compositions in iteration 

1 considering (w/ OL) and excluding (w/o OL) extreme outliers at α = 0.05. 

Composition F0 (w/ OL) p-value (w/ OL) F0 (w/o OL) p-value (w/o OL) 

90/10 6.104 0.005 5.528 0.008 

80/20 4.502 0.017 6.806 0.003 

70/30 11.074 < 0.001 14.658 < 0.001 

60/40 10.182 < 0.001 10.182 < 0.001 

50/50 4.118 0.023 4.118 0.023 

Table 4.2: ANOVA evaluation of the different processing types using the different compositions in iteration 

2 considering (w/ OL) and excluding (w/o OL) extreme outliers at α = 0.05. 

Composition F0 (w/ OL) p-value (w/ OL) F0 (w/o OL) p-value (w/o OL) 

98/02 1.172 0.320 1.657 0.208 

96/04 0.272 0.763 0.579 0.566 

94/06 0.143 0.867 0.579 0.566 

92/08 1.024 0.368 0.847 0.438 

Meanwhile, the lack of any significant distinction among the three processing types seems 

to suggest that they are roughly equivalent in this transition region. However, effect size and 

statistical power must be considered in order for these hypothesis tests to be conclusive. For 

iteration 1, statistical power is always ~0.7 and beyond with appreciable effect sizes stemming 

primarily from UM processing followed by PM processing (also seen from the red values in Fig. 

4.16) which implies that those corresponding inferences are accurate within the available bounds 
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OM 
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of Type 1 and Type 2 error probabilities. Iteration 2 is not as conclusive due to the fact that 

statistical power does not exceed ~0.3 with correspondingly low effect sizes which once again 

implies the need for more samples to negate the effect of large measurement scatter as observed 

in Fig. 4.15. While fabrication of more samples is trivial, manual measurements are the bottleneck 

for efficient combinatorial evaluation as their number gets compounded. 

 

Fig. 4.16: ANOVA post-hoc analyses for iteration 1 processing types (P1 vol.% fraction denoted by the 

first cell in each matrix) with the upper row denoting comparisons including extreme outliers and the lower 

row denoting comparisons excluding extreme outliers. First row and column entries (except the first cell 

entry) indicate processing types. 

The issue is that the sample size requirements are prohibitively large (41, 926, 927 and 66 

samples for 98/02, 96/04, 94/06 and 92/08 compositions respectively, as generated by an ad hoc 

power analysis comparing iteration 2 OM and PM processing in each case) for conducting manual 

measurements to obtain adequate statistical power assumed to be ~0.7 (or 70%) with the same 5% 

significance level used for all ANOVA tests in this chapter. The limitation faced here can result in 

the defeat of the original goal of speeding up the evaluation process using combinatorial methods 

while simultaneously minimizing material consumption. Small effect sizes and large variations in 

the data sets being compared highlight the need for greater number of samples as described above. 

This inevitably points to the requirement of measurement automation for very large sample sizes, 

which is beyond the scope of the current work. Nevertheless, in this first part of the case study, it 

can be readily demonstrated that OM is likely to capture the conductivity peak estimated by PM. 

In addition, the data generated from the combinatorially printed sample libraries are helpful for 

understanding the type of future challenges that may be encountered and their resolution. 
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Fig. 4.17: ANOVA post-hoc analyses for iteration 2 processing types (P1 vol.% fraction denoted by the 

first cell in each matrix) with the upper row denoting comparisons including extreme outliers and the lower 

row denoting comparisons excluding extreme outliers. First row and column entries (except the first cell 

entry) indicate processing types. 

Table 4.3: ANOVA evaluation of the different compositions for iteration 1 using the different processing 

types considering (w/ OL) and excluding (w/o OL) extreme outliers. 

Processing type F0 (w/ OL) p-value (w/ OL) F0 (w/o OL) p-value (w/o OL) 

PM 6.269 < 0.001 6.269 < 0.001 

UM 5.641 < 0.001 6.675 < 0.001 

OM 0.506 0.732 1.105 0.361 

Table 4.4: ANOVA evaluation of the different compositions for iteration 2 using the different processing 

types considering (w/ OL) and excluding (w/o) extreme outliers. 

Processing type F0 (w/ OL) p-value (w/ OL) F0 (w/o OL) p-value (w/o OL) 

PM 5.312 0.003 5.730 0.002 

UM 0.049 0.985 0.056 0.982 

OM 0.962 0.417 1.209 0.317 

The second part of this case study compares the different compositions for each of the 

processing types PM, UM and OM for both iterations 1 and 2 to assess the behavior of P1 when 

doped with different volume fractions of D. Once again, the behavior of PM processed P1-D 

blends are assumed to be the reference against which the behavior of UM and OM processed P1-

D blends are evaluated. Here too, trends across compositions for particular processing types 

suggested by Fig. 4.15 remain inconclusive owing to the large measurement scatter which requires 

further resolution. ANOVA evaluation results are shown in Tables 4.3 and 4.4 for iterations 1 and 

2 respectively.  
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Fig. 4.18: ANOVA post-hoc analyses for iteration 1 compositions (processing type denoted by the first 

entry in each matrix) with the upper row denoting comparisons including extreme outliers and the lower 

row denoting comparisons excluding extreme outliers. First row and column entries (except the first cell 

entry) indicate P1 vol.% fraction in blend. 

While literature suggests that the electrical conductivity saturates and decreases beyond a 

certain weight fraction of D [171], not much work has been done to explore the effect of a range 

of low to high fractions of D on P1 and the conclusions on peak electrical conductivity location 

are not defined in absolute terms. Thus, the peak position for PM processing is used as reference 

here. Fig. 4.15 suggests coincidence of peaks for PM and OM processing at the 90/10 composition 

while UM processing yields a peak which is offset to the 70/30 composition for iteration 1. This 

may be an indicator of lower levels of homogenization in UM processed prints leading to a 

requirement for a larger fraction of D to fully penetrate the P1 network. From the Tukey-Kramer 

(for homoscedastic data sets) and the Games-Howell (for heteroscedastic data sets) analyses shown 

schematically in Fig. 4.18 and 4.19, it is clear that PM processing results in significant differences 

between the 90/10 and the 70/30, 60, 40 and 50/50 compositions while UM processing yields 

significant differences between the 90/10 and the 80/20, 70/30 as well as between the 70/30 and 

the 50/50 compositions 
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Fig. 4.19: ANOVA post-hoc analyses for iteration 2 compositions (processing type denoted by the first 

entry in each matrix) with the upper row denoting comparisons including extreme outliers and the lower 

row denoting comparisons excluding extreme outliers. First row and column entries (except the first cell 

entry) indicate P1 vol.% fraction in blend. 

In contrast, OM processed P1-D blends, while showing a decreasing trend in Fig. 4.15 

similar to PM processing, do not show any significant differences in Fig. 4.19. Removing extreme 

outliers leads to a change in only the UM processed compositions where the significant difference 

between 90/10 and 80/20 compositions disappears, indicating significant differences only between 

the peak and the extremes of the blend composition. Similarly, for iteration 2, PM processing 

registers a significant difference between the extremes of the blend composition 98/02 and 92/08 

with the removal of extreme outliers resulting in the inclusion of 96/04 as also being different from 

92/08. Neither UM nor OM processing exhibits any significant difference between the extremes 

of the blend composition. Once again, low values of power and effect size indicates that the 

differences for OM and UM processing are too small to be captured which implies a relative 

superiority of PM processing at finer resolutions of blend composition. Considering the evidence 

from literature as well as from AFM phase imaging conducted for this work, it can be stated with 

confidence that the enhancement in electrical conductivity is due to morphological rearrangement 

of the P1 components where the high polarity and high boiling point character of D keeps it in the 
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drying film longer and enables the reordering of the polycationic (PEDOT) and polyanionic (PSS) 

species via a plasticizing effect in order to drastically improve the electrical connectivity among 

the PEDOT domains. Figs. 4.20, 4.21 and 4.22 show the AFM phase images of PM, UM and OM 

processed P1-D blends at 90/10; 70/30; 50/50 and 98/02; 92/08 compositions for iterations 1 and 

2 respectively.  

 

Fig. 4.20: AFM tapping mode phase imaging of PM processed P1-D at (a) 90/10, (b) 70/30 and (c) 50/50 

compositions and at (d) 98/02 and (e) 92/08 compositions showing the morphological evolution of the 

printed channels with varying volume fraction of D. 

Transition from a discrete particle-like structure to a connected chain-like structure is 

immediately apparent when comparing the pristine P1 (100/0 composition) in Fig. 4.10 and the 

90/10 composition, starting from the 98/02 composition. This is suggestive of the drastic effect on 

P1 morphology that D has, even in the smallest of volume fractions within the P1-D blend. The 

difference in the phase range between Fig. 4.10 and Figs. 4.20, 4.21 and 4.22 is another indicator 

of phase rearrangement with the brighter regions denoting the harder PEDOT phase and the darker 

regions the softer and more hygroscopic PSS phase [173].  The electrical conductivity behavior in 

iteration 2 tends to follow the morphological character of the printed channels from 98/02 to 92/08 

with increasing chain-like PEDOT:PEDOT connectivity being reflected in the generally upward 

trend in Fig. 4.15. However, the 1σ scatter is much larger in this iteration resulting in low power, 

making differences harder to detect in a manner similar to the first part of this case study. While 

the morphological evolution of the printed channels is quite evident irrespective of processing 

type, not much difference is observable between the 90/10 and 50/50 compositions in iteration 1.  

(a) (b) (c) 

(d) (e) 
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Fig. 4.21: AFM tapping mode phase imaging of UM processed P1-D (a) 90/10, (b) 70/30 and (c) 50/50 

compositions and at (d) 98/02 and (e) 92/08 compositions showing the morphological evolution of the 

printed channels with varying volume fraction of D. 

However, there is a decrease in the solute fraction of P1 which should ideally lead to a 

reduction in the electrical conductivity owing to the hopping sites being progressively spaced out. 

Thus, a downward trend in electrical conductivity is justifiably observed between 90/10 and 50/50 

compositions but according to the extended ANOVA analyses, the 1σ scatter overpowers this trend 

for OM processing as also indicated by the low power. The fact that UM processing shows a 

difference is primarily because the mean electrical conductivity at 90/10 starts off even lower than 

that at 50/50 which automatically positions the extremes of the blend composition to be different 

from the peak (70/30 in this case). PM processing does show significant differences in electrical 

conductivities between 90/10 and the latter half of the compositions 70/30, 60/40 and 50/50, 

thereby suggesting a greater effect of electrical conductivity reduction compared to the scatter. 

However, given the linearity in the PEDOT fraction reduction, the sudden drop at 80/20 followed 

by a much flatter trend from 70/30 to 50/50 most likely indicates a chance effect. The variability 

of using PM processing must be considered as the introduction of D into the pristine dispersion 

causes unraveling of P1 particles which comprise PEDOT cores surrounded by PSS shells. The 

longer residence time of D in the reservoir leads to larger aggregate formation due to the 

networking of PEDOT domains which may cause variability in connectivity. 

The comparatively low conductivity of pristine P1 films is typically attributed to the lack 

of connectivity of the conductive PEDOT domains in these disordered films. While the particles 

(a) (b) (c) 
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may be physically connected to each other, the connections are primarily between PSS-PSS and 

PEDOT-PSS which are simply insulator-insulator and conductor-insulator contacts. Electrical 

conductivity in disordered systems such as polymers is known to follow some approximation of 

variable range hopping (VRH) [174] where the range parameter is a linear combination of spatial 

and energetic separation of adjacent sites. In such systems, charge carriers move under the 

influence of an electric field based on the probability P ~ exp[-2φS-W/kT] of a charge carrier 

hopping from one state to another with transition to a higher energy state being the rate limiting 

process and the contact types described above result in an increase in both spatial and energetic 

separation S and W respectively. Here, φ-1 is the attenuation length for hydrogen-like localized 

wavefunctions, k is the Boltzmann constant and T is the temperature. 

 

Fig. 4.22: AFM tapping mode phase imaging of OM processed P1-D at (a) 90/10, (b) 70/30 and (c) 50/50 

compositions and at (d) 98/02 and (e) 92/08 compositions showing the morphological evolution of the 

printed channels with varying volume fraction of D. 

While excess PSS enhances the solubility of the PEDOT by forming a polyelectrolyte 

complex PEDOT:PSS (P1), it also results in the domination of the imaged film surface as seen in 

the low phase range of Fig. 4.10. The RMS roughness of the pristine film is of the order of ~1.7 

nm and is generally known to depend on the ratio of PEDOT:PSS in the dispersion. The pristine 

dispersion of PEDOT:PSS has a PEDOT to PSS ratio of about 1:1.6 and the observed roughness 

is well within expectation. The addition of the high boiling point (~189oC) polar cosolvent D 

(DMSO) for secondary doping induces morphological changes in the printed film as P1 undergoes 

structural reorganization as mentioned previously. This enables the PEDOT domains to form a 
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highly connected chain-like network while the excess PSS domains are redistributed into 

insulating lamellae within the spanning PEDOT network and is attributed to the change of state of 

PEDOT from coiled, flexible to planar, rigid [175]. The film roughness increases to ~3.5 nm due 

to the more rigid networked structure of the conjugated PEDOT domains without the smoothing 

effect of the soft PSS shells which become localized after cosolvent treatment. This results in the 

enhancement of electrical conductivity in an interesting manner that can be explained using the 

hopping probability expression introduced previously. Secondary doping leads to the 

rearrangement of the excess PSS covering the PEDOT domains which results in a reduction in W. 

As W decreases, viable hopping states hitherto buried under a large energy barrier begin to emerge 

which also results in a significant reduction in S due to the increased connectivity of PEDOT 

domains. Tunneling current imaging of OM processed channels printed using 100/0 and 90/10 P1-

D blends shown in Fig. 4.23 demonstrates this quite decisively by probing the printed channel 

surface for the distribution of conducing states. Such an increase in the density of conducting states 

is not limited only to the surface but throughout the printed structure given that secondary doping 

is effectively a volume phenomenon. Another aspect of secondary doping will emerge in the 

following subsections which deals with the effect of temperature on the electrical conductivity of 

P1 and P2 and their blends and is expected to have interesting ramifications for sensor applications. 

 

Fig. 4.23: Tunneling current imaging of channels printed using (left) pristine P1 and (right) the 90/10 

composition of the P1-D blend showing decrease in the spatial separation S between conductive states on 

the probed channel surface. 

For completeness, blending of P2 and D was also tested but D was not found to have any 

noticeable effect on the electrical conductivity of printed P2 channels. This is due to the nature of 

P2 which is a self-doped polythiophene with no significantly ionic character as opposed to P1 

which is a polyelectrolyte complex. Consequently, D does not have the usual charge screening 

effect on P2 unlike P1 where its high polarity and high boiling point character keeps it in the drying 

film longer and enables the reordering of the polycationic (PEDOT) and polyanionic (PSS) species 
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by acting as a plasticizer in order to dramatically improve the electrical connectivity among the 

PEDOT domains, thereby enhancing electrical conductivity. Thus, P2 blends with D have 

qualitatively identical morphological and electrical response respectively, to pristine P2 after the 

drying of solvents. Before concluding this case study, it must be mentioned that while PM 

processing is considered to be the benchmark against which UM and OM processing are compared 

in the hypothesis tests, it also needs to be acknowledged that the sample libraries printed using PM 

processing may not be perfect owing to the nature of P1 itself. The reasons for such scenarios to 

occur are: (i) local aberrations in print drying leading to electrical contact issues (PSS dominates 

electrode contact instead of PEDOT) between the channel and the probing electrodes and (ii) 

inhomogeneities in solute fraction within printing fluids leading to inconsistent solute distribution 

(chain lengths of PEDOT much smaller than PSS) from print to print. These occurrences are not 

only valid for PM processing but for both UM and OM processing too. Therefore, non-idealities 

in the substrate and printing fluids can be difficult to decouple from the actual effects due to the 

parametric being investigated. This aspect has been discussed in greater detail in Case 1 where the 

effect of outliers confounded the effect of layer count, resulting in conflicting inferences. 

 

Fig. 4.24: Temperature dependence of electrical conductivity in pristine P1 and P2 over the range of 20oC 

to 60oC. 

Table 4.5: ANOVA evaluation of pristine P1 and P2 electrical conductivity response as a function of 

temperature including (w/) and excluding (w/o) extreme outliers. 

ICP type F0 (w/ OL) p-value (w/ OL) F0 (w/o OL) p-value (w/o OL) 

P1 0.075 0.990 0.088 0.986 

P2 7.301 < 0.001 7.302 < 0.001 

4.3.3 Case 3: Electrical conductivity dependence on temperature 

For deployment in wearable temperature sensor applications, temperature-dependent drift 

of the electrical conductivity in ICPs (due to temperature sensitivity) needs to be extremely low 

when used as an interconnect element while significant dependence on temperature is required 
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when used as temperature sensing elements. In this brief case study, the temperature behavior of 

pristine P1 and P2 are explored with the intent of identifying the best options for the different 

modes of deployment discussed above. Fig. 4.24 shows the temperature dependence of the 

electrical conductivities of P1 and P2. Two observations become immediately apparent: (i) pristine 

P2 is a better conductor than pristine P1 and (ii) measurement scatter is noticeably less for P2 

which corroborates the issue of poor electrical contact of the printed channel with the probing 

electrodes in P1. The electrical conductivities of both ICPs seem to increase with temperature. To 

evaluate if the upward trend is significant, ANOVA is performed with Table 4.5 summarizing its 

outcomes. TCR or temperature coefficients of resistance of individual printed replicates of pristine 

P1 and P2, averaged over the temperature range 20oC to 60oC, are illustrated in Appendix B.  

 

Fig. 4.25: ANOVA post-hoc analyses of the pristine ICPs (ICP type denoted by the first entry in each 

matrix) with (upper row) and without (lower row) extreme outliers. First row and column entries (except 

the first cell entry) indicate temperature in oC. 

Tukey-Kramer post-hoc tests for locating the significant differences are conducted and 

compiled in Fig. 4.25. As expected from a non-significant ANOVA, there are no observable 

differences (all cells green) for the electrical conductivity of P1 which also results in an extremely 

low power since the effect size is extremely small. This suggests that P1 in its pristine form is 
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unsuitable for use as temperature sensing elements as the temperature sensitivity is likely to be 

overpowered by thermal noise but its secondary doped form as a P1-D blend may be a more 

suitable fit. P2 on the other hand shows significant differences in electrical conductivity when 

measured between 20oC and 40oC, 20oC and 50oC and 20oC and 60oC as illustrated by the cells in 

red. A large effect size is therefore corroborated by the high power of this test. Consequently, P2 

is a better candidate for use in sensing elements within the evaluated temperature range. However, 

significant differences were not observed between adjacent temperatures but only between 

temperatures further apart. This indicates a vulnerability to thermal noise although not as much as 

for P1. Hence, it may be beneficial to investigate ways in which the thermal noise performance of 

P2 may be improved. 

4.3.4 Case 4: Electrical conductivity dependence on cosolvent additive and temperature 

Based on the conclusions from the above, it can be deduced that P2 is a better candidate 

for use as a temperature sensing element compared to P1 due to the greater temperature sensitivity 

of its electrical conductivity. As conjectured in the previous subsection, P1 (in its secondary doped 

state) may be a good candidate for use in sensing elements given its favorable response to treatment 

with the cosolvent D as seen from the case study on the enhancement of electrical conductivity. 

Thus, it is of relevance to evaluate the temperature dependence of electrical conductivity of films 

printed using P1-D blends to evaluate their temperature dependence when used in all-polymer 

sensor applications. Blend compositions from iteration 1 in Case 2 have been used for this study 

using all three types of processing (PM, UM and OM) as the goal is to look for temperature 

dependence at the highest electrical conductivity levels of secondary doped P1. Fig. 4.26 depicts 

the electrical conductivity behavior of the channels printed using the aforementioned blend 

compositions as a function of ambient temperature for all processing types. Interestingly, while 

the envelope of the electrical conductivity values follows the trends seen in Fig. 4.15 individually 

across different compositions, the range of temperatures 20oC to 60oC tested seems to have almost 

no effect on the secondary doped P1 prints. ANOVA evaluation of temperature dependence 

remains statistically insignificant as shown in Table 4.6 for all blend compositions irrespective of 

the presence of outliers. These tests also suggest an effect size too small to be practically 

meaningful as is indicated by the low power (< 0.1 for all three processing types). 

To explain this, the hopping probability is referenced once again where the “range” in VRH 

is defined by the argument within the exponential function. This range Ȓ is a sum of terms 
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comprising the spatial term S and the energy term W which can be used to postulate the loss of 

temperature dependence. As shown in Fig. 4.23, secondary doping results in a significant reduction 

in the S term which is due to the drastic increase in the networked PEDOT after the unraveling of 

P1 particles. Enhancement of PEDOT domain connectivity also results in a proportional decrease 

in W and the only way temperature dependence can become vanishingly small is when the W term 

in the range Ȓ approaches zero. This suggests that when Ȓ approaches zero, temperature 

dependence of electrical conductivity also disappears. 

 

Fig. 4.26: Temperature dependence of electrical conductivity in P1-D blends for processing types (a) PM, 

(b) UM and (c) OM. 

While this suggests that P1 is not suitable as a temperature sensing element in any form, 

pristine or secondary doped, it also demonstrates the temperature inertness of its electrical 

conductivity in its secondary doped high conductivity form. This implies that a temperature sensor 

manufactured using P2 as the sensing element and secondary doped P1 as the interconnect element 

will not suffer from drift in electrical conductivity when subjected to variability of ambient 

temperatures. As touched upon previously, another aspect of temperature sensing using ICPs is 

their thermal noise performance which is a quantity that is proportional to temperature. 

Specifically, the mean voltage variance in an electrical element facilitating charge carrier transport 

due to the Johnson-Nyquist (thermal) noise is dependent on the product of its resistance and the 

ambient temperature [176]. Such dependence implies that while the temperature contribution to 

(a) (b) 

(c) 



 

95 

 

sensor noise may be uncontrollable for temperature sensing applications, the contribution due to 

the resistance can be minimized by improving electrical conductivity of the element. From the 

temperature behavior of pristine P2 and P1-D blends, it was hypothesized that blending P2 with 

P1-D may impart an electrical conductivity enhancement effect to the blend while retaining the 

temperature sensitivity. For this test, the PM processed P1-D composition resulting in the highest 

electrical conductivity (90/10) was used as the tuning additive with P2 and the same composition 

range (90/10 to 50/50) was studied where P2 was varied from 90 vol.% to 50 vol.%. For reference, 

blends of pristine P2 and P1 were also studied to see if P1 has any synergistic or antagonistic 

effect on the temperature behavior of P2. TCR of P2-P1 and P2-P1-D blends are shown Appendix 

B for each composition. 

Fig. 4.26 shows the trends observed in the electrical conductivities of the different blend 

compositions across the same temperature range of 20oC to 60oC used previously. There is a stark 

contrast in the characteristics both with respect to blend composition as well as the ambient 

temperature. For pristine P2 and P1 blends, while the temperature sensitivity of their electrical 

conductivity decreases, the dependence of composition appears to pivot towards P1 between 60/40 

and 70/30 and is corroborated by the Games-Howell pairwise tests following a significant 

ANOVA. The electrical conductivity between 60/40 and 50/50 are statistically similar while both 

are significantly different from the remaining blend compositions. This suggests linear interaction 

between the pristine P2 and P1 until the 70/30 composition beyond which, the increasing PSS 

fraction dominates and drag the electrical conductivity towards that of pristine P1. 

 

Fig. 4.27: Electrical conductivity behavior of (left) pristine P2 and P1 blends and (right) pristine P2 and 

secondary doped P1-D (90/10) blends as a function of ambient temperature. 

The reason for this effect of PSS is due to its hygroscopic nature which traps water owing 

to ambient humidity, thereby suppressing the electrical conductivity of P1 under normal laboratory 

conditions as also evidenced in literature [177]. In contrast, when secondary doped P1-D (90/10) 
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is used as the additive instead of P1, the behavior reverses as expected from the hypothesis. 

However, a pivot point can once again be seen around the 70/30 composition beyond which, the 

electrical conductivity shoots up drastically. It is to be noted that the fraction of D in this blend 

varies linearly from 1 vol.%  at 90/10 to 5 vol.% at 50/50 which suggests that beyond 30 vol.% 

P1-D fraction (comprising 90% P1 and 10% D from the definition of P1-D in this case study) in 

the P2-P1-D blend, the P1-D component starts dominating the P2 component. This implies that 

the highly connected network of PEDOT domains in the P1-D additive has started spanning the 

printed channel. This behavior can be observed as morphological changes in the AFM phase 

images of the P2-P1 and P2-P1-D blends once again as illustrated in Fig. 4.28. While particle size 

growth is observed from 90/10 to 50/50 in either case, the P2-P1-D blend shows a clear transition 

from purely particle-like to chain-like connectivity similar to that observed between Fig. 4.10 and 

Fig. 4.22. Based on the correlation between electrical conductivity enhancement and such 

morphological changes in printed channels in the prior case study, the observations made here can 

be similarly explained. However, the temperature dependence of P2 electrical conductivity suffers 

as evidenced by the envelope of the corresponding bars in Fig. 4.27 at a particular composition.  

Table 4.6: ANOVA evaluation of temperature-dependent electrical conductivity behavior P1-D blends for 

PM, UM and OM processing. 

Processing type F0 w/ OL p-value w/ OL F0 w/o OL p-value w/o OL 

PM 0.000 1.000 0.000 1.000 

UM 0.000 1.000 0.000 1.000 

OM 0.000 1.000 0.000 1.000 

More importantly, even a 10 vol.% fraction of P1-D in the blend seems to be sufficient to 

overpower the temperature sensitivity of P2 even when the P1-D fraction has not started affecting 

the electrical conductivity manifold. Assuming linearity of interaction between P2 and P1/P1-D 

by virtue of linear changes in component proportioning, it may be postulated that this effect is due 

to P1-D starting to play a role in the hopping transport. To elaborate, the highly networked PEDOT 

domains are uniformly interspersed among the P2 particles even though it does not span the printed 

channel. This implies that part of the carrier transport is happening due to P2 to P1-D and P1-D to 

P1-D transitions and the fact that P1-D is approximately insensitive to temperature results in the 

lack of temperature dependence. While this may seem like an argument for exploring lower P1-D 

fractions in the blend to minimize the above transitions, it is nullified by the fact that sufficient 

increase in electrical conductivity will not occur at those fractions (< 1 vol.%) of D in the blend. 
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Thus, the fundamental premise of blending the two ICPs (for imparting the enhanced electrical 

conductivity of P1-D to the P2-P1-D blend) in order to reduce the mean Johnson-Nyquist noise 

voltage variance is defeated by lowering the fraction of highly networked PEDOT domains in the 

blend. 

Table 4.7: ANOVA evaluation of composition-dependent and temperature-dependent electrical 

conductivity behavior of P2-P1 and P2-P1-D blends. 

Factor F0 (P2-P1) p-value (P2-P1) F0 (P2-P1-D) p-value (P2-P1-D) 

Composition 231.023 < 0.001 310.539 < 0.001 

Temperature 5.576 < 0.001 0.972 0.982 

Interaction 1.307 0.190 0.069 1.000 

 

Fig. 4.28: AFM tapping mode phase imaging of P2-P1 blends at (a) 90/10 and (b) 50/50 and P2-P1-D 

blends at (c) 90/10 and (d) 50/50. 

Table 4.7 summarizes the conclusions from the two-way ANOVA evaluation of the P2-P1 

and P2-P1-D blending studies. There is definite significance for differences in electrical 

conductivity of both P2-P1 and P2-P1-D as a function of composition but only significance for 

differences as a function of temperature in the former and not for the latter as corroborated above. 

In addition, there is minimal interaction between composition and temperature on the electrical 

conductivity response in P2-P1 and none in P2-P1-D. Fig. 4.29 shows the electrical conductivity 

of both blends as a function of both composition and temperature where the lack of any significant 

interaction effects is manifested through the lack of any significant curvature in the contours. It 

(a) (b) 

(c) (d) 



 

98 

 

needs to be stated here that the temperature studies did not correct for extreme outliers since it was 

shown in Case 2 that these extreme outliers mostly had a minimal effect when comparing among 

different compositions and almost no effect when comparing different temperatures in Case 3. 

 

Fig. 4.29: Interpolated electrical conductivity response of (left) P2-P1 blends and (right) P2-P1-D blends 

across 90/10 to 50/50 compositions and 20oC to 60oC temperatures. Scale bar in S/cm. 

Summary 

Libraries of commercial-grade and laboratory-grade ICP thin film features printed using 

the CPH-based platform are evaluated for their temperature-dependent electrical conductivity 

performance using electrical and morphological characterization methods coupled with statistical 

analyses. It is inferred from these experiments that differences between premixed blends are 

marginally easier to observe in comparison to on-chip mixed blends but the two processes are quite 

similar. Unmixed blends are technically not totally inhomogeneous due to diffusive effects at the 

inkjet orifice which reduces the mixing length through droplet formation. However, this is not 

enough to accurately capture performance extrema and a greater degree of homogenization is 

required than that offered by diffusive mixing in droplets prior to drying. Additionally, negative 

validation through blending tests enables the identification of appropriate functional regimes for 

each of the ICPs for sensor applications. 

 

 

  



 

99 

 

Chapter 5: Conclusions and Future Work 

5.1 Summarized conclusions 

Despite extensive use in chemical and biological engineering for sample preparation and 

testing, microfluidic processing has seen limited use in the field of electronic materials. When 

coupled with an additive feature patterning technique like inkjet printing, it has the potential to 

transform multi-material testing as well as the sensor manufacturing and optimization process. 

This becomes increasingly relevant with the advent of the IoT paradigm discussed previously as it 

is estimated that the number of devices connected to the IoT framework will more than double to 

~29 billion from its current levels at ~13 billion. Such increased levels of device connectivity will 

logically translate into a requirement for the mass production of economically fabricated optimized 

sensors which find ubiquitous usage in almost any device that can be designated as “smart”. The 

examples demonstrated in this dissertation represent a key step in the roadmap towards high 

throughput screening of sensor materials: the combinatorial fabrication of printed thin and/or thick 

film sample libraries. The general concept of a combinatorial print head (CPH) can be quite useful 

for multi-material processing prior to dispensing, thereby enabling the on-CPH integration of 

multiple preprocessing functionalities such as fluid mixing (investigated in this work) for fluid 

mixture homogenization, heating for fluid property modification, chemical reaction between fluids 

to minimize reactivity with the ambient environment etc. In this work, intrinsically conductive 

polymers (ICPs) have been used as test materials to not only validate the performance of a CPH-

based thin film sample manufacturing platform but to also probe the functionality of the ICPs 

themselves. ICPs are an appropriate choice of materials given their solution processability and 

good performance leading to their rapid adoption in the field of sensors and actuators. 

The primary objective of this dissertation is to enable the integration of microfluidic 

preprocessing with inkjet printing for combinatorial sample library preparation and validate such 

an integrated system using solution processable materials. Therefore, the research presented here 

focuses on (i) the development of a CPH which can be used to process multiple fluid inputs at 

multiple resolutions, (ii) characterization of CPH proportioning and mixing capabilities, (iii) 

operational validation of the CPH platform using ICP dispersions and (iv) statistical analyses of 

characterization data. Some bottlenecks to the integration between microfluidic preprocessing and 

inkjet printing have been addressed in this dissertation which include circumventing the general 
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integration incompatibility of microfluidic devices and inkjet dispenser by modular design and 

demonstrating the durability of such modular CPH devices despite significant mechanical forcing. 

Both of these can be attributed to the elastomeric implementation of the CPH base structure which 

not only enables robust friction fitting but also offers structural compliance during handling and 

operation. 

Modular combination of off-the-shelf components has been performed in this work using 

PDMS as the base housing structure for the CPH to illustrate a plug-and-play approach to 

assembling such devices. Such a proof-of-concept CPH device has been central to the fabrication 

of printed sample libraries of different ICPs. With the motivation behind the utility of CPH-based 

platforms firmly established, the platform deployed in this work is developed by assembling linear 

actuators as positioning components, syringe pumps as fluid flow regulators and associated 

electronics (waveform generator, piezoelectric amplifier and a programmable microcontroller 

board) and user-interface to control the operation of the system. One of the key elements of 

combinatorial sample formulation is fluid proportioning which is done using syringe pumps whose 

accuracy needs to at least better than the step sizes used to formulate different sample 

compositions. This was validated using gravimetric testing of the pumps’ outputs when driven at 

specified input flow rates to assess the uncertainty being propagated from the inlets to the outlet 

for dispensing. Once the proportioning error bounds were established to be lower than the step size 

or compositional resolution being targeted, the next parameter that needed to be addressed was the 

mixing or homogenization of the blend components. While low frequency vibrations of extended 

sources like loudspeaker membranes have been shown in literature to be effective in the mixing 

fluids, the focus of this work was to integrate a homogenization or mixing module that was 

compact, modular and did not require multi-step microfabrication processing. This was done to 

keep the CPH fabrication as simple as possible which allowed for more focus to be on the 

functional validation of the system. The encapsulated ERM motor was an attractive choice as a 

vibratory mixing and homogenization component given that it met all three requirements for 

fabrication simplicity along with being extremely economical due to the advent and mass adoption 

of haptic actuators.  

Characterization of the mixing module was performed using flow imaging tests under 

different driving conditions of the motor in order to identify the operational regime offering fastest 

mixing while not subjecting the CPH to overly strong vibrations to cause structural damage to 
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delicate features with time. While the CPH is compliant in general, the structures patterned in it 

are mostly robust with the only highly compliant structure being the elastomeric membrane which 

physically separates the mixing channel and the haptic mixing actuator. To prevent damage such 

as microtears at the membrane edges and motor overheating, the haptic mixing actuator was driven 

much below its maximum rated driving current of ~250 mA. The imaging tests conclusively 

demonstrated the occurrence of chaotic advection in the mixing channel which rapidly decreased 

the mixing lengths of the fluid inputs, allowing diffusive homogenization over highly reduced 

length scales. The effect of homogenization was qualitatively evaluated using a colorimetric test 

as well as high speed imaging of ICP-additive and fluorescent dye flows. Apart from these, 

performance comparisons of printed thin film structures were also done later in the work among 

pre-mixed (PM), unmixed (UM) and on-chip mixed (OM) processes as a quantitative measure of 

differences in outcomes. Printability of the fluids used in this work was established using dynamic 

viscosity and surface tension measurements and it was observed that the inkjet dispenser was 

capable of printing water (highest surface tension of ~72 mN/m) and ethylene glycol (highest 

dynamic viscosity of ~16 mPa.s) under room temperature conditions. Among the ICP-additive 

blends, the dynamic viscosity varied from ~2 mPa.s to ~7 mPa.s at different blend compositions 

while the surface tension varied from ~47 mN/m to ~68 mN/m. Based on the jettability estimates 

using dimensionless numbers as well as the direct observation of the printing process, printability 

of all the fluids, pristine and blended, was confirmed. 

Given the inferential nature of the experiments for validating CPH performance with the 

ICPs used in this work and vice versa, ANOVA was chosen to be the statistical testing framework 

due to its ability to test multiple levels of the factor variables to search for meaningful differences 

among the corresponding response variable outcomes. While other methods such as t-tests and z-

scores have been used in prior literature, ANOVA is superior to these methods which can only 

handle pairwise and not multi-level evaluation without increased susceptibility to inferencing 

errors. With this framework established, case studies involving the pristine and blended ICPs P1 

and P2 were conducted to study the behavior of the processing as well as the material systems. 

These case studies were based on different hypotheses pertaining to both the processing and the 

material systems. Electrical conductivity was used as the response variable while printed layer 

count, blend composition and ambient temperature were used as the factor variables for these 

studies. The tested hypotheses were defined such that the null hypothesis represented no change 
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in response variable outcome due to change in factor variable levels and the alternate hypothesis 

represented any statistically significant deviation from the null hypothesis. For statistically 

significant ANOVA outcomes, follow-up post-hoc tests were done to determine which factor 

levels were the source of the observed differences so that nuanced inferences could be drawn 

regarding the validity of the conclusions considering the limits of manual measurements. 

It was observed that the consistency in the electrical conductivity of pristine P1 was 

affected due to its insulating component (PSS) which is present as a counterion for charge balance 

and also to improve aqueous dispersibility of the conducting component (PEDOT). Artifacts 

attributable to this binary nature of P1 were observed where there seemed to be an increase in 

electrical conductivity with increasing printed layer count but when extreme outliers equivalent to 

disconnected prints were eliminated, the statistically significant differences disappeared within the 

sample-to-sample variations. Apart from interference due to PSS, another confounding factor is 

print connectivity with probing electrodes due to differential wetting of the glass and Ag electrode 

by the droplets. This can cause inconsistency in the level of electrical contact between Ag and P1 

which can manifest as variability in electrical conductivity. Decoupling the effects of PSS and its 

role in inconsistent electrical contact with probing electrodes is difficult based on the range of 

printed layer counts tested given that PSS is always in stoichiometric excess to PEDOT in the 

pristine dispersion of P1. On the other hand, P2 does not show such behavior due to lack of PSS 

but it also has lower surface tension, implying greater wettability than P1 which lends credence to 

the hypothesis of confounding of the two factors. 

To evaluate the CPH performance, blends of P1 with the additive D were formulated at 

coarse and fine proportioning steps using PM, UM and OM processing to test the statistical 

significance of electrical conductivity differences at different blend compositions, if any. It was 

found that OM processing was capable of capturing the general trend in electrical conductivity 

equally well as PM processing but there were some differences observed for the response at lower 

fractions of P1 in the blend which may have been due to differences between manual proportioning 

and longer homogenization times for PM versus automated proportioning and shorter 

homogenization times for OM. At the same time, UM processing was not able to capture the 

established trend in electrical conductivity despite having the advantage of automated 

proportioning, meaning that OM does have a positive impact on blend homogenization which is 

reflected in performance outcomes. It was also observed that the differences between PM and OM 
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appeared in some compositions only for coarser (10 vol.%) changes in blend composition whereas 

in some cases, PM and UM has no differences while OM and UM did. The nature of these 

observations suggests that there may be a randomness to the differences between PM and OM 

rather than anything systematic as none of the processes showed any performance difference for 

finer (2 vol.%) changes in blend composition. As mentioned earlier, this randomness has multiple 

sources like proportioning errors,  incompleteness of homogenization and when considered as a 

whole, PM appears to be marginally better than OM while UM completely misses the overall trend. 

Using the same tests to evaluate P1-D blend behavior, the electrical conductivity peak for 

PM was coincident with that for OM but the former showed differences with the electrical 

conductivity for lower P1 blend fractions while the latter did not. While this appears to indicate 

that PM is better at distinguishing different blend compositions than OM, at least for coarser 

changes, thin film morphology does not show significant differences between PM and OM. Given 

that the electrical conductivity behavior of P1 is completely dependent on morphology, this 

suggests inconclusive inferencing differences between PM and OM processing of P1-D blends. 

However, there is a clear distinction between UM and both PM and OM from the 92/08 to the 

70/30 composition which indicates that UM requires more blend fraction of D to cause similar 

changes to P1 compared to PM and OM. This is also reflected in the stark difference in electrical 

conductivity trends over the coarser variations in blend composition. As before, no significant 

differences were observed for the finer changes in blend composition except between the extremes 

for PM. Based on the observations made, it can be deduced that PM is once again somewhat 

superior to OM while both PM and OM are superior to UM in terms of capturing the behavior of 

P1 when blended with D. 

After establishment of reasonable similarity between the PM and the OM methods, 

temperature testing of the electrical conductivities of P1 and P2 in their pristine as well as blended 

forms was conducted. The goal here was to identify which ICP was better suited as a temperature 

sensing element and if P1-D could be used as the interconnect element. Electrical conductivity of 

pristine P1 was not as highly sensitive to temperature as P2, making the latter a clear choice as the 

sensing element. Interestingly, the electrical conductivity of P1-D blends was found to be almost 

totally independent of temperature which made it the clear choice as an interconnect element in an 

all-polymer sensor due to lack of temperature-dependent drift in electrical conductivity. This also 

led to the hypothesis that blending P2 with minimal quantities of P1-D blends might improve the 
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overall electrical conductivity while still retaining reasonable temperature dependence. This was 

attempted in order to reduce the thermal noise contribution of pristine P2 to the temperature sensor. 

While the overall electrical conductivity did improve, its was also observed that even the slightest 

amounts of D in the blend could cause the temperature independence seen in P1-D blends to 

manifest. As a result, it was concluded that when the morphology of P1 has been modulated to 

some degree by D such that its conductive component is highly networked, that effect dominates 

despite the fact that the blend is a composite of P2 and P1. 

5.2 Scope of future work 

Improved functionality calibration 

The nature of commercial-grade P1 was observed to be responsible for the introduction of 

significant sample-to-sample variation. This is detrimental to the process of evaluating differences 

among response data sets using different factor levels or treatments. Using materials which can 

interact with additives along with having established response thresholds and lower material 

randomness can improve statistical inferencing about the quantitative differences among the 

processing methods. Functionality verification without confounding of the response due to 

material and substrate effects may help with better statistical inferencing of combinatorially 

printed thin film sample libraries. 

Enhanced chemical resistance of the CPH elastomer 

Typical elastomers used in microfluidic applications are capable of absorbing small 

molecules and moisture to a certain degree which may result in concentration variations in handled 

fluids when the device is operated continuously for extended time periods. Apart from this, they 

are also not resistant to a lot of conventional solvents used for solution processed electronics which 

makes for limited processability. This has been one of the reasons that typically non-toxic and 

biocompatible materials such as water and DMSO have been used in this work. Exploring 

alternative elastomers such as fluorinated elastomers used as industrial-grade sealants may result 

in chemical resistance to a wide range of solvents and broaden the scope of material processability. 

Optimization of vibratory actuation module for fluid homogenization 

Reducing the area footprint of the vibratory actuator may enable clustering of multiple 

actuator modules. Such a reduction can be achieved through the use of newer actuator designs that 
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can be fully embedded within the bilayer print head base structure for This can be exploited to 

create a rapid on-the-fly combinatorial printing process where fluid homogenization can happen 

continuously during the printing process. Parallelization will result in a time efficient process and 

enable continuous compositional variation as opposed to the discrete variation demonstrated in the 

current work. Continuous compositional variation is superior to discrete compositional variation 

in situations where the composition(s) for optimal material blend performance is unknown. This 

will facilitate the evaluation of novel material systems which can then be further interrogated using 

the iterative methodology around the neighborhoods of the optima. 

Fully integrated printing system 

The combinatorial printing platform used in this work is the first generation compilation 

of standalone components such as triaxial substrate and print head positioning system, syringe 

pumps (proportioning), mixing actuator module (homogenizing), dispenser module (printing) 

controlled by software. There is much scope for the refinement of the integrated assembly of 

components including updated print head designs for accommodating more fluid inputs, 

optimizing the mixing actuator module as touched upon before, addition of multiple dispenser 

modules for faster sample library preparation. Larger printable substrate area can offer greater 

sample replication leading to better inferencing when investigating smaller effect sizes. Upgrading 

of the control software is essential for completeness of the automated printing process which 

should result in greater time efficiency along with the volume efficiency already established here. 

Range of applicability of the work 

While this work has demonstrated the utility of combinatorial sample preparation by 

integrating microfluidic processing with inkjet printing and used it as a tool to evaluate ICP 

performance, the technology platform can be used for a wide array of other domains. These include 

optimization of material blends for thin and thick films that may find use in device applications 

related to sensors and actuators, energy generation and highly programmable 3D printing among 

others. As an enabling technology platform, there can be applications where integration of more 

functionalities can magnify the impact of the overall system in terms of material volume and time 

efficiency. 
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Appendix A 

ANOVA and associated tables from Case Study 1 

Table A1: Levene’s test for homoscedasticity of P1 layer count data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 1.441 3 56 0.241 

Based on Median 0.959 3 56 0.419 

Table A2: ANOVA test for layer count study of P1 with including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Layers 1.422 3 0.474 2.849 0.046 0.132 0.652 

Error 9.321 56 0.166     

Total 10.743 59      

Table A3: Tukey-Kramer test for layer count study of P1 with including extreme outliers. 

(I) Layers (J) Layers Mean Difference (I‒J) Std. Error p-value 

5 

10 -0.1362 0.148967 0.797 

15 -0.26617 0.148967 0.29 

20 -0.415547 0.148967 0.035 

10 

5 0.1362 0.148967 0.797 

15 -0.12997 0.148967 0.819 

20 -0.279346 0.148967 0.25 

15 

5 0.26617 0.148967 0.29 

10 0.12997 0.148967 0.819 

20 -0.149376 0.148967 0.748 

20 

5 0.415547 0.148967 0.035 

10 0.279346 0.148967 0.25 

15 0.149376 0.148967 0.748 
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Table A4: Levene’s test for homoscedasticity of P1 layer count data excluding extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 1.020 3 42 0.393 

Based on Median 0.637 3 42 0.595 

Table A5: ANOVA test for layer count study of P1 with excluding extreme outliers. 

Sources of 

variation 

Sum of 

squares 

DOF Mean 

squares 

F0 value p-value η2
partial 1 ‒ β 

Layers 0.909 3 0.303 1.943 0.137 0.122 0.466 

Error 6.548 42 0.156     

Total 7.457 45      

Table A6: Tukey-Kramer test for layer count study of P1 with excluding extreme outliers. 

(I) Layers (J) Layers Mean Difference (I‒J) Std. Error p-value 

5 

10 -0.078825 0.174117 0.969 

15 -0.241099 0.174117 0.516 

20 -0.366474 0.1712229 0.157 

10 

5 0.078825 0.174117 0.969 

15 -0.162274 0.161201 0.746 

20 -0.287649 0.1580706 0.279 

15 

5 0.241099 0.174117 0.516 

10 0.162274 0.161201 0.746 

20 -0.125375 0.1580706 0.857 

20 

5 0.366474 0.1712229 0.157 

10 0.287649 0.1580706 0.279 

15 0.125375 0.1580706 0.857 
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Table A7: Levene’s test for homoscedasticity of P2 layer count data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 0.522 3 56 0.669 

Based on Median 0.169 3 56 0.917 

Table A8: ANOVA test for layer count study of P2 with including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Layers 0.019 3 0.006 0.721 0.544 0.037 0.194 

Error 0.49 56 0.009     

Total 0.509 59      

Table A9: Tukey-Kramer test for layer count study of P2 with including extreme outliers. 

(I) Layers (J) Layers Mean Difference (I‒J) Std. Error p-value 

5 

10 -0.044592 0.0341703 0.564 

15 -0.006823 0.0341703 0.997 

20 -0.005098 0.0341703 0.999 

10 

15 0.037769 0.0341703 0.688 

20 0.039495 0.0341703 0.657 

5 0.044592 0.0341703 0.564 

15 

10 -0.037769 0.0341703 0.688 

20 0.001725 0.0341703 1.000 

5 0.006823 0.0341703 0.997 

20 

10 -0.039495 0.0341703 0.657 

15 -0.001725 0.0341703 1.000 

5 0.005098 0.0341703 0.999 
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Table A10: Levene’s test for homoscedasticity of P2 layer count data excluding extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 0.745 3 54 0.530 

Based on Median 0.164 3 54 0.920 

Table A11: ANOVA test for layer count study of P2 with excluding extreme outliers. 

Sources of 

variation 

Sum of 

squares 

DOF Mean 

squares 

F0 value p-value η2
partial 1 ‒ β 

Process 0.014 3 .005 0.560 0.644 0.030 0.158 

Error 0.446 54 .008     

Total 0.460 58      

Table A12: Tukey-Kramer test for layer count study of P2 with excluding extreme outliers. 

(I) Process (J) Process Mean Difference (I‒J) Std. Error p-value 

5 

10 -0.034517 0.0337704 0.737 

15 -0.007242 0.0343477 0.997 

20 0.004978 0.0337704 0.999 

10 

15 0.027275 0.0337704 0.851 

20 0.039495 0.0331831 0.636 

5 0.034517 0.0337704 0.737 

15 

10 -0.027275 0.0337704 0.851 

20 0.012220 0.0337704 0.984 

5 0.007242 0.0343477 0.997 

20 

10 -0.039495 0.0331831 0.636 

15 -0.012220 0.0337704 0.984 

5 -0.004978 0.0337704 0.999 
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ANOVA and associated tables from Case Study 2 

90/10 comparison 

Table A13: Levene’s test for homoscedasticity of PM, UM, OM data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 0.029 2 42 0.972 

Based on Median 0.023 2 42 0.977 

Table A14: ANOVA test for study of PM, UM, OM data including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Process 23429.047 2 11714.524 6.104 0.005 0.225 0.864 

Error 80601.668 42 1919.087     

Total 104030.715 44      

Table A15: Tukey-Kramer test for study of PM, UM, OM data including extreme outliers. 

(I) Process (J) Process Mean Difference (I‒J) Std. Error p-value 

OM 
PM 4.74634051 15.996196745 1.000 

UM 50.60188500 15.996196745 0.009 

PM 
OM -4.74634051 15.996196745 1.000 

UM 45.85554449 15.996196745 0.019 

UM 
OM -50.60188500 15.996196745 0.009 

PM -45.85554449 15.996196745 0.019 
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Table A16: Levene’s test for homoscedasticity of PM, UM, OM data excluding extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 0.436 2 39 0.650 

Based on Median 0.190 2 39 0.828 

Table A17: ANOVA test for study of PM, UM, OM data excluding extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Process 18798.097 2 9399.048 5.528 0.008 0.221 0.824 

Error 66315.542 39 1700.399 
    

Total 85113.638 41      

Table A18: Tukey-Kramer test for study of PM, UM, OM data excluding extreme outliers. 

(I) Process (J) Process Mean Difference (I‒J) Std. Error p-value 

OM 

 

PM 11.5439 15.32374 0.733 

UM 50.5435 15.88260 0.008 

PM 

 

OM -11.5439 15.32374 0.733 

UM 38.9997 15.62561 0.044 

UM 

 

OM -50.5435 15.88260 0.008 

PM -38.9997 15.62561 0.044 
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80/20 comparison 

Table A19: Levene’s test for homoscedasticity of PM, UM, OM data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean .336 2 42 0.717 

Based on Median .361 2 42 0.699 

Table A20: ANOVA test for study of PM, UM, OM data including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Process 20231.407 2 10115.703 4.502 0.017 0.177 0.739 

Error 94363.555 42 2246.751 
    

Total 114594.962 44      

Table A21: Tukey-Kramer test for study of PM, UM, OM data including extreme outliers. 

(I) Process (J) Process Mean Difference (I‒J) Std. Error p-value 

OM 

 

PM 41.96875296 17.307999389 0.051 

UM -5.51295331 17.307999389 0.946 

PM 

 

OM -41.96875296 17.307999389 0.051 

UM -47.48170627 17.307999389 0.024 

UM 

 

OM 5.51295331 17.307999389 0.946 

PM 47.48170627 17.307999389 0.024 
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Table A22: Levene’s test for homoscedasticity of PM, UM, OM data excluding extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 0.601 2 40 .553 

Based on Median 0.680 2 40 .513 

Table A23: ANOVA test for study of PM, UM, OM data excluding extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Process 25942.104 2 12971.052 6.806 0.003 0.254 0.899 

Error 76230.174 40 1905.754 
    

Total 102172.278 42      

Table A24: Tukey-Kramer test for study of PM, UM, OM data excluding extreme outliers. 

(I) Process (J) Process Mean Difference (I‒J) Std. Error p-value 

OM 
PM 48.3398 16.22269 0.013 

UM -5.9065 16.50002 0.932 

PM 
OM -48.3398 16.22269 0.013 

UM -54.2463 16.22269 0.005 

UM 
OM 5.9065 16.50002 0.932 

PM 54.2463 16.22269 0.005 
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70/30 comparison 

Table A25: Levene’s test for homoscedasticity of PM, UM, OM data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 6.617 2 42 0.003 

Based on Median 2.402 2 42 0.103 

Table A26: ANOVA test for study of PM, UM, OM data including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Process 53614.248 2 26807.124 11.074 0.000 0.345 0.987 

Error 101670.503 42 2420.726 
    

Total 155284.751 44      

Table A27: Games-Howell test for study of PM, UM, OM data including extreme outliers. 

(I) Process (J) Process Mean Difference (I‒J) Std. Error p-value 

OM 

 

PM 52.27061493 17.965619959 0.017 

UM -31.41694659 17.965619959 0.263 

PM 

 

OM -52.27061493 17.965619959 0.017 

UM -83.68756152 17.965619959 0.000 

UM 

 

OM 31.41694659 17.965619959 0.263 

PM 83.68756152 17.965619959 0.000 
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Table A28: Levene’s test for homoscedasticity of PM, UM, OM data excluding extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 5.900 2 41 0.006 

Based on Median 2.670 2 41 0.081 

Table A29: ANOVA test for study of PM, UM, OM data excluding extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Process 62042.227 2 31021.113 14.658 0.000 0.417 0.998 

Error 86766.670 41 2116.260 
    

Total 148808.897 43      

Table A30: Games-Howell test for study of PM, UM, OM data excluding extreme outliers. 

(I) Process (J) Process Mean Difference (I‒J) Std. Error p-value 

OM 
PM 52.2706 16.79786 0.009 

UM -39.8414 17.09519 0.063 

PM 
OM -52.2706 16.79786 0.009 

UM -92.1120 17.09519 0.000 

UM 
OM 39.8414 17.09519 0.063 

PM 92.1120 17.09519 0.000 
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60/40 comparison 

Table A31: Levene’s test for homoscedasticity of PM, UM, OM data. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 2.250 2 42 0.118 

Based on Median 2.188 2 42 0.125 

Table A32: ANOVA test for study of PM, UM, OM data. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Process 15704.115 2 7852.058 10.182 0.000 0.327 0.980 

Error 32390.209 42 771.195 
    

Total 48094.324 44      

Table A33: Tukey-Kramer test for study of PM, UM, OM data. 

(I) Process (J) Process Mean Difference (I‒J) Std. Error p-value 

OM 

 

PM -34.59472114 10.140318543 0.004 

UM -43.23604751 10.140318543 0.000 

PM 

 

OM 34.59472114 10.140318543 0.004 

UM -8.64132636 10.140318543 1.000 

UM 

 

OM 43.23604751 10.140318543 0.000 

PM 8.64132636 10.140318543 1.000 
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50/50 comparison 

Table A34: Levene’s test for homoscedasticity of PM, UM, OM data. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 0.841 2 42 0.438 

Based on Median 0.377 2 42 0.689 

Table A35: ANOVA test for study of PM, UM, OM data. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Process 7686.119 2 3843.060 4.118 0.023 0.164 0.698 

Error 39193.787 42 933.185 
    

Total 46879.906 44      

Table A36: Tukey-Kramer test for study of PM, UM, OM data. 

(I) Process (J) Process Mean Difference (I‒J) Std. Error p-value 

OM 
PM 30.84617411 11.154582879 0.022 

UM 8.00708553 11.154582879 0.754 

PM 
OM -30.84617411 11.154582879 0.022 

UM -22.83908857 11.154582879 0.113 

UM 
OM -8.00708553 11.154582879 0.754 

PM 22.83908857 11.154582879 0.113 
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98/02 comparison 

Table A37: Levene’s test for homoscedasticity of PM, UM, OM data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 8.766 2 42 0.001 

Based on Median 1.392 2 42 0.260 

Table A38: ANOVA test for study of PM, UM, OM data including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Process 1847.276 2 923.638 1.172 0.320 0.053 0.243 

Error 33088.807 42 787.829 
    

Total 34936.083 44      

Table A39: Games-Howell test for study of PM, UM, OM data including extreme outliers. 

(I) Process (J) Process Mean Difference (I‒J) Std. Error p-value 

OM 
PM 6.0431 10.24909 1.000 

UM -9.5219 10.24909 1.000 

PM 
OM -6.0431 10.24909 1.000 

UM -15.5650 10.24909 0.409 

UM 
OM 9.5219 10.24909 1.000 

PM 15.5650 10.24909 0.409 
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Table A40: Levene’s test for homoscedasticity of PM, UM, OM data excluding extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 10.385 2 30 0.000 

Based on Median 2.424 2 30 0.106 

Table A41: ANOVA test for study of PM, UM, OM data excluding extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Process 2916.950 2 1458.475 1.657 0.208 0.099 0.321 

Error 26410.876 30 880.363 
    

Total 29327.826 32      

Table A42: Games-Howell test for study of PM, UM, OM data excluding extreme outliers. 

(I) Process (J) Process Mean Difference (I‒J) Std. Error p-value 

OM 
PM 11.8923 12.70432 0.622 

UM -10.6181 12.96415 0.694 

PM 
OM -11.8923 12.70432 0.622 

UM -22.5103 12.38533 0.181 

UM 
OM 10.6181 12.96415 0.694 

PM 22.5103 12.38533 0.181 
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96/04 comparison 

Table A41: Levene’s test for homoscedasticity of PM, UM, OM data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 1.855 2 42 0.169 

Based on Median 0.522 2 42 0.597 

Table A42: ANOVA test for study of PM, UM, OM data including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Process 469.830 2 234.915 0.272 0.763 0.013 0.090 

Error 36316.064 42 864.668 
    

Total 36785.895 44      

Table A43: Tukey-Kramer test for study of PM, UM, OM data including extreme outliers. 

(I) Process (J) Process Mean Difference (I‒J) Std. Error p-value 

OM 
PM 1.3812 10.73728 1.000 

UM -6.0586 10.73728 1.000 

PM 
OM -1.3812 10.73728 1.000 

UM -7.4398 10.73728 1.000 

UM 
OM 6.0586 10.73728 1.000 

PM 7.4398 10.73728 1.000 
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Table A44: Levene’s test for homoscedasticity of PM, UM, OM data excluding extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 2.346 2 36 0.110 

Based on Median 0.747 2 36 0.481 

Table A45: ANOVA test for study of PM, UM, OM data excluding extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Process 1056.841 2 528.420 0.579 0.566 0.031 0.139 

Error 32873.780 36 913.161 
    

Total 33930.621 38      

Table A46: Tukey-Kramer test for study of PM, UM, OM data excluding extreme outliers. 

(I) Process (J) Process Mean Difference (I‒J) Std. Error p-value 

OM 
PM 3.0251 11.63911 0.963 

UM -9.3762 12.09710 0.721 

PM 
OM -3.0251 11.63911 0.963 

UM -12.4013 11.88791 0.555 

UM 
OM 9.3762 12.09710 0.721 

PM 12.4013 11.88791 0.555 
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94/06 comparison 

Table A47: Levene’s test for homoscedasticity of PM, UM, OM data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 0.544 2 42 0.584 

Based on Median 0.121 2 42 0.886 

Table A48: ANOVA test for study of PM, UM, OM data including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Process 463.331 2 231.665 0.143 0.867 0.007 0.071 

Error 68148.050 42 1622.573 
    

Total 68611.381 44      

Table A49: Tukey-Kramer test for study of PM, UM, OM data including extreme outliers. 

(I) Process (J) Process Mean Difference (I‒J) Std. Error p-value 

OM 
PM 7.1755 14.70860 1.000 

UM 0.8098 14.70860 1.000 

PM 
OM -7.1755 14.70860 1.000 

UM -6.3657 14.70860 1.000 

UM 
OM -0.8098 14.70860 1.000 

PM 6.3657 14.70860 1.000 
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Table A50: Levene’s test for homoscedasticity of PM, UM, OM data excluding extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 0.449 2 37 0.642 

Based on Median 0.070 2 37 0.932 

Table A51: ANOVA test for study of PM, UM, OM data excluding extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Process 110.954 2 55.477 0.032 0.969 0.002 0.054 

Error 64907.292 37 1754.251 
    

Total 65018.246 39      

Table A52: Tukey-Kramer test for study of PM, UM, OM data excluding extreme outliers. 

(I) Process (J) Process Mean Difference (I‒J) Std. Error p-value 

OM 
PM 3.9808 16.47699 0.968 

UM 0.8676 15.83058 0.998 

PM 
OM -3.9808 16.47699 0.968 

UM -3.1132 16.47699 0.981 

UM 
OM -0.8676 15.83058 0.998 

PM 3.1132 16.47699 0.981 
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92/08 comparison 

Table A53: Levene’s test for homoscedasticity of PM, UM, OM data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 0.235 2 42 0.792 

Based on Median 0.213 2 42 0.809 

Table A54: ANOVA test for study of PM, UM, OM data including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Process 5213.827 2 2606.913 1.024 0.368 0.046 0.217 

Error 106911.944 42 2545.522 
    

Total 112125.771 44      

Table A55: Tukey-Kramer test for study of PM, UM, OM data including extreme outliers. 

(I) Process (J) Process Mean Difference (I‒J) Std. Error p-value 

OM 
PM -20.5175 18.42289 0.815 

UM 4.0819 18.42289 1.000 

PM 
OM 20.5175 18.42289 0.815 

UM 24.5995 18.42289 0.567 

UM 
OM -4.0819 18.42289 1.000 

PM -24.5995 18.42289 0.567 
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Table A56: Levene’s test for homoscedasticity of PM, UM, OM data excluding extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 0.373 2 34 0.692 

Based on Median 0.050 2 34 0.951 

Table A57: ANOVA test for study of PM, UM, OM data excluding extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Process 4554.712 2 2277.356 0.847 0.438 0.047 0.183 

Error 91456.507 34 2689.897 
    

Total 96011.219 36      

Table A58: Tukey-Kramer test for study of PM, UM, OM data excluding extreme outliers. 

(I) Process (J) Process Mean Difference (I‒J) Std. Error p-value 

OM 
PM -20.2877 20.76230 0.596 

UM 5.1024 21.17348 0.969 

PM 
OM 20.2877 20.76230 0.596 

UM 25.3902 20.76230 0.448 

UM 
OM -5.1024 21.17348 0.969 

PM -25.3902 20.76230 0.448 
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PM comparison 

Iteration 1 

Table A59: Levene’s test for homoscedasticity of composition data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 3.617 4 70 0.010 

Based on Median 2.296 4 70 0.068 

Table A60: ANOVA test for study of composition data including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Composition 28588.816 4 7147.204 6.269 0.000 0.264 0.984 

Error 79807.563 70 1140.108 
    

Total 108396.379 74      

Table A61: Tukey-Kramer test for study of composition data including extreme outliers. 

(I) Composition (J) Composition Mean Difference (I‒J) Std. Error p-value 

50/50 

 

60/40 -1.5665 7.97112 1.000 

70/30 10.1614 8.72842 0.771 

80/20 -2.8554 13.18098 0.999 

90/10 -46.0032 13.22092 0.017 

 

60/40 

 

50/50 1.5665 7.97112 1.000 

70/30 11.7280 8.22059 0.617 

80/20 -1.2888 12.85033 1.000 

90/10 -44.4366 12.89129 0.020 

 

70.00 

 

50/50 -10.1614 8.72842 0.771 

60/40 -11.7280 8.22059 0.617 

80/20 -13.0168 13.33333 0.863 

90/10 -56.1646 13.37281 0.003 

 

80.00 

50/50 2.8554 13.18098 0.999 

60/40 1.2888 12.85033 1.000 

70/30 13.0168 13.33333 0.863 

90/10 -43.1478 16.62483 0.099 
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50/50 46.0032 13.22092 0.017 

60/40 44.4366 12.89129 0.020 

70/30 56.1646 13.37281 0.003 

80/20 43.1478 16.62483 0.099 

Iteration 2 

Table A62: Levene’s test for homoscedasticity of composition data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 4.722 3 56 0.005 

Based on Median 3.704 3 56 0.017 

 

Table A63: ANOVA test for study of composition data including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Composition 18024.236 3 6008.079 5.312 0.003 0.222 0.914 

Error 63339.539 56 1131.063 
    

Total 81363.775 59      

 

Table A64: Games-Howell test for study of composition data including extreme outliers. 

(I) 

Composition 

(J) 

Composition 

Mean Difference (I‒J) Std. Error p-value 

92/08 

 

94/06 34.97513629 15.453414434 0.137 

96/04 38.36756150 15.006108614 0.080 

98/02 44.42542939 13.970993956 0.026 

94/06 

 

92/08 -34.97513629 15.453414434 0.137 

96/04 3.39242520 10.316403354 0.987 

98/02 9.45029310 8.742628583 0.705 

96/04 

 

92/08 -38.36756150 15.006108614 0.080 

94/06 -3.39242520 10.316403354 0.987 

98/02 6.05786789 7.925202370 0.870 
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98/02 

 

92/08 -44.42542939 13.970993956 0.026 

94/06 -9.45029310 8.742628583 0.705 

96/04 -6.05786789 7.925202370 0.870 

 

Table A65: Levene’s test for homoscedasticity of composition data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 3.261 3 45 0.030 

Based on Median 2.710 3 45 0.056 

Table A63: ANOVA test for study of composition data including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Composition 19916.317 3 6638.772 5.730 0.002 0.276 0.930 

Error 52135.751 45 1158.572 
    

Total 72052.067 48      

Table A67: Games-Howell test for study of composition data including extreme outliers. 

(I) 

Composition 

(J) 

Composition 

Mean Difference (I‒J) Std. Error p-value 

92/08 

 

94/06 33.17018100 17.287652889 0.251 

96/04 45.70170468 15.699632069 0.042 

98/02 50.17266451 14.737098362 0.019 

94/06 

 

92/08 -33.17018100 17.287652889 0.251 

96/04 12.53152367 12.486543630 0.749 

98/02 17.00248351 11.252439417 0.459 

96/04 

 

92/08 -45.70170468 15.699632069 0.042 

94/06 -12.53152367 12.486543630 0.749 

98/02 4.47095983 8.615851527 0.954 

98/02 

 

92/08 -50.17266451 14.737098362 0.019 

94/06 -17.00248351 11.252439417 0.459 

96/04 -4.47095983 8.615851527 0.954 
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UM comparison 

Iteration 1 

Table A68: Levene’s test for homoscedasticity of composition data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 1.801 4 70 0.138 

Based on Median 0.819 4 70 0.517 

 

Table A69: ANOVA test for study of composition data including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Composition 46823.973 4 11705.993 5.641 0.001 0.244 0.972 

Error 145261.023 70 2075.157 
    

Total 192084.997 74      

 

Table A70: Tukey-Kramer test for study of composition data including extreme outliers. 

(I) 

Composition 

(J) 

Composition 

Mean Difference (I‒J) Std. Error p-value 

50/50 

 

60/40 -21.96350513 16.633931082 0.680 

70/30 -50.68706430 16.633931082 0.026 

80/20 -27.45225823 16.633931082 0.471 

90/10 22.69145105 16.633931082 0.652 

 

60/40 

 

50/50 21.96350513 16.633931082 0.680 

70/30 -28.72355917 16.633931082 0.425 

80/20 -5.48875310 16.633931082 0.997 

90/10 44.65495618 16.633931082 0.067 

 

70/30 

 

50/50 50.68706430 16.633931082 0.026 

60/40 28.72355917 16.633931082 0.425 

80/20 23.23480607 16.633931082 0.632 

90/10 73.37851535 16.633931082 0.000 
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80/20 

50/50 27.45225823 16.633931082 0.471 

60/40 5.48875310 16.633931082 0.997 

70/30 -23.23480607 16.633931082 0.632 

90/10 50.14370928 16.633931082 0.029 

90/10 

50/50 -22.69145105 16.633931082 0.652 

60/40 -44.65495618 16.633931082 0.067 

70/30 -73.37851535 16.633931082 0.000 

80/20 -50.14370928 16.633931082 0.029 

 

 

Table A71: Levene’s test for homoscedasticity of composition data excluding extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 0.708 4 66 0.590 

Based on Median 0.373 4 66 0.827 

 

Table A72: ANOVA test for study of composition data excluding extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Composition 46996.367 4 11749.092 6.675 0.000 0.288 0.989 

Error 116164.834 66 1760.073 
    

Total 163161.201 70      

 

Table A73: Tukey-Kramer test for study of composition data excluding extreme outliers. 

(I) 

Composition 

(J) 

Composition 

Mean Difference (I‒J) Std. Error p-value 

50/50 

 

60/40 -21.96350513 12.317971267 0.404 

70/30 -59.11147120 15.843043066 0.010 

80/20 -34.21685039 14.907712515 0.185 

90/10 15.83555835 13.729127203 0.777 
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60/40 

 

50/50 21.96350513 12.317971267 0.404 

70/30 -37.14796607 16.810902774 0.211 

80/20 -12.25334526 15.932492929 0.937 

90/10 37.79906348 14.835544218 0.112 

 

70/30 

 

50/50 59.11147120 15.843043066 0.010 

60/40 37.14796607 16.810902774 0.211 

80/20 24.89462081 18.791325882 0.679 

90/10 74.94702956 17.870729412 0.003 

 

80/20 

50/50 34.21685039 14.907712515 0.185 

60/40 12.25334526 15.932492929 0.937 

70/30 -24.89462081 18.791325882 0.679 

90/10 50.05240875 17.047018759 0.050 

90/10 

50/50 -15.83555835 13.729127203 0.777 

60/40 -37.79906348 14.835544218 0.112 

70/30 -74.94702956 17.870729412 0.003 

80/20 -50.05240875 17.047018759 0.050 

 

Iteration 2 

Table A74: Levene’s test for homoscedasticity of composition data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 0.376 3 56 0.771 

Based on Median 0.059 3 56 0.981 

Table A75: ANOVA test for study of composition data including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Composition 314.975 3 104.992 0.049 0.985 0.003 0.058 

Error 119442.813 56 2132.907 
    

Total 119757.788 59      
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Table A76: Tukey-Kramer test for study of composition data including extreme outliers. 

(I) 

Composition 

(J) 

Composition 

Mean Difference (I‒J) Std. Error p-value 

92/08 

 

94/06 4.00994059 16.863797000 0.995 

96/04 6.32825180 16.863797000 0.982 

98/02 4.26096349 16.863797000 0.994 

94/06 

 

92/08 -4.00994059 16.863797000 0.995 

96/04 2.31831121 16.863797000 0.999 

98/02 .25102290 16.863797000 1.000 

96/04 

 

92/08 -6.32825180 16.863797000 0.982 

94/06 -2.31831121 16.863797000 0.999 

98/02 -2.06728831 16.863797000 0.999 

98/02 

 

92/08 -4.26096349 16.863797000 0.994 

94/06 -.25102290 16.863797000 1.000 

96/04 2.06728831 16.863797000 0.999 

 

Table A77: Levene’s test for homoscedasticity of composition data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 0.435 3 43 0.729 

Based on Median 0.110 3 43 0.954 

Table A78: ANOVA test for study of composition data including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Composition 419.303 3 139.768 0.056 0.982 0.004 0.059 

Error 106800.918 43 2483.742 
    

Total 107220.222 46      
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Table A79: Tukey-Kramer test for study of composition data including extreme outliers. 

(I) 

Composition 

(J) 

Composition 

Mean Difference (I‒J) Std. Error p-value 

92/08 

 

94/06 5.01307833 23.669708261 0.997 

96/04 7.91029074 20.699191124 0.980 

98/02 2.27216650 21.555837004 1.000 

94/06 

 

92/08 -5.01307833 23.669708261 0.997 

96/04 2.89721241 19.244649073 0.999 

98/02 -2.74091184 20.163187092 0.999 

96/04 

 

92/08 -7.91029074 20.699191124 0.980 

94/06 -2.89721241 19.244649073 0.999 

98/02 -5.63812424 16.575751497 0.986 

98/02 

 

92/08 -2.27216650 21.555837004 1.000 

94/06 2.74091184 20.163187092 0.999 

96/04 5.63812424 16.575751497 0.986 

 

OM comparison 

Iteration 1 

Table A80: Levene’s test for homoscedasticity of composition data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 3.824 4 70 0.007 

Based on Median 2.106 4 70 0.089 

 

Table A81: ANOVA test for study of composition data including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Composition 3555.720 4 888.930 0.506 0.732 0.028 0.164 

Error 123086.772 70 1758.382 
    

Total 126642.492 74      
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Table A82: Games-Howell test for study of composition data including extreme outliers. 

(I) 

Composition 

(J) 

Composition 

Mean Difference (I‒J) Std. Error p-value 

50/50 

 

60/40 -5.3151 11.20736 0.989 

70/30 -11.2630 17.26508 0.965 

80/20 -13.9322 14.68218 0.875 

90/10 -19.9033 14.77747 0.665 

 

60/40 

 

50/50 5.3151 11.20736 0.989 

70/30 -5.9479 15.57843 0.995 

80/20 -8.6171 12.65588 0.958 

90/10 -14.5883 12.76630 0.782 

 

70/30 

 

50/50 11.2630 17.26508 0.965 

60/40 5.9479 15.57843 0.995 

80/20 -2.6692 18.23867 1.000 

90/10 -8.6403 18.31546 0.989 

 

80/20 

50/50 13.9322 14.68218 0.875 

60/40 8.6171 12.65588 0.958 

70/30 2.6692 18.23867 1.000 

90/10 -5.9711 15.90408 0.996 

90/10 

 

50/50 19.9033 14.77747 0.665 

60/40 14.5883 12.76630 0.782 

70/30 8.6403 18.31546 0.989 

80/20 5.9711 15.90408 0.996 

 

Table A83: Levene’s test for homoscedasticity of composition data excluding extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 4.492 4 68 0.003 

Based on Median 2.614 4 68 0.043 
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Table A84: ANOVA test for study of composition data excluding extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Composition 6816.357 4 1704.089 1.105 0.361 0.061 0.330 

Error 104859.621 68 1542.053 
    

Total 111675.978 72      

Table A85: Games-Howell test for study of composition data excluding extreme outliers. 

(I) 

Composition 

(J) 

Composition 

Mean Difference (I‒J) Std. Error p-value 

50/50 

 

60/40 -5.3151 11.20736 0.989 

70/30 -11.2630 17.26508 0.965 

80/20 -20.3032 13.71033 0.583 

90/10 -26.7009 13.59160 0.310 

60/40 

 

50/50 5.3151 11.20736 0.989 

70/30 -5.9479 15.57843 0.995 

80/20 -14.9881 11.51425 0.693 

90/10 -21.3858 11.37261 0.357 

70/30 

 

50/50 11.2630 17.26508 0.965 

60/40 5.9479 15.57843 0.995 

80/20 -9.0402 17.46584 0.985 

90/10 -15.4378 17.37280 0.898 

80/20 

 

50/50 20.3032 13.71033 0.583 

60/40 14.9881 11.51425 0.693 

70/30 9.0402 17.46584 0.985 

90/10 -6.3976 13.84574 0.990 

90/10 

 

50/50 26.7009 13.59160 0.310 

60/40 21.3858 11.37261 0.357 

70/30 15.4378 17.37280 0.898 

80/20 6.3976 13.84574 0.990 
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Iteration 2 

Table A86: Levene’s test for homoscedasticity of composition data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 1.317 3 56 0.278 

Based on Median 1.060 3 56 0.374 

 

Table A87: ANOVA test for study of composition data including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Composition 3425.596 3 1141.865 0.962 0.417 0.049 0.249 

Error 66495.331 56 1187.417 
    

Total 69920.927 59      

 

Table A88: Tukey-Kramer test for study of composition data including extreme outliers. 

(I) 

Composition 

(J) 

Composition 

Mean Difference (I‒J) Std. Error p-value 

92/08 

 

94/06 7.28208652 12.582615635 0.938 

96/04 16.46879801 12.582615635 0.561 

98/02 19.00195705 12.582615635 0.438 

94/06 

 

92/08 -7.28208652 12.582615635 0.938 

96/04 9.18671148 12.582615635 0.885 

98/02 11.71987053 12.582615635 0.788 

96/04 

 

92/08 -16.46879801 12.582615635 0.561 

94/06 -9.18671148 12.582615635 0.885 

98/02 2.53315904 12.582615635 0.997 

98/02 

 

92/08 -19.00195705 12.582615635 0.438 

94/06 -11.71987053 12.582615635 0.788 

96/04 -2.53315904 12.582615635 0.997 
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Table A89: Levene’s test for homoscedasticity of composition data excluding extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 1.074 3 46 0.369 

Based on Median 0.825 3 46 0.487 

 

Table A90: ANOVA test for study of composition data excluding extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Composition 4582.352 3 1527.451 1.209 0.317 0.073 0.303 

Error 58118.606 46 1263.448 
    

Total 62700.958 49      

 

Table A91: Tukey-Kramer test for study of composition data excluding extreme outliers. 

(I) 

Composition 

(J) 

Composition 

Mean Difference (I‒J) Std. Error p-value 

92/08 

 

94/06 11.78895813 16.368303070 0.888 

96/04 20.58669432 14.426100942 0.500 

98/02 25.31170905 15.351079775 0.375 

94/06 

 

92/08 -11.78895813 16.368303070 0.888 

96/04 8.79773619 12.996799783 0.905 

98/02 13.52275092 14.016421315 0.770 

96/04 

 

92/08 -20.58669432 14.426100942 0.500 

94/06 -8.79773619 12.996799783 0.905 

98/02 4.72501473 11.689786546 0.977 

98/02 

 

92/08 -25.31170905 15.351079775 0.375 

94/06 -13.52275092 14.016421315 0.770 

96/04 -4.72501473 11.689786546 0.977 
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ANOVA and associate tables for Case Study 3 

P1 

Table A92: Levene’s test for homoscedasticity of temperature data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 0.287 4 70 0.885 

Based on Median 0.110 4 70 0.979 

Table A93: ANOVA test for study of temperature data including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Temperature 0.108 4 0.027 0.075 0.990 0.004 0.064 

Error 25.105 70 0.359 
    

Total 25.213 74      

Table A94: Tukey-Kramer test for study of temperature data including extreme outliers. 

(I) Temperature (J) Temperature Mean Difference (I‒J) Std. Error p-value 

20 

 

30 -0.032371 0.1986309 1.000 

40 -0.054847 0.2043779 0.999 

50 -0.082980 0.2121846 0.995 

60 -0.108613 0.2192001 0.987 

30 

 

20 0.032371 0.1986309 1.000 

40 -0.022476 0.2114828 1.000 

50 -0.050609 0.2190363 0.999 

60 -0.076242 0.2258391 0.997 

40 

 

20 0.054847 0.2043779 0.999 

30 0.022476 0.2114828 1.000 

50 -0.028133 0.2242611 1.000 

60 -0.053766 0.2309100 0.999 

50 

 

20 0.082980 0.2121846 0.995 

30 0.050609 0.2190363 0.999 

40 0.028133 0.2242611 1.000 

60 -0.025634 0.2378474 1.000 
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60 

 

20 0.108613 0.2192001 0.987 

30 0.076242 0.2258391 0.997 

40 0.053766 0.2309100 0.999 

50 0.025634 0.2378474 1.000 

 

Table A95: Levene’s test for homoscedasticity of temperature data excluding extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 0.256 4 55 0.905 

Based on Median 0.155 4 55 0.960 

Table A96: ANOVA test for study of temperature data excluding extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Temperature 0.135 4 0.034 0.088 0.986 0.006 0.067 

Error 20.974 55 0.381 
    

Total 21.109 59      

 

Table A97: Tukey-Kramer test for study of temperature data excluding extreme outliers. 

(I) Temperature (J) Temperature Mean Difference (I‒J) Std. Error p-value 

20 

 

30 -0.040457 0.2287643 1.000 

40 -0.068553 0.2354483 0.998 

50 -0.103716 0.2446243 0.993 

60 -0.135759 0.2528162 0.982 

30 

 

20 0.040457 0.2287643 1.000 

40 -0.028096 0.2436173 1.000 

50 -0.063258 0.2524966 0.999 

60 -0.095301 0.2604410 0.996 

40 

 

20 0.068553 0.2354483 0.998 

30 0.028096 0.2436173 1.000 

50 -.035162 .2585678 1.000 

60 -.067205 .2663312 0.999 
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50 

 

20 0.103716 .2446243 0.993 

30 0.063258 .2524966 0.999 

40 0.035162 .2585678 1.000 

60 -0.032043 .2744767 1.000 

60 

 

20 0.135759 .2528162 0.982 

30 0.095301 .2604410 00.996 

40 0.067205 .2663312 .999 

50 0.032043 .2744767 1.000 

 

P2 

Table A98: Levene’s test for homoscedasticity of temperature data including extreme outliers. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 1.016 4 70 0.405 

Based on Median 0.854 4 70 0.496 

Table A99: ANOVA test for study of temperature data including extreme outliers. 

Sources of 

variation 

Sum of 

squares 
DOF 

Mean 

squares 
F0 value p-value η2

partial 1 ‒ β 

Temperature 3889.113 4 972.278 7.302 0.000 0.294 0.994 

Error 9320.963 70 133.157 
    

Total 13210.076 74      

Table A100: Tukey-Kramer test for study of temperature data including extreme outliers. 

(I) Temperature (J) Temperature Mean Difference (I‒J) Std. Error p-value 

20 

 

30 -7.969152 3.7128829 0.231 

40 -13.663974 3.6946920 0.008 

50 -17.400157 3.9159127 0.001 

60 -20.198414 4.1480297 0.000 

30 

 

20 7.969152 3.7128829 0.231 

40 -5.694822 4.1282070 0.645 

50 -9.431006 4.3273221 0.217 

60 -12.229263 4.5384462 0.081 
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40 

 

20 13.663974 3.6946920 0.008 

30 5.694822 4.1282070 0.645 

50 -3.736183 4.3117242 0.907 

60 -6.534440 4.5235764 0.605 

50 

 

20 17.400157 3.9159127 0.001 

30 9.431006 4.3273221 0.217 

40 3.736183 4.3117242 0.907 

60 -2.798257 4.7059927 0.975 

60 

 

20 20.198414 4.1480297 0.000 

30 12.229263 4.5384462 0.081 

40 6.534440 4.5235764 0.605 

50 2.798257 4.7059927 0.975 

 

ANOVA and associate tables for Case Study 4 

P2-P1 

Table A101: Levene’s test for homoscedasticity of temperature and composition data. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 10.230 24 350 0.000 

Based on Median 9.053 24 350 0.000 

 

Table A102: ANOVA test for study of temperature and composition data. 

Sources of variation 
Sum of 

squares 
DOF 

Mean 

squares 
F0 value 

p-

value 
η2

partial 1 ‒ β 

Temperature 0.169 4 0.042 5.756 0.000 0.062 0.981 

Composition 6.797 4 1.699 231.023 0.000 0.725 1.000 

Temperature*Composition 0.154 16 0.010 1.307 0.190 0.056 0.822 

Error 2.575 350 .007 
    

Total 9.695 374      
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Table A103: Games-Howell test for study of temperature data. 

(I) Temperature (J) Temperature Mean Difference (I‒J) Std. Error p-value 

20 

 

30 -0.01616538 0.014005557 0.777 

40 -0.03192817 0.014005557 0.154 

50 -0.04762502 0.014005557 0.007 

60 -0.05928242 0.014005557 0.000 

30 

 

20 0.01616538 0.014005557 0.777 

40 -0.01576279 0.014005557 0.793 

50 -0.03145964 0.014005557 0.165 

60 -0.04311704 0.014005557 0.019 

40 

 

20 0.03192817 0.014005557 0.154 

30 0.01576279 0.014005557 0.793 

50 -0.01569685 0.014005557 0.796 

60 -0.02735424 0.014005557 0.291 

50 

 

20 0.04762502 0.014005557 0.007 

30 0.03145964 0.014005557 0.165 

40 0.01569685 0.014005557 0.796 

60 -0.01165740 0.014005557 0.920 

60 

 

20 0.05928242 0.014005557 0.000 

30 0.04311704 0.014005557 0.019 

40 0.02735424 0.014005557 0.291 

50 0.01165740 0.014005557 0.920 

 

Table A104: Games-Howell test for study of composition data. 

(I) 

Composition 

(J) 

Composition 

Mean Difference (I‒J) Std. Error p-value 

50/50 

 

60/40 -0.00339790 0.014005557 0.999 

70/30 -0.09377648 0.014005557 0.000 

80/20 -0.22229621 0.014005557 0.000 

90/10 -0.34895671 0.014005557 0.000 
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60/40 

 

50/50 0.00339790 0.014005557 .999 

70/30 -0.09037858 0.014005557 0.000 

80/20 -0.21889831 0.014005557 0.000 

90/10 -0.34555881 0.014005557 0.000 

 

70/30 

 

50/50 0.09377648 0.014005557 0.000 

60/40 0.09037858 0.014005557 0.000 

80/20 -0.12851973 0.014005557 0.000 

90/10 -0.25518023 0.014005557 0.000 

 

80/20 

50/50 0.22229621 0.014005557 0.000 

60/40 0.21889831 0.014005557 0.000 

70/30 0.12851973 0.014005557 0.000 

90/10 -0.12666049 0.014005557 0.000 

90/10 

 

50/50 0.34895671 0.014005557 0.000 

60/40 0.34555881 0.014005557 0.000 

70/30 0.25518023 0.014005557 0.000 

80/20 0.12666049 0.014005557 0.000 

P2-P1-D 

Table A105: Levene’s test for homoscedasticity of temperature and composition data. 

Basis Levene statistic DOF 1 DOF 2 p-value 

Based on Mean 12.571 24 350 0.000 

Based on Median 8.806 24 350 0.000 

 

Table A106: ANOVA test for study of temperature and composition data. 

Sources of variation 
Sum of 

squares 
DOF 

Mean 

squares 
F0 value 

p-

value 
η2

partial 1 ‒ β 

Temperature 1.271 4 .318 0.128 0.972 0.001 0.077 

Composition 3071.203 4 767.801 310.539 0.000 0.780 1.000 

Temperature*Composition 2.737 16 .171 0.069 1.000 0.003 0.076 

Error 865.368 350 2.472 
    

Total 3940.579 374      
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Table A107: Games-Howell test for study of temperature data. 

(I) Temperature (J) Temperature Mean Difference (I‒J) Std. Error p-value 

20 

 

30 -0.077609 0.2567738 0.998 

40 -0.144443 0.2567738 0.980 

50 -0.159217 0.2567738 0.972 

60 -0.059149 0.2567738 0.999 

30 

 

20 0.077609 0.2567738 0.998 

40 -0.066834 0.2567738 0.999 

50 -0.081608 0.2567738 0.998 

60 0.018460 0.2567738 1.000 

40 

 

20 0.144443 0.2567738 0.980 

30 0.066834 0.2567738 0.999 

50 -0.014774 0.2567738 1.000 

60 0.085294 0.2567738 0.997 

50 

 

20 0.159217 0.2567738 0.972 

30 0.081608 0.2567738 0.998 

40 0.014774 0.2567738 1.000 

60 0.100069 0.2567738 0.995 

60 

 

20 0.059149 0.2567738 0.999 

30 -0.018460 0.2567738 1.000 

40 -0.085294 0.2567738 0.997 

50 -0.100069 0.2567738 0.995 

 

Table A108: Games-Howell test for study of composition data. 

(I) 

Composition 

(J) 

Composition 

Mean Difference (I‒J) Std. Error p-value 

50/50 

 

60/40 1.007574 0.2567738 0.001 

70/30 5.911679 0.2567738 0.000 

80/20 6.487252 0.2567738 0.000 

90/10 6.481198 0.2567738 0.000 
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60/40 

 

50/50 -1.007574 0.2567738 0.001 

70/30 4.904105 0.2567738 0.000 

80/20 5.479678 0.2567738 0.000 

90/10 5.473623 0.2567738 0.000 

 

70/30 

 

50/50 -5.911679 0.2567738 0.000 

60/40 -4.904105 0.2567738 0.000 

80/20 .575573 0.2567738 0.167 

90/10 .569518 0.2567738 0.175 

 

80/20 

50/50 -6.487252 0.2567738 0.000 

60/40 -5.479678 0.2567738 0.000 

70/30 -.575573 0.2567738 0.167 

90/10 -.006055 0.2567738 1.000 

90/10 

 

50/50 -6.481198 0.2567738 0.000 

60/40 -5.473623 0.2567738 0.000 

70/30 -.569518 0.2567738 0.175 

80/20 .006055 0.2567738 1.000 
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Appendix B 

TCR of pristine P1 replicates 

 

TCR of pristine P2 replicates 

 

TCR of P2-P1 blends 

90/10 

 



 

164 

 

80/20 

 

70/30 

 

60/40 
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50/50 

 

TCR of P2-P1-D blends 

90/10 

 

80/20 
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70/30 

 

60/40 

 

50/50 
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General specifications of the CPH used in this work 

Viscosity ~1 to 20 mPa.s 

Surface tension ~20 to 70 mN/m 

Solvent compatibility Water and low molecular weight alcohols 

Fluid inputs 2 

 


