
Convolutional Neural Network
Compression via Tensor

Decomposition
by

Mateusz Faltyn

B.Arts Sc. (Honours), McMaster University, 2021

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Mathematics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

February 2023

© Mateusz Faltyn 2023

The following individuals certify that they have read, and recommend to
the Faculty of Graduate and Postdoctoral Studies for acceptance, the thesis
entitled:

Convolutional Neural Network Compression via Tensor Decomposition

submitted by Mateusz Faltyn in partial fulfillment of the requirements for

the degree of Master of Science

in Mathematics

Examining Committee:

Elina Robeva, Assistant Professor, Mathematics, UBC
Supervisor

Yaniv Plan, Associate Professor, Mathematics, UBC
Supervisory Committee Member

ii

Abstract

Computer vision models, such as image and video classifiers, are increasingly
prevalent in Internet-of-Things systems. Since the advent of the AlexNet
neural network model in 2012, convolutional neural networks have been
demonstrated to be very effective at performing many computer vision tasks.
However, convolutional neural networks’ high computational and storage
costs hinder the wider adoption of computer vision models in smaller Internet-
of-Things devices such as mobile phones or embedded systems. As larger
neural network models increase hardware costs, industry and academia have
come together to tackle the problem of how to compress convolutional neural
networks. Convolutional neural network compression via tensor decompo-
sition has been shown to reduce the memory and storage requirements for
devices to perform computer vision tasks successfully. In this work, we first
review the preliminaries of tensor decomposition and define the four major
types of tensor decompositions and their related decomposition algorithms
in Chapter 1. Afterward, we introduce the building blocks of neural net-
works and describe convolutional neural networks in Chapter 2. Finally, we
overview the different tensor decomposition approaches for convolutional
neural network compression and display the results of two experiments us-
ing the PyTorch-TedNet CIFAR10 and CIFAR100 model benchmarks in
Chapter 3.

iii

Lay Summary

Computer vision allows computers to understand and analyze images and
videos. Cameras and special software allow computers to see and understand
the world around us just like humans. For example, a computer with com-
puter vision can be programmed to recognize different objects in an image,
like a car, or a person. Neural networks are computer programs designed to
process and analyze large amounts of data. They are called neural networks
because they are inspired by how the human brain works. One way neural
networks can be made more efficient is by compressing them. This means
reducing the number of neurons and connections in the network, while still
keeping its overall function and performance. This text explores how the
neural networks we use for computer vision can be compressed with math-
ematical structures called tensors.

iv

Preface

This thesis is an original and independent work by the author, Mateusz
Faltyn, under the supervision of Dr. Elina Robeva. Parts of Chapter 1
have been published as a section in the course material entitled A Graduate
Course in Tensor Decompositions and Applications co-authored with Dr.
Robeva for the MATH 605D: Tensor Decompositions and their Applications
course held at the University of British Columbia in Fall 2022.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . viii

List of Figures . ix

List of Programs . x

Acknowledgements . xi

Dedication . xii

1 Tensors and Tensor Decomposition 1
1.1 Preliminaries . 1

1.1.1 Basic Definitions and Operations 1
1.1.2 Tensor Rank . 5
1.1.3 Uniqueness . 9

1.2 Tensor Decomposition and Algorithms 11
1.2.1 CP Decomposition . 11
1.2.2 Tucker Decomposition 13
1.2.3 Tensor-Train Decomposition 14
1.2.4 Tensor-Ring Decomposition 14

2 Neural Networks and Deep Learning 16
2.1 Fundamentals of Neural Networks 16

2.1.1 Preliminaries . 16
2.1.2 Definitions . 18

vi

Table of Contents

2.2 Fundamentals of Deep Learning 20
2.2.1 Data Acquisition . 20
2.2.2 Data Preprocessing 21
2.2.3 Data Splitting . 21
2.2.4 Model Construction 22
2.2.5 Model Training and Evaluation 23

2.3 Learning from Data . 24
2.3.1 Neural Network Expressivity 24
2.3.2 SGD and BP . 25

3 Convolutional Neural Networks and Compression 28
3.1 Convolutional Neural Networks 28

3.1.1 Convolutions . 28
3.1.2 Finding Edges . 30
3.1.3 Deep CNNs . 31

3.2 Compression Methods . 33
3.2.1 Benchmarks . 34
3.2.2 Precision Reduction 34
3.2.3 Network Pruning . 35
3.2.4 Compact Architecture Construction 35

3.3 CNN Compression via Tensor Decomposition 36
3.3.1 CP Compression . 36
3.3.2 Tucker Compression 37
3.3.3 Tensor-Train Compression 37
3.3.4 Tensor-Ring Compression 37

3.4 PyTorch-TedNet Model Benchmarks 37
3.4.1 TedNet Tensorized Layers 38
3.4.2 ResNet-32 . 39
3.4.3 CIFAR-10 Benchmark 41
3.4.4 CIFAR-100 Benchmark 44
3.4.5 Conclusion . 46

Bibliography . 48

vii

List of Tables

3.1 Common CNN compression benchmark datasets and models. 34
3.2 CIFAR-10 benchmark results (50 Epochs, Single GPU). . . . 41
3.3 CIFAR-100 benchmark results (50 Epochs, Single GPU). . . . 44

viii

List of Figures

2.1 A feedforward neural network, [44]. 18
2.2 Standard deep learning workflow. 20
2.3 Neural network learning process, [42]. 24

3.1 Output of different types of convolutional kernels applied on
an image, [6]. 28

3.2 Example convolution of an image (left) with a kernel (right),
[49]. 30

3.3 LeNet-5 architecture. 33

ix

List of Programs

1 ResNet-32 - Import libraries 39
2 ResNet-32 - Model, [19] . 40
3 Import libraries . 41
4 Configure GPU . 42
5 CIFAR-10 - Load dataset, [22] 42
6 CIFAR-10 - Define train and test processes 43
7 CIFAR-10 - Define model . 43
8 CIFAR-10 - Train and evaluate model, [40, 39] 44
9 CIFAR-100 - Load dataset [22] 44
10 CIFAR-100 - Define train and test processes 45
11 CIFAR-100 - Define model . 45
12 CIFAR-100 - Train and evaluate model, [40, 39] 46

x

Acknowledgements

To begin, I would like to thank my supervisor, Dr. Elina Robeva, for her
guidance throughout my Master of Science in Mathematics journey. Her
insights and expertise have been invaluable, and I have learned much from
working with her.

Furthermore, I am deeply indebted to Dr. Ryan Van Lieshout, who has
supported my professional development since the beginning of my academic
career.

Lastly, I would like to thank Dr. Yaniv Plan for his time and efforts in
reading and commenting on my thesis.

xi

Dedication

To Nina, Asia, Mama, Tata, and Stella.

xii

Chapter 1

Tensors and Tensor
Decomposition

1.1 Preliminaries

The history of tensor decomposition can be traced to Hitchcock in 1927
[16], and Cattell in 1944 [4], with the extension of matrix decomposition
techniques to higher-dimensional arrays. However, decomposing tensors did
not become widespread until 1970, when researchers in the psychometrics
community started using them to analyze and understand high-dimensional
data. There were two papers on the same tensor decomposition in 1970: in
one of these papers, Carroll and Chang [3] called the decomposition CAN-
DECOMP; in the other, Harshman, called it PARAFAC [15]. That is why
it is called CANDECOMP/PARAFAC- or CP-decomposition today. This
section introduces the notion of a tensor, basic tensor arithmetic, and CP-
decomposition.

1.1.1 Basic Definitions and Operations

While linear algebra is concerned with the thorough study of matrices (2-
dimensional arrays) and vectors (1-dimensional arrays). Here, we consider
d-dimensional arrays for any d ≥ 1. Thus, we study multilinear algebra. We
begin with the formal definition of a tensor.

Definition 1.1.1. (Tensor) A tensor is a multidimensional array T ∈
Rn1×n2×···×nd (or Cn1×n2×···×nd). We say that T has order d, or is a d-way
tensor. We refer to its entries by Ti1,...,id where:

1 ≤ i1 ≤ n1, . . . , 1 ≤ id ≤ nd.

The size of T is n1×· · ·×nd. We refer to the d dimensions of T as its modes.

Definition 1.1.2. (Tensor Slice) The slices of T are the subtensors ob-
tained after fixing one or more of the indices of T .

1

1.1. Preliminaries

Example 1.1.1. If T is a 3-way tensor of size n1 × n2 × n3, then, Ti1·· is
an n2 × n3 slice for any i1 ∈ {1, . . . , n1}, T·i2· is an n1 × n3 slice for any
i2 ∈ {1, . . . , n2}, and T··i3 is an n1 × n2 slice for any i3 ∈ {1, . . . , n3}. These
are called the horizontal, lateral, and frontal slices, respectively.

The slices of tensors can be combined to form a matrix.

Definition 1.1.3. (Matricization/Flattening of a Tensor) We call ma-
tricization (or flattening) the process of reordering the elements of a tensor
T of order d into a matrix. If T is an n1 × · · · × nd tensor, then for any
subset ∅ ⊊ I ⊊ {1, . . . , d} we can define the flattening T I|({1,...,d}\I) as a
Πi∈Ini × Πj ̸∈Inj matrix, whose rows correspond to the indices in I and
whose columns correspond to the indices in {1, . . . , d} \ I.

Example 1.1.2. A 3× 4× 2 tensor T can be rearranged as a 6× 4 matrix,
a 3× 8 matrix, or a 2× 12 matrix [21]. Consider T ∈ R3×4×2 with slices T..1

and T..2:

T..1 =

1 4 7 10
2 5 8 11
3 6 9 12

 ,

T..2 =

13 16 19 22
14 17 20 23
15 18 21 24

 .

We can write T as T = [T..1|T..2]. T can be flattened in three ways:

T 1|23 =

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

 ∈ R3×8,

T 2|13 =


1 2 3 13 14 15
4 5 6 16 17 19
7 8 9 19 20 21
10 11 12 22 23 24

 ∈ R4×6,

T 2|13 =

[
1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24

]
∈ R2×12.

2

1.1. Preliminaries

We will now define a few important tensor operations used throughout
this text. Since the set of tensors of a given size is a vector space, addition,
subtraction, and scalar multiplication are well-defined.

Definition 1.1.4. (Hadamard Product) We call element-wise matrix
multiplication the Hadamard product. Let A and B be matrices of size
I × J . The Hadamard product is denoted as A ⋆ B and the result is of size

A ⋆ B =


a11b11 a12b12 . . . a1Jb1J
a21b21 a22b22 . . . a2Jb2J

...
...

. . .
...

aI1bI1 aI2bI1 . . . aIJbIJ

 .

Definition 1.1.5. (k-Mode Product) We call the multiplication of a ten-
sor T ∈ Rn1×n2×···×nd by a matrix U ∈ RJk×nk the k-mode product denoted
by •k. The result is of size n1 × · · · × nk−1 × Jk × nk+1 × · · · × nd:

(T •k U)i1...ik−1 j ik+1...id =

nk∑
ik=1

Ti1...ik−1ikik+1...idujkik .

We call the multiplication of a tensor T ∈ Rn1×n2×···×nd by a vector v ∈ Rnk

the k-mode (vector) product denoted by •k. The result is of size n1 × · · · ×
nk−1 × nk+1 × · · · × nd:

(X •k v)i1...ik−1ik+1...id =

nk∑
ik=1

xi1...idvik .

Definition 1.1.6. (Kronecker Product) We call the Kronecker product
of matrices A ∈ RI×J and B ∈ RK×L the operation denoted as A ⊗ B
resulting in a matrix of size (IK)× (JL):

A⊗B =


a11B a12B . . . a1JB
a21B a22B . . . a2JB
...

...
. . .

...
aI1B aI2B . . . aIJB


= [a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 . . . aJ ⊗ bL−1 aJ ⊗ bL].

3

1.1. Preliminaries

Definition 1.1.7. (Khatri-Rao Product) Let A ∈ Rn1×n3 and B ∈
Rn2×n3 be matrices. The Khatri-Rao product, denoted by A ⊙ B, is of size
(n1n2)× n3 and is denoted as follows:

A⊙B = [vec(a1 ⊗ b1) vec(a2 ⊗ b2) . . . vec(aK ⊗ bK)],

where vec(M) arranges the entries of an m × n matrix M into a vector of
length mn.

We can define a norm for a tensor analogous to the Frobenius norm for
matrices.

Definition 1.1.8. (Norm) We define the norm ∥T∥ of a tensor T as the
square root of the sum of the squares of all its entries:

∥T∥ =

√√√√ n1∑
i1=1

n2∑
i2=1

· · ·
nd∑

id=1

x2i1,...,id .

Furthermore, the notion of an inner product of matrices easily extends
to tensors:

Definition 1.1.9. (Inner Product) The inner product of two tensors of
the same size T, S ∈ Rn1×n2×···×nd is:

⟨T, S⟩ =
n1∑

i1=1

n2∑
i2=1

· · ·
nd∑

id=1

xi1,...,idyi1,...,id .

Then, ⟨T, T ⟩ = ∥X∥2.

We now define special classes of tensors that may appear throughout
this manuscript and related works.

Definition 1.1.10. (Symmetric) A d-way tensor T of size n × · · · × n is
called symmetric if its elements remain unchanged under any index permu-
tation. In other words,

Ti1,...,id = Tiπ(1),...,iπ(d)
,

for any permutation π on {1, . . . , d} and any i1, . . . , id ∈ {1, . . . , n}.

Example 1.1.3. A tensor T ∈ Rn×n×n is symmetric if:

Tijk = Tikj = Tjik = Tjki = Tkij = Tkji, for all i, j, k = 1, . . . , n.

Definition 1.1.11. (Diagonal Tensors)We call a tensor T ∈ Rn1×n2×···×nd

diagonal if:
Ti1i2...in ̸= 0 only if i1 = i2 = · · · = id.

4

1.1. Preliminaries

1.1.2 Tensor Rank

We now introduce the concept of a rank−1 tensor:

Definition 1.1.12. (Rank-1 Tensors)We call a d-way tensor T ∈ Rn1×n2×···×nd

rank-1 if it can be written as the outer product of d vectors:

T = a(1) ⊗ a(2) ⊗ · · · ⊗ a(d) where a(i) ∈ Rni .

Entry-wise, this means that:

Ti1,...,id = a
(1)
i1
⊗ a

(2)
i2
⊗ · · · ⊗ a

(d)
id

for all i1, . . . , id.

Example 1.1.4. If T ∈ Rn1×n2×n3 then T has rank–1 if T = a ⊗ b ⊗ c for
some vectors a ∈ Rn1 , b ∈ Rn2 , c ∈ Rn3 . Then, the entry at position (i, j, k)
of T is equal to Tijk = aibjck.

The definition of a rank of a tensor closely follows the definition of
rank−1:

Definition 1.1.13. (Rank) The rank of a tensor T , denoted rank(T), is
the smallest number r such that T can be written as a sum of r rank–1
tensors:

T =

r∑
i=1

a(1,i) ⊗ a(2,i) ⊗ · · · ⊗ a(d,i).

Here a(j,i) ∈ Rnj for j = 1, . . . , d and i = 1, . . . , r.

Definition 1.1.14. (CP-Decomposition) Let T be a d−order tensor. A
CP-decomposition of T has the form:

T =
r∑

i=1

a(1,i) ⊗ a(2,i) ⊗ · · · ⊗ a(d,i) = [[A(1), A(2), . . . , A(d)]],

where vectors a(1,i) ∈ Rn1 , a(2,i) ∈ Rn2 , . . . , a(d,i) ∈ Rnd for i = 1, . . . , r. In
other words, a CP-decomposition of T is a sum of r rank-1 tensors. The
smallest r for which such a decomposition exists is the rank (or CP-rank)
of T .

Upon further investigation, we see that the rank of a tensor depends on
the field. Let T ∈ Rn1×n2×···×nd and T =

∑r
i=1 a

(1,i) ⊗ a(2,i) ⊗ · · · ⊗ a(d,i):

• rankR(T) is the smallest r such that all a(1,i), . . . , a(d,i) for all i =
1, . . . , r are in R.

5

1.1. Preliminaries

• rankC(T) is the smallest r such that all a(1,i), . . . , a(d,i) for all i =
1, . . . , r are in C.

It’s clear that rankR(T) ≥ rankC(T) for every tensor T . However, the
following example shows that equality does not always hold.

Example 1.1.5. Let T ∈ R2×2×2 such that:

T =

[
1 0 0 −1
0 1 1 0

]
.

We see that rankR(T) ≥ 3 but rankC(T) = 2:

T =
1

2

([
1
−i

]
⊗
[
1
i

]
⊗
[

1
−i

]
+

[
1
i

]
⊗
[

1
−i

]
⊗
[
1
i

])
.

This is not true for matrices. Another difference between matrices and
tensors that causes many issues is the following lemma:

Lemma 1.1.1. The set of tensors with rank at most r is not closed if r ≥ 2.

Example 1.1.6. For every n ∈ N, consider the following tensors

Sn =

[
n 1 1 1

n

1 1
n

1
n

1
n2

]
=

1

n2

[
n
1

]
⊗
[
n
1

]
⊗
[
n
1

]
,

Rn =

[
−n 0 0 0
0 0 0 0

]
=

[
−n
0

]
⊗
[
1
0

]
⊗
[
1
0

]
,

Tn = Sn +Rn =

[
0 1 1 1

n

1 1
n

1
n

1
n2

]
.

For every n ∈ N, Tn is a rank-2 tensor. The sequence {Tn} converges to:

T =

[
0 1 1 0
1 0 0 0

]
.

Suppose we have tensor T and want to approximate T by a low-rank,

say rank-r, tensor with respect to the norm ||T || =
√∑

i1...id
|Ti1...id |

2. Con-

sidering Lemma 2.1, the best rank-r approximation might not exist. The
Eckart-Young theorem allows us always to find the best low-rank approxi-
mation for a matrix as follows:

6

1.1. Preliminaries

Theorem 1.1.2. (Eckart-Young, [10]) Let A be a matrix of rank r with
the singular value decomposition A =

∑r
i=1 σiui⊗vi, where σ1 ≥ σ2 ≥ · · · ≥

σr are the positive singular values of A. Suppose that k < r and we want to
find the best rank-k approximation of A, i.e. a matrix B with rank at most
k such that:

||A−B|| = min
rank(B)≤k

||A−B||.

Then,

B =
k∑

i=1

σiui ⊗ vi.

For tensors, their best low-rank approximation has nothing to do with
their CP-decomposition in general. For example, Kolda and Bader [21]
shows that the best rank-1 approximation of a tensor like:

T = σ1

[
1
0

]
⊗
[
1
0

]
⊗
[
1
0

]
+ σ2

[
1
1

]
⊗
[
1
1

]
⊗
[
0
1

]
is

S = γ x⊗ y ⊗ z,

where

x, y, z ̸=
[
1
0

]
,

[
0
1

]
.

Definition 1.1.15. (Maximal Rank) The maximal rank of n1×n2×· · ·×
nd tensors over R (or C) is the maximal possible rank of such a tensor over
R (or C).

Definition 1.1.16. (Typical Rank) The typical rank of n1×n2×· · ·×nd

tensors over R (or C) is any rank r that occurs with positive probability,
i.e. on a subset of Rn1×n2×···×nd (or Cn1×n2×···×nd) with positive Lebesgue
measure.

Note:

• Maximal rank and typical rank of n1×n2 matrices are equal to min(n1, n2).

• Maximal rank and typical rank of n1 × n2 × n3 × n4 tensors for d ≥ 3
may be different.

• For n1×n2×n3×n4 tensors with d ≥ 3, there may be more than one
typical rank over R.

7

1.1. Preliminaries

• For n1×n2×n3×n4 tensors, there is always one typical rank over C,
which is called generic rank.

Example 1.1.7. For 2× 2× 2 tensors T ∈ R2×2×2,

• The maximal rank over R and the maximal rank over C are both 3.

• The typical ranks over R are 2 (79%) and 3 (21%) when choosing
random 2× 2× 2 real tensors whose entries are independent standard
Gaussians.

• The typical rank over C is 2.

Note: Tensors of rank 1 have probability 0.

We will count the degrees of freedom of tensors of rank at most r and
find the smallest r where the number of degrees of freedom is at least as
large as the dimension of Cn1×n2×···×nd which is n1 · · ·nd.

Lemma 1.1.3. (Degrees of Freedom in a Rank-1 Tensor) The set of
rank-1 tensors a(1) ⊗ . . .⊗ a(d) has dimension:

(n1 − 1) + . . .+ (nd − 1) + 1 = n1 + . . .+ nd − d+ 1.

Proof. It is immediately clear that a(1)⊗ . . .⊗a(d) has at most n1+ . . .+nd

degrees of freedom, but note that this is up to a constant scalar factor in
each term. Instead, require that ∥a(i)∥ = 1 and consider:

λa(1) ⊗ . . .⊗ a(d),

which has 1 + (n1 − 1) + . . . + (nd − 1) = n1 + . . . + nd − d + 1 degrees of
freedom.

Now we define the expected generic rank of a tensor in Cn1×...×nd to be
the smallest r such that the number of degrees of freedom of tensors of the
form

∑r
i=1 a

(1,i) ⊗ · · · ⊗ ad,i is more than or equal to the number of degrees
of freedom of the whole space Cn1×···×nd , which is n1 · · ·nd. Thus, we need
the smallest r such that r(n1 + . . .+ nd − d+ 1) ≥ n1 . . . nd.

Definition 1.1.17. (Expected Generic Rank) The expected generic rank
in Cn1×...×nd is: ⌈

n1 . . . nd

n1 + . . .+ nd − d+ 1

⌉
.

8

1.1. Preliminaries

In particular, if ni = n ∀i, then the expected generic rank is

nd

dn− d+ 1
=

nd

d(n− 1) + 1
∼ nd−1

d
,

which is smaller than the known maximal rank bound of nd−1.

Theorem 1.1.4. (Landsberg, [25]) In general, the generic rank is not the
same as the expected generic rank.

1. (Strassen, [47]) The generic rank of a tensor in C3×3×3 is 5.

2. (Strassen-Lickteig, [31]) For n ̸= 3, the generic rank of a tensor in

Cn×n×n is the same as the expected generic rank of ⌈ n3

3n−2⌉.

3. The generic rank of tensors in C2×2×3 and C2×3×3 is the expected
generic rank 3.

The set of tensors of a given rank is not closed, i.e. there may exist
sequences of tensors Tn, n ≥ 1 of rank r for which Tn → T as n → ∞, but
T has rank > r. Motivated by this, we define the border rank of a tensor T
below.

Definition 1.1.18. (Border Rank) For some tensor T , define its border
rank to be:

rank(T) = min{r|T is the limit of tensors of rank ≤ r}
= min{r|∀ϵ > 0,∃S s.t. rank(S) ≤ r and ∥T − S∥ ≤ ϵ}.

Here, ||·|| is the Frobenius norm for tensors, i.e., ||T || =
√∑

i1,...,id
T 2
i1,...,id

.

1.1.3 Uniqueness

Matrix decompositions are not unique. To see this, consider a matrix M ∈
Cn×m of rank r. We may form a decomposition:

M = AB⊤ =
r∑

i=1

aib
⊤
i =

r∑
i=1

ai ⊗ bi, where

A =

 | |
a1 . . . ar
| |

 ,

B =

 | |
b1 . . . br
| |

 .

9

1.1. Preliminaries

However, for any r× r orthogonal matrix U , we can have a different decom-
position:

M = A(UU⊤)B⊤ = (AU)(BU⊤).

We first define the Kruskal rank of a matrix:

Definition 1.1.19. (Kruskal Rank, [24]) Consider a matrix:

W =

 | |
w1 . . . wn

| |

 .

We say that the columns of W are in k-general linear position if any k
columns are linearly independent. The Kruskal rank of W , denoted κW , is
the maximal r such that the columns of W are in r-general linear position.

Note that the Kruskal rank of a matrix is different from the conven-
tional notion of rank: rank r means that there exist r linearly independent
columns, but Kruskal rank r requires that any collection of r columns is
linearly independent.

Theorem 1.1.5. (Kruskal, [24]) Let T be a n1 × n2 × n3 tensor, and
suppose we may write it as follows:

T =
r∑

i=1

ai ⊗ bi ⊗ ci.

Let

A =

 | |
a1 . . . ar
| |

 , B =

 | |
b1 . . . br
| |

 , C =

 | |
c1 . . . cr
| |

 .

If r ≤ 1
2(κA+κB +κC)− 1, then T has rank r and its rank-r decomposition

is unique up to permutation and scaling.

We also have the following generalization of Kruskal’s theorem.

Theorem 1.1.6. (Sidiropoulos and Bro, [45]) Let T be a n1 × . . .× nd

tensor that can be written as follows:

T =
r∑

i=1

a(1,i) ⊗ . . .⊗ a(d,i).

10

1.2. Tensor Decomposition and Algorithms

Let

A(j) =

 | |
a(j,1) . . . a(j,r)

| |

 .

Then, the above decomposition is unique, and T has rank r if

r ≤ 1

2

(
d∑

i=1

κA(i)

)
− d− 1

2
.

Theorem 1.1.7. The Kruskal rank conditions are sufficient. They are also
necessary conditions for uniqueness if rank is 2 or 3.

Theorem 1.1.8. (Chiantini and Ottaviani, [5]) If T ∈ Cn1×n2×n3 with

n1 ≤ n2 ≤ n3 and rank(T) ≤ n1n2

16
,

then with probability 1 T has a unique decomposition into a sum of rank(T)
rank-1 terms, i.e. rank(T) = rank(T).

1.2 Tensor Decomposition and Algorithms

In this section, we provide an overview of four important tensor decomposi-
tions and their respective algorithms.

1.2.1 CP Decomposition

There are three major types of algorithms that are commonly used to com-
pute the CP decomposition (defined in Section 1.1.2) of a tensor: Alternating
Least Squares, Jennrich’s Algorithm, and the Tensor Power Method.

Algorithm 1 Alternating Least Squares (ALS), [3, 15]

Require: Tensor T = [[A(1), A(2), . . . , A(d)]] ∈ Rn1×n2×···×nd .
Initialize: A1, A2, . . . , An randomnly.
repeat
for i = 1, 2, . . . , d. do

Ai = argminX L(A1, A2, . . . , Ai−1, X,Ai+1, . . . , Ad).
end for
until convergence.
return A1, A2, . . . , Ad.

11

1.2. Tensor Decomposition and Algorithms

Algorithm 2 Jennrich’s Algorithm, [15]

Require: Tensor T ∈ Rn×m×p.
Initialize: Ma = T..a,Mb = T..b s.t. a, b ∼ N(0, 1p)

p i.i.d.

Set eigenvectors {ui : i ∈ [k]} of k largest eigenvalues of Ma(Mb)
†.

Set eigenvectors {vi : i ∈ [k]} of k largest eigenvalues of ((Mb)
†Ma)

T .
Pair {ui, vi} if corresponding eigenvalues are (approximately) reciprocal.
Solve T =

∑k
i=1 ui ⊗ vi ⊗ wi for vectors wi.

return factor matrices U ∈ Rn×k, V ∈ Rm×k,W ∈ Rp×k.

Algorithm 3 Tensor Power Method, [2]

Require: ∥T∥ ≠ 0
for i = 1, 2, . . . do

Randomly sample and normalize θ ∈ Sd (Rn)n s.t. ∥θ∥ = 1.
Run power iteration starting with θ on eigenvector vi ∈ Rn.
until convergence.
Eigenvalue: λi ← T · vdi = ⟨T, v⊗ d

i ⟩.
Deflate: T ← T − λiv

⊗ d
i .

end for
return {v1, . . . , vr} and {λ1, . . . , λr}.

12

1.2. Tensor Decomposition and Algorithms

1.2.2 Tucker Decomposition

Here we define the Tucker decomposition: factorizing a tensor into a core
tensor and matrices that scale the core for each mode. As the Tucker decom-
position provides a summary of the data, it can be seen as a higher-order
principal component analysis (PCA). We also define the two commonly used
algorithms to compute the Tucker decomposition of a tensor: Higher Order
Singular Value Decomposition (HOSVD) and Higher Order Orthogonal It-
eration (HOOI).

Definition 1.2.1. (Tucker Decomposition) Let T be a d−order tensor.
A Tucker decomposition of T has the form:

T =

r1∑
i1=1

r2∑
i2=1

· · ·
rd∑

id=1

gi1i2...ida
(1,i)⊗a(2,i)⊗· · ·⊗a(d,i) = [[G;A(1), A(2), . . . , A(d)]],

where vectors a(1,i) ∈ Rn1 , a(2,i) ∈ Rn2 , . . . , a(d,i) ∈ Rnd for i1 = 1, . . . , r1 to
id = 1, . . . , rd. In other words, a Tucker decomposition of T is the decompo-
sition into a core tensor G multiplied by a single matrix A(1), . . . , A(d) along
each of its d modes.

Algorithm 4 Higher Order Singular Value Decomposition (HOSVD), [26]

Require: Tensor T = [[A(1), A(2), . . . , A(d)]] ∈ Rn1×n2×···×nd .
for i = 1, 2, . . . , d do

Ai ← ri leading left singular vectors of matrices Xi.
end for
G ← T ×1 A

(1)T ×2 A
(2)T ×3 · · · ×d A

(d)T .
return G, A(1), A(2), . . . , A(d).

Algorithm 5 Higher Order Orthogonal Iteration (HOOI), [27]

Require: Tensor T = [[A(1), A(2), . . . , A(d)]] ∈ Rn1×n2×···×nd .
Initialize Ai ∈ rIi×r for i = 1, . . . , d via HOSVD.
repeat
for i = 1, 2, . . . , d do

Tensor S ← T×1A
(1)T×2 · · ·×n−1A

(i−1)T×i+1A
(i+1)T×i+2 · · ·×dA

(d)T .
Ai ← ri leading left singular vectors of matrices Yi.

end for
until stopping criterion satisfied.
G ← T ×1 A

(1)T ×2 A
(2)T ×3 · · · ×d A

(d)T .
return G, A(1), A(2), . . . , A(d).

13

1.2. Tensor Decomposition and Algorithms

1.2.3 Tensor-Train Decomposition

Using tensor network notation, one can arrive at many tensor decompo-
sitions. One of the most important tensor network decompositions is the
Tensor-Train decomposition and its associated singular-value decomposition
algorithm.

Definition 1.2.2. (Tensor-Train Decomposition) Let T be a d−order
tensor. A Tensor-Train (TT) decomposition of T has the form:

T (i1, . . . , id) =
∑

α0,....αd

G1(α0, i1, α1)G2(α1, i2, α2) . . . Gd(αd−1, id, αd),

= G1[i1]G2[i2] . . . Gd[id],

where G1[i1] is size 1× r1, G2[i2] is size r1 × r2, and Gd[id] is size rd−1 × 1.
We refer to matrices Gi as the TT-cores and ri as the TT-ranks. We denote
r = max ri to be the maximal TT-rank. The TT-format is also referred to
as the Matrix Product State (MPS).

Algorithm 6 Tensor-Train Singular Value Decomposition (TT-SVD), [48]

Require: d−order tensor T and prescribed accuracy ϵ.
Initialize δ = ϵ√

d−1
∥T∥F , C = T , and r0 = 1.

for k = 1 to d− 1 do do
C = reshape(C, [rknk,

number of elements of C
rk−1nk

]).

Compute δ−truncated SVD of C : C = U
∑

V T + E s.t. ∥E∥F ≤ δ.
rk = rank(U

∑
V T).

Set Gk = reshape(U, [rk−1, nk, rk]).
C = ΣV T .

end for
return tensor S in TT-format with cores G1, . . . , Gd.

1.2.4 Tensor-Ring Decomposition

The Tensor-Ring decomposition is a generalization of the TT decomposition
such that the trace operation r1 = rd+1 = 1 condition is not necessary.
Here we present the decomposition as well as its associated singular-value
decomposition algorithm.

Definition 1.2.3. (Tensor-Ring Decomposition) Let T be a d−order

14

1.2. Tensor Decomposition and Algorithms

tensor. A Tensor-Ring (TR) decomposition of T has the form:

T (i1, . . . , id) = Trace(G1[i1] . . . Gd[id]),

=

r0∑
α0=1

· · ·
rd−1∑

αd−1=1

G1(α0, i1, α1) . . . Gd(αd−1, id, α0),

where Gk[ik] is size rk−1 × rk for each ik such that 1 ≤ ik ≤ nk. We refer
to the 3−order tensors Gk as the TR-cores and the vector (r0, r1, . . . , rd)
such that r0 = rd as the TR-rank. The TR decomposition can be seen as a
generalization of the TT decomposition where r0 = rd = 1.

Algorithm 7 Tensor-Ring Singular Value Decomposition (TR-SVD), [36]

Require: d−order tensor T and prescribed accuracy ϵ.
C = reshape(T, [n1,

number of elements of C
n1

]).
[U,Σ, V] = SVDδ(C).
Put r1 = rank(Σ).
G1 = permute(reshape(U, [n1, r0, r1]), [2, 1, 3]).
C = permute(reshape(ΣV T , [r0, r1,Π

d
j=2nj]), [2, 3, 1]).

Merge the last two indices by C = reshape(C, [r1,Π
d−1
j=2nj , ndr0]).

for k = 2 to d− 1 do do
C = reshape(C, [rk−1nk,

number of elements of C
rk−1nk

]).

[U, S, V] = SVDδ(C).
rk = rank(Σ).
Gk = reshape(U, [rk−1, nk, rk]).
C = ΣV T .

end for
Gd = reshape(C, [rd−1, nd, r0]).
return tensor S in TR-format with cores G1, . . . , Gd.

15

Chapter 2

Neural Networks and Deep
Learning

2.1 Fundamentals of Neural Networks

2.1.1 Preliminaries

Artificial neural networks (ANNs) are computational models inspired by the
structure and function of the human central nervous system. They are com-
posed of interconnected neurons that can process and transmit information.
Similar to tensor decomposition, ANNs have a long and varied history, with
early ideas and concepts dating back to the 1940s.

The first conceptualization of an artificial neural network is often at-
tributed to McCulloch and Pitts, who published a paper in 1943 outlining
the basic principles of a neural network [35]. They proposed that neurons in
the brain could be modeled as simple logic gates, and that complex compu-
tations could be performed by arranging these neurons in specific patterns.

In the 1950s and 1960s, many researchers built upon this foundation and
developed early prototypes of artificial neural networks. Some of the key
figures in this field include Frank Rosenblatt, who developed the perception
[43], a simple type of neural network capable of binary classification, and
Bernard Widrow and Marcian Hoff, who developed the ADALINE (Adaptive
Linear Element) and MADALINE (Multiple ADALINE) neural networks,
which were capable of learning and adapting to new data [50].

Despite early successes, the field of ANNs faced several challenges and
setbacks in the 1970s and 1980s. One of the main challenges was the lack of
sufficient computing power to train large, complex neural networks. Another
challenge was the lack of effective algorithms for training neural networks,
which made it difficult to achieve good performance on real-world tasks [50].

In the late 1980s and early 1990s, advances in computing technology
and the development of new training algorithms, such as backpropagation,
helped to revitalize the field of ANNs. These advances made it possible to
train large, complex neural networks on various tasks, including image and

16

2.1. Fundamentals of Neural Networks

speech recognition, natural language processing, and control systems [50].
Since then, ANNs have become an important tool in various fields, in-

cluding computer science, engineering, and the natural sciences. They have
been used to solve many problems, from simple tasks like recognizing hand-
written digits to complex tasks like driving a car. Today, ANNs are a funda-
mental component of many modern artificial intelligence systems and con-
tinue to be an active area of research and development [12].

At a high level, an ANN consists of the following components:

• Input layer: The input layer receives input data and transfers it to the
next layer. The size of the input layer (i.e., the number of neurons)
is determined by the input data size. For example, if the input data
consists of images with 28x28 pixels, then the input layer would have
784 neurons (one for each pixel).

• Hidden layers: The hidden layers are located between the input and
output layers. They perform intermediate computations on the input
data and pass the results on to the next layer. There can be any
number of hidden layers in a neural network, and each layer can have
any number of neurons.

• Output layer: The output layer produces the final result of the neural
network’s computations. The size of the output layer (i.e., the number
of neurons) depends on the task the neural network tries to perform.
For example, if the task is to classify images into 10 different categories,
then the output layer would have 10 neurons (one for each category).

Each neuron in an ANN is connected to other neurons in the network
through weights. These weights determine the strength of the connection
between neurons and the extent to which one neuron’s output influences an-
other’s input. During the training process, the neurons’ weights are adjusted
to optimize the neural network’s performance on a given task.

In addition to the weights, each neuron has an activation function, which
determines the output of the neuron given its input. The activation function
can be a simple function, such as a binary threshold function or a sigmoid
function, or a more complex function, such as a rectified linear unit (ReLU)
or a hyperbolic tangent (tanh) function.

Finally, an artificial neural network also has an error function that mea-
sures the difference between the desired output and the actual output of the
neural network. The error function guides the training process by indicat-
ing how well the neural network performs and how the weights should be
adjusted to improve performance.

17

2.1. Fundamentals of Neural Networks

Throughout the following two chapters, we will examine three impor-
tant references: Understanding Machine Learning by Shalev-Shwartz and
Ben-David provides a rigorous and detailed treatment of the mathematical
and statistical concepts that underlie machine learning algorithms [44]; Deep
Learning by Goodfellow, Bengio, and Courville covers a wide range of topics
in deep learning, from the basics of neural networks and supervised learning
to more advanced topics such as unsupervised learning, reinforcement learn-
ing, and generative models [12]; Linear Algebra and Learning from Data by
Strang provides a clear and intuitive explanation of how linear algebra con-
cepts can be used to understand and solve problems in machine learning
[46].

2.1.2 Definitions

Figure 2.1: A feedforward neural network, [44].

Definition 2.1.1. (Feedforward Neural Network, [44]) A feedforward
neural network is a directed acyclic graph G = (V,E) with a weight function
w : E → R over its edges. Every node in the graph corresponds to a

18

2.1. Fundamentals of Neural Networks

neuron and is modeled by a scalar function σ : R→ R called the activation
function. Every edge connects the output of some neuron to the input of
another. The input of a neuron is the weighted sum of all of the outputs of
all of the neurons connected to it. Unless stated otherwise, the term neural
network refers to a feedforward neural network. See Figure 2.1 to see a visual
depiction of a neural network.

Definition 2.1.2. (Neural Network Layers, [44]) A neural network
is organized in layers. Each layer consists of the union of nonempty and
disjoint subsets of nodes, V = ∪Tt=0Vt, such that every edge in E connects
some node in Vt−1 to some node in Vt, for some t ∈ [T] where T denotes
the depth or number of layers in the network (excluding V0). The size of
the network is |V | while the width of the network is maxt |Vt|. The layers
of a neural network can be grouped into three sections: the input layer V0

with n+1 neurons where n is the dimensionality of the input space, hidden
layers V1, . . . , VT−1 where computation occurs, and the output layer VT .

Definition 2.1.3. (Neural Network Computation, [44]) Suppose we
have a neural network with n + 1 neurons in V0. For every i ∈ [n], the
output of neuron i in V0 is simply xi. The last neuron in V0 is the constant
neuron, which always outputs 1. We denote by vt,i the ith neuron of the tth
layer and by ot,i(x) the output of vt,i when the network is fed with the input
vector x. Therefore, for i ∈ [n] we have o0,i(x) = xi and for i = n + 1 we
have o0,i(x) = 1. We now proceed with the calculation in a layer-by-layer
manner. Suppose we have calculated the outputs of the neurons at layer t.
Then, we can calculate the outputs of the neurons at layer t+ 1 as follows.
Fix some vt+1,j ∈ Vt+1. Let at+1,j(x) denote the input to vt+1,j when the
network is fed with the input vector x. Then,

at+1,j(x) =
∑

r:(vt,r,vt+1,j)∈E

w((vt,r, vt+1,j))ot,r(x),

and
ot+1,j(x) = σ(at+1,j(x)).

19

2.2. Fundamentals of Deep Learning

2.2 Fundamentals of Deep Learning

Figure 2.2: Standard deep learning workflow.

This section provides an overview of the deep learning workflow in an aca-
demic context based on a standard approach [12]. See Figure 2.2 for a visual
workflow summary.

2.2.1 Data Acquisition

Data acquisition is an essential step in deep learning, as it involves collecting
and preparing the data that will be used to train a deep learning model. Here
are the main steps involved in data acquisition in deep learning:

1. Define the problem: The first step in data acquisition is to define the
problem that the deep learning model will be used to solve. This will
help determine the type and amount of data needed to train the model.

2. Identify sources of data: Various data sources are available for training
a deep learning model, including public datasets, private datasets, and
web scraping. Identifying the most relevant and reliable data sources
for the problem at hand is important.

20

2.2. Fundamentals of Deep Learning

3. Collect the data: Once the data sources have been identified, the data
must be collected. This can involve downloading datasets, scraping
websites, or collecting data from other sources.

4. Store the data: Finally, the data should be stored in a secure and easily
accessible location, such as a local drive or a cloud storage service. This
will make it easy to access and use data during training.

2.2.2 Data Preprocessing

Once the dataset is stored, the data must be processed before training. Data
preprocessing involves several tasks, including cleaning and formatting the
data, splitting it into training and testing sets, and normalizing or stan-
dardizing it. Here are the main steps involved in data preprocessing in deep
learning:

1. Data cleaning: Data cleaning involves identifying and correcting any
errors, inconsistencies, and missing values in the data. This is impor-
tant because these issues can affect the accuracy and effectiveness of
the deep learning model.

2. Data formatting: Data formatting involves organizing the data in a
way suitable for training a deep learning model. This can involve
converting data to a numerical format, encoding categorical variables,
and removing unnecessary columns.

3. Data normalization: Data normalization involves scaling the data so
that all features have the same scale. Normalization may improve
the performance of the deep learning model, as it can prevent certain
features from dominating the training process.

4. Data standardization: Data standardization involves transforming the
data with unit variance and zero mean. This can also help to improve
the performance of the deep learning model, as it can ensure that all
features are treated equally.

2.2.3 Data Splitting

Once the data has been appropriately preprocessed, it must be split into a
training and a test set. Here are the main steps involved in data splitting
in deep learning:

21

2.2. Fundamentals of Deep Learning

1. Determine the size of the training set: The first step in data splitting
is to determine the size of the training set. This will depend on the size
and complexity of the data, as well as the desired level of performance
of the deep learning model. As a general rule, a larger training set
will result in a more accurate model, but it will also require more
computational resources to train.

2. Partition data into training and testing sets: Once the size of the
training set has been determined, the data can be divided into separate
training and testing sets. Many techniques exist to perform this task,
such as random sampling, stratified sampling, or cross-validation.

3. Shuffle data: It is generally a good idea to shuffle the data before
dividing it into training and testing sets. This can help to ensure
that the data is randomly distributed across the two sets, which can
improve the performance of the deep learning model.

4. Store the training and testing sets: Once the data has been divided
into training and testing sets, it is important to store the sets in a
secure and easily accessible location. This will make it easy to access
and use data during training.

2.2.4 Model Construction

Model construction involves several steps, including selecting a neural net-
work architecture, initializing the model’s weights, and defining the training
process. Here are the main steps involved in model construction in deep
learning:

1. Select a neural network architecture: The first step in model con-
struction is to select a neural network architecture suitable for the
problem at hand. There are many different types of neural network
architectures to choose from, including feedforward networks, convolu-
tional neural networks, recurrent neural networks, and autoencoders,
to name a few.

2. Initialize the model’s weights: Once a neural network architecture has
been selected, the next step is to initialize the model’s weights. The
weights of a deep learning model are the parameters learned during the
training process, and they determine the model’s behavior. Therefore,
it is essential to initialize the weights carefully, as this can affect the
model’s performance.

22

2.2. Fundamentals of Deep Learning

3. Define the training process: A deep learning model’s training process
involves adjusting the model weights to optimize its performance on
a given task. The training process typically involves several steps,
including defining the loss function, selecting an optimizer, and setting
the learning rate.

4. Compile the model: Once the training process has been defined, the
model can be compiled. Compiling the model involves specifying the
loss function and optimizer used during training and any additional
metrics that will be used to evaluate the model’s performance.

2.2.5 Model Training and Evaluation

Once we have constructed a model, it is time to start training and evaluation.
Model training and evaluation involve many steps, including feeding the
training data to the model, adjusting the weights based on the loss function
and optimizer, and evaluating the model’s performance. Here are the main
steps involved in model training in deep learning:

1. Feed the training data to the model: The first step in model training
is to feed the training data to the model. This involves passing the
data through the model and computing the output of the model based
on the current weights of the model.

2. Compute the loss: The next step is to compute the loss, which is
a measure of the difference between the desired output and model
output. The loss function is defined during the model compilation
step and is used to guide the training process.

3. Adjust the weights: Once the loss has been computed, the model
weights are adjusted to reduce the loss. This is done using an op-
timizer, defined during the model compilation step. The optimizer
adjusts the weights based on the gradient of the loss function of the
weights.

4. Evaluate the model’s performance: After the weights have been ad-
justed, the model’s performance is evaluated on the training data.
Depending on the task, some metrics include accuracy, precision, and
recall.

5. Repeat the process: The process of feeding the training data to the
model, computing the loss, adjusting the weights, and evaluating the

23

2.3. Learning from Data

model’s performance is repeated until the model reaches a satisfactory
level of performance on the training data.

2.3 Learning from Data

In this section, we provide an overview of how neural networks learn from
data. We begin with the definition of a hypothesis class.

Figure 2.3: Neural network learning process, [42].

Definition 2.3.1. (Hypothesis Class, [44]) Suppose we have a a feed-
forward neural network (V,E, σ, w) with function hV,E,σ,w : R|V0|−1 → RVT .
We can fix the graph and activation function of the neural network to obtain
the architecture (V,E, σ) of the network. We can define the hypothesis class
for learning by the set of any such functions:

HV,E,σ = {hV,E,σ,w : w : E → R}.

In summary, the weights over the edges of a neural network are the param-
eters specifying a hypothesis in the hypothesis class.

2.3.1 Neural Network Expressivity

Neural networks are extremely powerful tools for approximating functions.
To show their expressiveness, we will begin by showing that every Boolean

24

2.3. Learning from Data

function can be approximated using a very small neural network:

Theorem 2.3.1. (Theorem 20.1 in [44]) For every n, there exists a graph
(V,E) of depth 2, such that HV,E,sign contains all functions from {±1}n to
{±1}.

However, we run into our first theoretical obstacle: the number of nodes
in the hidden layer is exponentially large for such neural networks:

Theorem 2.3.2. (Theorem 20.2 in [44]) For every n, let s(n) be the minimal
integer such that there exists a graph (V,E) with |V | = s(n) such that the
hypothesis class HV,E,sign contains all the functions from {0, 1}n to {0, 1}.
Then, s(n) is exponential in n. Similar results hold for other activation
functions.

Yet, we can show that a network of size O(T (n)2) can approximate all
Boolean functions in time O(T (n)):

Theorem 2.3.3. (Theorem 20.3 in [44]) Let T : N→ N and for every n, let
Fn be the set of functions that can be implemented using a Turing machine
using runtime of at most T (n). Then, there exist constants b, cR+ such that
for every n, there is a graph (Vn, En) of size at most cT (n)2 + b such that
HVn,En,sign contains Fn.

Moving beyond Boolean functions, we can show that neural networks
are universal function approximators:

Theorem 2.3.4. (Theorem 20.5 in [44]) Fix some ϵ ∈ (0, 1). For every n,
let s(n) be the minimal integer such that there exists a graph (V,E) with
|V | = s(n) such that the hypothesis class HV,E,σ, with σ being the sig-
moid function, can approximate, to within precision of ϵ, every 1−Lipschitz
function f : [−1, 1]n → [−1, 1]. Then, s(n) is exponential in n.

2.3.2 SGD and BP

Stochastic gradient descent (SGD) and backpropagation (BP) are the two
fundamental algorithms used in learning via neural networks. We begin by
defining the gradient of a differential function:

Definition 2.3.2. (Gradient, [44]) The gradient of a differentiable func-
tion f : Rd → R at w, denoted ∇f(w), is the vector of partial derivatives of
f , namely:

∇f(w) = (
∂f(w)

∂w[1]
, . . . ,

∂f(w)

∂w[d]
).

25

2.3. Learning from Data

We want to show that gradient descent can be calculated for non-differentiable
functions. To do this, we will show that gradient descent can be applied to
the subgradient of f(w)atw(t). First, we characterize convexity as the exis-
tence of a tangent that lies below f :

Lemma 2.3.5. (Lemma 14.3 in [44]) Let S be an open convex set. A
function fLS → R is convex if and only if for every w ∈ S, there exists v
such that ∀u ∈ S:

f(u) ≥ f(w) + ⟨u− v, v⟩ .

From this lemma, we arrive at the definition of a subgradient:

Definition 2.3.3. (Subgradient, [44]) A vector v that satisfies:

f(u) ≥ f(w) + ⟨u− v, v⟩ ,

is called the subgradient of f at w. The set of subgradients of f at w is
called the diffferential set and is denoted ∂f(w).

Thus, gradient descent can be generalized to non-differentiable functions.
From this, we move onward to the SGD algorithm, which minimizes the loss
function of a neural network using noise:

Algorithm 8 Stochastic Gradient Descent (SGD) for Minimizing f(w), [44]

Require: scalar η > 0, integer T > 0
w(1) = 0
for t = 1, 2, . . . , T do

Choose vt at random from a distribution s.t E[vt|w(t)] ∈ ∂f(w(t))
Update w(t+1) = w(t) − ηvt

end for
return w̄ = 1

T

∑T
t=1w

(t)

Algorithm 9 SGD for Neural Networks, [44]

Require: integer τ , integers η1, . . . , ητ , float λ > 0, layered graph (V,E),
differentiable activation function σ : R→ R
Choose w(1) ∈ R|E| at random
for i = 1, 2, . . . , τ do

Sample (x, y) ∼ D
Calculate gradient vi = backpropogation(x, y, w, (V,E), σ)
Update w(i+1) = w(i) − ηi(vi + λw(i))

end for
return w̄ is the best performing w(i) on a validation set

26

2.3. Learning from Data

How do we calculate the gradient of a loss function? Backpropogation
readily solves this issue:

Algorithm 10 Backpropogation, [44]

Require: example (x, y), weight vector w, layered graph (V,E), activation
function σ : R→ R
Denote layers of the graph V0, . . . , vT where Vt = {vt,1, . . . , vt,kt}
Define Wt,i,j as the weight of (vt,j , vt+1,i)

Forward:
Set o0 = x
for t = 1, 2, . . . , T do

for i = 1, 2, . . . , kt do
Set at,i =

∑kt−1

j=1 Wt−1,i,j ot−1,j

Set ot,i = σ(at,i)
end for

end for

Backward:
Set δT = oT − y
for t = T − 1, T − 2, . . . , 1 do

for i = 1, 2, . . . , kt do
δt,i =

∑kt+1

j=1 Wt,j,i δt+1,j σ
′(at+1,j)

end for
end for

return For all edges (vt−1,j , vt,i), set the partial derivative to
δt,iσ

′(at,i)ot−1.j

Figure 2.3 provides an excellent visual summary of the neural network
learning process.

27

Chapter 3

Convolutional Neural
Networks and Compression

3.1 Convolutional Neural Networks

A convolutional neural network, often referred to as CovNet or CNN, is
a specific neural network architecture that is extremely useful for solving
computer vision problems such as image and video recognition. In this
section, we explore the mathematics that makes CNNs so special.

Figure 3.1: Output of different types of convolutional kernels applied on an
image, [6].

3.1.1 Convolutions

We begin by slowly building up to the definition of convolution in the context
of CNNs.

Definition 3.1.1. (Toeplitz Matrix, [46]) We call an n ×m matrix M
a Toeplitz matrix if it is banded shift-invariant, i.e., Ai,j = Ai+1,j+1. For

28

3.1. Convolutional Neural Networks

example:

A =


a0 a1 a2 0 0 0
0 a0 a1 a2 0 0
0 0 a0 a1 a2 0
0 0 0 a0 a1 a2

 .

Definition 3.1.2. (Block Toeplitz, [46]) We call an n × m matrix M
Block Toeplitz if it can be partitioned into two or more square blocks or
submatrices of which some are Toeplitz. For example:

A =


a0 a1 a2 0 0 0
0 a0 a1 a2 0 0
0 0 a0 a1 a2 0
0 0 0 0 0 0

 .

Definition 3.1.3. (Kernel, [46]) In the context of image recognition, we
call a (typically Block Toeplitz) E×E matrix K a kernel. In the literature,
the term filter is often used as a synonym for kernel; however, some authors
use the term kernel only to describe a two-dimensional matrix and filter to
describe a higher-dimensional tensor. The kernel matrix elements are called
weights and are typically learned during the training process as defined in
Chapter 2.

Definition 3.1.4. (Kernel Window, [46]) The kernel window is the re-
gion of the input image Wnm that is covered by the kernel at any given
time. As the kernel slides across the input image, it covers a different image
window at each position. For example, let B be a 4× 4 image pixel matrix
and K a 3× 3 kernel. The kernel window W22 is:

B =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 ,W22 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

The number of pixels by which the kernel window moves each time it slides
across the image is called the stride. To move the kernel across the entire
image, the kernel is positioned at the top left corner of the image. Next,
the convolution operation (defined below) is performed using the pixels in
the kernel window. The kernel is then moved to the right by the stride
number, and the convolution operation is performed again using the new
kernel window. This process is repeated until the kernel has covered the
entire image.

29

3.1. Convolutional Neural Networks

Definition 3.1.5. (Convolution, [46]) Suppose we have an E×E kernel
K and an n × m image pixel matrix B. We define the two-dimensional
convolution A = K ∗B to output an (E + n− 1)× (E +m− 1) matrix C:

A = K ∗B = Cxy =
∑
u

∑
v

kuvbx−u+1,y−v+1,

where u and v range over all legal subscripts for kuv and bx−u+1,y−v+1. See
Figure 3.1 for examples of outputs of different kernels convolved with an
image.

If one looks closely at the definition above, the subscripts suggest a
180-degree counter-clockwise kernel rotation to simplify the operation. In
practice, a convolution in deep learning leads to an output of the same size
as the kernel and is defined as sum(dot(B,K)), where B is an image pixel
matrix, and K is a kernel. In other words, it is the sum of the dot product
of column-wise vectors of the kernel window and the kernel as displayed in
Figure 3.2.

Figure 3.2: Example convolution of an image (left) with a kernel (right),
[49].

3.1.2 Finding Edges

With a solid understanding of the algebra underpinning convolutions and
filters, we can explore the many purposes filters serve in CNNs.

Definition 3.1.6. (Smoothing, [46]) For a matrix f , we call a convolution
with a Gaussian smoothing:

Gf(x, y) =
1

2πσ2
e−(x2+y2)/2σ2 ∗ f.

30

3.1. Convolutional Neural Networks

For small σ2, noise removal makes smoothing signal details clearer.

Definition 3.1.7. (Sobel Operators for Gradient Detection, [46]) In
the E = 3 case, we call the following two matrices Sobel operators :

∂

∂x
≈ 1

2

−1 0 1
−2 0 2
−1 0 1

 ,
∂

∂y
≈ 1

2

−1 −2 −1
0 0 0
1 2 1

 .

The convolution of a Sobel operator with an image A produces another
image Gx or Gy that contains either the horizontal or vertical derivative
approximation, respectively. Sobel operators are used in gradient detection
as a precursor to edge detection in image recognition tasks.

Definition 3.1.8. (Laplacians of Gaussians for Edge Detection, [46])
We call the following filters the Laplacians of Gaussians:

Ef(x, y) = [∇2g(x, y)] ∗ f(x, y),

where
∇2G = (x2 + y2 − 2σ2)e−(x2+y2)/2σ2

/πσ4.

These filters are used in Canny Edge Detection.

Definition 3.1.9. (Padding) We define padding as the extension of the
input layer for the input and output layers to be of equal dimension. Cur-
rently, the most popular padding approach is zero-padding, which simply
sets all additional row and column components as zeros. Without padding,
the spatial dimensions of the input image will typically shrink as the kernel
slides across the image. This can be undesirable for certain image process-
ing tasks, where the spatial dimensions of the input image are important.
Adding padding to the borders of the input image makes it possible to
preserve the spatial dimensions of the input image after the convolution
operation has been applied.

3.1.3 Deep CNNs

Now that all of the main mechanisms behind CNNs are explored, we can
build up towards LeNet-5 - one of the first and simplest CNN implementa-
tions.

Definition 3.1.10. (Input Channels) Suppose we have an n×m×p image
pixel tensor B. We refer to the size of p as the number of input channels.

31

3.1. Convolutional Neural Networks

For example, a grayscale image has only one channel, which encodes the
intensity of each pixel. On the other hand, a color image typically has three
channels: one for red, one for green, and one for blue. These channels are
used to represent the different colors of the image. When applying a kernel
to an input image, it is necessary to specify the number of input channels
in the kernel. The kernel will be applied separately to each input channel,
and the results will be combined to produce the output of the convolution
operation.

Theorem 3.1.1. (Karpathy’s Formula, [46]) Suppose we have an E×E
kernel K, an N ×N × 1 image pixel matrix B, stride S, and amount of zero
padding P . Then, the size of the output O will be:

O =
N − E + 2P

S
+ 1.

Example 3.1.1. (LeNet-5, [29]) In general, a deep CNN is a deep neural
network that has more than one filter or convolutional layer. As there are
many variants of Deep CNNS, we will focus on the foundational LeNet-5
architecture proposed by LeCun et al in 1989. LeNet-5 is a simple 5-layer
deep CNN that was created to solve the image recognition task of recognizing
ten handwritten and machine-printed characters. The input layer I0 is a
32× 32× 1 image pixel matrix B with one input channel as it is grayscale.
The first convolutional layer has 6 filters, each of size 5×5. It takes in input
I1 = I0 and returns output O1 of size 28×28×6. Afterward, average pooling
is applied to O1 resulting in a reduction in size by half without affecting the
channel number. Thus, O1′ is 14 × 14 × 6. The second convolutional layer
has 16 filters, each of size 5× 5. It takes in input I2 = O1′ and outputs O2

which is 10 × 10 × 16. Again, average pooling is applied to O2 resulting in
O2′ of size 5× 5× 16. The third convolutional layer has 120 filters, each of
size 5 × 5. It takes in input I3 = O2′ and outputs O3 of size 1 × 1 × 120.
Finally, we have a fully connected layer of 84 neurons followed by an output
layer of 10 neurons representing the ten image classes. See Figure 3.3 for a
diagram of the full LeNet-5 architecture.

It is important to note that the weights of the convolutional filters are
updated using backpropagation. During training, the CNN is fed a batch
of training data, and the output of the CNN is compared to the ground
truth labels using a loss function. The gradient of the loss function with
respect to the weights of the convolutional filters is then calculated using
backpropagation. The weights are then updated in the opposite direction
of the gradient, which helps to reduce the loss. This process is repeated for

32

3.2. Compression Methods

multiple epochs until the CNN has learned to classify the training data to the
desired accuracy. It is also common to use weight initialization techniques
and regularization techniques, such as dropout, to improve the training of
the CNN and prevent overfitting.

Figure 3.3: LeNet-5 architecture.

3.2 Compression Methods

The question of whether or not to compress CNNs is a natural one. From
the point of view of a fully-connected feedforward neural network, a CNN
is already a highly compressed model. Take the LeNet-5 architecture intro-
duced in the previous section. The convolution from the input layer to the
first feature map reduces the parameters to 28 ·28 · (5 ·5+1) ·6 = 122, 304 at
that stage of the computation, while a fully-connected layer would produce
(32 · 32+1) · (28 · 28) · 6 = 4, 821, 600 parameters. Unfortunately, most CNN
architectures still involve fully-connected layers before producing an output,
which massively increases the number of model parameters. As more model
parameters increase hardware costs and decrease training speeds, industry
and academia have come together to tackle the problem of how to compress
CNNs further.

Many methods exist for compressing CNNs. Fortunately for those who
wish to compare methods, most of the field has focused on two common
values for assessing compression techniques: 1) percentage accuracy change
from baseline, and 2) compression ratio (CR). Percentage accuracy change
from baseline is simply the measure of the compressed CNN performance
against its uncompressed counterpart (i.e., the baseline model) on some

33

3.2. Compression Methods

task(s) using a shared metric. We call a compressed model lossless if there
is only a small decrease in percentage accuracy (≤ 1%). CR is a ratio
calculated by dividing the number of parameters (i.e., weights) of the base-
line model by the number of parameters of the compressed model. Other
values, such as memory usage, power usage, and training speedup, are
also seen across the literature. In this section, we first provide a table of
commonly used benchmark datasets and models for CNN compression and
then cover the three most common compression methods (excluding tensor
decomposition-based methods) for CNNs: 1) precision reduction, 2) network
pruning, and 3) compact architecture construction. Finally, we will highlight
two key papers of interest for each method that capture the development of
each technique since its emergence.

3.2.1 Benchmarks

Dataset Associated CNN Models

MNIST [8] LeNet-5 [29], AlexNet [23]
ImageNet [7] ResNet-18, ResNet-20, ResNet-32 [19]
CIFAR-10 [22] ResNet-18, ResNet-20, ResNet-32
CIFAR-100 [22] ResNet-18, ResNet-20, ResNet-32

Table 3.1: Common CNN compression benchmark datasets and models.

3.2.2 Precision Reduction

Definition 3.2.1. (Linear Quantization)We call the conversion of weight
representation from floating-point to fixed-point or dynamic fixed-point lin-
ear quantization.

Lotric and Bulic [34] were among the first research teams to demon-
strate effective and efficient linear quantization of neural networks. Using
an iterative logarithmic multiplier for fixed-point multiplication, Lotric and
Bulic maintained an accuracy within 1% error of the baseline neural net-
work model with more than 10% memory and 20% power reduction. In
2016, Gysel et al [13] presented Ristretto, a CNN approximation framework
that could convert 32-bit floating point to 8-bit fixed point operations while
maintaining less than 1% accuracy error from baseline.

34

3.2. Compression Methods

Definition 3.2.2. (Non-linear Quantization) We call the non-uniform
(typically logarithmic) encoding of a CNN non-linear quantization.

While linear quantization proved to be an effective initial compression
scheme, neural network operations could not be encoded down any further
than to 8-bit fixed point without suffering significant performance deteriora-
tion. Miyashita et al [37] introduced a scheme that uses non-uniform base-2
logarithmic encoding of CNN operations and weights that achieves similar
levels of accuracy compared to baseline models while compressing and the
operations down to 5-bit fixed point. Zhou et al [52] created an incremental
network quantization framework that maintained similar accuracy to base-
line while compressing operations down to 3-bit fixed point, leading to a CR
of 89x.

3.2.3 Network Pruning

Definition 3.2.3. (Unstructured Pruning) We call the removal of re-
dundant weights in a CNN unstructured pruning.

Han et al [14] were among the first to successfully compress CNNs by
pruning unimportant connections. Without loss of accuracy, they achieved
CRs of 9 to 13 on various models. Dettmers and Zettlemoyer [9] intro-
duced sparse momentum, an algorithm capable of achieving lossless accu-
racy against baseline with a CR of up to 20x and a training speedup of over
5x on various CNN models.

Definition 3.2.4. (Structured Pruning) We call the removal of specific
filters or channels in a CNN structured pruning. This is usually done by
Transfer Learning - first pretraining a neural network on a large but distinct
dataset and then fine-tuning it on the target dataset.

Through Transfer Learning, Molchanov et al [38] could remove entire fea-
ture maps of a CNN while retaining lossless accuracy. This method achieved
a training speedup of over 5x on ImageNet. Lin et al [32] used a genera-
tive adversarial learning approach to prune both neurons and filters in an
end-to-end approach achieving lossless accuracy on datasets such as MNIST,
CIFAR-10, and ImageNet with training time speedup of over 3.7x and a CR
from 2x to 9x.

3.2.4 Compact Architecture Construction

If quantization and pruning are insufficient compression methods for the
target IoT device due to memory, communication, or storage constraints,

35

3.3. CNN Compression via Tensor Decomposition

constructing a new compact architecture is a common solution. Two of
the most popular compact CNN architectures are SqueezeNet [18] and Mo-
bileNet [17]. SqueezeNet was constructed with autonomous vehicles in mind.
On ImageNet, it achieves lossless accuracy as compared to AlexNet while
having a CR of 50x and being 510x smaller in terms of storage. MobileNet is
slightly larger than SqueezeNet in terms of parameters, yet it has less than
5% of SqueezeNet’s operations. MobileNet can also achieve lossless accuracy
on numerous tasks, including object and face detection.

3.3 CNN Compression via Tensor Decomposition

In this section, we cover tensor decomposition-based CNN compression meth-
ods using the aforementioned four tensor decompositions: CP, Tucker, Tensor-
Train, and Tensor-Ring. Similar to the previous section, we cover two key
papers of interest for each tensor-based technique. Most, if not all, of the
approaches covered in this section involve tensorizing CNNs: converting spe-
cific layers of a CNN into tensor format via a tensor decomposition to reduce
the layer’s number of parameters. In particular, it is very useful to compress
the fully-connected layers near the end of the CNN as they disproportion-
ality increase the number of parameters in the entire network. While much
more difficult and less impactful than fully-connected layers, Convolutional
layers are still compressible.

3.3.1 CP Compression

A popular method for using CP decomposition to compress CNNs is to
replace the CNN’s kernels with low-rank tensor approximations. Lebedev
et al [28] were among the first to show promising results by decomposing
kernels via non-linear least squares CP decomposition and fine-tuning via
backpropagation. On ImageNet, their approach was able to speed up the
training time by 4x with trivial decreases in accuracy. However, such ap-
proaches often suffer from diverging component degeneracy: the phenomena
where at least two rank-1 tensors exist such that their Frobenius norms are
high but cancel each other. This degeneracy commonly leads to a trade-off
between reducing approximation error and increasing estimation stability.
On large CNN models training on complex datasets such as ILSVRC-12 and
CIFAR-100, Phan et al [41] achieved lossless accuracy with a CR of nearly
3x through their stable CP decomposition method.

36

3.4. PyTorch-TedNet Model Benchmarks

3.3.2 Tucker Compression

Unlike CP decomposition which focuses on compressing kernel layers, one of
the more successful CNN compression methods using Tucker decomposition
is the compression of every layer in the network. Kim et al [20] were among
the first to demonstrate the power of Tucker decomposition through their
three-stage compression scheme that consists of 1) rank selection, 2) tucker
decomposition on kernel tensor, and 3) fine-tuning. Their method achieved
lossless accuracy with a CR of 5.46x on AlexNet, 7.40x on VGG-S, and 1.09x
on VGG-16. Liu and Ng [33] provide a modern extension of Kim et al’s work
and achieve lossless accuracy for ResNet-18 on CIFAR-10 with a CR and
speedup of 11.82x and 5.48x, respectively.

3.3.3 Tensor-Train Compression

Garipov et al [11] were one of the first groups to achieve near lossless ac-
curacy on the CIFAR-10 dataset: 1.1% accuracy drop with a CR of 80x.
Their method consisted of 1) reshaping the 4-dimensional kernel of each
convolutional layer, 2) performing TT-decomposition on each convolutional
layer, and 3) tensorizing the fully-connected layers by storing the weight
matrices in TT-format. Using a TT-SVD-based projection algorithm and
an ADMM-regularized training procedure, Yin et al [51] were able to achieve
lossless and even improved accuracy on several datasets including MNIST,
CIFAR-10, CIFAR-100, and ImageNet with CRs ranging from 4.6x to 18x.

3.3.4 Tensor-Ring Compression

While TT-decomposition compression methods still achieve the best per-
formance, a few promising TR-decomposition compression methods exist
for CNNs. Aggarwal et al [1] demonstrated that a tensor ring net with
compressed convolutional and fully-connected layers could achieve lossless
accuracy on MNIST via LeNet-5 with a CR of 11x and a CR of 243x on
CIFAR-10 using WideResNet28 with only a 2.3% decrease in accuracy. Li
et al [30] were able to improve upon the previous work, demonstrating a CR
of 141x with only a 1.9% decrease in accuracy on CIFAR-10 using WideRes-
Net28.

3.4 PyTorch-TedNet Model Benchmarks

In this section, we first review the CNN tensorization methodology of Pan et
al [39] for all four tensor decomposition types. Then, we verify the analyses

37

3.4. PyTorch-TedNet Model Benchmarks

performed in the study on the CIFAR-10 and CIFAR-100 benchmarks. To
verify the analyses, we begin by creating ResNet-32 using PyTorch [40]. Af-
terward, we train and test all four TedNet compressed models (CP, Tucker2,
TT, and TR) on the benchmarks. All source codes and results are provided
below.

3.4.1 TedNet Tensorized Layers

In this section, we only focus on tensorizing the fully-connected layers, which
can be formulated as y = Wx although TedNet can compress convolutional
layers. We can reformulate a fully-connected layer in a CNN as:

yj1,...,jM =

I1,...,IN∑
i1,...,iN=1

Wi1,...,iN ,j1,...,jMxi1,...,iN .

Definition 3.4.1. (CP Layer, [39]) For a fully-connected layer in a CNN,
the following is a tensorized representation called the CP layer:

yj1,...,jM =

I1,...,IN∑
i1,...,iN=1

R∑
r=1

gra
(1)
i1,r

. . . a
(N)
iN ,ra

(N+1)
j1,r

. . . a
(N+M)
jM ,r xi1,...,iN ,

where R is the CP-rank.

Definition 3.4.2. (Tucker2 Layer, [39]) For a fully-connected layer in a
CNN, the following is a tensorized representation called the Tucker2 layer:

yj1,...,jM = ⋆,

⋆ =

I1,...,IN∑
i1,...,iN=1

R1∑
r1=1

· · ·
RN∑

rN=1

gr1,...,rNa
(1)
i1,r

. . . a
(N)
iN ,ra

(N+1)
j1,r

. . . a
(N+M)
jM ,r xi1,...,iN ,

where R1, . . . , RN can be different ranks.

Definition 3.4.3. (TT Layer, [39]) For a fully-connected layer in a CNN,
the following is a tensorized representation called the TT layer:

yj1,...,jM = ⋆,

⋆ =

I1,...,IN∑
i1,...,iN=1

R1,...,RN∑
r1,...,rN=1

g
(1)
i1,j1,r1

. . . g
(N)
iN ,jN ,rN

xi1,...,iN ,

where R1, . . . , RN−1 are the TT-ranks.

38

3.4. PyTorch-TedNet Model Benchmarks

Definition 3.4.4. (TR Layer, [39]) For a fully-connected layer in a CNN,
the following is a tensorized representation called the TR layer:

yj1,...,jM = ⋆,

⋆ =

I1,...,IN+M∑
i1,...,iN+M=1

R0,...,RN+M−1∑
r0,...,rN+M−1

g
(1)
r0,i1,r1

. . . g
(N+1)
rN ,j1,rN+1

. . . g
(N+M)
rN+M−1,jM ,r0

xi1,...,iN

where R0, . . . , RN are the TR-ranks.

3.4.2 ResNet-32

We begin by creating the ResNet-32 model using PyTorch.

Program 1 ResNet-32 - Import libraries

1 import torch

2 import torch.nn as nn

3 import torch.nn.functional as F

4 import torch.nn.init as init

5 from torch.autograd import Variable

39

3.4. PyTorch-TedNet Model Benchmarks

Program 2 ResNet-32 - Model, [19]

1 def ResNet32():

2 def _weights_init(m):

3 classname = m.__class__.__name__

4 #print(classname)

5 if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):

6 init.kaiming_normal_(m.weight)

7 class LambdaLayer(nn.Module):

8 def __init__(self, lambd):

9 super(LambdaLayer, self).__init__()

10 self.lambd = lambd

11 def forward(self, x):

12 return self.lambd(x)

13 class BasicBlock(nn.Module):

14 expansion = 1

15 def __init__(self, in_planes, planes, stride=1, option='A'):

16 super(BasicBlock, self).__init__()

17 self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)

18 self.bn1 = nn.BatchNorm2d(planes)

19 self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)

20 self.bn2 = nn.BatchNorm2d(planes)

21 self.shortcut = nn.Sequential()

22 if stride != 1 or in_planes != planes:

23 self.shortcut = LambdaLayer(lambda x:

24 F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, planes//4, planes//4), "constant", 0))

25 def forward(self, x):

26 out = F.relu(self.bn1(self.conv1(x)))

27 out = self.bn2(self.conv2(out))

28 out += self.shortcut(x)

29 out = F.relu(out)

30 return out

31 class ResNet(nn.Module):

32 def __init__(self, block, num_blocks, num_classes=100):

33 super(ResNet, self).__init__()

34 self.in_planes = 16

35 self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)

36 self.bn1 = nn.BatchNorm2d(16)

37 self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)

38 self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)

39 self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)

40 self.linear = nn.Linear(64, num_classes)

41 self.apply(_weights_init)

42 def _make_layer(self, block, planes, num_blocks, stride):

43 strides = [stride] + [1]*(num_blocks-1)

44 layers = []

45 for stride in strides:

46 layers.append(block(self.in_planes, planes, stride))

47 self.in_planes = planes * block.expansion

48 return nn.Sequential(*layers)

49 def forward(self, x):

50 out = F.relu(self.bn1(self.conv1(x)))

51 out = self.layer1(out)

52 out = self.layer2(out)

53 out = self.layer3(out)

54 out = F.avg_pool2d(out, out.size()[3])

55 out = out.view(out.size(0), -1)

56 out = self.linear(out)

57 return out

58 return ResNet(BasicBlock, [5, 5, 5])

40

3.4. PyTorch-TedNet Model Benchmarks

3.4.3 CIFAR-10 Benchmark

In Table 3.2, we see that only the TedNet TT-tensorized ResNet-32 model
achieves lossless performance.

Max Accuracy Rank Parameters CR

ResNet-32 81 - 0.46M 1x
CP 63 10 0.026M 18x
TK2 68 3 0.012M 40x
TT 80 3 0.012M 40x
TR 76 3 0.010M 44x

Table 3.2: CIFAR-10 benchmark results (50 Epochs, Single GPU).

Program 3 Import libraries

1 # Import libraries

2

3 from managpu import GpuManager

4 import random

5 import tednet

6 import tednet.tnn.cp

7 import tednet.tnn.tucker2

8 import tednet.tnn.tensor_ring

9 import tednet.tnn.tensor_train

10 import numpy as np

11 import torch

12 import torch.nn as nn

13 import torch.nn.functional as F

14 import torch.optim as optim

15 from torchvision import datasets, transforms

41

3.4. PyTorch-TedNet Model Benchmarks

Program 4 Configure GPU

1 # Configure GPU

2

3 my_gpu = GpuManager()

4 my_gpu.set_by_memory(1)

5 use_cuda = torch.cuda.is_available()

6 device = torch.device("cuda" if use_cuda else "cpu")

7 seed = 123

8 random.seed(seed)

9 np.random.seed(seed)

10 torch.manual_seed(seed)

11 if use_cuda:

12 torch.cuda.manual_seed_all(seed)

13 torch.backends.cudnn.benchmark = True

14 torch.backends.cudnn.deterministic = True

Program 5 CIFAR-10 - Load dataset, [22]

1 # Load dataset

2

3 kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}

4 train_loader = torch.utils.data.DataLoader(

5 datasets.CIFAR10('./data', train=True, download=True,

6 transform=transforms.Compose([

7 transforms.ToTensor(),

8 transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))

9])),

10 batch_size=128, shuffle=True, **kwargs)

11 test_loader = torch.utils.data.DataLoader(

12 datasets.CIFAR10('./data', train=False, transform=transforms.Compose([

13 transforms.ToTensor(),

14 transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))

15])),

16 batch_size=128, shuffle=True, **kwargs)

42

3.4. PyTorch-TedNet Model Benchmarks

Program 6 CIFAR-10 - Define train and test processes

1 # Define train and test processes

2

3 def train(model, device, train_loader, optimizer, epoch, log_interval=200):

4 model.train()

5 for batch_idx, (data, target) in enumerate(train_loader):

6 data, target = data.to(device), target.to(device)

7 optimizer.zero_grad()

8 output = model(data)

9 loss = F.cross_entropy(output, target)

10 loss.backward()

11 optimizer.step()

12 if batch_idx % log_interval == 0:

13 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(

14 epoch, batch_idx * len(data), len(train_loader.dataset),

15 100. * batch_idx / len(train_loader), loss.item()))

16

17 def test(model, device, test_loader):

18 model.eval()

19 test_loss = 0

20 correct = 0

21 with torch.no_grad():

22 for data, target in test_loader:

23 data, target = data.to(device), target.to(device)

24 output = model(data)

25 test_loss += F.cross_entropy(output, target, reduction='sum').item() # sum up batch loss

26 pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability

27 correct += pred.eq(target.view_as(pred)).sum().item()

28

29 test_loss /= len(test_loader.dataset)

30

31 print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(

32 test_loss, correct, len(test_loader.dataset),

33 100. * correct / len(test_loader.dataset)))

Program 7 CIFAR-10 - Define model

1 # Define model

2

3 model = resnet32()

4 ## model = tednet.tnn.cp.CPResNet32([10, 10, 10, 10, 10, 10, 10],10)

5 ## model = tednet.tnn.tucker2.TK2ResNet32([3, 3, 3, 3, 3, 3, 3],10)

6 ## model = tednet.tnn.tensor_train.TTResNet32([3, 3, 3, 3, 3, 3, 3],10)

7 ## model = tednet.tnn.tensor_ring.TRResNet32([3, 3, 3, 3, 3, 3, 3],10)

8 model.to(device)

9 optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=0.0001)

43

3.4. PyTorch-TedNet Model Benchmarks

Program 8 CIFAR-10 - Train and evaluate model, [40, 39]

1 # Begin training

2

3 for epoch in range(20):

4 train(model, device, train_loader, optimizer, epoch)

5 test(model, device, test_loader)

3.4.4 CIFAR-100 Benchmark

In Table 3.3, we see that neither the TedNet TT-tensorized ResNet-32 or
TedNet TR-tensorized ResNet-32 models achieve lossless performance.

Max Accuracy Rank Parameters CR

ResNet-32 54 - 0.47M 1x
TT 48 6 0.038M 13x
TR 43 6 0.035M 13x

Table 3.3: CIFAR-100 benchmark results (50 Epochs, Single GPU).

Program 9 CIFAR-100 - Load dataset [22]

1 # Load dataset

2

3 kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}

4 train_loader = torch.utils.data.DataLoader(

5 datasets.CIFAR100('./data', train=True, download=True,

6 transform=transforms.Compose([

7 transforms.ToTensor(),

8 transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))

9])),

10 batch_size=128, shuffle=True, **kwargs)

11 test_loader = torch.utils.data.DataLoader(

12 datasets.CIFAR100('./data', train=False, transform=transforms.Compose([

13 transforms.ToTensor(),

14 transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))

15])),

16 batch_size=128, shuffle=True, **kwargs)

44

3.4. PyTorch-TedNet Model Benchmarks

Program 10 CIFAR-100 - Define train and test processes

1 # Define train and test processes

2

3 def train(model, device, train_loader, optimizer, epoch, log_interval=200):

4 model.train()

5 for batch_idx, (data, target) in enumerate(train_loader):

6 data, target = data.to(device), target.to(device)

7 optimizer.zero_grad()

8 output = model(data)

9 loss = F.cross_entropy(output, target)

10 loss.backward()

11 optimizer.step()

12 lr=optimizer.param_groups[0]["lr"]

13 if batch_idx % log_interval == 0:

14 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(

15 epoch, batch_idx * len(data), len(train_loader.dataset),

16 100. * batch_idx / len(train_loader), loss.item()))

17

18 def test(model, device, test_loader):

19 model.eval()

20 test_loss = 0

21 correct = 0

22 with torch.no_grad():

23 for data, target in test_loader:

24 data, target = data.to(device), target.to(device)

25 output = model(data)

26 test_loss += F.cross_entropy(output, target, reduction='sum').item() # sum up batch loss

27 pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability

28 correct += pred.eq(target.view_as(pred)).sum().item()

29

30 test_loss /= len(test_loader.dataset)

31

32 print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(

33 test_loss, correct, len(test_loader.dataset),

34 100. * correct / len(test_loader.dataset)))

Program 11 CIFAR-100 - Define model

1 # Define model

2

3 model = ResNet32()

4 ## model = tednet.tnn.tensor_train.TTResNet32([6, 6, 6, 6, 6, 6, 6],100)

5 ## model = tednet.tnn.tensor_ring.TRResNet32([6, 6, 6, 6, 6, 6, 6],100)

6 model.to(device)

7 optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)

45

3.4. PyTorch-TedNet Model Benchmarks

Program 12 CIFAR-100 - Train and evaluate model, [40, 39]

1 # Begin training

2

3 scheduler = torch.optim.lr_scheduler.StepLR(optimizer,5, gamma=0.2)

4

5 epochs=20

6 lrs=[]

7 for epoch in range(1,epochs+1):

8 train(model, device, train_loader, optimizer, epoch)

9 test(model, device, test_loader)

10 scheduler.step()

3.4.5 Conclusion

As demonstrated in the CIFAR-10 and CIFAR-100 benchmark results, ten-
sor decomposition can drastically decrease the number of model parameters
of large CNNs such as ResNet-32 while maintaining similar performance. In
particular, the TT-tensorized ResNet-32 performed the best on both bench-
marks against all other compressed models. One of the main benefits of
TT-decomposition for compressing CNNs is that it can effectively capture
the low-rank structure of convolutional filters, typically used in CNNs to
extract features from images. Convolutional filters often have a low-rank
structure because they only need to capture a small number of patterns
or features in an image, rather than the entire image itself. By using the
TT-decomposition to approximate these filters, it is possible to represent
them using fewer parameters, leading to a more compact and efficient CNN.
Additionally, the TT-decomposition can be efficiently computed using algo-
rithms such as alternating least squares, making it practical for real-world
applications. Moreover, it can provide good reconstruction performance,
meaning that the original tensor can be accurately reconstructed from the
decomposed cores. This is important for preserving the accuracy of the CNN
when compressing it. Finally, TT decomposition is also flexible in that it
can be applied to a wide range of tensor sizes and dimensions, making it
suitable for compressing CNNs with different architectures.

There are several benefits to performing CNN compression via tensor
decomposition. Tensor decomposition can significantly reduce the number
of parameters in a CNN, leading to a smaller model size. This is particu-
larly useful for deploying CNNs on devices with limited storage or reducing
the transmission time when transferring the model over the network. Fur-
thermore, tensor decomposition can also improve the efficiency of a CNN
by reducing the number of calculations required to process a given input.

46

3.4. PyTorch-TedNet Model Benchmarks

This can lead to faster inference times and lower power consumption, mak-
ing the CNN more suitable for real-time applications. In some cases, tensor
decomposition can also improve the generalization performance of a CNN,
meaning that it can perform better on unseen data. This is because the
decomposition process can remove redundant or irrelevant information from
the model, leading to a more compact and efficient data representation.

Several directions exist for future research in the area of CNN compres-
sion via tensor decomposition:

1. Developing more efficient algorithms: One area of focus could be devel-
oping more efficient algorithms for computing tensor decompositions,
such as the TT-decomposition. This could involve finding ways to
reduce the computational complexity of the algorithms or developing
new algorithms that are better suited for compressing CNNs.

2. Improving the accuracy of compressed models: Another area of focus
could be improving the accuracy of compressed CNNs. This could
involve developing methods for selecting the most important parame-
ters to keep during the compression process or finding ways to preserve
more of the information in the original model.

3. Investigating the generalization performance of compressed models:
Researchers could also study the generalization performance of com-
pressed CNNs, which refers to how well the model performs on un-
seen data. This could involve evaluating the trade-off between model
compression and generalization performance to determine the optimal
compression level for a given task.

47

Bibliography

[1] V. Aggarwal, W. Wang, B. Eriksson, Y. Sun, and W. Wang. Wide
compression: Tensor ring nets. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9329–9338, 2018.

[2] A. Anandkumar, R. Ge, and M. Janzamin. Analyzing tensor power
method dynamics in overcomplete regime. J. Mach. Learn. Res.,
18(1):752–791, 2017.

[3] J. D. Carroll and J. J. Chang. Analysis of individual differences in
multidimensional scaling via an n-way generalization of “eckart-young”
decomposition. Psychometrika, 35(3):283–319, 1970.

[4] R. B. Cattell. Parallel proportional profiles” and other principles for de-
termining the choice of factors by rotation. Psychometrika, 9:267–283,
1944.

[5] L. Chiantini and G. Ottaviani. On generic identifiability of 3-tensors
of small rank. SIAM Journal on Matrix Analysis and Applications,
33(3):1018–1037, 2012.

[6] Pratik Choudhari. Understanding ”convolution” operations in cnn,
May 2020.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[8] Li Deng. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine, 29(6):141–142,
2012.

[9] T. Dettmers and L. Zettlemoyer. Sparse networks from scratch: Faster
training without losing performance. ArXiv, abs/1907.04840, 2019.

48

Bibliography

[10] C. Eckart and G. Young. The approximation of one matrix by another
of lower rank. Psychometrika, 1:211–218, 1936.

[11] T. Garipov, D. Podoprikhin, A. Novikov, and D. Vetrov. Ultimate
tensorization: compressing convolutional and fc layers alike. ArXiv,
2016.

[12] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, Cambridge, MA, USA, 2016. http://www.

deeplearningbook.org.

[13] P. Gysel, M. Motamedi, and S. Ghiasi. Hardware-oriented approxima-
tion of convolutional neural networks. ArXiv, abs/1604.03168, 2016.

[14] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and
connections for efficient neural network. ArXiv, abs/1506.02626, 2015.

[15] A. Harshman. Foundations of the parafac procedure: Models and condi-
tions for an “explanatory” multi-modal factor analysis. UCLA Working
Papers in Phonetics, 16:1–84, 1970.

[16] F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of
products. Studies in Applied Mathematics, (1-4):164–189, 1927.

[17] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. ArXiv,
abs/1704.04861, 2017.

[18] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. H., W. J. Dally, and
K. Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer param-
eters and ¡1mb model size. ArXiv, abs/1602.07360, 2016.

[19] H. Kaiming, Z. Xiangyu, R. Shaoqing, and S. Jian. Deep residual
learning for image recognition. ArXiv, 2015.

[20] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. Compression
of deep convolutional neural networks for fast and low power mobile
applications. ArXiv, 2015.

[21] T. Kolda and B. Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, 2009.

[22] Alex Krizhevsky. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

49

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C.J. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012.

[24] J.B. Kruskal. Three-way arrays: rank and uniqueness of trilinear de-
compositions, with application to arithmetic complexity and statistics.
Linear Algebra and its Applications, 2:95–138, 1977.

[25] J. M. Landsberg. Tensors: Geometry and Applications. Graduate Stud-
ies in Mathematics, 2012.

[26] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear sin-
gular value decomposition. SIAM Journal on Matrix Analysis and Ap-
plications, 21(4):1253–1278, 2000.

[27] L. De Lathauwer, B. De Moor, and J. Vandewalle. On the best rank-1
and rank-(r1 ,r2 ,. . .,rn) approximation of higher-order tensors. SIAM
Journal on Matrix Analysis and Applications, 21(4):1324–1342, 2000.

[28] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-
sky. Speeding-up convolutional neural networks using fine-tuned cp-
decomposition. ArXiv, 2014.

[29] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel. Backpropagation applied to handwrit-
ten zip code recognition. Neural Comput, 1(4):541–551, 1989.

[30] N. Li, Y. Pan, Y. Chen, Z. Ding, D. Zhao, and Z. Xu. Towards efficient
tensor decomposition-based dnn model compression with optimization
framework. ArXiv, 2020.

[31] T. Lickteig. Rank and optimal computation of generic tensors. Linear
Algebra and its Applications, 69:95–120, 1985.

[32] S. Lin, R. J., C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and D. S.
Doermann. Towards optimal structured cnn pruning via generative
adversarial learning. 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2785–2794, 2019.

[33] Y. Liu and M. K. Ng. Deep neural network compression by tucker
decomposition with nonlinear response. Knowledge-Based Systems, 241,
2022.

50

Bibliography

[34] U. Lotrič and P. Bulić. Applicability of approximate multipliers in
hardware neural networks. Neurocomputing, 96:57–65, 2012. Adaptive
and Natural Computing Algorithms.

[35] Warren Mcculloch and Walter Pitts. A logical calculus of ideas imma-
nent in nervous activity. Bulletin of Mathematical Biophysics, 5:127–
147, 1943.

[36] O. Mickelin and S. Karaman. On algorithms for and computing with
the tensor ring decomposition. Numer Linear Algebra Appl, 27(3), 2020.

[37] D. Miyashita, H. Lee E, and B. Murmann. Convolutional neural net-
works using logarithmic data representation. ArXiv, abs/1603.01025,
2016.

[38] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning
convolutional neural networks for resource efficient transfer learning.
ArXiv, abs/1611.06440, 2016.

[39] Y. Pan, M. Wang, and Z. Xu. Tednet: A pytorch toolkit for tensor
decomposition networks. Neurocomputing, 469:234–238, 2022.

[40] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-
performance deep learning library. ArXiv, 2019.

[41] A. Phan, K. Sobolev, K. Sozykin, D. Ermilov, J. Gusak, P. Tichavsky,
V. Glukhov, I. Oseledets, and A. Cichocki. Stable low-rank tensor
decomposition for compression of convolutional neural network. ArXiv,
2020.

[42] Rukshan Pramoditha. Overview of a neural network’s learning process,
Feb 2022.

[43] F. Rosenblatt. The perceptron: A probabilistic model for informa-
tion storage and organization in the brain. Psychological Review,
65(6):386–408, 1958.

[44] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014.

51

Bibliography

[45] N.D. Sidiropoulos and R. Bro. On the uniqueness of multilinear de-
composition of n-way arrays. Journal of Chemometrics, 14:229–239,
2000.

[46] G. Strang. Linear Algebra and Learning from Data. Wellesley-
Cambridge Press, 2019.

[47] V. Strassen. Rank and optimal computation of generic tensors. Linear
Algebra and its Applications, 52-53:645–685, 1983.

[48] A. Vijayaraghavan. Efficient tensor decomposition. ArXiv, 2020.

[49] Rijul Vohra. Convolutional neural networks, Sep 2019.

[50] B. Widrow and M.A. Lehr. 30 years of adaptive neural networks: per-
ceptron, madaline, and backpropagation. Proceedings of the IEEE,
78(9):1415–1442, 1990.

[51] M. Yin, Y. Sui, S. Liao, and B. Yuan. Towards efficient tensor
decomposition-based dnn model compression with optimization frame-
work. ArXiv, 2021.

[52] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremental network
quantization: Towards lossless cnns with low-precision weights. ArXiv,
abs/1702.03044, 2017.

52

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Programs
	Acknowledgements
	Dedication
	Tensors and Tensor Decomposition
	Preliminaries
	Basic Definitions and Operations
	Tensor Rank
	Uniqueness

	Tensor Decomposition and Algorithms
	CP Decomposition
	Tucker Decomposition
	Tensor-Train Decomposition
	Tensor-Ring Decomposition

	Neural Networks and Deep Learning
	Fundamentals of Neural Networks
	Preliminaries
	Definitions

	Fundamentals of Deep Learning
	Data Acquisition
	Data Preprocessing
	Data Splitting
	Model Construction
	Model Training and Evaluation

	Learning from Data
	Neural Network Expressivity
	SGD and BP

	Convolutional Neural Networks and Compression
	Convolutional Neural Networks
	Convolutions
	Finding Edges
	Deep CNNs

	Compression Methods
	Benchmarks
	Precision Reduction
	Network Pruning
	Compact Architecture Construction

	CNN Compression via Tensor Decomposition
	CP Compression
	Tucker Compression
	Tensor-Train Compression
	Tensor-Ring Compression

	PyTorch-TedNet Model Benchmarks
	TedNet Tensorized Layers
	ResNet-32
	CIFAR-10 Benchmark
	CIFAR-100 Benchmark
	Conclusion

	Bibliography

